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Abstract. We give algorithms to construct the least L-model for a given positive modal
logic program P , where L can be one of the modal logics KD, T , KDB, B, KD4, S4,
KD5, KD45, and S5. If L ∈ {KD5,KD45, S5}, or L ∈ {KD,T,KDB,B} and the modal
depth of P is finitely bounded, then the least L-model of P can be constructed in PTIME
and coded in polynomial space. We also show that if P has no flat models then it has the
least models in KB, K5, K45, and KB5. As a consequence, the problem of checking the
satisfiability of a set of modal Horn formulae with finitely bounded modal depth in KD, T ,
KB, KDB, or B is decidable in PTIME. The known result that the problem of checking the
satisfiability of a set of Horn formulae in K5, KD5, K45, KD45, KB5, or S5 is decidable
in PTIME is also studied in this work via a different method.

1. Introduction

It is well-known that for any positive classical logic program P there exists the least model
of P . Moreover, the least model can be constructed in PTIME, and its size is bounded by a
polynomial in the size of P . How can we extend these results for modal logics? First of all,
we must define what is a (positive) modal logic program. There is a correspondence between
Horn clauses and positive logic programs. The definition of modal Horn clauses can be found in
[3]. We use the translation method used in [10, 6] to translate this definition to a simpler form,
which formulates the so called positive modal logic programs.
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In [9] Ladner showed that the complexity of provability in the modal logics K, T , and S4 is
PSPACE-complete, and in S5 is co-NP-complete. We can raise a question: What fragments of
modal logics are computable in polynomial time? Some authors have studied the case [3, 2, 5].
In [3] Fariñas del Cerro and Penttonen showed that the problem of checking the satisfiability of
a set of modal Horn clauses in S5 is decidable in PTIME. In [2] Chen and Lin showed that the
similar problem for a normal modal logic L which is a normal extension of K5, write K5 ≤ L,
is also decidable in PTIME. Chen and Lin also proved that for a normal modal logic L such
that K ≤ L ≤ S4 or K ≤ L ≤ B, the problem is PSPACE-complete. In [5] Halpern showed
that if we restrict to finite modal depth, and restrict the language to having only finitely many
primitive propositions, then the complexity of the problem of checking the satisfiability of a
set of modal formulae is reduced to linear time for the modal logics K, T , and S4. Although
the latter restriction is very strong, the idea is interesting. We will show that the combination
of restriction to Horn formulae and restriction to having finitely bounded modal depth gives
polynomial time complexity for the logics KD, T , KB, KDB, and B.

In this paper, we give algorithms to construct the least L-model for a given positive modal
logic program P , where L can be one of the modal logics KD, T , KDB, B, KD4, S4, KD5,
KD45, and S5. The above listed modal logics are, as a characterization, serial, and their frame
restrictions, excluding D, are Horn formulae. For the modal logics KB, K5, K45, and KB5,
which are almost serial (see Definition 6.3), we show that if P has no flat models (see Definition
6.1) then P has the least models in such logics.

The idea of how to construct the least model for a positive modal logic program P in a modal
logic L is the following: We construct a L-model graph realizing P (the method of constructing
model graphs can be found in [12, 4]). To guarantee the constructed model graph to be the
smallest, each new world is connected to an empty world at the time of its creation.

The algorithms of constructing the least models for positive modal logic programs are useful
from the point of view of modal deductive databases. A modal deductive database consists of
facts and positive modal logic rules, which can be universally quantified. Deductive databases
can be treated as logic programs. Having the least model of a database, answers for a query
to that database can be effectively computed (see [11] for details). The algorithms present a
bottom-up method for answering queries to modal deductive databases.

2. Preliminaries

2.1. Syntax and Semantics of Propositional Modal Logics

The sentences of modal logics are built from primitive propositions p1, p2, . . ., classical connec-
tives ∧, ∨, ¬, →, nonclassical unary modal connectives 2, 3, and parentheses ), (.

A modal formula, hereafter simply called a formula, is any finite sequence of these symbols
obtained by applying the following rules: any proposition pi is a formula, and if φ and ψ are
formulae then so are ¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ, 2φ, and 3φ.

The symbols ¬, ∧, ∨ and →, respectively, stand for logical negation, logical conjunction,



L.A.Nguyen /Constructing the Least Models for Positive Modal Logic Programs 31

logical disjunction and logical (material) implication. The symbols 2 and 3 can take various
meanings but traditionally stand for “necessity” and “possibility”. To enable us to omit paren-
theses, we adopt the convention that the connectives ¬, 2, 3 are of equal binding strength but
bind stronger than ∧, which binds stronger than ∨, which binds stronger than →.

We use letters p and q to denote primitive propositions, and Greek letters φ, ψ, ζ to denote
formulae. We denote the set of primitive propositions by P, and the set of formulae by F .

Definition 2.1. (Kripke Frames) A Kripke frame is a triple 〈W, τ,R〉, where W is a
nonempty set of possible worlds, τ ∈ W is the actual world, and R is a binary relation on
W , called the accessibility relation. If R(w, u) holds then we say that the world u is accessible
from the world w, or that u is reachable from w.

If R is a binary relation then by R∗ we denote its transitive closure. A frame 〈W, τ,R〉 is
said to be connected if every world from W is directly or indirectly reachable from τ (i.e. ∀x ∈
W x = τ ∨R∗(τ, x)).

Definition 2.2. (Kripke Models) A Kripke model is a tuple 〈W, τ,R, h〉, where 〈W, τ,R〉 is
a Kripke frame, h : W → P (P), and h(w) is the set of primitive propositions which are “true”
at the world w.

Definition 2.3. (Model Graphs) A model graph is a tuple 〈W, τ,R,H〉, where 〈W, τ,R〉 is a
Kripke frame, H : W → P (F), and H(w) is the set of formulae which should be “true” at the
world w.

We sometimes treat model graphs as models with H being restricted to the set of primitive
propositions.

Definition 2.4. (Satisfiability) Given some Kripke model M = 〈W, τ,R, h〉, some world w ∈
W , the satisfaction relation � is defined as follows:

M,w � p iff p ∈ h(w);
M,w � ¬φ iff M,w 2 φ;
M,w � φ ∧ ψ iff M,w � φ and M,w � ψ;
M,w � φ ∨ ψ iff M,w � φ or M,w � ψ;
M,w � φ→ ψ iff M,w 2 φ or M,w � ψ;
M,w � 2φ iff for all v ∈W such that R(w, v), M,v � φ;
M,w � 3φ iff there exists some v ∈W such that R(w, v) and M,v � φ.

We say that M satisfies φ at w iff M,w � φ. We say that M satisfies φ, or φ is satisfied in M ,
and write M � φ, iff M, τ � φ.

