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Abstract
A new technique is presented for generating symbolic expres-

sions for the harmonic transfer functions of linear periodically
time-varying (LPTV) systems, like mixers and PLL’s. The algo-
rithm, which we call Symbolic HTM, is based on the organisation
of the harmonic transfer functions into a harmonic transfer ma-
trix. This representation allows to manipulate LPTV systems in a
way that is similar to linear time-invariant (LTI) systems, making it
possible to generate symbolic expressions which relate the overall
harmonic transfer functions to the characteristics of the building
blocks. These expressions can be used as design equations or as
parametrized models for use in simulations. The algorithm is illus-
trated for a downconversion mixer.

1 Introduction
Symbolic expressions relating the behavior of a system or cir-

cuit to it’s building block characteristics are useful for several rea-
sons [3]. First of all, they offer the designer explicit relations that
provide insight into the system’s overall behavior and characteris-
tics. They can also be used to make decisions about building block
and component parameters. Finally, they provide parametrized, be-
havioral models which can be used in simulations at higher levels
of abstraction. The fact that these models are symbolic avoids the
necessity to recompute them each time a new set of parameter val-
ues is introduced, which is for example useful in perfoming trade-
off analyses. Up to now, most of the research on symbolic analysis
has been restricted to linear (small-signal) circuit characteristics
[2], with some extensions to weakly nonlinear circuits [12], [13].

This paper presents an algorithm to construct symbolic expres-
sions for the harmonic transfer functionsHi(s) of linear periodi-
cally time-varying (LPTV) systems, like mixers and PLL’s. These
harmonic transfer functions are defined in Fig.1, which shows a
generic model for the input/output behavior of an LPTV system.
As can be seen, there are several paths from input to output, each
path consisting of a linear time-invariant (LTI) filterHi(s) and a
frequency translation. The frequency translations result in the fact
that (undesired) signal components from anywhere in the input
spectrum get converted into the wanted output signal band. The
filters Hi(s) determine the “strength” of this signal transfer be-
tween the different frequency bands and, for this reason, are called
the harmonic transfer functions. Knowing theHi(s) provides us
with a frequency-domain characterization of the LPTV system be-
havior, helping for example in estimating the impact of sideband
signal components in mixing applications and that of noise sources
on the output spectrum of a PLL.

Using harmonic transfer functions to analyse time-varying be-
havior occurs in many areas of electrical engineering. As electronic
circuits are concerned, an algorithm to compute them numerically,
starting from a netlist, is presented in [10]. Although this approach
is very well suited for verification and the construction of numer-
ical macromodels, it does not offer clear insight into the system’s
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Figure 1. Generic model of an LPTV system. Each input-output
path consists of an LTI filtering stage followed by a frequency
translation.

internal structure and it’s dependencies upon building block char-
acteristics. In [8] (and also in [9]), it is proposed to organize the
harmonic transfer functions into a single harmonic transfer matrix
(HTM). This allows to manipulate time-varying systems in a way
similar to (multi-variable) LTI systems. Although offering better
insights into the system’s internal structure, the approach in [8] is
still made from a numerical point of view, requiring numerical val-
ues for all design parameters.

At this point it is worth emphasizing that LPTV systems are
inherentlylinear. Although one would be tempted to consider the
multiplications withejkω0t in Fig. 1 as nonlinear, the principle of
superposition still holds, making them linear operations. Symbolic
computation of the harmonic transfer functions using techniques
for nonlinear symbolic LTI network analysis [12], [13] will hence
not fully exploit the linear nature of LPTV systems. This makes
them suboptimal for this kind of applications.

In our work, the organisation of harmonic transfer functions
into harmonic transfer matrices is used and extended as a frame-
work for symbolic manipulation of LPTV systems. The method is
called Symbolic HTM. The input is a system model in the form of
a block diagram. The output consists of symbolic expressions for
the system’s harmonic transfer functions. The required input mod-
els can be extracted from netlists with the help of existing tools
for behavioral modeling [6]. Hereby, large LTI subcircuits can be
represented using their multiport parameters. With Symbolic HTM
expressing results in terms of these multiport parameters, lengthy
and uninterpretable expressions are avoided. Computation of the
multiport parameter characteristics can then be done afterwards,
using well-established techniques for (LTI) symbolic circuit anal-
ysis [2], [4], [7]. In the hierarchy of symbolic analysis, this work
hence makes up a layer on top of the existing tools for symbolic
network analysis.

