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AbstractÐA probabilistic network consists of a dependency structure and corresponding probability tables. The dependency structure

is a graphical representation of the conditional independencies that are known to hold in the problem domain. In this paper, we propose

an automated process for constructing the combined dependency structure of a multiagent probabilistic network. Each domain expert

supplies any known conditional independency information and not necessarily an explicit dependency structure. Our method

determines a succinct representation of all the supplied independency information called a minimal cover. This process involves

detecting all inconsistent information and removing all redundant information. A unique dependency structure of the multiagent

probabilistic network can be constructed directly from this minimal cover. The main result of this paper is that the constructed

dependency structure is a perfect-map of the minimal cover. That is, every probabilistic conditional independency logically implied by

the minimal cover can be inferred from the dependency structure and every probabilistic conditional independency inferred from the

dependency structure is logically implied by the minimal cover.

Index TermsÐProbabilistic networks, dependency structure, probabilistic reasoning, conditional independence, data dependencies,

multiagent systems.
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1 INTRODUCTION

PROBABILISTIC networks [11], [14], [19], [20] have become
an established framework for representing and reason-

ing with uncertain knowledge. A probabilistic network
consists of a dependency structure coupled with a
corresponding set of probability tables. The dependency
structure is a graphical representation of the conditional
independencies that are known to hold in the problem
domain. These conditional independencies are needed to
provide an economical representation of a joint probability
distribution over the problem domain. Clearly, probabilistic
reasoning would not be practical without this indepen-
dency information. Traditionally, there are two main types
of probabilistic networks, namely, Bayesian and Markov. A
Bayesian network [14], [19], [20] consists of a directed acyclic
graph (DAG) and corresponding conditional probability
tables. The DAG can represent conditional independencies
that hold over any subset of variables in the problem
domain. The other kind of probabilistic network is called a
Markov network. A Markov network [11] consists of an
acyclic hypergraph and corresponding potentials [11].
Unlike a DAG, which is capable of representing indepen-
dencies over any subset of variables in the problem domain,
an acyclic hypergraph can only represent known condi-
tional independencies that involve all the variables in the
problem domain. We refer to these conditional indepen-
dencies as nonembedded. In spite of not being capable of
representing independencies involving proper subsets of
variables, a Markov network can take advantage of the

many efficient propagation techniques [13], [15], [24]
developed for computing marginal distributions.

Traditionally, probabilistic knowledge is represented
and reasoned with by a single agent. Manually constructing
a Bayesian network has been regarded as a difficult
procedure, especially when the conditional independency
information regarding the problem domain is not fully
understood. Several learning methods have subsequently
been developed for constructing the dependency structure
of a probabilistic network using independency information
mined from observed data [12], [20], [31].

Recently, there is emerging interest in extending the
traditional single-agent probabilistic environment into a
multiagent environment. In these situations, a number of
individual agents are willing to cooperate and share their
knowledge to reach a common goal. (It is also possible that
the agents are physically separated.) An example of this
situation can be found in medical applications. Each agent
could represent a medical specialist. These specialists pool
their knowledge together to make a diagnosis. Another
example can be found in military applications. Each agent
could represent a unit commander in a battle. Each
commander makes decisions with the information he
possesses together with the information supplied by the
other unit commanders.

In a multiagent environment, we assume that the
knowledge of each agent is represented by a marginal
distribution of a common joint probability distribution. To
define such a multiagent probabilistic network, we need to
explicitly specify the dependency structure representing the
conditional independency information known to hold in the
multiagent problem domain. It is not realistic to expect the
domain experts to manually construct the dependency
structure since the problem domain may be much larger
and perhaps distributed. One suggestion would be to learn
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the dependency structure from observed data. It is not
entirely clear, however, how those learning methods [12],
[20], [31] developed for the single-agent environment can be
applied. For example, it may not be possible to obtain a
reliable sample. On the other hand, if the learning methods
are applied to collected samples for each individual agent,
then independence assumptions must be made rendering
the samples independent. Thus, constructing the multiagent
dependency structure amounts to finding a method to
combine the known conditional independency information
supplied by the individual domain experts. One previously
proposed method [37] constructs the dependency structure
of a multiagent Bayesian network. That method verifies
whether the dependency structure formed by connecting the
individual agent DAGs is acyclic. This method is straight-
forward, but may be too restrictive for constructing the
multiagent dependency structure in some situations. (See
the discussion on related work in Section 3.)

In this paper, we suggest a more robust algorithm for
constructing the dependency structure of a multiagent
probabilistic network. Each domain expert supplies any
known conditional independency information and not
necessarily an explicit dependency structure. Our auto-
mated process computes a succinct representation of all the
supplied independency information, called a minimal cover.
This process involves detecting all inconsistent information
and removing all redundant information. A unique depen-
dency structure of the multiagent probabilistic network can
be constructed directly from this minimal cover. In fact, it is
shown that the constructed dependency structure is a
perfect-map [20] of the minimal cover. That is, every
probabilistic conditional independency logically implied
by the minimal cover can be inferred from the dependency
structure, and every probabilistic conditional independency
inferred from the dependency structure is logically implied
by the minimal cover. Our method takes advantage of
the fact that there exists a complete axiomatization for
nonembedded conditional independencies [10], [20], [29].

Our formulism here is based on a generalized relational
data model [28], [35] we developed for probabilistic
reasoning. In fact, our data model can be applied to other
applications involving local propagation on an acyclic
hypergraph [35], including dynamic programming [5],
solving sparse linear equations [21], and constraint propa-
gation [7]. The process of constructing an acyclic hyper-
graph proposed in this paper can then be applied to these
other applications by defining the supplied independency
information accordingly.

This paper is organized as follows: The basic notions are
defined in Section 2. As the reader may not be familiar with
the generalized relational data model, we have included a
review of this model. In Section 3, we discuss related
research. The proposed method for constructing the
dependency structure of a multiagent Markov network is
described in Section 4. We show in Section 5 how the
dependency structure of a Markov network may be further
refined using the mixture of embedded and nonembedded
conditional independencies. The conclusion is presented in
Section 6.

2 BASIC NOTIONS

We begin by defining some pertinent notions: hyper-

graphs, relational databases, and our generalized rela-

tional data model [28], [29], [35]. A detailed description of

this model is given here as it forms the basis of our

subsequent discussion.

2.1 Hypergraphs

Let N be a finite set of variables fA1; A2; . . . ; Amg. A

hypergraph, denoted H, is a family of subsets of variables in

N , i.e., H � 2N . An element in H is called a hyperedge. We

call an element t 2 H, a twig, if there exists another distinct

element b 2 H, such that

t \ ÿ[ fh j h 2 H and h 6� tg� � t \ b:
(By this definition, the hyperedge in a hypergraph consist-

ing of a single hyperedge is not a twig.) This means that the

intersection of t and the hypergraph [�H ÿ ftg� is contained

in the hyperedge b. We call any such b a branch for the twig t

and note that a twig t may have many possible branches. A

hypergraph H � fh1; h2; . . . ; hng is called an acyclic hyper-

graph (a hypertree) [4], [24] if its elements h1; h2; . . . ; hi can

be ordered such that hi is a twig in the subhypergraph,

fh1; h2; . . . ; hig, i � 2; . . . ; n. We call any ordering satisfying

this condition a hypertree construction ordering for H. (A

hypertree construction ordering can also be represented as a

join tree [4].) Given a particular hypertree construction

ordering, we can choose an integer b�i�, for i � 2; . . . ; n,

such that 1 � b�i� � iÿ 1 and hb�i� is a branch for hi in

fh1; h2; . . . ; hig. We call b�i� a branching function for this

ordering. It is possible that a hypertree construction

ordering may have more than one branching function.

Given a hypertree construction ordering h1; h2; . . . ; hn for a

hypertreeH, and a branching function b�i� for this ordering,

the set J of J-keys is defined as

J � fhb�2� \ h2; hb�3� \ h3; . . . ; hb�n� \ hng:
This set J is in fact independent of the hypertree

construction ordering, i.e., J is the same for any hypertree

construction ordering of a given acyclic hypergraph. In the

probabilistic reasoning theory, the set J of the hypertree H
is referred to as the separation set.

Example 1. Consider the case where N � fA1; A2; . . . ; A6g.
Let

H � �h1 � fA1; A2; A3g; h2 � fA2; A3; A4g;
h3 � fA2; A3; A5g; h4 � fA5; A6g

	
denote the hypergraph shown in Fig. 1. Since we can

define a hypertree construction ordering h1; h2; h3; h4, by

definition this hypergraph is a hypertree. One possible

branching function for this ordering h1; h2; h3; h4 is

b�2� � 1; b�3� � 1; b�4� � 3. The set J of J-keys for the

acyclic hypergraph H is

J � fh1 \ h2; h1 \ h3; h3 \ h4g �
�fA2; A3g; fA5g

	
:
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2.2 Relational Databases

In this section, we review the basic concepts of the
standard relational database model with emphasis on data
dependencies [1], [18]. These relational concepts are
extended in the next section to express similar probabilistic
concepts and dependencies.

Let N � fA1; A2; . . . ; Amg be a finite set of attributes
(variables). Each attribute Ai is associated with a finite set
DAi

, 1 � i � m, called the domain of Ai. We define an
N -tuple t (or simply a tuple if N is understood) to be a
function fromN toDA1

[DA2
[ . . . [DAm

with the restriction
that t�Ai� 2 DAi

for all Ai 2 N , where t�Ai� denotes the value
obtained by restricting the mapping to Ai. Thus, a tuple is a
mapping that associates a value with each attribute inN , i.e.,
t�N � � < t�A1�; t�A2�; . . . ; t�Am� > . If X � N and t is a
N -tuple, then t�X�denotes theX-tuple obtained by restricting
the mapping to X. A relation over X (or a relation if X is
understood) is a finite set ofX-tuple. We will sometimes find
it convenient to add subscripts in denoting a relation and
write the relation r over X as r�X�.

The relational operators, select, project, and natural
join are defined as follows: Let r be a relation over N
with A 2 N and a an element in the domain of A, i.e.,
a 2 DA. The select operator � is a unary operator on
relations. That is, �A�a�r� � ft 2 r j t�A� � ag defines the
set of tuples t in r such that t�A� � a. The projection of
r�N � onto X � N is defined as r�X� � ft�X� j t 2 r�N �g.
The natural join of two relations r1�X� and r2�Y � is
defined as

r1�X� � r2�Y � �
�
t�XY � j t�X� 2 r1�X�; t�Y � 2 r2�Y �

	
;

where we have written X [ Y as XY .
Let r�N � be a relation over a set of attributes N and

X;Y � N . We say that the functional dependency (FD) X ! Y
is satisfied by r�N � if every two tuples of r�N �which have the
same projection on X also have the same projection on Y .
That is, an FD X ! Y is satisfied by r�N � if and only if each
X-value in r�N � is associated with precisely one Y-value. The
FD X ! Y is a sufficient but not a necessary condition for
r�N � to be written as r�N � � r�XY � � r�X�N ÿXY ��.

Let X;Y ; Z � N such that Y \ Z � X and r�N � a relation
over N . We say that the multivalued dependency (MVD),
written X !! Y j Z, is satisfied by r�N � if and only if
r�XYZ� � r�XY � � r�XZ�. The MVD X !! Y j Z is called
nonembedded in the special case where XYZ � N . If
XYZ � N , then the MVD X !! Y j Z is called embedded.
Suppose the MVD X !! Y j ZW is satisfied by the
relation r�N �, where X;Y ; Z, and W are disjoint subsets of
N (i.e., r�XYZW � � r�XY � � r�XZW �). Obviously, the

MVD X !! Y j Z is satisfied by r�N �, that is, the smaller
projection r�XYZ� of r�N � onto XYZ can be written
r�XYZ� � r�XY � � r�XZ�. However, the converse is not
necessarily true. The fact that the MVD X !! Y j Z is
satisfied by r�N � (i.e., r�XYZ� � r�XY � � r�XZ�) does not
necessarily imply that X !! Y j ZW or X !! YW j Z
would be satisfied by r�N � (i.e., the larger projection
r�XYZW � can be expressed as r�XYZW � � r�XY � �
r�XZW � or r�XYZW � � r�XYW � � r�XZ�). For example, it
can be verified that the MVD fA1g !! fA2g j fA3g is
satisfied by the relation r�N � over N � fA1; A2; A3; A4g, as
shown in Fig. 2, i.e.,

r
�fA1; A2; A3g

� � r�fA1; A2g
� � r

�fA1; A3g
�
:

However, this MVD does not imply that either the MVD
fA1g !! fA2; A4g j fA3g or fA1g !! fA2g j fA3; A4g is
also satisfied by the relation r�N �, i.e.,

r�N � 6� r�fA1; A2; A4g
� � r

�fA1; A3g
�

and

r�N � 6� r�fA1; A2g
� � r

�fA1; A3; A4g
�
:

The MVD X !! Y j �N ÿXY � is a necessary and
sufficient condition for r�N � to be losslessly decomposed
as r�N � � r�XY � � r�X�N ÿXY ��. Thereby, the FD X ! Y

logically implies the MVD X !! Y j �N ÿXY �, but the
converse is not necessarily true.