Definition 2.5. (Size of a Kripke Model) We define the size of a Kripke model M =
〈W, τ,R, h〉 (resp. a model graph M = 〈W, τ,R,H〉) to be the sum of the number of its worlds,
the size of its accessibility relation, and the total number of primitive propositions (resp. formu-
lae) from its worlds, i.e. |W |+ |R|+ Σw∈W |h(w)| (resp. |W |+ |R|+ Σw∈W |H(w)|).
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Definition 2.6. (Length and Modal Depth of a Formula) We define the length of a for-
mula φ to be the number of connectives and primitive propositions in φ. We define the modal
depth of a formula, denoted by mdepth, as follows:

mdepth(p) = 0; mdepth(¬φ) = mdepth(φ);
mdepth(φ ∧ ψ) = mdepth(φ ∨ ψ) =
mdepth(φ→ ψ) = max(mdepth(φ),mdepth(ψ));
mdepth(2φ) = mdepth(3φ) = mdepth(φ) + 1.

Lemma 2.1. Given a model M and a formula φ, the problem of checking whether M � φ is
solvable in polynomial time.

Proof:
Let the function fM (φ) denote the cost of computing the set of all worlds u such that M satisfies
φ at u. We estimate fM by induction on the construction of φ. Let n be the size of M , and m

be the length of φ. We have:

fM (p) ≤ O(n)

fM (¬φ) ≤ fM (φ) +O(n)

fM (φ ∧ ψ) ≤ fM (φ) + fM (ψ) +O(n)

fM (φ ∨ ψ) ≤ fM (φ) + fM (ψ) +O(n)

fM (φ→ ψ) ≤ fM (φ) + fM (ψ) +O(n)

fM (2φ) ≤ fM (φ) +O(n)

fM (3φ) ≤ fM (φ) +O(n)

We conclude that fM (φ) = O(n.m). ut

Definition 2.7. (Depth of a World) For a Kripke model M = 〈W, τ,R, h〉 (or a model graph
M = 〈W, τ,R,H〉), for w ∈ W , w 6= τ , we define the depth of w to be the smallest number k
such that Rk(τ, w). The depth of τ is assumed to be 0. The depth of a world that is not directly
or indirectly reachable from τ is undefined. We denote the depth of x by depth(x).

Definition 2.8. (Real Diameter of a Kripke Model) For a Kripke model M =
〈W, τ,R, h〉 (or a model graph M = 〈W, τ,R,H〉), we define the real diameter of M to
be the maximal depth of some non-empty world in M (i.e. a world w with h(w) (resp. H(w))
not empty). If there is no upper bound on depths, the real diameter is infinite.

Definition 2.9. (Restricted Models and Model Graphs) Let M be a Kripke model
(resp. a model graph). For k ≥ 0, we define M |k to be the model (resp. model graph) ob-
tained from M by restricting it to the worlds with depth not greater then k.

Lemma 2.2. Let M be a Kripke model. A formula φ with modal depth m is satisfied in M iff
it is satisfied in M |m.

This lemma can be easily proved by induction on the construction of φ.
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Axiom Schemata First-Order Formula

D 2Φ→ 3Φ ∀w ∃u R(w, u)
T 2Φ→ Φ ∀w R(w,w)
B Φ→ 23Φ ∀w, u R(w, u)→ R(u,w)
4 2Φ→ 22Φ ∀w, u, v R(w, u) ∧R(u, v)→ R(w, v)
5 3Φ→ 23Φ ∀w, u, v R(w, u) ∧R(w, v)→ R(u, v)

Table 1. Axioms and corresponding conditions on R

2.2. Modal Logic Correspondences

The simplest normal modal logic (called K ) is axiomatized by the standard axioms for the
classical propositional logic, the modus ponens inference rule, the K-axiom schema 2(φ→ ψ)→
(2φ→ 2ψ), plus the additional necessitation rule

` φ
` 2φ

It can be shown that a modal logic formula is provable in this axiomatization iff it is satisfied
in every Kripke model (i.e. without any special R-properties) [8]. It is known that certain
axiom schemata added to this axiomatization correspond to certain properties of the accessibility
relation (see also [7, 1]).

Many of such correspondences are definable as formulae of first-order logic where the binary
predicate R(x, y) represents the accessibility relation, as shown in Table 1. Different modal
logics are distinguished by their respective additional axiom schemata. Some of the most popular
modal logics together with their axiom schemata are listed in Table 2. We refer to the properties
of the accessibility relation of a modal logic L as the L-frame axioms or L-frame restrictions.

Definition 2.10. (L-satisfiability) We call a model M a L-model if the accessibility relation
of M satisfies all L-frame restrictions. We say that φ is L-satisfiable if there exists a L-model of
φ, i.e. a L-model satisfying φ. A formula φ is a tautology in a logic L if φ is satisfied in every
L-model. We write φ �L ψ to denote that ψ is satisfied in every L-model of φ.

We call modal logics that are characterized by classes of Kripke models normal modal logics.
Given two normal modal logics L and L′, we say that L′ is a normal extension of L, and write
L ≤ L′, if all L-frame restrictions are also L′-frame restrictions.

Let L be one of the modal logics listed in Table 2. For a binary relation R, we use ExtL(R)
to denote the least extension of R that satisfies all L-frame axioms, excluding the axiom D. It
is clear that this operator is well defined for such logics.

2.3. Modal Horn Formulae and Positive Modal Logic Programs

In this section, we give the definition of positive propositional modal logic programs. At a first
sight, the definition seems a bit restrictive, however, we will show that for any set X of so called
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Logic Axioms Frame Restriction

K K no restriction
KD KD serial
T KT reflexive
KB KB symmetric
KDB KDB serial and symmetric
B KTB reflexive and symmetric
K4 K4 transitive
KD4 KD4 serial and transitive
S4 KT4 reflexive and transitive
K5 K5 euclidean
KD5 KD5 serial and euclidean
K45 K45 transitive and euclidean
KD45 KD45 serial, transitive and euclidean
KB5 KB5 symmetric and euclidean
S5 KT5 reflexive and euclidean

Table 2. Modal logics and frame restriction

Horn formulae (see Definition 2.12) in any normal modal logic L there exists a positive program
P and a query Q (i.e. a positive formula) such that X is L-satisfiable iff P 2L Q.

We call formulae of the form p or ¬p classical literals, and use letters a, b, c to denote them.
We call formulae of the form a, 2a, or 3a and their negations atoms, and use letters A, B, C
to denote them. A simple clause is an atom or a disjunction of atoms. If φ is a simple clause
then we call 2sφ a clause. The length of a clause is the length of the formula it stands for.