The remainder of the paper is organized as follows. In section
2, we recapitulate the essentials about harmonic transfer functions
of LPTV systems and introduce their organization into harmonic
transfer matrices. In section3, we show how this representation
can be used for efficient manipulation of LPTV systems. An algo-
rithm for symbolic computation of the overall input/output behav-
ior is described in section4. Section5 presents the results obtained



from the analysis of a downconversion mixer and finally, conclu-
sions are drawn in section6.

2 Harmonic transfer matrix system represen-
tation

Considering a general linear time-varying system, it’s input-
output relation is described by [15],

y(t) =

∫ +∞

−∞
h(t, r)u(r)dr (1)

whereu(t) represents the input andy(t) the output signal(s) (for
notational convenience, we denoteu(t) andy(t) as scalars; they
can however also be considered as vectors in which caseh(t, r)
becomes a matrix). For aT -periodic (LPTV) system,h(t, r) will
be periodic with respect to displacements in both of it’s arguments,
or

h(t + T, r + T ) = h(t, r) ∀t, r ∈ < (2)
Changing variables tor = t − τ , we can write (1) as

y(t) =

∫ +∞

−∞
h(t, t − τ )u(t − τ )dτ (3)

where it is easily seen thath(t, t− τ ) is T -periodic int. The latter
implies that

h(t, t − τ ) =

k=+∞∑
k=−∞

hk(τ )ejkω0t (4)

with ω0 = 2πf0 = 2π/T and

hk(τ ) =
1

T

∫ T

0

h(t, t − τ )e−jkω0tdt (5)

Substituting equation (4) into equation (3) finally yields

y(t) =

k=+∞∑
k=−∞

ejkω0t

∫ +∞

−∞
hk(τ )u(t − τ ) (6)

Analyzing expression (6), we see that the output signaly(t) con-
sists of a set of terms that are frequency translated (factorejkω0t),
LTI filtered (factor

∫ +∞
−∞ hk(τ )u(t− τ )dτ ) transformations of the

input signalu(t). This corresponds to the model as pictured in
Fig. 1. The functionshk(t) are referred to as the harmonic im-
pulse responses, while their Laplace transforms

Hk(s) =

∫ +∞

−∞
hk(τ )e−sτdτ (7)

are called the harmonic transfer functions (HTF). These transfer
functions completely characterize the (linear part of) the behavior
of a periodic system.

Using the HTF’s, we can convert the time-domain input/output
relation (6) to the Laplace domain, or

Y (s) =

k=+∞∑
k=−∞

Hk(s − jkω0)U(s − jkω0) (8)

with U(s) andY (s) the Laplace transforms of respectivelyu(t)
andy(t). In [8] (and also in [9]), it was observed that with proper
organization of the datastructures, the input/output relation (7) can
be rewritten in a way that resembles the description of ordinary LTI
systems. Introducing

Ũ(s) =
[

. . . Ũ−1(s) Ũ0(s) Ũ1(s) . . .
]T

(9)
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Figure 2. Signal transfers between the different input frequency
bands and output frequency bands.

with Ũk(s) = U(s+jkω0) and with a similar definition for̃Y(s),
(8) can be written as

Ỹ(s) = H̃(s)Ũ(s) (10)

with H̃(s) the doubly infinite matrix

H̃(s) =




...
...

...
· · · H̃−1,−1(s) H̃−1,0(s) H̃−1,1(s) · · ·
· · · H̃0,−1(s) H̃0,0(s) H̃0,1(s) · · ·
· · · H̃1,−1(s) H̃1,0(s) H̃1,1(s) · · ·

...
...

...




(11)
where

H̃n,m(s) = Hn−m(s + jmω0) (12)

This matrixH̃(s) is called theharmonic transfer matrix(HTM) of
the LPTV system. The tilde on top of it’s name is used to distin-
guish it from an ordinary LTI multivariable system matrix.

The nature of the HTM elements̃Hn,m(s) follows from the
observation that the vector componentŨm(s) = U(s + jmω0)
models the signal content in the frequency band centered around
mω0. This, together with the input/output relation

Ỹn(s) =
∑
m

H̃n,m(s)Ũm(s) (13)

makes clear that the HTM elementH̃n,m(s) models the transfer of
signal content from the input signal frequency band aroundmω0

to the output signal frequency band aroundnω0. These transfers
and their relation to the HTM elements̃Hn,m(s) are illustrated in
Fig. 2.