Multivalued dependency is a special case of a more
general kind of data dependency, called join dependency.
We say that the join dependency (JD), written � H, is
satisfied by a relation r�N � if

r�N � � r�h1� � r�h2� � . . . � r�hn�;
where hi � N and [ni�1hi � N . The database scheme H �
fh1; h2; . . . ; hng is in fact a hypergraph. We say that � H is
an acyclic join dependency (AJD) if H is an acyclic
hypergraph. It has been demonstrated that an AJD has
many desirable properties and plays an important role in
database design [4].

2.3 The Generalized Relational Data Model

We have shown that probabilistic networks can be viewed as
a generalization of the standard relational database model
[28], [29], [35]. This model is referred to as the generalized
relational data model in which probabilistic concepts can be
conveniently expressed in familiar relational terminologies.
One of the advantages of this unified model is that techniques
developed for one particular subdomain can be appropri-
ately modified such that they will become applicable to other
subdomains [27], [30], [33], [34], [36], [32].
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Fig. 1. A graphical representation of the hypergraphH � fh1; h2; h3; h4g.

Fig. 2. A relation r�N � over N � fA1; A2; A3; A4g.



Let N � fA1; A2; . . . ; Amg denote a finite set of variables.

A joint probability distribution (jpd) over N , written as �N
or ��fA1; A2; . . . ; Amg�, is a normalized nonnegative real-
valued function. We can express a jpd �N as a generalized

relation �N in our model. The relation �N is defined by the

set of attributes fA1; A2; . . . ; Am; f�N g. For convenience, we
will say �N is a relation over N � fA1; A2; . . . ; Amg. It is

understood that the attribute f�N is implicitly used for

defining the relation �N . Each row in �N is defined by a
tuple ti in a standard relation r�N �, as shown in Fig. 3.

Having defined a joint probability distribution as a

generalized relation, we can now define probabilistic

operations on distributions as generalized relational opera-

tions. Computing the projection of a relation and the natural

join of two relations in relational database theory corre-

sponds to computing a marginal distribution and the

product of two distributions in probabilistic reasoning

theory, respectively.
If �N is a relation and X � N , then the marginalization

of �N onto X is the marginal relation, denoted �#XN , with

attributes X [ ff�#XN g, defined by

�#XN �
�
t�X [ ff�#XN g� j t�X� 2 �N �X�; and

t�f�#XN � � �
#X
N �t�X�� �

X
t02�N ;t0 �X��t�X�

�N �t0�N ��
�
:

Note that if �N is a relation representing a distribution over

N and X � Y � N , then ���N �#Y �#X � �#XN .
Let �X and �Y be two distributions over X and Y ,

respectively. We can express the product �X � �Y as the

product join �X � �Y of the corresponding relations �X and

�Y . That is, �X � �Y is a relation on the set of attributes

XY [ ff�X ��Y g defined as follows:

�X � �Y �n
t
�
XY [ ff�X ��Y g

� j t�XY � 2 ÿ�X�X� � �Y �Y �
�
; and

t�f�X ��Y � � �X
ÿ
t�X�� � �Y �t�Y �

�o
:

Let �N be a relation. The inverse of �N is the inverse

relation, denoted ��N �ÿ1, with attributes N [ ff��N �ÿ1g,
defined by

��N �ÿ1 �
n
t
�N [ ff��N �ÿ1g� j t�N � 2 �N �N � and t�f��N �ÿ1 �

� 1=t�f�N � if t�f�N � > 0; and t�f��N �ÿ1 �
� t�f�N � otherwise

o
:

Generalized relational data dependencies can now be

introduced using the above generalized operators. The

notion of probabilistic conditional independence is used to

decompose a joint distribution into two marginal distribu-

tions, namely, conditional independence corresponds to

MVD in relational database theory.
The fundamental notion of generalized multivalued

dependency is introduced first. This generalized data

dependency is equivalent to probabilistic conditional

independence.
Let X;Y ; Z � N such that Y \ Z � X and �N a relation

over N . We say that the generalized multivalued dependency

(GMVD), written

X )) Y j Z;
is satisfied by the relation �N if and only if the marginal

relation �#XYZN of �N can be factorized as follows:

�#XYZN � �#XYN 
 �#XZN � �#XYN � �#XZN � ��#XN �ÿ1: �1�
We refer to the binary operation 
 defined above as the

generalized join.
Note that it can be shown that

X )) Y j Z if and only if X )) �Y ÿX� j �Z ÿX�:

We distinguish the special case whenXYZ � N by calling

the GMVD X )) Y j Z nonembedded. If XYZ � N , then we

call the GMVD X )) Y j Z embedded. Suppose the

GMVD X )) Y j ZW is satisfied by the relation �N ,

where X, Y , Z, and W are disjoint subsets of N (i.e.,

�#XYZWN � �#XYN 
 �#XZWN ). Clearly, the GMVD X )) Y j Z
is satisfied by �N , that is, the smaller marginal relation �#XYZN
of �N onto XYZ can be written �#XYZN � �#XYN 
 �#XZN .

Similar to MVDs in standard relational databases, however,

the converse is not necessarily true. The fact that the GMVD

X )) Y j Z is satisfied by �N does not necessarily imply

that X )) Y j ZW or X )) YW j Z would be satisfied by

�N (i.e., the larger marginal relation �#XYZWN may not

necessarily be expressed as �#XYZWN � �#XYN 
 �#XZWN or

�#XYZWN � �#XYWN 
 �#XZN ). For example, consider the rela-

tion �N over N � fA1; A2; A3; A4g, as shown in Fig. 4. It can

be verified that the GMVD fA1g )) fA2g j fA3g is satisfied

by �N , i.e., �
#fA1;A2;A3g
N � �

#fA1;A2g
N 
 �

#fA1;A3g
N . However, this

GMVD does not imply that either of the GMVDs fA1g ))
fA2; A4g j fA3g or fA1g )) fA2g j fA3; A4g is satisfied by
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Fig. 3. A joint distribution �N expressed as a relation �N , where

ti�f�N � � �N �ti�N ��.
Fig. 4. The relation �N over N � fA1; A2; A3; A4g.



�N , as can also be verified, i.e., �N 6� �
#fA1;A2;A4g
N 
 �

#fA1;A3g
N

or �N 6� �
#fA1;A2g
N 
 �

#fA1;A3;A4g
N .

Let �N be a relation representing a joint probability
distribution �N over a set of variables N , and X;Y ; Z � N
be disjoint subsets. We say Y and Z are probabilistically
conditionally independent given X with respect to �N if

�#YXZN � ÿ�#XZN �ÿ1
� �#XY

� �#XYN � ÿ�#XN �ÿ1
: �2�

Equivalently, conditional independence can be defined as

�#YXZN � �#XYN � �#XZN � ÿ�#XN �ÿ1
: �3�

It should be obvious that the definition of probabilistic

conditional independence given in (3) is equivalent to

stating that the relation �#YXZN satisfies the GMVD X ))
Y j Z in (1), namely,

�#YXZN � �#XYN 
 �#XZN :

One can also verify that (2) and (3) written in our

generalized relational data model notation are equivalent,

respectively, to the following more familiar definitions of

probabilistic conditional independence:

��Y j XZ� � ��Y j X�; �4�
and

��YXZ� � ��YX� � ��XZ�
��X� : �5�

(Pearl [20] writes the GMVD X )) Y j Z as I�Y ;X;Z�.)
Here, we should perhaps make one observation compar-

ing GMVDs in probabilistic uncertainty management and

MVDs in standard relational databases. Consider the

relation �N representing a uniform joint distribution �N
(i.e., t�f�N � � c for all t in �N ), as shown in Fig. 4. By

projecting �N onto the set of attributes N , we obtain the

standard relation �N �N � shown in Fig. 2. It has been shown

[28] that the nonembedded GMVD X )) Y j Z is satisfied

by a uniform �N if and only if the nonembedded MVD

X !! Y j Z is satisfied by �N �N �. This result will be used

in a subsequent proof.
We now define the notions of generalized join depen-

dencies in order to express a joint distribution as the

product of potentials [11], i.e., probability tables which are

not necessarily pairwise consistent. Recall that, in relational

database theory, the notion of decomposing a relation into

two projections with an MVD was generalized into

decomposing a relation into two or more projections with

a JD. Probabilistic networks can be expressed as generalized

join dependencies in our data model. In particular, it will be

shown that a Markov network is equivalent to a generalized

relation satisfying a generalized acyclic join dependency.
By the chain rule, a joint probability distribution (jpd) �

over N � fA1; A2; . . . ; Amg can always be written as

� � ��fA1g� � ��fA2gjfA1g�
� ��fA3gjfA1; A2g� � . . . � ��fAmgjfA1; A2; . . . ; Amÿ1g�:

The above equation is an identity. However, one can use

conditional independencies that are known to hold in the

problem domain to obtain a simpler representation of a jpd.

For example, consider a jpd ��fA1; A2; A3; A4; A5; A6g� and

the following known conditional independencies:

�
ÿfA3gjfA1; A2g

� � �ÿfA3gjfA1g
�
;

�
ÿfA4gjfA1; A2; A3g

� � �ÿfA4gjfA2; A3g
�
;

�
ÿfA5gjfA1; A2; A3; A4g

� � �ÿfA5gjfA2; A3g
�
;

�
ÿfA6gjfA1; A2; A3; A4; A5g

� � �ÿfA6gjfA5g
�
;

namely, the following GMVDs

fA1g )) fA2g j fA3g;
fA2; A3g )) fA1g j fA4g;
fA2; A3g )) fA1; A4g j fA5g;
fA5g )) fA1; A2; A3; A4g j fA6g:

Utilizing these conditional independencies, a jpd written
using the chain rule can be expressed in a simpler form,
namely,

�
ÿfA1; A2; A3; A4; A5; A6g

� �
�
ÿfA1g

� � �ÿfA2gjfA1g
� � �ÿfA3gjfA1g

�
� �ÿfA4gjfA2; A3g

� � �ÿfA5gjfA2; A3g
� � �ÿfA6gjfA5g

�
:

�6�
We can represent the dependency structure of this jpd by
a DAG, as shown in Fig. 5. This DAG, together with the
conditional probability tables ��fA1g�, ��fA2gjfA1g�,
��fA3gjfA1g�, ��fA4gjfA2; A3g�, ��fA5gjfA2; A3g�, and
��fA6gjfA5g�, defines a Bayesian network. Such a net-
work provides an economical representation of a jpd.

A salient feature of the generalized relational data model
is that a jpd can be equivalently expressed as a relation. For
example, the jpd ��fA1; A2; A3; A4; A5; A6g� in (6), can be
expressed as

�N � �fA1g � �fA1;A2g � �fA1;A3g
��fA2;A3;A4g � �fA2;A3;A5g � �fA5;A6g;

�7�

where N � fA1; A2; A3; A4; A5; A6g. The relations �fA1g,
�fA1;A2g, �fA1;A3g, �fA2;A3;A4g, �fA2;A3;A5g, and �fA5;A6g are

respectively defined by the conditional probability tables,

��fA1g�, ��fA2gjfA1g�, ��fA3gjfA1g�, ��fA4gjfA2; A3g�,
��fA5gjfA2; A3g�, and ��fA6gjfA5g�.