A formula is in the negative normal form if it does not contain the connective →, and each
of its negations occurs immediately before a primitive proposition. Given a formula, we can
translate it to the equivalent negative normal form, by applying the following rules:

φ→ ψ ≡ ¬φ ∨ ψ
¬¬φ ≡ φ

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
¬2φ ≡ 3¬φ
¬3φ ≡ 2¬φ

Definition 2.11. (Negative and Positive Formulae) A formula is called negative if in its
negative normal form every primitive proposition is prefixed by negation. A formula is called
non-negative if it is not negative, and positive if its negation is a negative formula.
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Definition 2.12. (Modal Horn Formulae and Clauses) A formula φ is called a Horn for-
mula iff one of the following conditions holds:

• φ is a primitive proposition
• φ is a negative formula
• φ = 2ψ, or φ = 3ψ, or φ = ψ ∧ ζ, where ψ and ζ are Horn formulae
• φ is a disjunction of a negative formula and a Horn formula.

We call a clause a Horn clause if it is a Horn formula.

In [3] Fariñas del Cerro and Penttonen have given a definition of Horn clauses. It is different
from our definition of Horn clauses and Horn formulae. Each of our Horn clauses is also a Horn
clause in the meaning by Fariñas del Cerro and Penttonen, and each of the latter is a Horn
formula, but not vice versa. However, these definitions are equivalent in the sense that every
Horn formula φ can be translated to a set X of Horn clauses such that for any normal modal
logic L, φ is L-satisfiable iff X is L-satisfiable.

Definition 2.13. (Positive Modal Logic Programs) A positive propositional modal logic
program is a finite set of rules of the following form:

2s(B1 ∧ . . . ∧Bk → A)

where s ≥ 0, k ≥ 0, and A,B1, . . . , Bk are atoms of one of the forms p, 2p, 3p, where p is a
primitive proposition. We often write program rules in the form:

2s(A← B1, . . . , Bk).

We write [φ1, . . . , φk] to denote the disjunction φ1 ∨ . . . ∨ φk, and write φ1;φ2; . . . ;φk to
denote the set {φ1, φ2, . . . , φk}. If X and Y are sets of formulae then we write X;Y to denote
the sum of them. A set of formulae is sometimes considered as the conjunction of its formulae,
in particular when we are talking about length, modal depth, or satisfiability.

Definition 2.14. (Equisatisfiability) We call two sets of formulae X and Y equisatisfiable in
a logic L iff (X is L-satisfiable iff Y is L-satisfiable).

Lemma 2.3. (cf. Mints [10]) In the following let p and q be new primitive propositions (i.e. p
and q occur only at the indicated positions). Then the following pairs of sets of formulae are
equisatisfiable in any normal modal logic:

X; 2s[ψ, ζ ∨ ξ] and X; 2s[ψ, ζ, ξ] (1)

X; 2s[ψ, ζ ∧ ξ] and X; 2s[ψ,¬p]; 2s[p, ζ]; 2s[p, ξ] (2)

X; 2s[ψ, ζ ∧ ξ] and X; 2s[ψ, q]; 2s[¬q, ζ]; 2s[¬q, ξ] (3)

X; 2s[φ,2ψ] and X; 2s[φ,2p]; 2s+1[¬p, ψ] (4)

X; 2s[φ,2ψ] and X; 2s[φ,2¬q]; 2s+1[q, ψ] (5)

X; 2s[φ,3ψ] and X; 2s[φ,3p]; 2s+1[¬p, ψ] (6)

X; 2s[φ,3ψ] and X; 2s[φ,3¬q]; 2s+1[q, ψ] (7)
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Proof:
→) Fix one of the pairs. Suppose that the LHS set is satisfied in a model M = 〈W, τ,R, h〉.

Let M ′ = 〈W, τ,R, h′〉 with h′(u)(x) ≡ h(u)(x) for x 6= p and x 6= q, p ∈ h′(u) iff M,u � ψ, and
q ∈ h′(u) iff M,u � ¬ψ, where p and q are new primitive propositions. It is easily seen that the
RHS set is satisfied in M ′.
←) Fix one of the pairs. We show that the RHS set of formulae implies the LHS set in any

normal modal logic. This claim is clear for the pairs (1), (2), and (3). The pairs (5) and (7) are
dual to the pairs (4) and (6), respectively. The assertion about the pair (4) holds because the
following formulae are tautologies in any normal modal logic:

2(p ∧ (¬p ∨ ψ))→ 2ψ;
(φ ∨2p) ∧2(¬p ∨ ψ)→ (φ ∨2ψ).

The assertion about the pair (6) holds since the following formulae are tautologies in any normal
modal logic:

3p ∧2(¬p ∨ ψ)→ 3(p ∧ (¬p ∨ ψ));
3p ∧2(¬p ∨ ψ)→ 3ψ;
(φ ∨3p) ∧2(¬p ∨ ψ)→ (φ ∨3ψ). ut

Proposition 2.1. For any set X of Horn formulae there exists a set Y of Horn clauses such
that:

• X and Y are equisatisfiable in any normal modal logic.

• The modal depth of Y is equal to the modal depth of X, and the length of Y is of quadratic
order of the length of X.

Moreover, if we divide Y into two groups P and Q such that P contains only non-negative
clauses and Q contains only negative clauses, then P can be treated as a positive program, and
X is L-satisfiable iff P 2L ¬Q, where L is any normal modal logic. The translation from X to
Y is solvable in polynomial time.

Proof:
Let n be the length of X. We first translate X to the negative normal form, to X ′. This task is
done in O(n) steps (assume that formulae are stored as trees), and the length of X ′ is of order
O(n).

We refer to the pairs of equisatisfiable sets of formulae given in Lemma 2.3 as translation
rules (with left to right direction of application). We then apply these translation rules to X ′.
The rules (4), (5), (6), and (7) are applied only when ψ is not a classical literal. In situations
when both of the rules (2) and (3), or both (4) and (5), or both (6) and (7), are applicable,
the appropriate one must be chosen in order to guarantee that the resulting set contains only
Horn formulae. We apply the rules until no more changes can be made to the set. Let Y be the
resulting set. Observe that there are no more than O(n) times we can apply the rules to X ′.
Each application takes O(n) steps and increases the length of the set by O(n). Therefore the
process of translating X to Y terminates in O(n2) steps.
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It is easily seen that Y satisfies the two mentioned assertions. Let Y be divided into two
groups P and Q such that P contains only non-negative clauses and Q contains only negative
clauses. Y is L-satisfiable iff ¬(P ∧Q) is not a tautology in L, and iff P 2L ¬Q. ut

3. Ordering Kripke Models

In this section, we define an order between Kripke models. This order has the property that if a
model M is less than or equal to N , then for any positive formula φ, if φ is satisfied in M then
φ is also satisfied in N . Using the order we then define the least L-model of a positive modal
logic program.