3 LPTV system manipulation using HTM’s
HTM’s provide us with an efficient framework to manipulate

LPTV systems and to compute the overall input/output behavior
given the system’s building block characteristics. To this account,
section3.1introduces the HTM’s of some elementary systems. The
basic apparatus for computing the HTM’s of composed systems is
outlined in section3.2. Special focus is given to the fact that the
results should be symbolically applicable.
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Figure 3. Parallel and series connection of two (LPTV) systems.

3.1 HTM’s of elementary systems
Two fundamental subclasses of LPTV systems are LTI systems

on the one hand and multiplications with a known periodic ref-
erence signalp(t) on the other hand. Any other LPTV system
can always be modeled as an interconnection of these basic sub-
classes. Finding the HTM’s for these special type of LPTV systems
is straightforward.

Considering the input/output relation (6), it holds, by definition,
that for an LTI systemhk(τ ) = 0 except fork = 0. The HTM of
an LTI operator with transfer characteristicH(s) is hence given by

{
H̃n,m(s) = H(s + jmω0) m = n

H̃n,m(s) = 0 m 6= n
(14)

This implies that the HTM equivalent of an LTI system is a diago-
nal matrix with it’s frequency-shifted transfer characteristic on the
diagonal.

The HTM of a multiplication of the input signalu(t) with a
T -periodic signalp(t), or y(t) = p(t)u(t), where

p(t) =
∑

k

Pkejkω0t (15)

can be found by observing that this corresponds withhk(τ ) =
Pkδ(τ ) with δ(τ ) being a Dirac impulse. The HTM elements then
becomeH̃n,m = Pn−m, or

H̃(s) =




. . .
. . .

. . .
P0 P−1 P−2

. . . P1 P0 P−1

. . .
P2 P1 P0

. . .
. . .

. . .




(16)

which is a frequency-independent Toeplitz matrix.

3.2 HTM’s of composed systems
In constructing and manipulating linear systems, there are three

types of basic connections, being parallel, series and feedback con-
nections. Together, they make up a complete set which can be used
to construct block diagrams or any other type of graph.

Given the HTM’sH̃1(s) andH̃2(s) of two LPTV systems, it
is easy to show that the HTM of their parallel respectively series
connection, as illustrated in Fig.3, is given by

H̃+(s) = H̃1(s) + H̃2(s) (17)

H̃×(s) = H̃2(s)H̃1(s) (18)

It is important to note that the order of multiplication in (18) can-
not be interchanged. Contrary to single-input single-output LTI
systems, LPTV systems are, in general, not commutable.
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Figure 4. Feedback connection of two (LPTV) systems.

As the HTM of the feedback connection in Fig.4 is concerned,
things are more involved. Straightforward manipulation yields for
the closed loop characteristic̃Hcl(s)

H̃cl(s) =
(
I + G̃(s)

)−1

Ã(s) (19)

with G̃(s) = Ã(s)H̃fb(s) the open loop gain HTM andI the
identity matrix. Computing̃Hcl(s) hence involves a matrix inver-
sion which is a hard problem to solve symbolically. However, in
most practical LPTV systems, the HTM’s that need to be inverted
(I + G̃(s) in case of the feedback example) tend to have a domi-
nant diagonal component, meaning that the energy contained in the
diagonal elements is much larger than the energy contained in the
sideband elements. This corresponds to a dominant LTI component
being present in the overall LPTV feedback path. From a control
theory point of view, the presence of this dominant diagonal com-
ponent can be explained by the fact that feedback systems (which
generate the need for HTM inversions) without such a dominant
diagonal component will tend to be rather unstable.

Assuming the presence of a dominant diagonal component, the
inversion of a HTMH̃(s) can be approximated using a series ex-
pansion, that can easily be evaluated symbolically. WritingH̃(s) =
D̃(s)− F̃(s), whereD̃(s) contains the diagonal elements ofH̃(s)
and−F̃(s) the off-diagonal elements, inversion yields

H̃(s)−1 =
(
I− D̃(s)−1F̃(s)

)−1

D̃(s)−1 (20)

=
∞∑

r=0

(
D̃(s)−1F̃(s)

)r

D̃(s)−1 (21)

The expansion (21) is convergent as long as
∥∥∥D̃(s)−1F̃(s)

∥∥∥ < 1

[5]. For practical purposes, it will be truncated after a finite number
of termsR. ThisR can be user-provided or can be based upon error
estimations if numerical data is available. As a final note, we men-
tion that if the expansion (21) is not applicable (

∥∥∥D̃(s)−1F̃(s)
∥∥∥ >

1), other techniques, like determinant expansion techniques as ap-
plied in classical symbolic circuit analysis [4], need to be tried for
computation of the inverse.