To facilitate probabilistic inference, it is useful to trans-

form a Bayesian network into a Markov network. The DAG

representing the dependency structure of a Bayesian net-

work can be converted by the moralization and triangula-

tion procedures [11], [20] into an acyclic hypergraph. (An

acyclic hypergraph, in fact, represents a chordal undirected

graph. Each maximal clique in the graph corresponds to a

hyperedge in the acyclic hypergraph.) For example, by

applying these procedures to the DAG in Fig. 5, we obtain

the acyclic hypergraph depicted in Fig. 1. Such an acyclic

hypergraph represents the dependency structure of a

Markov network. To define a Markov network, we need
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to specify its potentials. The jpd defined by (6) can be

rewritten as:

�N � �fA1;A2;A3g � �fA2;A3;A4g � �fA2;A3;A5g � �fA5;A6g;

where

�fA1;A2;A3g � �fA1g � �fA1;A2g � �fA1;A3g; �8�
The relations �fA1;A2;A3g, �fA2;A3;A4g, �fA2;A3;A5g, and �fA5;A6g
are called potentials. These potentials can be transformed

into marginal relations of �N . In terms of marginals, we can

express �N as

�N � ��
�
#fA1;A2;A3g
N � �

#fA2;A3;A4g
N � ÿ�#fA2;A3g

N
�ÿ1
�
� �

#fA2;A3;A5g
N

� ÿ�#fA2;A3g
N

�ÿ1
�
� �

#fA5;A6g
N � ÿ�#fA5g

N
�ÿ1

!
:

�9�
By the definition of the generalized join operator 
, (9) can
be expressed as:

�N ��
�
#fA1;A2;A3g
N 
 �

#fA2;A3;A4g
N

� �

 �

#fA2;A3;A5g
N

�

 �

#fA5;A6g
N :

�10�
In our generalized relational data model, we say that

the above �N satisfies the generalized acyclic join

dependency (GAJD) [28], written 
H � fh1 � fA1; A2; A3g,
h2 � fA2; A3; A4g, h2 � fA2; A3; A5g, h3 � fA5; A6gg. We call

the pair ��N ;H� a Markov network, �N is the relation defined

by (10), and H is the acyclic hypergraph depicted in Fig. 1

representing the dependency structure of the network. In

general, we say a GAJD
H � fh1; h2; . . . ; hng is satisfied by a

relation �N if �N can be written as

�N �
�

. . .
�ÿ

�#h1

N 
 �#h2

N
�
 �#h3

N
�

. . .
 �#hnN

�
; �11�

where the sequence h1; h2; . . . ; hn is a hypertree construction
ordering for H.

A Bayesian network is more expressive than a Markov

network. The structure of a Markov network only reflects

nonembedded GMVDs. For instance, in the above example,

the embedded GMVD fA1g )) fA2g j fA3g is not satisfied

by the Markov relation in (10). In contrast, this GMVD is

satisfied by the Bayesian relation in (7).

3 RELATED RESEARCH

Here, we motivate the need for developing an automated

process for constructing the dependency structure of a

Markov network. The reason is the inherent difficulty of

constructing the dependency structure of a Bayesian

network for a multiagent problem domain. As already

mentioned, it is not realistic to expect the domain experts to

manually construct the dependency structure since the

problem domain may be much larger than the single-agent

case and, perhaps, distributed. One suggestion would be to

learn the dependency structure from observed data. It is not

entirely clear, however, how those learning methods [12],

[20], [31] developed for the single-agent environment can be

applied, let alone obtaining a reliable sample. Thus,

constructing the multiagent dependency structure amounts

to finding a method to combine the known conditional

independency information supplied by the individual

domain experts. One previously proposed method [37]

constructs the dependency structure of a multiagent

Bayesian network. That method verifies whether the

dependency structure formed by connecting the individual

agent DAGs is acyclic. However, we now demonstrate that

the acyclicity condition is too restrictive.
Consider the situation where two agents wish to form a

probabilistic multiagent reasoning system. According to

[37], each agent supplies a respective DAG, as shown in

Fig. 6. It can be easily verified that the combined

dependency structure contains the cycle A2 ! A5 ! A2.

One might wonder, since the same conditional indepen-

dency may be expressed in a variety of DAGs, if the agents

can supply other equivalent DAGs such that the combined

dependency structure is in fact a DAG. Our example

explicitly demonstrates that this does not always work.

DAGs which express precisely the same conditional

independencies have the same links and uncoupled head-

to-head nodes [26]. By construction, each DAG in Fig. 6 has

no other equivalent DAG other than itself. Thus, Xiang's

method would state that these two agents cannot form a

multiagent system. However, consider the acyclic hyper-

graphs in Fig. 7, obtained by sacrificing the embedded
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Fig. 5. A DAG, the dependency structure of a Bayesian network,

representing the conditional independencies in (6).

Fig. 6. The respective DAGs of two agents who wish to form a

multiagent system.



probabilistic conditional independencies represented in the

respective DAGs in Fig. 6.
The first agent would supply the independency

information �fA2g )) fA1gjfA3; A4; A5; A6g;
fA2g )) fA3; A4gjfA1; A5; A6g;
fA2g )) fA5; A6gjfA1; A3; A4g

	
;

while the second agents supplies�fA2g )) fA1; A4gjfA3; A5; A6g;
fA2g )) fA3; A5gjfA1; A4; A6g;
fA2g )) fA6gjfA1; A3; A4; A5g

	
:

Note that neither agent has knowledge of the GMVD

fA2g )) fA3g j fA1; A4; A5; A6g. Given the combined set

of GMVDs, our approach would produce the multiagent

dependency structure H:

H � �fA1; A2g; fA2; A3g; fA2; A4g; fA2; A5g; fA2; A6g
	
:

Note that the GMVD fA2g )) fA3g j fA1; A4; A5; A6g,
which was previously unknown to each agent, can be

inferred from the combined multiagent dependency struc-

ture H. The important point to realize is that the GMVD

fA2g )) fA3g j fA1; A4; A5; A6g was logically implied by

the combination of the individual domain expert indepen-

dency information. Thereby, not only would our method

allow the agents to form a multiagent system, but our

method may detect independencies that are logically

implied by the combination of all independencies.
One may also suggest directly constructing a multiagent

DAG from an arbitrary input set of probabilistic conditional

independencies using Pearl's semigraphoid axioms [20]:

SG1: I�Y ;X;Z� if and only if I�Z;X;Y �; �symmetry�
SG2: I�Y ;X;ZW� then I�Y ;X;Z� and I�Y ;X;W�; �decomposition�
SG3: I�Y ;X;ZW� then I�Y ;XW;Z�; �weak union�
SG4: I�Y ;X;Z� and I�Y ;XZ;W � then I�Y ;X;ZW�: �contraction�:

(We express the conditional independence of Y and Z given

X by the GMVD X )) Y j Z. Pearl denotes the same

independency by I�Y ;X;Z�.) Unfortunately, it has been

shown [25], [32] that Pearl's semigraphoid axioms are not

complete for probabilistic conditional independencies, as

incorrectly conjectured by Pearl [20]. In fact, probabilistic

conditional independencies have no finite complete axio-

matization [25], [32]. That is, the semigraphoid axioms may

not derive every conditional independency logically im-

plied by an arbitrary set of probabilistic conditional

independencies.

It is well-known [20], however, that the semigraphoid
axioms are complete for nonembedded probabilistic
conditional independencies. In fact, Geiger and Pearl [10]
developed an alternative complete axiomatization for
nonembedded probabilistic conditional independencies
using only nonembedded inference axioms. In [29],
yet another alternative complete axiomatization for
nonembedded probabilistic conditional independencies
was shown. This complete axiomatization (stated in Section
4.2) directly corresponds to a complete axiomatization for
(nonembedded) multivalued dependency (MVD) in rela-
tional databases [2]. Therefore, we prefer to use the complete
axiomatization in [29] to emphasize the intrinsic relationship
between Bayesian networks and relational databases.

4 CONSTRUCTING THE DEPENDENCY STRUCTURE

OF A MARKOV NETWORK

Representing probability distributions as relations in the
generalized data model enables us to adopt various
techniques developed in other areas such as relational
databases for probabilistic reasoning systems. In particular,
we have demonstrated how a Markov network can be
represented as a generalized acyclic join dependency in
our model. Furthermore, similar to standard relational
databases, there exists a complete axiomatization for
nonembedded generalized multivalued dependencies.

Our main goal here is to develop a process for the
construction of the dependency structure (an acyclic
hypergraph) of a multiagent Markov network. We assume
that the input to such a construction process is a set of
probabilistic conditional independencies supplied by the
different domain experts. We will first outline two
problems of such a process caused by redundant and
conflicting independency information in the initial input
set. A complete set of axioms for nonembedded GMVDs
will be subsequently applied to remove redundant and
detect inconsistent independency information. The remain-
ing set of GMVDs is used to systematically construct the
dependency structure of the desired Markov network.
(Note that the resulting acyclic hypergraph is in fact a
perfect-map.)

4.1 Scheme Design Problems

Given a set G of probabilistic conditional independencies

supplied by the individual domain experts over a set N of

attributes, a construction algorithm factorizes N into two sets

of attributes on the basis of a known conditional indepen-

dency in G. That is, given XYZ � N , the set of attributes N
is replaced byN \XY andN \XZ, where the GMVD X )
) Y j Z is in G. Each of these new subsets may be further

factorized on the basis of another known GMVD in G.

Before formally defining the construction algorithm, let us

first highlight two desirable properties such a construction

process should satisfy:

1. Every conditional independency provided should
contribute in the construction process.

2. A unique dependency structure is constructed.
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Unfortunately, without refining the conditional indepen-
dencies supplied by the individual domain experts, it is not
always possible to meet these desirable properties. To
illustrate a failure of 1, consider the set G of GMVDs on
N � fA1; A2; A3; A4g:

G � �fA1; A2g )) fA3g j fA4g;
fA3; A4g )) fA1g j fA2g

	
:

Factorizing N with the GMVD fA1; A2g )) fA3g j fA4g
produces the hypergraph H � ffA1; A2; A3g; fA1; A2; A4gg.
The problem now is that the other GMVD fA3; A4g ))
fA1g j fA2g in the input set G cannot be applied to refine

the dependency structure H. A similar argument holds if

the GMVD fA3; A4g )) fA1g j fA2g is applied first. To

illustrate a failure of Property 2, consider the set G of

GMVDs on N � fA1; ; A2; . . . ; A7g:
G � � fA1g )) fA7g j fA2; A3; A4; A5; A6g;

fA1; A2g )) fA4g j fA3; A5; A6; A7g;
fA1; A2g )) fA5g j fA3; A4; A6; A7g;
fA1; A2g )) fA3; A6; A7g j fA4; A5g;
fA1; A3g )) fA4g j fA2; A5; A6; A7g;
fA1; A3g )) fA6g j fA2; A4; A5; A7g;
fA1; A3g )) fA2; A5; A7g j fA4; A6g

	
:

Factorizing N with the GMVD

fA1g )) fA7g j fA2; A3; A4; A5; A6g
produces the hypergraph H1:

H1 �
�
h11 � fA1; A7g; h12 � fA1; A2; A3; A4; A5; A6g

	
:

The set of attributes h12 � fA1; A2; A3; A4; A5; A6g can be
further refined with the GMVD

fA1; A2g )) fA4g j fA3; A5; A6g:
(Since the GMVD fA1; A2g )) fA4g j fA3; A5; A6; A7gholds

on N , then the GMVD fA1; A2g )) fA4g j fA3; A5; A6g
holds on fA1; A2; A3; A4; A5; A6g (see Section 2.3.)) Factoriz-

ing h12 � fA1; A2; A3; A4; A5; A6g as such produces the sets

fA1; A2; A4g and fA1; A2; A3; A5; A6g. The latter can also be

factorized using the GMVD fA1; A2g )) fA5g j fA3; A6g to

produce the new dependency structure H2:

H2 �
�
h11 � fA1; A7g; h21 � fA1; A2; A4g;
h22 � fA1; A2; A5g; h23 � fA1; A2; A3; A6g

	
:

The set of attributes h23 � fA1; A2; A3; A6g can be factorized

with the GMVD fA1; A3g )) fA6g j fA2g constructing the

output dependency structure H3:

H3 �
�

h11 � fA1; A7g; h21 � fA1; A2; A4g;
h22 � fA1; A2; A5g; h31 � fA1; A2; A3g;
h32 � fA1; A3; A6g

	
:

On the other hand, factorizing h12 2 H1 with the GMVD

fA1; A3g )) fA4g j fA2; A5; A6g produces the sets of

attributes fA1; A3; A4g and fA1; A2; A3; A5; A6g, the latter

of which can be be further factorized with the GMVD

fA1; A3g )) fA6g j fA2; A5g to produce the dependency

structure H20 :

H20 �
�
h11 � fA1; A7g; h210 � fA1; A3; A4g;
h220 � fA1; A3; A6g; h230 � fA1; A2; A3; A5g

	
:

Factorizing the set of attributes h230 � fA1; A2; A3; A5g using
the GMVD fA1; A2g )) fA5g j fA3g produces the output
dependency structure H30 :

H30 �
�

h11 � fA1; A7g; h210 � fA1; A3; A4g;
h220 � fA1; A3; A6g; h310 � fA1; A2; A3g;
h320 � fA1; A2; A5g

	
:

Obviously, the output constructed dependency structures
H3 and H30 are not the same. The problem, in this case, is
that the order in which the GMVDs were applied to
factorize N affected the output dependency structure of the
multiagent Markov network.