Definition 3.1. (Order between Kripke Models) Let M = 〈W, τ,R, h〉 and N =
〈W ′, τ ′, R′, h′〉 be Kripke models. We say that M is less than or equal to N wrt. a binary
relation r ⊆W ×W ′, and write M ≤ N wrt. r, if the following conditions hold:

1. r(τ, τ ′)
2. ∀x, x′ r(x, x′)→ (h(x) ⊆ h′(x′))
3. ∀x, x′, y R(x, y) ∧ r(x, x′)→ ∃y′ R′(x′, y′) ∧ r(y, y′)
4. ∀x, x′, y′ R′(x′, y′) ∧ r(x, x′)→ ∃y R(x, y) ∧ r(y, y′).

We say that a model M is less than or equal to N , and write M ≤ N , if M ≤ N wrt. some r.

Lemma 3.1. If M ≤ N wrt. r, then for every positive formula φ and for every u and u′ such
that r(u, u′), if M,u � φ then N,u′ � φ. In particular if M ≤ N , then for every positive formula
φ, if M � φ then N � φ.

Proof:
Let M ≤ N wrt. r. We prove the lemma by induction on the construction of φ. Suppose that
r(u, u′) and M,u � φ hold.

Case φ = p : We have p ∈ h(u). By the condition 2, we have p ∈ h′(u′), hence N,u′ � p.
The case φ = ψ ∧ ζ or φ = ψ ∨ ζ is trivial.
Case φ = 2ψ : By the condition 4, we have ∀v′ R′(u′, v′)→ ∃v r(v, v′)∧R(u, v)∧(M,v � ψ).

By the inductive assumption, we have ∀v′ R′(u′, v′)→ (N, v′ � ψ), hence N,u′ � 2ψ.
Case φ = 3ψ : Since M,u � 3ψ, it follows that ∃v R(u, v) ∧ (M,v � ψ). By the condition

3, we have ∃v, v′ R′(u′, v′) ∧ r(v, v′) ∧ (M,v � ψ). By the inductive assumption, it yields that
∃v′ R′(u′, v′) ∧ (N, v′ � ψ). Therefore N,u′ � 3ψ. ut

Definition 3.2. (The Least L-Model of a Positive Program) Let P be a positive pro-
gram in a normal modal logic L. We say that M is the least L-model of P if M is a L-model of
P and M is less than or equal to every L-model of P .

Observe that if P is a positive program in a normal modal logic L, and M is the least L-model
of P , then for any positive formula φ, M � φ iff P �L φ.

Proposition 3.1. The relation ≤ between Kripke models is a pre-order.
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Proof:
Let M = 〈W, τ,R, h〉, M ′ = 〈W ′, τ ′, R′, h′〉, and M ′′ = 〈W ′, τ ′, R′, h′〉 be Kripke models. We
have M ≤ M wrt. the identity relation. Let M ≤ M ′ wrt. r1, and M ′ ≤ M ′′ wrt. r2. Let
r3 = r1 ∗ r2. We show that M ≤M ′′ wrt. r3.

It is obvious that r3(τ, τ ′′) and ∀u, u′′ r3(u, u′′)→ (h(u) ⊆ h′′(u′′)).
For the condition 3 : Suppose that R(u, v) ∧ r3(u, u′′) holds. By the definition of r3, there

exists u′ such that R(u, v)∧ r1(u, u′)∧ r2(u′, u′′). By Definition 3.1, the following formulae hold:

∃v′ R′(u′, v′) ∧ r1(v, v′) ∧ r2(u′, u′′);
∃v′′ R′′(u′′, v′′) ∧ r2(v′, v′′) ∧ r1(v, v′);
∃v′′ R′′(u′′, v′′) ∧ r3(v, v′′).

For the condition 4 : Suppose that R′′(u′′, v′′)∧ r3(u, u′′) holds. By the definition of r3 there
exists u′ such that R′′(u′′, v′′) ∧ r1(u, u′) ∧ r2(u′, u′′). By Definition 3.1, the following formulae
hold:

∃v′ R′(u′, v′) ∧ r2(v′, v′′) ∧ r1(u, u′);
∃v R(u, v) ∧ r1(v, v′) ∧ r2(v′, v′′);
∃v R(u, v) ∧ r3(v, v′′).

ut

4. Results of this Work

Before presenting algorithms of constructing the least models for positive modal logic programs,
we list the main results of this paper:

• For any positive modal logic program P of size n in a modal logic L ∈
{KD,T,KDB,B,KD4, S4,KD5,KD45, S5}, there exists the least L-model M of P . If
L ∈ {KD5,KD45, S5}, or L ∈ {KD,T,KDB,B} and the modal depth of P is finitely
bounded, then the least L-model of P can be constructed in PTIME and coded in poly-
nomial space.

• Any positive modal logic program P in L ∈ {KB,K5,K45,KB5} can be characterized
by one or two models, in the sense that a positive formula follows from P iff it is satisfied
in these models. If L ∈ {K5,K45,KB5}, or L is KB and the modal depth of P is finitely
bounded, then the models can be constructed in PTIME and coded in polynomial space.

• The problem of checking the satisfiability of a set of Horn formulae with finitely bounded
modal depth in KD, T , KB, KDB, or B is decidable in PTIME.

• A new proof for the known result [3, 2] that the problem of checking the satisfiability of a
set of Horn formulae in K5, KD5, K45, KD45, KB5, or S5 is decidable in PTIME.
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5. Constructing the Least Models for Positive Programs in KD,

T , KDB , B , KD5, KD45, and S5

In this section we give an algorithm to construct the least L-model for a given positive modal
logic program P , where L can be one of the modal logics KD, T , KDB, B, KD5, KD45, and
S5. The complexity of the algorithm is analyzed, and some corollaries are presented.

To illustrate the idea of the algorithm, let us consider an example. Let P = {3p,3q} be
a positive program. M = 〈{τ, u, v}, τ, R, h〉, with R = {(τ, u), (τ, v), (u, u), (v, v)}, h(τ) = {},
h(u) = {p}, and h(v) = {q}, is a KD-model of P . But M is not the least KD-model of P . Why
not? The reason is that M � 2(p ∨ q) but 3p ∧ 3q 2KD 2(p ∨ q). How can we modify M to
make it the least KD-model of P? First, note that if we connect τ to a new empty world, then
M no longer satisfies 2(p ∨ q). But it still satisfies, for example, 32p, which does not follow
from 3p∧3q in KD . Now connect u to a new empty world, and note that M no longer satisfies
32p. Generalizing these observations, one can hope that connecting each newly created world
to an empty world is the key to construct the least models for positive modal logic programs.