4 Computing the input/output HTM
In what follows the HTM framework is used as a foundation for

the Symbolic HTM algorithm, generating symbolic expressions for
the overall input/output HTFs. The algorithm takes a block dia-
gram as input. The composing blocks can be LTI systems, repre-
sented by a symbolH(s) for the transfer characteristic, multipli-
cations with a periodic signalp(t), represented by the symbolsPk

for the Fourier coefficients ofp(t), or even other LPTV systems,
represented by the symbolsHk(s) for the HTFs. Expressions are
generated in terms of the symbols representing the building blocks.
This allows for a hierarchical approach, where for example the de-
tailed characteristics of LTI subsystems are extracted afterwards
using standard techniques for symbolic LTI network analysis [2],
[4], [7].
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Figure 5. Graphs representing a feedback system (top) and it’s
open loop HTM’s (bottom).

In the next couple of sections, we discuss both the symbolic
HTM datastructures (section4.1) and its computational flow (sec-
tion 4.2).

4.1 Datastructures
In storing the HTM, it is not needed to store every matrix el-

ement separately. Looking at the element definitions in (12), it is
observed that the HTM has a semi-Toeplitz structure in a sense that
a diagonal for whichn−m = k contains frequency shifted copies
of the same HTFHk(s). It is therfore sufficient to only store the
(nonzero) HTFs in order to be able to compute all necessary ele-
ments of the harmonic transfer matrix.

4.2 Computational flow
Symbolic HTM’s computational flow consists of three steps. In

a first (preprocessing) step, the input model feedback loops are cut
by introducing a set of loop variables. During the second step,
which comprises the actual symbolic computations, these loop vari-
ables are eliminated in order to obtain symbolic expressions for the
input/output HTFs. In a final (postprocessing) step, these expres-
sions can be simplified if numerical data is available.

Breaking the loops:In a first step, all loops are cut. This results
in the introduction of a set of loop variables. Given a graph-like
representation, loops can be detected using graph traversal algo-
rithms [11]. They are cut at the point where they first leave the
feedforward path. This process results in a set of equations




X̃1(s) =
∑

H̃1,k(s)X̃k(s) + H̃1,inŨ(s)

X̃2(s) =
∑

H̃2,k(s)X̃k(s) + H̃2,inŨ(s)
...

Ỹ(s) =
∑

H̃y,k(s)X̃k(s) + H̃y,inŨ(s)

(22)

with theX̃k(s) representing the loop variables (with a structure as
defined by (9)) and theH̃l,·(s), l = 1, 2, . . ., being the HTM’s
characterizing the open loop behavior. These open loop HTM’s
are computed as series and/or parallel connections of the building
block HTM’s, using the principles outlined in section3.2. As a
heuristic for obtaining better readable expressions, for each loop
equationl, a symbolic name can be assigned to the HTM corre-
sponding to the intersection of the graphs of the open loop HTM’s
H̃l,·(s). This means that one introduces auxiliary symbols to rep-
resent the HTM corresponding to the part in common to theH̃l,·(s).
Expressing thẽHl,·(s) in terms of these auxiliary symbols, yields
hierarchically structured and better readable expressions.

All of this is illustrated in Fig.5 for the case of a simple feed-

back system. The top graph represents the graph of the overall
system. Each branch represents a (possibly time-varying) building
block. There is one feedback loop leading to the introduction of a
loop variableX̃1 and it’s corresponding loop equation. The bot-
tom part of Fig.5 shows the graphs corresponding to the open loop
HTM’s H̃1,·(s). Here, the dashed part is in common to both graphs
and it’s corresponding HTM could be represented using auxilary
symbols in order to make further expressions better readable.

Eliminating the loop variables:In a second step, the loop
variablesX̃k(s) are eliminated using symbolic Gaussian elimina-
tion. ForX̃1(s), this implies that we solve(

I− H̃11(s)
)

X̃1(s) =
∑
k>1

H̃1,k(s)X̃k(s) + H̃1,inŨ(s) (23)

and substitute the result into the equations forX̃2(s), X̃3(s), . . .
in (22). The result is a reduced system with one equation and
one variable removed. We proceed in a likewise manner to elim-
inate the other loop variables until we end up with the desired in-
put/output relation.

The inversion of
(
I− H̃11(s)

)
, implied in equation (23), is

performed using the series expansion (21) truncated after the first
R terms.R should be provided by the user, unless numerical data is
available, allowing to determine it’s value based upon error control.