Another undesirable characteristic can be illustrated by
the following example: Let N � fA1; A2; A3; A4; A5; A6g and
G be the set of GMVDs

G � �fA1g )) fA5g j fA2; A3; A4; A6g;
fA2g )) fA6g j fA1; A3; A4; A5g;
fA5; A6g )) fA3g j fA1; A2; A4g;
fA5; A6g )) fA4g j fA1; A2; A3g

	
:

Factorizing N first with the GMVD

fA1g )) fA5g j fA2; A3; A4; A6g;
followed by the GMVD fA2g )) fA6g j fA1; A3; A4; A5g
produces the output dependency structure H:

H ��
h11 � fA1; A5g; h21 � fA1; A2; A3; A4g; h22 � fA2; A6g

	
:

The remaining GMVDs in the input set G fA5; A6g ))
fA3g j fA1; A2; A4g and fA5; A6g )) fA4g j fA1; A2; A3g
cannot be applied to factorize any set of attributes in H.

The problem here is that H does not reflect all of the

dependency information since H can be further factorized

by the GMVD fA1; A2g )) fA3g j fA4; A5; A6g as

H � �h11 � fA1; A5g; h22 � fA2; A6g;
h3 � fA1; A2; A3g; h4 � fA1; A2; A4g

	
;

since G logically implies the GMVD

fA1; A2g )) fA3g j fA4; A5; A6g:
That is, it may be possible to factorize the output

dependency structure of the multiagent Markov network

with a GMVD g not explicitly stated but logically implied

by G.
The above problems are the result of redundant and

conflicting (inconsistent) conditional independency infor-
mation in the initial input set. These two problems can
be resolved by removing all redundant independencies
and, subsequently, identifying any conflicting conditional
independencies.
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4.2 Computing a Dependency Basis

We will consider primarily nonembedded GMVDs referring

to a fixed (universal) relation �N defined on a particular set

of attributes N . Thus, to simplify the notation, we may

subsequently write X )) Y j N ÿXY as X )) Y if no

confusion arises.
A set G of GMVDs logically implies the GMVD X )) Y ,

written G � X )) Y , if X )) Y is satisfied by every

relation that satisfies all the GMVDs in G. That is, X )) Y

is logically implied by G if there is no counterexample

relation such that all the GMVDs in G are satisfied but X )
) Y is not. An inference axiom is a rule that states if a

relation � satisfies certain GMVDs, then it must satisfy

certain other GMVDs. Given a set G of GMVDs and a set of

inference axioms, the closure of G, written G�, is the

smallest set containing G such that the axioms cannot be

applied to the set to yield a GMVD not in the set. More

specifically, the set G derives a GMVD X )) Y , written

G ` X )) Y , if X )) Y is in G�. A set of axioms is sound

if, whenever G ` X )) Y , then G � X )) Y . A set of

axioms is complete if the converse holds, that is, if

G � X )) Y , then G ` X )) Y . In other words, if G

logically implies the GMVD X )) Y , then G derives

X )) Y . A complete set of axioms is minimal if no proper

subset of axioms is also complete. A complete minimal set

of inference axioms for nonembedded GMVDs is listed

below [29] (assume symmetry):

GMVD1 : If Y � X; then X )) Y ; �reflexivity�
GMVD2 : If X )) Y and Y )) Z;

then X )) Z ÿ Y �transitivity�:
(Strictly speaking, (GMVD1) is an identity and not an

inference axiom.) From this minimal set, one can derive

additional inference axioms that will be used in subsequent

discussions. We obtain

GMVD3 : If Z �W and X )) Y ;
then WX )) ZY ; �augmentation�

GMVD4 : If X )) Y and X )) Z;
then X )) Y Z; �union�

GMVD5 : If X )) Y and X )) Z;
then X )) Y \ Z;
X )) Y ÿ Z;
and X )) Z ÿ Y �decomposition�:

It should be noted that the axioms (GMVD1) and

(GMVD2) are different from the semigraphoid axioms.

The GMVD axioms are defined only with respect to

nonembedded probabilistic conditional independencies.

We do not incorporate axioms which mix embedded and

nonembedded independencies such as the semigraphoid

contraction axiom. (In fact, it has been shown [25], [27] that

no finite complete axiomatization exists for both embedded

and nonembedded conditional independencies.)
Similarly to the relational database theory [2], [8], it is

useful to introduce the notion of a dependency basis. A

dependency basis is used to summarize a set of GMVDs

that all have the same lefthand side. Given X � N , the

dependency basis of X, written Dep�X�, is defined as follows:

Dep�X� � fW1;W2; . . . ;Wmg;
where X \Wi � ; for i � 1; 2; . . . ;m and fW1;W2; . . . ;Wmg
forms a partition of N ÿX. With this notation, it is

understood that the set ffAig j Ai 2 Xg is implicitly

included in Dep�X�. The usefulness of introducing

Dep�X� lies in the fact that, for any GMVD X )) Y which

is logically implied by an given set G of GMVDs, the set Y is

a union of some elements in Dep�X�. That is, if

G � X )) Y , then Y is equal to the union of some sets

in Dep�X�; whereas, for each nonempty proper subset W of

Wi �1 � i � m�, the GMVD X ))W is not in G� (i.e.,

G 6� X ))W ). Sometimes, it is more convenient to

express the dependency basis Dep�X� as in [8], namely,

X ))W1 jW2 j . . . jWm:

These two notations will be used interchangeably in the

following exposition.

We will first present an algorithm to construct the

dependency basis for a given X � N . Beeri [3] originally

proposed a polynomial time algorithm to compute the

dependency basis for MVDs in relational databases. (Faster

algorithms have since been proposed [9], [22].) Here, we

adopt Beeri's procedure to our problem by using GMVDs

instead of MVDs. Our method is outlined in Algorithm 1 by

replacing the complete axiomatization for multivalued

dependencies with the complete axiomatization for

GMVDs. Given a set G of GMVDs on a set of attributes N
and a set X � N , Algorithm 1 constructs the dependency

basis of X as follows:

Algorithm 1

procedure Dependency-Basis�G;X�
Dep�X� � ffAg j A 2 fXgg [ fN ÿXg
repeat until Dep�X� is not changed

{
for each GMVD W )) Z in G

{
Y � [ fR j R 2 Dep�X�; and R \W 6� ;g
Z0 � Z ÿ Y
if Z0 6� ; and Z0 6� [iRi; �i:e:; if Z0 is not a union

of some R0is in Dep�X�)
{
Dep�X� � fR j R 2 Dep�X� and R \ Z0 � ;g [

fR \ Z0; Rÿ Z0; Z0 ÿR j R 2 Dep�X�
and R \ Z0 6� ;g

}
}

}
return �Dep�X�)
end Dependencyÿ Basis

Let us use an example to demonstrate how Algorithm 1

works.
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Example 2. Let N � fA1; A2; A3; A4; A5; A6; A7; A8; A9; A10g.
Let the input set of nonembedded GMVDs be

G � �fA1; A2g )) fA4; A5; A6; A7g;
fA3; A7; A10g )) fA1; A4; A8; A9g

	
on N . Suppose we want to compute the dependency

basis Dep�X� for the subset X � fA1; A3; A7; A10g � N .

According to the algorithm, we obtain the initial

dependency basis:

Dep�X� ��fA1g; fA3g; fA7g; fA10g; fA2; A4; A5; A6; A8; A9g
	
:

First, we check if the GMVD

fA1; A2g �W )) Z � fA4; A5; A6; A7g
in G can be used to refine Dep�X�. The members fA1g
and fA2; A4; A5; A6; A8; A9g in Dep�X� intersect W . Thus,

Y � fA1g [ fA2; A4; A5; A6; A8; A9g
� fA1; A2; A4; A5; A6; A8; A9g:

By (GMVD4), we can immediately conclude

fA1; A3; A7; A10g � X )) Y � fA1; A2; A4; A5; A6; A8; A9g:
�12�

On the other hand, by (GMVD3), W )) Z implies that:

W [ fA4; A5; A6; A8; A9g )) Z;

namely,

fA1; A2; A4; A5; A6; A8; A9g )) fA4; A5; A6; A7g: �13�
By applying (GMVD2) to (12) and (13), we obtain:

fA1; A3; A7; A10g � X )) Z0 � Z ÿ Y
� fA4; A5; A6; A7g
ÿ fA1; A2; A4; A5; A6; A8; A9g � fA7g:

However, the current dependency basis Dep�X� cannot

be refined since Z0 � fA7g is already an element in

Dep�X�.
Next, we consider the GMVD

fA3; A7; A10g �W )) Z � fA1; A4; A8; A9g
in G. Then, Y � fA3g [ fA7g [ fA10g � fA3; A7; A10g, as

only fA3g; fA7g, and fA10g intersect W . Thus, by

(GMVD4), we have:

fA1; A3; A7; A10g � X )) Y � fA3; A7; A10g:
By applying (GMVD2), this GMVD, together with

W )) Z, implies that:

fA1; A3; A7; A10g �X )) Z0 � Z ÿ Y
�fA1; A4; A8; A9g ÿ fA3; A7; A10g
�fA1; A4; A8; A9g:

Now, (GMVD5) is used to refine the above Dep�X�. From

the GMVD

fA1; A3; A7; A10g � X )) R � fA2; A4; A5; A6; A8; A9g;
already in Dep�X� and the above GMVD

fA1; A3; A7; A10g � X )) Z0 � fA1; A4; A8; A9g;
it follows:

fA1; A3; A7; A10g � X )) R \ Z0 � fA4; A8; A9g;
fA1; A3; A7; A10g � X )) Rÿ Z0 � fA2; A5; A6g;
fA1; A3; A7; A10g � X )) Z0 ÿR � fA1g:

Thus, the new Dep�X� becomes:

Dep�X� ��fA3g; fA7g; fA10g
	

[ �fA1g; fA2; A5; A6g; fA4; A8; A9g
	

��fA1g; fA3g; fA7g; fA10g; fA4; A8; A9g;
fA2; A5; A6g

	
:

As the dependency basis has been changed, a second
iteration of the repeat until construct is performed. The
GMVD

fA1; A2g �W )) Z � fA4; A5; A6; A7g;
and Dep�X� imply that:

Y � fA1g [ fA2; A5; A6g � fA1; A2; A5; A6g:
By (GMVD2) and (GMVD3),

fA1; A3; A7; A10g � X )) Z0 � Z ÿ Y � fA4; A7g:
Hence, Dep�X� is changed to:

Dep�X� ��fA1g; fA3g; fA7g; fA10g; fA4g; fA8; A9g; fA2; A5; A6g
	
:

One can verify that the above Dep�X� cannot be further

refined. Dep�X� is, therefore, the desired dependency

basis for X � fA1; A3; A7; A10g which can be written as

X )) fA4g j fA8; A9g j fA2; A5; A6g;
or

Dep�X� � ffA4g; fA8; A9g; fA2; A5; A6gg:

Theorem 1. Given a set G of GMVDs on a set of attributes N
and X � N , Algorithm 1 always terminates and Dep�X� is

the dependency basis of X.

Proof. This proof follows the corresponding proof [3] in

relational database theory. We will first show that

Algorithm 1 always terminates and then demonstrate

that Dep�X� is, in fact, the dependency basis of X given

G. Notice that, at all times, the value of Dep�X� is a

partition of all the attributes N . Clearly, every iteration

of the repeat until construct (except the last) refines the

value of Dep�X�. Each refinement increases the number

of elements in Dep�X� by at least one. Therefore, the

repeat until construct is executed at most jN j times.
We now demonstrate that the value of Dep�X� is

independent of the order using the GMVDs of G in
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executing the for construct. Given a fixed order of the
GMVDs in G, consider the constructed value Dep�X�. Let

Dep�X� � fY1; Y2; . . . ; Yk; Yk�1; . . . ; Yk�jXjg;
where Y1 [ Y2 [ . . . [ Yk � N ÿX and Yk�1; . . . ; Yk�jXj are

singleton sets whose union is X. We now demonstrate

that if Yi 2 Dep�X�, then X )) Yi is in G�.
By the reflexivity axiom (GMVD1), X )) Ai is in G�

for each Ai 2 X. Hence, X )) X is in G� and, by the
definition of GMVD so is X )) N ÿX. Thus, for every
set Y in the initial value ofDep�X�,X )) Y is inG�. We
show this claim is true after each iteration by induction on
the iterations of the while construct. Suppose the claim is
true after j�j � 0� iterations of the while construct. Let
W )) Z in G be a GMVD used in the j� 1 iteration and
suppose the value of Dep�X� is changed. Let Y be the
union of the sets of Dep�X� after the jth iteration that
intersect W . Since Dep�X� is a partition of N and W � Y ,
by (GMVD3) the GMVD W )) Z can be augmented to
Y )) Z. Applying (GMVD2) toX )) Y and Y )) Z,
we derive that X )) Z ÿ Y is in G�. It easily follows by
(GMVD5) thatX )) Y is inG� for everyY in the value of
Dep�X� after the j� 1 iteration.