The least L-model for P will be constructed by building a L-model graph for P . Formulae
from the contents of worlds of the model graph are treated as requirements to be realized. We
will realize formulae of the form (B ← C1, . . . , Ck) or 2ψ in a usual way (see Algorithm 5.1).
To realize a formula 3ψ at a world u we connect u to a new world containing ψ. To guarantee
the model graph to be the smallest, we connect each newly created world to an infinite chain of
empty worlds. For the logics KD5, KD45, and S5, these infinite chains can be replaced by two
special worlds. From time to time, we extend the accessibility relation in the way to satisfy the
frame restrictions.

In the algorithm given below, as a data structure we have a model graph M = 〈W, τ,R,H〉.
We sometimes refer to M as the model 〈W, τ,R, h〉, with h(x) = {p : p is a primitive proposition
belonging to H(x)}. We write M,u � φ to mean that the formula φ is satisfied at the world u

in the model M ; and write M ≤ N to denote that the model M is less than or equal to N .
We will use a procedure called CreateEmptyTailL(x0), which is defined as follows:

• If L is one of the logics KD, T , KDB, and B : add an infinite chain of new empty worlds
(x1, x2, . . .) to W and set R = R

⋃
{(xi, xi+1) | i ≥ 0}. (Note that the chain can be coded

as a finite chain, which can be dynamically expanded when necessary).

• If L is one of the logics KD5, KD45, and S5, and x0 = τ : add two new empty worlds ρ
and $ to W , and add the edges (τ, ρ) and (ρ,$) to R.

Algorithm 5.1.
Input: A positive modal logic program P

in a modal logic L ∈ {KD,T,KDB,B,KD5,KD45, S5}
Output: The least L-model M = 〈W, τ,R, h〉 of P .
Steps:
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1. Set W = {τ}, H(τ) = P , R = ∅.
CreateEmptyTailL(τ).
Set R = ExtL(R).

2. For every world u ∈W with H(u) not empty, and for every formula φ ∈ H(u):

(a) Case φ = (B ← C1, . . . , Ck), where k ≥ 1, and M,u � Ci for all 1 ≤ i ≤ k: Set
H(u) = H(u)

⋃
{B}.

(b) Case φ = 2ψ: For every world v ∈W satisfying R(u, v), set H(v) = H(v)
⋃
{ψ}.

(c) Case φ = 3ψ, and ¬(∃x R(u, x) ∧ ψ ∈ H(x)):

Let v be a new world.
Set W = W

⋃
{v}, H(v) = ψ, R = R

⋃
{(u, v)}.

CreateEmptyTailL(v).
Set R = ExtL(R).

3. While some change occurred, repeat step 2.

We give below two auxiliary lemmas.

Lemma 5.1. At the end of each numerated step of the above algorithm, 〈W, τ,R〉 is a connected
L-frame.

The proof of this lemma is straightforward. When KD5 ≤ L, the frame of the model graph
satisfies the condition ∀x, y ∈W (x 6= τ ∧y 6= τ)→ R(x, y). Moreover, if L = S5 then the frame
satisfies ∀x, y ∈W R(x, y); if L = KD45 then the frame satisfies ∀x ∈W x 6= τ → R(τ, x).

Lemma 5.2. Consider step 2c. Let R denote itself at the beginning of the step, and let R2

denote R at the end of the step. If KD5 ≤ L then the following assertion holds:

∀x x 6= v ∧ (R2(v, x) ∨ (x 6= τ ∧R2(x, v)))→ R∗(u, x).

This lemma can be verified using Lemma 5.1.
We give below the main lemma of this section. It informally states that during the execution

of Algorithm 5.1, the model graph M is always less than or equal to any L-model of P . What
we really want to obtain is the first four assertions, however, to prove them the assertions 5 and
6 are also needed.

Lemma 5.3. Let N = 〈W ′, τ ′, R′, h′〉 be an arbitrary L-model of P . It is an invariant of the
above algorithm1 that there exists a relation r ⊆W ×W ′ such that the following assertions hold:

1. r(τ, τ ′) ∧ (∀x′ r(τ, x′)→ x′ = τ ′)
2. ∀x, x′ ∀ ζ ∈ H(x) r(x, x′)→ N,x′ � ζ

3. ∀x, y, x′ R(x, y) ∧ r(x, x′)→ ∃y′ R′(x′, y′) ∧ r(y, y′)
4. ∀x, x′, y′ R′(x′, y′) ∧ r(x, x′)→ ∃y R(x, y) ∧ r(y, y′)
1i.e. the invariant holds at the end of each numerated step of the algorithm
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When L ∈ {KD5,KD45, S5}, this assertion has a stronger form:
∀x, x′, y′ R′(x′, y′) ∧ r(x, x′) ∧ x 6= τ → R(x,$) ∧ r($, y′)

∧ ∀x′, y′ R′(x′, y′) ∧ r(τ, x′)→ R(τ, ρ) ∧ r(ρ, y′)

5. ∀x, y, y′ R(x, y) ∧ r(y, y′)→ ∃x′ R′(x′, y′) ∧ r(x, x′)
6. If KD5 ≤ L then
∀x, x′, x′′ r(x, x′) ∧ r(x, x′′)→ x′ = x′′ ∨R′(x′, x′′).

Proof:
First, we prove the lemma for step 1.

Case L ∈ {KD,T,KDB,B}:
Let (v1, v2, . . .) be the infinite chain of worlds created by the call CreateEmptyTailL(τ).

Denote v0 = τ .
Let r = {(τ, τ ′)}

⋃
{(vi, vi

′) | R′i(τ ′, vi
′) for i ≥ 1}.

It is obvious that the assertions 1 and 2 hold.
3) Suppose that R(x, y) ∧ r(x, x′) holds. We show that ∃y′ R′(x′, y′) ∧ r(y, y′). There exists

i ≥ 0 such that (i ≥ 1, KDB ≤ L, x = vi, and y = vi−1) or (T ≤ L and x = y = vi) or
(x = vi and y = vi+1). If x = vi, there exist v0′, v1′, . . ., vi+1

′ such that v0′ = τ ′, vi
′ = x′, and

∀j 0 ≤ j ≤ i R′(vj
′, vj+1

′). It is easy to check that if y = vj for some i− 1 ≤ j ≤ i+ 1, then by
choosing y′ = vj

′ we have R′(x′, y′) ∧ r(y, y′).
4) Suppose that R′(x′, y′) ∧ r(x, x′) holds. There exists i ≥ 0 such that x = vi. It is easy to

check that for y = vi+1 we have R(x, y) ∧ r(y, y′).
5) The proof of the assertion is similar to the proof of the assertion 3.