During computations, a number of simple measures can be taken
to avoid wasting time on unimportant contributions. Firstly, we can
limit the number of tones, i.e. the number of HTF’s being stored
and computed. This implies that for each LPTV subsystem and in-
terconnection of subsystems, we assume that the HTF’sHk(s) = 0
for |k| > K, skipping their exact computation. Secondly, in per-
forming the inversions, we introduce a dummy variableµ in the
expansion (21), writing

H̃(s)−1 ≈
R−1∑
r=0

µr
(
D̃(s)−1F̃(s)

)r

D̃(s)−1 (24)

This dummy variableµ is carried along during all inversion and
substitution processes. As a heuristic for computing only the rele-
vant terms, it is assumed that all contributions which areO

(
µR

)
are unimportant and hence can be neglected.

Simplification:In a final step, the computed expressions can be
simplified by eliminating all terms with neglegible energy. This is
however only possible if numerical data is available to control the
simplification error [2], [14].

Computational complexity:The complexity of this algorithm
is roughly proportional to the total number of all terms generated
during the second (elimination) step. This number is (in worst
case) of the orderO

(
N (2K + 1)R+N−1 T R+N−1

)
, whereN is

the number of time-varying feedback loops,K is a measure for the
number of tones taken into account (as defined above),T is the av-
erage number of terms necessary for modeling the open loop HTM
elements andR − 1 is the order inµ up to which the contributions
are computed.

5 Experimental results
The Symbolic HTM algorithm has been prototyped in Maple.

It was applied to the linear downconversion mixer shown in Fig.6.
For the given application, the algorithm takes a few seconds to ex-
ecute on a Sun ULTRA 30. In what follows, the mixer building
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block models are discussed, some remarks concerning the con-
struction of the loop equations (22) are made and the resulting
symbolic expressions are verified against numerical computations.

The mixer behavior was modeled assuming the amplifier to be a
two-stage Miller-OTA. Both OTA stages were represented by their
(time-varying)Y -parameter equivalents. The mixer block diagram
shown in Fig.7 was then extracted from the (linearized) nodal
equations of the circuit in Fig.6. The time-varying subblocks are
indicated by a tilde on top of their name. The main sources of time-
varying behavior are due to the modulation of the small-signal pa-
rameters of the input transistors as well as those of the second OTA
stage. The input transistor models are based upon the level-1 equa-
tions for a MOST in triode region. This yields the small-signal
current model

iDS = βVosc(t)vG − β (VG − VT ) vn − γβVn(t)vn (25)

where we use capital letters to represent the (time-varying) oper-
ating points and small letters for the small-signal values. Here,
Vosc(t) is the oscillator signal,Vn(t) is the signal at the OTA in-
put terminals andγ is a factor modeling the mismatch between
the two input transistors. The first term in equation (25) repre-
sents the desired mixing behavior, while the last term adds a time-
varying component to the OTA input admittance. The second time-
varying contribution, due to the 3rd order nonlinear behavior of the
transconductance of the second OTA stage, involves the modulated
small-signal transconductance

gm2(t) =
∑

k

gm2,kejkω0t (26)

As a first step of the symbolic HTM algorithm, the loop equa-
tions (22) were constructed. During this process, two loop vari-
ables and one auxilary HTM, which we call̃G(s), were intro-
duced. This auxilary HTM corresponds to to the part encircled

by the dashed line in Fig.7, and was generated as the intersection
of the graphs corresponding to the open loop HTMs of the second
loop equation. It represents a system with HTFs


G0(s) =

Hi(s)(A1(s)(gm2,0+sCc)+Yfb(s))
Yo(s)

Gk(s) =
Hi(s)A1(s)gm2,k

Yo(s+jkω0)
k 6= 0

(27)

Next, symbolic expressions were generated for the input/output
HTM elementsH̃0,0(s), H̃0,1(s) and H̃0,2(s). These elements
model the downconversion behavior of the signal contents around
respectively0, f0 and2f0 to baseband. Computations were done
up to first order in the dummy variableµ (see equation (24)), while
taking 7 tones into account (i.e. the HTF’sH−3(s) to H3(s)).
In the absence of a priori knowledge concerning design param-
eter values, these settings were selected manually. In what fol-
lows, these symbolic expressions are verified numerically for a
mixer with a bandwidth of 1MHz and an local oscillator frequency
f0 = 20MHz. Numerical computation of the HTM elements was
done using an algorithm similar to the one in [10] (without the
model reduction part). Comparison of the numerical results with
the symbolic approximations was done by integrating the error
over the interval[0, f0], with a weight function that emphasizes
the characteristic in the 1MHz passband by a factor of 10dB.