After Algorithm 1 has terminated, X )) Y is in G�

for every Y in Dep�X�. Thus, every element of Dep�X� is
a union of the elements of the dependency basis of X. To
complete the proof that Dep�X� is in fact equal to the
dependency basis of X, we now show that each element
in the dependency basis of X is a union of the elements
of Dep�X�. Equality is then implied since both sets are
partitions of N . We shall construct a relation �N with the
following two properties:

1. Every GMVD W )) Z in G is satisfied by �N .
2. A GMVD X )) Y is satisfied by �N if and only

if Y is a union of elements of Dep�X�.
Since every GMVD of G is satisfied by �N , so is every

GMVD in G�. Hence, for every Y in the dependency

basis of X, the GMVD X )) Y is satisfied by �N . By

Property 2, we can conclude that Dep�X� is in fact equal

to the dependency basis of X.
We now construct the relation �N defined by a

distribution �N . We assume that each attribute Ai 2 N
has the domain f0; 1g. The relation �N has 2k rows, one
row for each sequence of zeros and ones of length k.
(Recall that k is the number of sets in Dep�X� such that
Y1 [ Y2 [ . . . [ Yk � N ÿX.) In the row corresponding to
a sequence a1; . . . ; ak, each of the attributes Yi is assigned
the value ai, where ai 2 f0; 1g and i � 1; 2; . . . ; k. Each
attribute of X is assigned the value 1 in all rows of �N .
The attribute f�N is assigned the value 1=�2k� in all rows
of �N .

We now make some observations regarding the
constructed relation �N . The GMVD ; )) Yi is satisfied
by �N �1 � i � k�. By (GMVD3), the GMVD ; )) Yi can
be augmented to W )) Yi for each set W � N and
1 � i � k.

Our second observation is that if a set W intersects Yi,
then the GMVD W )) Vi is satisfied by �N for each
Vi � Yi. Note that the attributes in W \ Yi always have

the same value as the rest of the attributes in Yi for every
tuple of �N . It follows that the FD W ! Vi is satisfied by
the relation �N �N �, for every Vi � Yi. The FD W ! Vi
implies the MVD W !! Vi is satisfied by �N �N � (see
Section 2.2). The MVD W !! Vi implies that the
GMVD W )) Vi is satisfied by �N since �N is a
uniform distribution (see Section 2.3).

Our last observation is that if W does not intersect Yi,
then, for each nonempty proper subset Ŷi of Yi, i.e.,
; � Ŷi � Yi, the GMVD W )) Ŷi is not satisfied by �N .

We can now show that �N has Property 1 above. Let
W )) Z be in G and let Y be the union of the sets from
Dep�X� that intersect W . Since Algorithm 1 has
terminated, we know that Z ÿ Y is either empty or a
union of some Yi 2 Dep�X�. Therefore, W )) Z ÿ Y is
satisfied by �N . The fact that W )) Z \ Y is satisfied
by �N follows easily from our observation that if W
intersects some Yi, then, for each Ŷi � Yi, W )) Ŷi is
satisfied by �N . Since W )) Z ÿ Y and W )) Z \ Y
are satisfied by �N , by (GMVD4) the GMVD W )) Z is
satisfied by �N .

To show Property 2, suppose that the GMVDX )) Y
is satisfied by �N . By construction, the GMVD X )) Yi
�1 � i � k� is satisfied by �N . By (GMVD5), the GMVD
X )) Y \ Yi is satisfied by �N �1 � i � k�. However,
since X does not intersect any Yi, by observation, the
GMVD X )) Y \ Yi is satisfied by �N if and only if Y \
Yi is either empty or equal to Yi. Thus, Y ÿX is a union of
some of the Yis �1 � i � k� and Y is a union of elements of
Dep�X�. tu

The individual domain experts may initially supply

redundant and conflicting conditional independency

information. Our proposed algorithm for constructing the

dependency structure of probabilistic networks requires the

input independency information in a more refined format. In

particular, all redundant independency information must be

removed and the remaining information expressed in terms

of its dependency basis. The last task is to identify any

conflicting independency information.
The individual domain experts may initially supply a

set G of GMVDs containing redundant ones. That is, those

GMVDs that can be derived from the rest of the GMVDs in

G using the inference axioms (GMVD1) and (GMVD2). We

say that a set G1 of GMVDs is a cover of G if G� � G�1 . If a

cover G1 of G contains no proper subset G2 such that G2 is

also a cover of G, i.e., G� � G�2 , then G1 is a minimal cover

of G. A minimal cover contains no redundant indepen-

dency information.
We now give a procedure to compute a minimal cover

for a given set G of GMVDs supplied by the individual

agents. Take any GMVD g in G, say, X )) Y , and

compute Dep�X� from the set Gÿ fgg of GMVDs. If Y is

a union of some sets in Dep�X�, i.e., Gÿ fgg ` X )) Y ,

then remove g from G; otherwise, g remains in G. Repeat

this step for every GMVD in G. If we adopt Sagiv's faster

algorithm [22] for computing the dependency basis using

multivalued dependencies instead of Beeri's [3], a mini-

mum cover of a given set G of GMVDs can be computed in
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time O�k2 jN 2j�, where k is the number of GMVDs
originally in G [16].

Consider a computed minimum cover G of the collective
set of GMVDs supplied by the agents. The left sides of the
GMVDs ofG are called the keys ofG. The left set ofG, written
X, is the set of all keys of G. A full minimum cover G1 is a
minimum cover which contains all GMVDs in the depen-
dency basis of X. That is, if the dependency basis of a key
X 2 X is Dep�X� � fW1;W2; . . . ;Wmg, then G1 contains the
GMVDs X ))Wi �1 � i � m�. A full minimum cover
contains no redundant information and is expressed in terms
of its dependency basis. For example, given the minimum
cover G of a set of GMVDs over N � fA1; A2; A3; A4g:
G ��fA1g )) fA2g j fA3; A4g; fA1; A2g )) fA3g j fA4g

	
;

�14�
the full minimum cover G1 of G is computed by repeatedly
applying Algorithm 1 with G and each key in X as input,

G1 �
n
Dep�fA1g� �

� fA2g; fA3g; fA4g
	
; Dep

ÿfA1; A2g
�

� � fA3g; fA4g
	o � �fA1g )) fA2g j fA3g j fA4g;

fA1; A2g )) fA3g j fA4g
	
:

�15�
4.3 Conflict-Free Dependencies

A full minimum cover may contain conflicting GMVDs. A

conflict-free full minimum cover is derived by removing the

conflicting GMVDs from the full minimum cover. This

conflict-free full minimum cover is needed to construct the

multiagent dependency structure.
The notion of conflict-free multivalued dependencies

was originally introduced by Lien [17] in the study of the

relationship between various database models. We extend

this notion to GMVDs in our generalized relational data

model. We say that a GMVD X )) Y splits two attributes

Ai and Aj if one of them is in Y and the other is in N ÿXY ,

where N is the set of all attributes. A set G of GMVDs splits

two attributes Ai and Aj if some GMVD in G splits them.

We then say that a GMVD splits a set W if it splits two

attributes in W and that a set G of GMVDs splits a set W if

some GMVD in G splits two attributes in W . A set G of

GMVDs is conflict-free if

1. G does not split its keys and
2. Dep�X� \Dep�Y � � Dep�X \ Y �.

For example, the set of GMVDs in the first example of
Section 4.1 violates Condition 1. It can be verified that the
GMVDs in the second example of Section 4.1 violate
Condition 2.

If conflicting GMVDs are detected, we have to rely on the
domain experts to resolve these conflicts. Henceforth, we
may assume that a conflict-free full minimum cover has
been determined from the GMVDs supplied by the
individual domain experts.

As in relational databases [4], conflict-free sets of
generalized multivalued dependencies have several nice

properties: 1) They allow a unique Markov network
dependency structure and 2) all generalized multivalued
dependencies participate in the decomposition process, that
is, the phenomenon where decomposing according to one
generalized multivalued dependency prevents another
generalized multivalued dependency from being applied
does not occur. Furthermore, enforcing conflict-freedom
should not necessarily be seen as a restriction. On the
contrary, it has been argued [23] that if a set of

dependencies is not conflict-free, then part of the semantics
is not adequately captured.

4.4 A Construction Algorithm

Here, we suggest an algorithm (i.e., Algorithm 2) to
generate a unique dependency structure (an acyclic
hypergraph) from a conflict-free full minimum cover of
GMVDs. This algorithm is a modified version of Lien's
algorithm [17].

Let X denote the set of keys in the conflict-free full

minimum cover. The keys in X can be arranged in a

p-ordering sequence �X1; X2; . . . ; Xp� such that Xi � Xj

implies i < j. Given a conflict-free full minimum cover G

and a p-ordering sequence �X1; X2; . . . ; Xp� of the keys X of

G, Algorithm 2 constructs an acyclic hypergraph represent-

ing the dependency structure of the input GMVDs as

follows:

Algorithm 2

procedure Construction�G; �X1; X2; . . . ; Xp��
H0 :� fNg;
for i :� 1 to p

{
Hiÿ1 :� Hiÿ1 ÿ fhjg, where Xi � hj;
Hi :� Hiÿ1 [ fXi [ �hj \W� jW 2 DEP �Xi�

and hj \W 6� ;g;
}
return �Hp�
end Construction

Example 3. Let N � fA1; A2; A3; A4; A5; A6; A7; A8; A9g and
let �fA1g; fA2g, fA3g; fA1; A2g, fA1; A3g; fA2; A3g� be a
p-ordering sequence of the keys in the following conflict-
free minimum cover G:

G � �fA1g )) fA7g j fA2; A3; A4; A5; A6; A8; A9g;
fA2g )) fA8g j fA1; A3; A4; A5; A6; A7; A9g;
fA3g )) fA9g j fA1; A2; A4; A5; A6; A7; A8g;

fA1; A2g )) fA4g j fA7g j fA8g j fA3; A5; A6; A9g;
fA1; A3g )) fA5g j fA7g j fA9g j fA2; A4; A6; A8g;
fA2; A3g )) fA6g j fA8g j fA9g j fA1; A4; A5; A7g

	
:

In the initialization step, the dependency structure is
H0 � f fA1; A2; A3; A4; A5; A6; A7; A8; A9g g. For i � 1, the
hyperedge hj 2 H0 is

hj � fA1; A2; A3; A4; A5; A6; A7; A8; A9g
since X1 � fA1g � fA1; A2, A3; A4, A5; A6, A7; A8; A9g.
The first step removes the hyperedge hj from H0 to
obtain H0 � f g. The second step adds hyperedges

406 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001



to construct H1. Since W � fA7g 2 Dep�fA1g� and

hj \ fA7g 6� ;, the hyperedge

X1 [ �hj \ fA7g� � fA1; A7g
is added to H1. Similarly, W � fA2; . . . ; A9g 2 Dep�fA1g�
and hj \ fA2; . . . ; A9g 6� ;. Thus,

X1�hj \W� � fA1; . . . ; A6; A8; A9g
is added to H1. Thus, the intermediate dependency

structure H1 is

H1 � �fA1; A7g; fA1; A2; A3; A4; A5; A6; A8; A9g
	
:

For i � 2, the hyperedge hj 2 H1 is

hj � fA1; . . . ; A6; A8; A9g
since X2 � fA2g � hj. The first step removes hj from H1

obtaining H1 � f fA1; A7g g. The second step then adds

the hyperedges fA2; A8g and fA1; . . . ; A6; A9g to H1 to

construct the intermediate dependency structure H2 as

follows:

H2 � ffA1; A7g; fA2; A8g; fA1; A2; A3; A4; A5; A6; A9gg:
The subsequent intermediate dependency structures

generated by Algorithm 2 are:

H3 ��fA1; A7g; fA2; A8g; fA3; A9g; fA1; A2; A3; A4; A5; A6g
	
;

H4 ��fA1; A7g; fA2; A8g; fA3; A9g; fA1; A2; A4g;
fA1; A2; A3; A5; A6g

	
;

H5 ��fA1; A7g; fA2; A8g; fA3; A9g; fA1; A2; A4g;
fA1; A3; A5g; fA1; A2; A3; A6g

	
;

H6 ��fA1; A7g; fA2; A8g; fA3; A9g; fA1; A2; A4g;
fA1; A3; A5g; fA2; A3; A6g; fA1; A2; A3g

	
:

It can be easily verified that the output H � H6 is an acyclic

hypergraph. A hypertree construction ordering of this

scheme is

h1 � fA1; A2; A3g; h2 � fA1; A2; A4g;
h3 � fA1; A3; A5g; h4 � fA2; A3; A6g;
h5 � fA1; A7g; h6 � fA2; A8g; h7 � fA3; A9g:

Thus, the J-keys of H are

h2 \ hb�2� � fA1; A2g; b�2� � 1;
h3 \ hb�3� � fA1; A3g; b�3� � 1;
h4 \ hb�4� � fA2; A3g; b�4� � 1;
h5 \ hb�5� � fA1g; b�5� � 2;
h6 \ hb�6� � fA2g; b�6� � 4;
h7 \ hb�7� � fA3g; b�7� � 3:

Algorithm 2 is executed X � p times. Each iteration i has

Wi;mi
steps, where Dep�Xi� is

Xi ))Wi;1 jWi;2 j . . . jWi;mi
:

Thus, the computational complexity of Algorithm 2 is

O�jGj�.
It is worth mentioning that we are not simply using

Lien's algorithm [17] with a different kind of independency

as input. Lien's input type is called ªMVDs with nullsº

(NMVDs) with which some properties of GMVDs (prob-

abilistic conditional independencies) do not hold. In

particular, NMVDs have the following two characteristics:

1. For any key X, Dep�X� can be computed by those
NMVDs with a key Y � X.

2. Two logically equivalent minimum covers have the
same set of keys X.

Characteristics 1 and 2 do not hold for GMVDs. A counter-

example of 1 is given by G in (14). The dependency basis of

key fA1g is Dep�fA1g� � ffA2g; fA3g; fA4gg, as shown in

(15). However, the GMVD fA1g )) fA3g cannot be derived

without using the key fA1; A2g 6� fA1g. A counterexample of

characteristic 2 is given by consideration of the sets G1 and

G2 of GMVDs over N � fA1; A2; A3; A4; A5g, where

G1 �
�fA5g )) fA2g; fA1; A5g )) fA3g

	
G2 �

�fA5g )) fA2g; fA1; A2; A5g )) fA3g
	
:

We have G�1 � G�2 and G1 and G2 are both minimal covers

of G�1 . However, the keys X1 of G1 are not the same as the

keys X2 of G2, i.e.,

X1 �
�fA5g; fA1; A5gg 6� X2 � ffA5g; fA1; A2; A5g

	
:

Because of the above differences between ªMVDs with

nullsº and probabilistic conditional independencies, the

construction algorithm (Algorithm 2) requires the input set

of dependencies in different forms. For applications invol-

ving NMVDs, the relational database scheme is constructed

from a conflict-free minimum cover. On the other hand, for

applications involving conditional independencies, the

dependency structure of the probabilistic network is

constructed from the more refined conflict-free full mini-

mum cover.

4.5 The Relationship between the Constructed
Dependency Structure and the Refined
Input Set of Dependencies

Our goal now is to demonstrate that the acyclic hypergraphH
constructed as output by Algorithm 2 is a perfect-map of the

given input set G of GMVDs. That is, every GMVD logically

implied by G can be inferred from H and every GMVD

inferred from H is logically implied by G. If H is a

hypergraph, then the set of GMVDs generated by H is the set

of GMVDs X )) Y , where Y is the union of some

disconnected components of the hypergraphHÿX obtained

from H by deleting the set X of nodes. That is, HÿX �
fhÿX j h is a hyperedge of Hg ÿ f;g. We then say that X

separates off Y from the rest of the nodes.

Example 4. Consider the acyclic hypergraph H in Fig. 1. Let

X � fA2; A3g. The disconnected components of H
obtained by deleting the set X is the set

HÿX � �fA1g; fA4g; fA5; A6g
	
:

Three GMVDs generated by H are fA2; A3g )) fA1g,
fA2; A3g )) fA4g, and fA2; A3g )) fA5; A6g.
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We first turn our attention to relationship between any

two keys Xi and Xk in X. Consider the dependency bases of

Xi and Xk

Xi ))Wi;1 jWi;2 j . . . jWi;miÿ1 jWi;mi
; �16�

Xk ))Wk;1 jWk;2 j . . . jWk;l j . . . jWk;mkÿ1 jWk;mk
: �17�

Case 1. Xi ÿXk 6� ; and Xk ÿXi 6� ;. Since keys are not

split, we know precisely one XiWi;j contains Xk. Without

loss of generality, we may choose j � 1, namely,

Xk � XiWi;1:

Applying augmentation on (17), we derive the GMVDs

XiWi;1 ))Wk;1 jWk;2 j . . . jWk;mkÿ1 jWk;mk
:

By transitivity, we obtain:

Xi ))Wk;1 ÿXiWi;1;

Xi ))Wk;2 ÿXiWi;1;

..

.

Xi ))Wk;mkÿ1 ÿXiWi;1;

Xi ))Wk;mk
ÿXiWi;1:

�18�

Since X )) Y if and only if X )) �Y ÿX� (see

Section 2.3), (18) can be rewritten as:

Xi ))Wk;1 ÿWi;1;

Xi ))Wk;2 ÿWi;1;

..

.

Xi ))Wk;mkÿ1 ÿWi;1;

Xi ))Wk;mk
ÿWi;1:

�19�

Similarly, we also know precisely one XkWk;j contains

Xi. Without loss of generality, we may assume j � l,
namely,

Xi � XkWk;l:

Note thatWk;l must contain at least one attribute belonging to

Xi; otherwise, Xi � Xk contradicting our initial assumption.
Applying augmentation on (16), we derive the GMVDs

XkWk;l ))Wi;1 jWi;2 j . . . jWi;miÿ1 jWi;mi
:

Applying transitivity using these GMVDs and (17), we

obtain

Xk )) Wi;1 ÿXkWk;l �Wi;1 ÿWk;l;

Xk )) Wi;2 ÿXkWk;l �Wi;2 ÿWk;l;

..

.

Xk )) Wi;mi
ÿXkWk;l �Wi;mi

ÿWk;l:

�20�

We now make some observations which will be used in

showing the main result of our paper. (To improve

readability, the proofs have been moved to the Appendix.)

Proposition 1. No Wk;j in Dep�Xk�, j 6� l, partially

intersects Wi;1.

Proposition 2. If Wk;j \Wi;1 � ;, j 6� l, then Wk;j must also

belong to Dep�Xi \Xk�.

For notational convenience, let

Dep0�Xi� � Dep�Xi� ÿ fWi;1g:

Proposition 3. If Wi;s in Dep0�Xi� belongs to Dep�Xi \Xk�,
then Wi;s must also belong to Dep�Xk�.

The only remaining element in Dep�Xk� which we have

not considered in detail so far is Wk;l. The following

observations are in order:

Proposition 4. Wk;l ÿXiWi;1 6� ;. More specifically,

Wk;lÿXiWi;1 �
[ fW jW 2 Dep0�Xi� and W 62 Dep�Xi \Xk�g:

Proposition 5. Xi ÿXk 6� ; and Xk ÿXi 6� ;. If Dep�Xi� and

Dep�Xk� satisfy Propositions 1, 2, 3, and 4, then Dep�Xi� and

Dep�Xk� cannot be refined.

Case 2. Xi � Xk. We have the following observations on the

elements in Dep�Xk�.
Proposition 6. No Wk;j partially intersects Wi;1.

Proposition 7. Every Wi;s in Dep0�Xi� also belongs to Dep�Xk�.
Proposition 8. If Wk;j \Wi;1 � ;, then Wk;j is also an element

in Dep0�Xi�.

Let us now explicitly demonstrate the implications of the

above results. Let Xi and Xk be two keys that are not

subsets of each other. Recall the dependency basis of Xi and

Xk in (16) and (17), respectively, where Xk � XiWi;1 and

Xi � XkWk;l. Since Proposition 1 states that no Wk;j in

Dep�Xk�, j 6� l, partially intersects Wi;1, we can rewrite

Dep�Xk� in (17) as

Xk ))Wk;1 jWk;2 j . . . jWk;lÿ1 jWk;l jW1 j . . . jWs; �21�
where Wk;j \Wi;1 �Wk;j, j � 1; . . . ; lÿ 1, and Wj \Wi;1 � ;,
j � 1; . . . ; s. By Proposition 2, each element W1; . . . ;Ws also

belongs to Dep�Xi \Xk�, i.e., fW1; . . . ;Wsg � Dep�Xi \Xk�.
By Proposition 4, we can write Dep�Xi� in (16) and Dep�Xk�
in (21) as

Xi )) Wi;1 jWi;2 j . . . jWi;r jWi;r�1 j . . . jWi;mi
�22�

and

Xk ))
Wk;1 jWk;2 j . . . jWk;lÿ1 j

ÿ�Z��Wi;2 � � �Wi;r�
� jW1 j . . . jWs;

�23�
where Wi;j 62 Dep�Xi \Xk�,

j � 2; . . . ; r;

and

Wk;l � �Z��Wi;2 � � �Wi;r�
ÿ �

:
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Since every element in Dep0�Xi� is either an element in

Dep�Xi \Xk� or not an element in Dep�Xi \Xk�, by

Proposition 3, the elements Wi;r�1; . . . ;Wi;mi
also belong to

Dep�Xk�. This means the elements Wi;r�1; . . . ;Wi;mi
are

precisely the elements W1; . . . ;Ws in Dep�Xk�. Thus, we

rewrite Dep�Xi� in (24) as

Xi ))Wi;1 jWi;2 j . . . jWi;r jW1 j . . . jWs: �24�
Since Wk;j \Wi;1 �Wk;j, j � 1; . . . ; lÿ 1, we further clarify

Dep�Xi� in (24) as

Xi ))
�Y ��Wk;1 � � �Wk;lÿ1�
ÿ � jWi;2 j . . . jWi;r jW1 j . . . jWs;

�25�
where Wi;1 � ��Y ��Wk;1 � � �Wk;lÿ1��. By substituting for Y in

the above equation and Z in (23), we obtain the most

detailed description of Dep�Xi� and Dep�Xk�:

Xi ))
�ÿ�Xk ÿXi��V �

��Wk;1 � � �Wk;lÿ1�
�
j

Wi;2 j . . . jWi;r jW1 j . . . jWs

�26�

and

Xk ))Wk;1 jWk;2 j . . . jWk;lÿ1 j�ÿ�Xi ÿXk��V �
��Wi;2 � � �Wi;r�

�
jW1 j . . . jWs;

�27�
where fW1; . . . ;Wsg � Dep�Xi \Xk�, Y � ��Xk ÿXi��V ��,
Z � ��Xi ÿXk��V ��, and V may be the empty set.

Similarly, in the second case, where Xi � Xk, by

Propositions 6, 7, and 8, Dep�Xi� in (16) and Dep�Xk� in

(17) take the detailed form:

Xi )) �Xk ÿXi��Wk;1 � � �Wk;lÿ1� jW1 j . . . jWs �28�
and

Xk ))Wk;1 jWk;2 j . . . jWk;lÿ1 jW1 j . . . jWs: �29�
This completes our analysis of the relationship between any

two keys Xi and Xk in X.
We now focus our attention on the graphical properties

of the dependency structure constructed by Algorithm 2.

Recall that Hkÿ1 denotes the intermediate dependency

structure constructed after kÿ 1 iterations of Algorithm 2.

We want to show that Xk is a subset of a hyperedge h in

Hkÿ1, where

h � X1W1;1 \X2W2;1 \ . . . \Xkÿ1Wkÿ1;mkÿ1;

and we have assumed that Xk � XjWj;1, j � 1; . . . ; kÿ 1.
We first make some observations in the case where the

dependency structure Hkÿ1 is a perfect-map of the

following GMVDs:

X1 ))W1;1 jW1;2 j . . . jW1;m1
;

..

.

Xi ))Wi;1 jWi;2 j . . . jWi;mi
;

..

.

Xkÿ1 ))Wkÿ1;1 jWkÿ1;2 j . . . jWkÿ1;mkÿ1
:

�30�

From the assumption that Hkÿ1 is a perfect-map of (30),

Xi is a J-key of Hkÿ1 and XiWi;1 is a disconnected

component when Xi is deleted from Hkÿ1. (The same can

be said about all the Xis in (30).) Clearly, each XiWi;1 can be

characterized by a unique set XiWi;1 of hyperedges in Hkÿ1,

namely,

XiWi;1 � fh j h 2 Hkÿ1 and h \Wi;1 6� ;g:

Proposition 9. Xk is a subset of exactly one hyperedge h in

Hkÿ1.

Proposition 10. Let h be the hyperedge in Hkÿ1 containing Xk.

Then,

fhg � X1W1;1 \ . . . \Xkÿ1Wkÿ1;1:

This concludes our analysis of the graphical properties of

the dependency structure constructed by Algorithm 2. In

Propositions 1-6, we proved a number of axiomatic proper-

ties for Dep�Xk� based on the fact that we are given a

conflict-free full minimum cover. Before stating the main

result of this paper, we need to derive one additional

property about Dep�Xk� using the graphical properties in

Propositions 9 and 10.
Recall that

XiWi;1 � fh j h 2 Hkÿ1 and h \Wi;1 6� ;g
and from Proposition 10,

fhg � X1W1;1 \ . . . \Xkÿ1Wkÿ1;1:

Since

XiWi;1 � [h2XiWi;1
h;

it follows that Xk � h, where

h � X1W1;1 \ . . . \Xkÿ1Wkÿ1;1:

We are now ready to state the main result of this paper.