Case L ∈ {KD5,KD45, S5}: Let
r = {(τ, τ ′)}

⋃
{(ρ, ρ′) | R′(τ ′, ρ′)}

⋃
{($,$′) | ∃ρ′ R′(τ ′, ρ′) ∧R′(ρ′, $′)}.

It is easy to check that the assertions 1, 2, 4, 6 hold.
3) Suppose that R(x, y) ∧ r(x, x′) holds. We show that ∃y′ R′(x′, y′) ∧ r(y, y′).
Case y = τ : We have L = S5. For y′ = τ ′, we have R′(x′, y′) ∧ r(y, y′).
Case y = ρ : If x = ρ, we have R′(τ ′, x′), hence R′(x′, x′); for y′ = x′, we have R′(x′, y′) ∧

r(y, y′). If x = τ or x = $, then for y′ such that R′(τ ′, y′), it is easy to check that R′(x′, y′) ∧
r(y, y′) holds.

Case y = $ : Let y′ be a world such that R′(x′, y′). It is easy to check that r(y, y′) holds.
5) Suppose that R(x, y) ∧ r(y, y′) holds. We show that ∃x′ R′(x′, y′) ∧ r(x, x′).
Case x = τ : Let x′ = τ ′. We have r(x, x′). If y = τ , we have L = S5, hence R′(x′, y′). If

y = ρ, we have R′(τ ′, y′), hence R′(x′, y′). If y = $, we have KD45 ≤ L, hence from r(y, y′) we
derive R′(τ ′, y′), and R′(x′, y′).

Case x = ρ and y = $ : Since r(y, y′), there exists x′ such that R′(τ ′, x′) and R′(x′, y′),
which implies R′(x′, y′) ∧ r(x, x′).

Case x = $ and y = ρ : By the assertion 3, there exist ρ′ and $′ such that R′(τ ′, ρ′) ∧
R′(ρ′, $′) ∧ r($,$′). Since r(y, y′) and y = ρ, we have R′(τ ′, y′). It is easily seen that for
x′ = $′ we have R′(x′, y′) ∧ r(x, x′).
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Case x = y 6= τ : Let x′ = y′. We have r(x, x′). It is easily seen that R′(x′, y′).

We now prove the lemma for step 2. Fix one of steps 2a, 2b, 2c, and suppose that before
executing that step, M with r satisfies all the assertions 1 - 6. Let M2 = 〈W2, τ, R2,H2〉 be the
model graph obtained as a result of executing the step. We construct a relation r2 such that
M2 with r2 satisfies all the mentioned assertions.

In the remainder of this proof, the phrase “by the assumption about the assertion i”, where
1 ≤ i ≤ 6, is understood as “because the assertion i is assumed to hold for M and r”. When we
are proving the assertion i for M2 and r2, the phrase “by assumption” in most of cases stands
for “by the assumption about the assertion i”.

For step 2a: Let r2 = r. We only need to prove the assertion 2 for x = u and ζ = B.
Suppose that r(u, x′) holds. We show that N,x′ � ζ. Assumptions 1 - 4 guarantee that
M ≤ N , hence for every 1 ≤ i ≤ k we have N,x′ � Ci. On the other hand, it follows from
(B ← C1, . . . , Ck) ∈ H(u) and r(u, x′) that N,x′ � (B ← C1, . . . , Ck). Therefore N,x′ � B, and
N,x′ � ζ.

For step 2b: Let r2 = r. We only need to prove the assertion 2 for x = v and ζ = ψ. Suppose
that r(v, x′) holds. We show that N,x′ � ζ. By the assumption 5, we have ∃u′ R′(u′, x′)∧r(u, u′).
Then by the assumption 2, we derive ∃u′ R′(u′, x′) ∧ (N,u′ � φ), which implies N,x′ � ζ.

For step 2c:
Case L ∈ {KD,T,KDB,B}:
Let v be the world mentioned in the algorithm; we denote it also by v0. Let (v1, v2, . . .) be

the chain of worlds created by CreateEmptyTailL(v0). Let

r2 = r
⋃
{(vi, vi

′) | i ≥ 0 and
∃u′, v0′ ∈W ′ r(u, u′) ∧R′(u′, v0′) ∧N, v0′ � ψ ∧R′i(v0′, vi

′)}.

The assertion 1 obviously holds.
2) It suffices to verify the assertion for x = v and ζ = ψ; but this case is also trivial, by the

definition of r2.
3) Suppose that R2(x, y) ∧ r2(x, x′) holds. We show that ∃y′ R′(x′, y′) ∧ r2(y, y′). If (x 6= u

and ∀i ≥ 0 x 6= vi) or (x = u and y 6= v0), we have R(x, y) ∧ r(x, x′), and then by assumption,
there exists y′ such that R′(x′, y′) ∧ r(y, y′), which implies R′(x′, y′) ∧ r2(y, y′).

• Case x = u and y = v0 : We have r(u, x′) since r2(x, x′) and x = u. Consequently,
N,x′ � 3ψ, and hence there exists y′ such that R′(x′, y′) and N, y′ � ψ. For such y′ we
have R′(x′, y′) ∧ r2(y, y′).

• Case x = vi, i ≥ 0 : Denote v−1 = u. Since R2(x, y), we have y = vi−1 or y = vi or y = vi+1.
Since r2(x, x′), there exist u′ and v0′ such that r(u, u′)∧R′(u′, v0′)∧N, v0′ � ψ∧R′i(v0′, x′).
Let v1′, . . ., vi+1

′ be worlds such that vi
′ = x′ and R′(vj

′, vj+1
′), for 0 ≤ j ≤ i. Denote
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v−1
′ = u′. We have r2(vj , vj

′), for −1 ≤ j ≤ i + 1. It is easily seen that for y = vj ,
i− 1 ≤ j ≤ i+ 1, by choosing y′ = vj

′, we have R′(x′, y′) ∧ r2(y, y′).

4) Suppose that R′(x′, y′)∧r2(x, x′) holds. We show that ∃y R2(x, y)∧r2(y, y′). If ∀i ≥ 0 x 6=
vi, we have r(x, x′), and by assumption, ∃y R(x, y)∧r(y, y′), which implies ∃y R2(x, y)∧r2(y, y′).
If x = vi for some i ≥ 0, then by choosing y = vi+1, we have R2(x, y) ∧ r2(y, y′).