The desired downconversion behavior fromf0 to baseband, de-
termined byH̃0,1(s), is dominated by the contribution of 0-th order
in µ. It is given by

H̃0,1(s) =
1

2

βVoscG0(s)(
1 − G0(s) − Hc(s)(gm2,0+sCc)

Yo(s)

)
Yfb(s)

(28)

with Vosc here being the amplitude of the local oscillator signal.
This expression is found to be accurate up to -81 dB.

For the HTM elements̃H0,0(s) andH̃0,2(s), things are more
complicated. The expression for̃H0,0(s) contains 11 terms, while
the one forH̃0,2(s) contains 8 terms, no one really dominating. As
an example, we list the first couple of terms ofH̃0,2(s),

H̃0,2(s) =
1

2

βVoscG−1(s + jω0)

L(s)Yfb(s + jω0)

+
βVoscG0(s + jω0)G−1(s + jω0)

L(s)L(s + jω0)Yfb(s + jω0)
(29)

−1

2

γβ2VoscVn,−1G0(s)Hi(s + jω0)

L(s)Yfb(s)Yfb(s + jω0)
+ . . .

whereL(s) = 1 − G0(s) − Hc(s)(gm2,0+sCc)
Yo(s)

, the Gk(s) are
as defined in (27) and theVn,k are the Fourier coefficients cor-
responding to the time-varying operating pointVn(t) in equation
(25). For purpose of analysis, these terms can further be grouped
by combining those terms having a proportional low-frequency be-
havior, which, in most cases, is the frequency range of interest. To
do so, we use the fact that, typically, for|s| � ω0 andk 6= 0,
the factors of the formH(s + jkω0) occurring in the terms above
can be approximated asH(s + jkω0) ≈ H(jkω0), i.e. a con-
stant. Grouping terms in this way,̃H0,0(s) contains 3 components
andH̃0,2(s) 2, providing a much better starting point for analyzing
and interpreting the expressions.

The accuracy of these symbolic models, as compared to direct
numerical computation of the HTM elements, is listed in TableI.
The results show that the expressions, generated up to first order
in the dummy variableµ, allow to modelH̃0,0(s) andH̃0,2(s) up



HTM element Relative accuracy
H̃0,0(s) -53.8 dB
H̃0,1(s) - 81.0 dB
H̃0,2(s) -33.5 dB

Table I. Relative accuracy of the computed symbolic models as
compared to direct numerical computation.
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Figure 8. Exact transfer characteristic of H̃0,0(s) (solid bold line)
and it’s symbolically generated components (marked lines).

to accuracies of respectively 0.2% and 2%, with the expression for
H̃0,1(s) being even more accurate. This is quite sufficient for most
purposes. Fig.8 and9 plot H̃0,0(s) andH̃0,2(s) and their com-
ponents for the chosen numerical setup. The solid bold line repre-
sents the exact overall transfer characterisic, while the marked lines
correspond to the individual, symbolically generated components
(after being grouped).

Computing contributions up to higher order inµ rapidly leads
to an explosion in the number of terms and simplification tech-
niques [2], [14] become unavoidable to control this explosion. This
however requires numerical data concerning the building block pa-
rameters, which is often not available when performing symbolic
computations. The results in TableI however indicate that the con-
tribution of these higher order terms to the overall characteristic is
neglegible, making it in most cases unnecessary to compute them.
Up to first order, the number of terms is small enough for the gen-
erated expressions to be useful and interpretable.

6 Conclusions
This paper presented the Symbolic HTM algorithm for gener-

ation of symbolic expressions for the harmonic transfer functions
of LPTV systems, starting from a behavioral model in the form of
a block diagram. These expressions relate the overall input/output
behavior of the LPTV system to the characteristics of its building
blocks. The method is useful for deriving design equations, pro-
viding insight into the system’s internal structure and for the gen-
eration of parametrised models useful for simulation and trade-off
analysis at higher levels of abstraction. Symbolic HTM is based
upon the organisation of the harmonic transfer functions into a har-
monic transfer matrix. This allows to manipulate LPTV systems
in a way that is largely similar to LTI systems, providing an ef-
ficient framework for symbolic computations. The approach was
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Figure 9. Exact transfer characteristic of H̃0,2(s) (solid bold line)
and it’s symbolically generated components (marked lines).

illustrated through the analysis of a downconversion mixer.
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