Theorem 2. The dependency structure Hk constructed from

Algorithm 2 is a perfect-map of the GMVDs

X1 ))W1;1 jW1;2 j . . . jW1;m1
;

..

.

Xi ))Wi;1 jWi;2 j . . . jWi;mi
;

..

.

Xkÿ1 ))Wkÿ1;1 jWkÿ1;2 j . . . jWkÿ1;mkÿ1
;

Xk ))Wk;1 jWk;2 j . . . jWk;mk
:

�31�
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Proof. We will prove this claim by induction.
Basic step. h � fNg,

X1 ))W1;1 jW1;2 j . . . jW1;m1
:

Obviously, H1 is a perfect-map for the above GMVDs

and X1 is the J-key of H1. Inductive hypothesis: Hkÿ1 is a

perfect-map for (30) and X1; X2; . . . ; Xkÿ1 are the J-keys

of Hkÿ1.

Based on previous discussions, we have the following

observations: Proposition 9 states there exists one and only

one hyperedge h 2 Hkÿ1 that contains Xk. Proposition 10

indicates that this hyperedge h can be expressed as:

h � X1W1;1 \ . . . \Xkÿ1Wkÿ1;1 � \kÿ1
i�1XiWi;1:

We have shown in Proposition 7 that

Dep0�Xi \Xk� � Dep�Xk�;
for i � 1; . . . ; kÿ 1. Since Wi;1 and Dep0�Xi \Xk� are

disjoint,

\kÿ1
i�1XiWi;1

ÿ � \ �[kÿ1
i�1

ÿ[ fW jW 2 Dep0�Xi \Xk�g
�� � ;:

By definition, h � \kÿ1
i�1XiWi;1 and, thereby,

h \
�
[kÿ1
i�1

ÿ[ fW jW 2 Dep0�Xi \Xk�g
�� � ;: �32�

On the other hand, we have shown in Proposition 2
that each XiWi;1 has a nonempty intersection with every
element in

D � Dep�Xk� ÿ Dep0�Xi�; i � 1; . . . ; kÿ 1:

Thus, h has a nonempty intersection with every Wk;j 2 D.
As a result of applying the dependencies,

Xk ))Wk;1 jWk;2 j . . . jWk;mk

to the hypergraph Hkÿ1, we obtain the hypergraph Hk

which contains the following new hyperedges from h:

f hk;j � Xk�h \Wk;j� jWk;j 2 D g:
Obviously, Hk is an acyclic hypergraph if Hkÿ1 is acyclic.

Moreover, X1; X2; . . . ; Xkÿ1 are J-keys of Hk and, when

Xi �1 � i � kÿ 1� is deleted from Hk, the disconnected

components of Xi are the same as those when Xi is

deleted from Hkÿ1.
For every Wk;j 2 D such that XkWk;j does not contain

any key,

h \Wk;j �Wk;j:

Whenever XkWk;j contains some key(s), Wk;j 2 D, then

Wk;j contains all the hyperedges in

[kÿ1
i�1 �Dep0�Xi� ÿDep0�Xi \Xk���: �33�

Obviously, every hyperedge in Hkÿ1 must be connected

to h through some key(s) in h. In particular, every

hyperedge in (33) is connected to h by some key(s) in h.

It immediately follows that all attributes in hÿWk;j are

connected to all attributes in h \Wk;j by some key(s) in h.

In other words, all the attributes in Wk;j will comprise

one and only one disconnected component when Xk is

deleted from Hk. We can immediately conclude that,

when Xk is deleted from Hk, the resulting disconnected

components are exactly equal to the elements in

Dep�Xk�. By the inductive hypothesis that Hkÿ1 is a

perfect-map for (30), it immediately follows that Hk is a

perfect-map for (31). tu
We now show that a conflict-free full minimum cover

G has a unique dependency structure H. Let q �
�X1; X2; . . . ; Xk;Xl; . . . ; Xp� be a p-ordering sequence of

the keys X of G. If two keys Xk and Xl are not subsets of

each other, then q � �X1; X2; . . . ; Xl;Xk; . . . ; Xp� is also a

valid p-ordering sequence. We say that q0 is obtained from

q by a 2-permutation [17], namely, by permuting a

neighboring pair of keys which are not subsets of each

other.
Let X be the keys of a conflict-free full minimum cover G.

We write Hq to denote the dependency structure con-
structed as output by Algorithm 2 using G with p-ordering
sequence q.

Lemma 1. Let G be a conflict-free full minimum cover and q �
�X1; X2; . . . ; Xkÿ1; Xk;Xl; . . . ; Xp� be a p-ordering sequence of

the keys X of G. Let q0 � �X1; X2; . . . ; Xkÿ1; Xl;Xk; . . . ; Xp�
be another p-ordering sequence obtained from q by a

2-permutation. Then, Hq � Hq0 .

Proof. Let Hkÿ1 be the intermediate dependency structure

constructed by Algorithm 2 after kÿ 1 iterations. If Xk

and Xl are contained in distinct hyperedges ofHkÿ1, then

the claim follows trivially. Suppose Xk and Xl are

contained in the same hyperedge h 2 Hkÿ1. Recall that

Propositions 1-5 explicitly state the form that Dep�Xk�
and Dep�Xl� have in relationship to each other. That is,

Xk ))
W1 j . . . jWs jWk;1 j . . . jWk;i j �Xl ÿXk��Z��Wl;1 � � �Wl;j�

and

Xl ))
W1 j . . . jWs jWl;1 j . . . jWl;j j �Xk ÿXl��Z��Wk;1 � � �Wk;i�;

where each W1; . . . ;Ws is in Dep�Xk \Xl� and Z may be
empty.

Suppose q is the p-ordering sequence used. Ob-
viously, W1 � � �Ws \ h � ;. By definition, h 2 Hkÿ1 is
replaced with the hyperedges

h1 � Xk�Wk;1 \ h�;
h2 � Xk�Wk;2 \ h�;

..

.

hi � Xk�Wk;i \ h�;
hi�1 � Xk���Xl ÿXk��Z��Wl;1 � � �Wl;j�� \ h�

� �XkXlZ��Wl;1 � � �Wl;j� \ h�:
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Now, Xl � hi�1 2 Hk. By definition, hi�1 is replaced with

the hyperedges

h01 � Xl�Wl;1 \ hi�1�;
h02 � Xl�Wl;2 \ hi�1�;

..

.

h0j � Xl�Wl;j \ hi�1�;
h0j�1 � Xl���Xk ÿXl��Z��Wk;1 � � �Wk;i�� \ hi�1�

� �XlXkZ��Wk;1 � � �Wk;i� \ hi�1�
� �XlXkZ��Wk;1 � � �Wk;i� \ �XkXlZ��Wl;1 � � �Wl;j� \ h
� �XlXkZ� \ h:

Thus, h 2 Hkÿ1 is replaced with the set of hyperedges

h1; h2; . . . ; hi; h
0
1; h

0
2; . . . ; h0j; �XlXkZ� \ h �34�

in Hk�1.

Now suppose, on the other hand, that q0 is the

p-ordering used in Algorithm 2. We will show that the

intermediate constructed dependency structure Hk�1 is

the same. By definition, h 2 Hkÿ1 is replaced with the

hyperedges

h01 � Xl�Wl;1 \ h�;
h02 � Xl�Wl;2 \ h�;

..

.

h0j � Xl�Wl;j \ h�;
h0j�1 � Xl���Xk ÿXl��Z��Wk;1 � � �Wk;i�� \ h�

� �XlXkZ��Wk;1 � � �Wk;i� \ h�:
Now, Xk � h0j�1 2 Hk. By definition, h0j�1 is replaced

with the hyperedges

h1 � Xk�Wk;1 \ h0j�1�;
h2 � Xk�Wk;2 \ h0j�1�;

..

.

hi � Xk�Wk;i \ h0j�1�;
hi�1 � Xk���Xl ÿXk��Z��Wl;1 � � �Wl;j�� \ h0j�1�

� �XkXlZ��Wl;1 � � �Wl;j� \ h0j�1�
� �XkXlZ��Wl;1 � � �Wl;j� \ �XlXkZ��Wk;1 � � �Wk;i� \ h
� �XkXlZ� \ h:

Thus, h 2 Hkÿ1 is replaced with the set of hyperedges

h01; h
0
2; . . . ; h0j; h1; h2; . . . ; hi; �XkXlZ� \ h �35�

in Hk�1.
The desired result is obtained since (34) is identical

to (35). tu
Theorem 3. A conflict-free full minimum cover G has a unique

dependency structure. That is, the particular p-ordering

sequence used in Algorithm 2 is immaterial.

Proof. We show by induction that any valid p-ordering

can be transformed into any other valid p-ordering

sequence through a series of 2-permutations. Let q �
�X1; X2; . . . ; Xp� be any valid p-ordering sequence of
the keys X of a conflict-free full minimum cover.

Obviously, any valid p-ordering sequence with two
keys in q transputed can be obtained from q by a

2-permutation. Suppose qk is any valid p-ordering
sequence obtainable from q by k 2-permutations. Let

qk�1 be any valid p-ordering sequence with two keys
in qk transmuted. By definition, qk�1 can be obtained
from qk by a 2-permutation. It easily follows that qk�1

is obtainable from q by k� 1 2-permutations. Lemma 1
demonstrates that if two neighboring keys Xk and Xl

are not subsets of each other, then they can be
interchanged in the p-ordering sequence without

affecting the output dependency structure H. Thus,
the constructed dependency structure Hq is identical to
Hqk�1

. tu

5 REFINING THE DEPENDENCY STRUCTURE USING

THE MIXTURE OF NONEMBEDDED AND EMBEDDED

INDEPENDENCIES

In this section, we outline how the constructed dependency
structure can be refined using the embedded independency
information supplied by the domain experts. This process
will utilize the fact that the GMVD axioms are not only
complete for nonembedded GMVDs, but are, in fact,
complete for deriving all embedded GMVDs from other
embedded GMVDs as long as the embedded GMVDs are
defined over the same fixed set of attributes. The contraction
axiom (SG4) can then be applied to derive GMVDs logically
implied by other GMVDs defined over a mixed set of
attributes.

Let G be a set of all GMVDs (not necessarily none-
mbedded) over the set N of all attributes in the multiagent
problem domain supplied by the individual domain
experts. For every GMVD X )) Y jZ in G, construct the
setGXYZ of nonembedded GMVDs over the fixed context XYZ
as follows:

GXYZ �
fX )) Y jZ j X )) V jW in G; and Y � V ; Z �Wg:

For example, consider the set G of GMVDs over N �
fA1; A2; A3; A4g
G � �fA2g )) fA1g j fA3g; fA2; A3g )) fA1g j fA4g

	
:

We then construct the sets GfA1;A2;A3g and GfA1;A2;A3;A4g of
respective nonembedded GMVDs as follows:

GfA1;A2;A3g �
�fA2g )) fA1g j fA3g; fA2; A3g )) fA1g

	
�36�

and

GfA1;A2;A3;A4g �
�fA2; A3g )) fA1g j fA4g

	
: �37�

We apply the process described in Section 4 to remove
redundancy, detect inconsistency, and compute a conflict-
free full minimum cover, written Gc

XYZ , for each GXYZ

above. This set of conflict-free full minimum covers reflects
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all logically implied conditional independency information
for each fixed XYZ � N . For the sets GfA1;A2;A3g and
GfA1;A2;A3;A4g of nonembedded GMVDs in (36) and (37),
the respective conflict-free full minimum covers are

Gc
fA1;A2;A3g �

n
Dep�fA2g� �

�fA1g; fA3g
	o �38�

and

Gc
fA1;A2;A3;A4g �

n
Dep�fA2; A3g� �

�fA1g; fA4g
	o
: �39�

The contraction axiom (SG4) is now applied to derive new
conditional independencies from other conditional indepen-
dencies defined on mixed sets of attributes. Applying (SG4)
on the GMVD fA2g )) fA1g j fA3g over fA1; A2; A3g
in (38) and the GMVD fA2; A3g )) fA1g j fA4g over
fA1; A2; A3; A4g in (39), we derive the new nonembedded
GMVD fA2g )) fA1g j fA3; A4g over fA1; A2; A3; A4g. We
add this GMVD to the set GfA1;A2;A3;A4g in (37), namely,

GfA1;A2;A3;A4g [
�fA2g )) fA1g j fA3; A4g

	
��fA2; A3g )) fA1g j fA4g

	 [�fA2g )) fA1g j fA3; A4g
	

��fA2; A3g )) fA1g j fA4g; fA2g )) fA1g j fA3; A4g
	
:

An updated conflict-free full minimum cover Gc
fA1;A2;A3;A4g

for the nonembedded GMVDs over fA1; A2; A3; A4g is then,

Gc
fA1;A2;A3;A4g �

n
Dep�fA2g� �

�fA1g; fA3; A4g
	o
: �40�

Note that the GMVD fA2; A3g )) fA1g j fA4g in (39) is now
redundant in (40). This demonstrates that the contraction
axiom can use the mixture of embedded and nonembedded
dependencies to derive GMVDs not derivable using the
GMVD axiomatization. The conflict-free full minimum cover
Gc
N and a p-ordering sequence can be supplied as input to

Algorithm 2. The output dependency structure of the
multiagent Markov network H � fh1; h2; . . . ; hng is a per-
fect-map of GNc .