5) Suppose that R2(x, y) ∧ r2(y, y′) holds. We show that ∃x′ R′(x′, y′) ∧ r2(x, x′).
Case L = KDB or L = B: We have R2(y, x) ∧ r2(y, y′), and it follows from the assertion 3

that there exists x′ such that R′(y′, x′)∧ r2(x, x′). Since R′ is symmetric, we also have R′(x′, y′).
Case L = KD or L = T : If (x 6= u and ∀i ≥ 0 x 6= vi) or (x = u and y 6= v0), we have

R(x, y) ∧ r(y, y′), and then by assumption, there exists x′ such that R′(x′, y′) ∧ r(x, x′), which
implies R′(x′, y′)∧r2(x, x′). Denote v−1 = u. Now assume that x = vi for some i ≥ −1, and that
if x = v−1 then y = v0. Since R2(x, y), we have y = vj for j = i or j = i+1. Since r2(y, y′), there
exist u′ and v0′ such that r(u, u′)∧R′(u′, v0′)∧N, v0′ � ψ∧R′j(v0′, y′). Let v1′, . . ., vj

′ be worlds
such that vj

′ = y′ and R′(vk−1
′, vk

′), for 1 ≤ k ≤ j. Denote v−1
′ = u′. We have r2(vk, vk

′),
for −1 ≤ k ≤ j. It is easily seen that for x = vi, by choosing x′ = vi

′, we have R′(x′, y′)∧r2(x, x′).

Case L ∈ {KD5,KD45, S5}:
Let r2 = r

⋃
{(v, v′) | ∃u′ r(u, u′) ∧R′(u′, v′) ∧N, v′ � ψ}.

The assertion 1 holds by assumption.
2) It suffices to verify the assertion for x = v and ζ = ψ; but this case is also trivial, by the

definition of r2.
3) Suppose that R2(x, y) ∧ r2(x, x′) holds. We show that ∃y′ R′(x′, y′) ∧ r2(y, y′).

• Case x 6= v and y 6= v : The assertion holds by assumption.
• Case x = v and y = v : It is easy to check that for y′ = x′ we have R′(x′, y′) ∧ r2(y, y′).
• Case x = v and y 6= v : There exists u′ such that r(u, u′) ∧ R′(u′, x′) ∧ (N,x′ � ψ). Since
R2(x, y), by Lemma 5.2, we have R∗(u, y). Applying the assumption 3 one or more times
for R∗(u, y)∧r(u, u′), we conclude that there exists y′ such that R′∗(u′, y′)∧r(y, y′). Since
R′(u′, x′) and KD5 ≤ L and r ⊆ r2, it follows that R′(x′, y′) ∧ r2(y, y′).
• Case y = v and x 6= v : By Lemma 5.1 and the assumption 3, there exists u′ such that

((R′∗(τ ′, u′) ∧ u 6= τ) ∨ (u′ = τ ′ ∧ u = τ)) ∧ r(u, u′). Hence, by the assumption 2, we have
N,u′ � φ. Hence there exists y′ such that R′(u′, y′) and N, y′ � ψ. Thus we have r2(y, y′).
We now show that R′(x′, y′) holds.

Case x = τ : By the assumption 1, we have x′ = τ ′. If u = τ , we have u′ = τ ′ = x′, and
R′(x′, y′). Suppose that u 6= τ . In this case, from R2(x, y), x = τ , and y = v, we claim
that KD45 ≤ L. It follows that R′(τ ′, y′), hence R′(x′, y′).

Case x 6= τ : Since R2(x, y), by Lemma 5.2, we have R∗(u, x). Applying the assump-
tion 3 one or more times for R∗(u, x) ∧ r(u, u′), we conclude that there exists x′′ such
that R′∗(u′, x′′) ∧ r(x, x′′), which implies R′(x′′, y′), since R′(u′, y′) and KD5 ≤ L. Since
r(x, x′) ∧ r(x, x′′), by the assumption 6, we have x′ = x′′ ∨ R′(x′′, x′). This together with
R′(x′′, y′) implies R′(x′, y′).
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4) It is sufficient to show that for any x, x′, y′ belonging to W , the following implication
holds: R′(x′, y′)∧ r2(x, x′)∧ x 6= τ → r2($, y′). Suppose that the antecedent of this implication
holds. The case x 6= v is trivial, so assume that x = v. Since r2(x, x′), there exists u′ such that
r(u, u′) ∧ R′(u′, x′) ∧ N,x′ � ψ. If u = τ , by assumption, we derive r(ρ, x′), and then r($, y′).
If u 6= τ , we have R′(u′, x′) ∧ r(u, u′) ∧ u 6= τ , which by assumption implies r($,x′), and then
r($, y′). Hence r2($, y′) holds.

5) Suppose that R2(x, y) ∧ r2(y, y′) holds. We show that ∃x′ R′(x′, y′) ∧ r2(x, x′).

• Case x 6= v and y 6= v : The assertion holds by assumption.
• Case x = v and y = v : It is easy to check that for x′ = y′ we have R′(x′, y′) ∧ r2(x, x′).
• Case x = v and y 6= v : We have r(y, y′). It is easily seen that there exists u′ such

that r(u, u′). By the assumption 2, we have N,u′ � φ, hence there exists v′ such that
R′(u′, v′) and N, v′ � ψ. This implies r2(v, v′). Since R2(x, y), by Lemma 5.2, we have
R∗(u, y). One or more times applying the assumption 3 for R∗(u, y)∧r(u, u′), we conclude
that there exists y′′ such that R′∗(u′, y′′)∧ r(y, y′′). Consequently, R′(v′, y′′) and R′(y′′, v′)
hold, since R′(u′, v′) and KD5 ≤ L. Since r(y, y′)∧ r(y, y′′), by the assumption 6, we have
y′ = y′′ ∨ R′(y′′, y′). As a consequence, we have R′(v′, y′), since R′(v′, y′′), R′(y′′, v′), and
KD5 ≤ L. Therefore, for x′ = v′, we have R′(x′, y′) ∧ r2(x, x′).

• Case x 6= v and y = v : Since r2(y, y′), there exists u′ such that r(u, u′)∧R′(u′, y′)∧N, y′ �

ψ.

Case x = τ : Let x′ = τ ′. We have r2(x, x′), and need to prove that R′(τ ′, y′) holds. If
u = τ , we have u′ = τ ′, and R′(τ ′, y′). Suppose that u 6= τ . From R2(x, y), x = τ , and
y = v, we claim that KD45 ≤ L. By Lemma 5.1, we have R∗(τ, u), and hence R(τ, u).
Applying the assumption 3 for R(τ, u) ∧ r(τ, τ ′), we derive that there exists u′′ such that
R′(τ ′, u′′) ∧ r(u, u′′). From the assumption 6, we derive that u′ = u′′ ∨ R′(u′, u′′). This
together with R′(τ ′, u′′), R′(u′, y′), and KD45 ≤ L implies R′(τ ′, y′).