In order to completely define a probabilistic network,
one must specify the dependency structure and the
corresponding probability tables. However, the potentials
corresponding to an acyclic hypergraph are not necessarily
uniquely definable. On the other hand, the conditional
probability tables corresponding to the dependency struc-
ture of a Bayesian network can be uniquely specified. It is
thereby useful to transform the constructed acyclic hyper-
graph into a DAG in order to elicit the quantitative
component of the probabilistic network. The potentials of
the constructed acyclic hypergraph can then be defined in
terms of the elicited conditional probability tables.

It is always possible to construct a DAG which reflects
precisely the same probabilistic conditional independencies
as and acyclic hypergraph H. For example, consider the
acyclic hypergraph H � fh1; h2; h3; h4g in Fig. 1. The depen-
dency structure of the multiagent Bayesian network can be
defined by adding the directed edge �A2; A3� to the DAG in
Fig. 5. (The directed edge �A2; A3� could be equivalently
replaced by �A3; A2�.) Notice that the only probabilistic
conditional independencies inferred from the modified

DAG using d-separation [20] are exactly those nonembedded
conditional independencies inferred from acyclic hyper-
graph H. It is assumed that the domain experts are able to
specify the conditional probability tables corresponding to
the constructed DAG, namely, ��fA1g�, ��fA2gjfA1g�,
��fA3gjfA1; A2g�, ��fA4gjfA2; A3g�, ��fA5gjfA2; A3g�, and
��fA6gjfA5g�. These elicited conditional probability tables
are represented as the relations �fA1g, �fA1;A2g, �fA1;A2;A3g,
�fA2;A3;A4g, �fA2;A3;A5g, �fA5;A6g, respectively. At this point, the
multiagent Bayesian network is completely defined.

Since each agent reasons with a particular subset of
variables in the entire network, it is necessary to section the
constructed multiagent dependency structure. The multiply
sectioned Bayesian network technique [38] can be applied
for this purpose. Thus, each agent initially is given a portion
of the constructed DAG representing the dependency
structure of the multiagent Bayesian network. However,
in practice, it is useful to transform the Bayesian network
into a Markov network in order to take advantage of the
techniques developed for computing marginal distribu-
tions. Even though the original DAG has been sectioned,
this transformation can still be accomplished through
cooperation of the agents [38]. The dependency structure
of the multiagent system is thereby again a hypergraph, but
the hyperedges are distributed among the agents. At this
point, the multiagent system is ready for user input.
Techniques have already been proposed for probabilistic
reasoning in a distributed multiagent environment [6], [33].

6 CONCLUSION

The dependency structure of a probabilistic network is a
graphical representation of the conditional independencies
that are known to hold in the problem domain. It is not
realistic to expect the domain experts to directly construct
the dependency structure of a multiagent probabilistic
network since the problem domain may be significantly
larger and perhaps distributed. It is also not entirely clear
how the single-agent techniques for learning the depen-
dency structure can be applied, let alone obtaining a reliable
sample. Thus, constructing the multiagent dependency
structure amounts to finding a method to combine the
known conditional independency information supplied by
the individual domain experts. We have shown that the
method of simply connecting the individual dependency
structures in [37] may be too restrictive in some situations.

In this paper, an automated procedure was proposed for
directly constructing the dependency structure (an acyclic
hypergraph) of a multiagent Markov network. The indivi-
dual domain experts can supply any known probabilistic
conditional independency information and not necessarily
an explicit dependency structure. Our method is capable of
detecting all inconsistent and redundant independencies. The
resulting minimum cover is used to systematically construct
a unique dependency structure. The main result of this
paper is that the constructed acyclic hypergraph is in fact a
perfect-map of the probabilistic conditional independencies
in the minimal cover. This method takes full advantage of
the fact that nonembedded conditional independencies
have a complete axiomatization [10], [20], [29].
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APPENDIX

PROOFS OF PROPOSITIONS

Here, we prove several results that are used in deriving the
main result of our paper stated in Theorem 2.

Case 1. Xi 6� Xk.

Proposition 1. No Wk;j in Dep�Xk�, j 6� l, partially intersects
Wi;1.

Proof. Suppose there exists a Wk;j that intersects partially
with Wi;1, j 6� l. That is,

Wk;j \Wi;1 6� ; and Wk;j ÿWi;1 �Wk;j:

Since Xi � XkWk;l, we have

Xk )) XkWk;l � XiWk;l; where Wk;l � XkWk;l ÿXi:

By augmentation on the GMVD Xi )) Wk;j ÿWi;1 in
(19), we obtain

XiWk;l ))Wk;j ÿWi;1:

By transitivity, it follows:

Xk )) �Wk;j ÿWi;1� ÿXiWk;l:

However, the right side can be simplified as

�Wk;j ÿWi;1� ÿXiWk;l

� �Wk;j ÿWi;1� ÿXkWk;l

� �Wk;j ÿWi;1� ÿWk;l � �Wk;j ÿWi;1�:
Since �Wk;j ÿWi;1� �Wk;j, then Dep�Xk� can be refined.
This is a contradiction. tu

Proposition 2. If Wk;j \Wi;1 � ;, j 6� l, then Wk;j must also
belong to Dep�Xi \Xk�.

Proof. We first show that Wk;j must belong to Dep�Xi�.
From (19), we obtain

Xi ))Wk;j ÿWi;1 �Wk;j:

Suppose Wk;j 6�Wi;s, for any s � 2. We can show that
either Dep�Xi� or Dep�Xk� can be refined. Obviously, if
Wk;j is not equal to a union of some Wis, then Dep�Xi�
can be refined, a contradiction. On the other hand, if Wk;j

is equal to a union of more than one Wi;s, then Wk;j can be
written as

Wk;j �Wi;s1
Wi;s2

. . .Wi;sq :

By definition Wk;j \Wk;l � ;, it then follows:

Wi;s1
ÿWk;l �Wi;s1

and Wi;s2
ÿWk;l �Wi;s2

:

By (20), we therefore obtain

Xk ))Wi;s1
and Xk ))Wi;s2

:

This means that Dep�Xk� can be refined, a contradiction.
From the above analysis, we can therefore conclude that
Wk;j �Wi;s, for some s � 2. That is, Wk;j is an element in
Dep�Xi�. Hence,

Wk;j 2 Dep�Xi� \Dep�Xk�:

By the second condition of conflict-free, we have

Dep�Xi� \Dep�Xk� � Dep�Xi \Xk�:
It follows Wk;j 2 Dep�Xi \Xk�. tu

Proposition 3. If Wi;s in Dep0�Xi� belongs to Dep�Xi \Xk�,
then Wi;s must also belong to Dep�Xk�.

Proof. Since Wi;s 2 Dep�Xi \Xk�, by augmentation, we
have Xi ))Wi;s and Xk ))Wi;s. Suppose Wi;s is not
equal to some Wk;j disjoint from Wi;1. Then, there are two
possibilities:

1. Wi;s is a union of more than one Wk;j disjoint from
Wi;1. That is,

Wi;s �Wk;j1
Wk;j2

. . .Wk;jq :

From (19), we obtain

Xi ))Wk;j1
; and Xi ))Wk;j2 :

This means that Wi;s in Dep�Xi� can be made
ªsmaller.º This is a contradiction.

2. Wi;s is not a union of some Wk;js.
From the fact that Xk ))Wi;s, we can imme-

diately conclude that someWk;js inDep�Xk� can be
made ªsmaller.º This is a contradiction.

Therefore, Wi;s must be equal to some Wk;j outside
Wi;1. tu

Proposition 4. Wk;l ÿXiWi;1 6� ;. More specifically,

Wk;lÿXiWi;1 �
[ fW jW 2 Dep0�Xi� and W 62 Dep�Xi \Xk�g:

Proof. Wk;l ÿWi;1 6� ; since, by assumption, Wk;l contains at
least one attribute in Xi and, of course, Wi;1 does not.
Since N is a fixed set of attributes, the claim follows
immediately. tu

Proposition 5. Xi ÿXk 6� ; and Xk ÿXi 6� ;. If Dep�Xi� and
Dep�Xk� satisfy Propositions 1, 2, 3, and 4, then Dep�Xi� and
Dep�Xk� cannot be refined.

Proof. Obviously, Xi ))Wk;l ÿWi;1 in (19) leads to no
refinement of Dep�Xi�. Next, we want to show that Xi )
) Wk;l ÿWi;1 leads to no refinement of Dep�Xk� either.
Since Xk ))Wk;l, we have

Xk )) XkWk;l � XiWk;l; where Wk;l � XkWk;l ÿXi:

By augmentation, Xi ))Wk;l ÿWi;1 becomes

XiWk;l ))Wk;l ÿWi;1:

By transitivity, we obtain

Xk )) �Wk;l ÿWi;1� ÿXiWk;l:

Since XiWk;l � XkWk;l and �Wk;l ÿWi;1� � XkWk;l, the
GMVD in (41) is Xk )) ;. Thus, Dep�Xk� cannot be
refined with this GMVD.

We now show that the GMVD Xk ))Wi;1 ÿWk;l in
(20) leads to no refinement of Dep�Xk�. By Proposition 1,
Wi;1 ÿWk;l is a union of elements in Dep�Xk�. Thus,
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Xk ))Wi;1 ÿWk;l cannot be used to refine Dep�Xk�. We
now show that the GMVD Xk ))Wi;1 ÿWk;l in (20)
leads to no refinement of Dep�Xi�. Since Xi )) Wi;1, we
have

Xi )) XiWi;1 � XkWi;1; where Wi;1 � XiWi;1 ÿXk:

By augmentation, Xk ))Wi;1 ÿWk;l becomes

XkWi;1 ))Wi;1 ÿWk;l:

By transitivity, we obtain

Xi )) �Wi;1 ÿWk;l� ÿXkWi;1: �42�
Since XkWi;1 � XiWi;1 and �Wi;1 ÿWk;l� � XiWi;1, the
GMVD in (42) is Xi )) ;. Thus, Dep�Xi� cannot be
refined with this GMVD. tu
Case 2. Xi � Xk.

Proposition 6. No Wk;j partially intersects Wi;1.

Proof. Suppose Wk;j ÿWi;1 �Wk;j. From (19),

Xi ))Wk;j ÿWi;1 �W 0
k;j �Wk;j:

Since Xi � Xk, by augmentation, we obtain the GMVD
Xk ))W 0

k;j. This means that Dep�Xk� can be refined.
This is a contradiction. tu

Proposition 7. Every Wi;s in Dep0�Xi� also belongs to Dep�Xk�.
Proof. In this case, Dep�Xi \Xk� � Dep�Xi�. The claim

follows from Proposition 3. tu
Proposition 8. If Wk;j \Wi;1 � ;, then Wk;j is also an element

in Dep0�Xi�.
Proof. In this case, Dep�Xi \Xk� � Dep�Xi�. The claim

follows from Proposition 2. tu
Proposition 9. Xk is a subset of exactly one hyperedge h in
Hkÿ1.

Proof. Let hi and hj be two distinct hyperedges in Hkÿ1.
Suppose Xk is a subset of hi \ hj. Since Xk is not a J-key
in Hkÿ1, Xk must be contained by some J-key of Hkÿ1.
This is a contradiction to the definition of a p-ordering
sequence. On the other hand, suppose there are
attributes A and B in Xk such that A 2 hi ÿ hj and
B 2 hj ÿ hi. This means Xk is split by some key. This
contradicts the initial assumption that the keys are
conflict-free. tu

Proposition 10. Let h be the hyperedge in Hkÿ1 containing Xk.
Then,

fhg � X1W1;1 \ . . . \Xkÿ1Wkÿ1;1:

Proof. Obviously, by Proposition 9, we have

fhg � X1W1;1 \ . . . \Xkÿ1Wkÿ1;1:

It is also clear that any hyperedge h0 2 Hkÿ1, h0 6� h, h0 is
not an element of some XiWi;1. Thus,

Xk � fhg � X1W1;1 \ . . . \Xkÿ1Wkÿ1;1: ut
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