Case x 6= τ : Since R2(x, y), by Lemma 5.2, we have R∗(u, x). Once or more times
applying the assumption 3 for R∗(u, x) ∧ r(u, u′), we derive that there exists x′ such that
R′∗(u′, x′) ∧ r(x, x′). Thus R′(x′, y′) ∧ r2(x, x′), since R′(u′, y′) and KD5 ≤ L and r ⊆ r2.

6) Suppose that r2(x, x′) ∧ r2(x, x′′) holds. We show that x′ = x′′ ∨ R′(x′, x′′). If x 6= v,
the assertion holds by assumption. Suppose that x = v. There exist u′ and u′′ such that
(r(u, u′)∧R′(u′, x′)∧N,x′ � ψ) and (r(u, u′′)∧R′(u′′, x′′)∧N,x′′ � ψ). Since r(u, u′)∧ r(u, u′′),
by assumption, we have u′ = u′′ ∨ R′(u′, u′′). If u′ = u′′, we derive R′(x′, x′′) from R′(u′, x′)
and R′(u′′, x′′). If R′(u′, u′′), we have R′(u′′, x′), since R′(u′, x′) and KD5 ≤ L; hence R′(x′, x′′),
since R′(u′′, x′′) and KD5 ≤ L. ut

We now estimate the complexity of the algorithm and the size of the resulting model.

Lemma 5.4. Let n and k be the size (i.e. the length) and the modal depth of a program P . Let
M be the model constructed by Algorithm 5.1 for P . If L is one of the logics KD, T , KDB,
and B, then the algorithm terminates in O(n2k+2) steps, the real diameter of M is less than or
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equal to k, M can be coded using O(nk+1)-space, and for any m, the model M |m has no more
than m.nk worlds. If L is one of the logics KD5, KD45, and S5, then the algorithm terminates
in O(n4) steps, and the size of M is of order O(n2).

Proof:
Case L ∈ {KD,T,KDB,B}: It is easily seen that, during the execution of the algorithm, the
real diameter of M is always less than or equal to k. The number of worlds in M |k is bounded
by nk, the number of edges in M |k are bounded by 3nk, and the number of formulae at each
world is bounded by n. Hence the size of M |k is of order O(nk+1). It is easily seen that checking
whether the model graph can further be extended is solvable in O(nk+1) steps. Because each
time step 2 is executed, it either increases the size of M |k by at least 1 or certifies that no more
changes can be made to M , we conclude that the algorithm terminates in O(n2k+2) steps. For
each world w ∈ W , there is at most one infinite chain of empty worlds starting from w, hence
the resulting model M can be coded using O(nk+1)-space, and for any m ≥ 1, the model M |m
has no more than m.nk worlds.

Case L ∈ {KD5,KD45, S5}: It is easily seen that, during the execution of the algorithm,
there are no more than n + 3 worlds. The size of each world is bounded by n. Hence the size
of M is of order O(n2). Checking whether step 2 can make some change to M can be solved
in O(n2) steps. Each time step 2 is executed, it either increases the size M by at least 1 or
certifies that no more changes can be made to the model graph. Hence the algorithm terminates
in O(n4) steps. ut

Here is the main theorem of this section:

Theorem 5.2. For any positive modal logic program P of size n, in a modal logic L ∈
{KD,T,KDB,B,KD5,KD45, S5}, there exists the least L-model M of P . If L ∈ {KD5,
KD45, S5}, then M can be constructed in O(n4) steps and its size is of order O(n4). If
L ∈ {KD,T,KDB,B} and the modal depth of P is finitely bounded, then M can be constructed
in PTIME, and for any m ≥ 1, the size of the model M |m is bounded by a polynomial in n and
m.

Proof:
Let M be the model constructed by Algorithm 5.1 for P in L. It is easy to prove by induction
(on the construction of φ) that for any world u, and any formula φ ∈ H(u), M,u � φ. Hence
M � P . Lemma 5.1 asserts that M is a L-model. These together with Lemma 5.3 assert that
M is the least L-model of P . The estimation of the complexity of the algorithm and of the size
of M follows from Lemma 5.4. ut

Corollary 5.1. The problem of checking the satisfiability of a set of Horn formulae with finitely
bounded modal depth in KD, T , KDB, or B is decidable in PTIME.

Corollary 5.2. (Fariñas del Cerro and Penttonen [3], Chen and Lin [2]) The problem
of checking the satisfiability of a set of Horn formulae in KD5, KD45, or S5 is decidable in
PTIME.
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These corollaries immediately follow from Proposition 2.1, Theorem 5.2, and Lemmas 2.2 and
2.1.

Although the model M constructed by Algorithm 5.1 for a program P in a logic L ∈
{KD,T,KDB,B} is infinite, by Lemmas 5.4 and 2.2, M can be treated as a finite model.
For L being KD or T , we will show that M can actually be transformed to an equivalent finite
model.

Lemma 5.5. Let M = 〈W, τ,R, h〉 be a connected KD-model (i.e. 〈W, τ,R〉 is a connected KD-
frame). Suppose that W can be divided into two groups W1 and W2 such that W1 contains τ ,
W2 is a non-empty set of empty worlds, and there is no edges connecting W2 to W1. Let w2 be
a new world, and let

W ′ = W1
⋃
{w2};

R′ = R− {(x, y) | y ∈W2}⋃
{(x,w2) | x ∈W1 ∧ ∃y ∈W2 R(x, y)}

⋃
{(w2, w2)};

h′(x) = h(x) for x 6= w2, h′(w2) = ∅;
M ′ = 〈W ′, τ, R′, h′〉;
r = {(x, x) | x ∈W1}

⋃
{(y, w2) | y ∈W2};

s = {(x, x) | x ∈W1}
⋃
{(w2, y) | y ∈W2}.

Then M ′ ≤M wrt. s, and M ≤M ′ wrt. r. Moreover, for any formula φ, M � φ iff M ′ � φ.

The proof of the first assertion is straightforward. The second assertion can be easily proved by
induction on the construction of φ.

Let M be the model constructed by Algorithm 5.1 for a program P in a logic L ∈ {KD,T}.
By the above lemma, if we replace all infinite chains of empty worlds in M by a new empty
world w2 connected to itself, we can obtain the least L-model of P . Thus, we have:

Corollary 5.3. For any positive program P with a finitely bounded modal depth, the least KD-
model and the least T -model of P can be constructed in PTIME, and their sizes are bounded by
a polynomial in the size of P .

6. Characterizations of Positive Programs in KB , K5, K45, and

KB5

In this section, we show that for any positive program P in a modal logic L ∈ {KB, K5, K45,
KB5} we can construct one or two L-models such that a positive formula φ follows from P iff
φ is satisfied in these models.

Definition 6.1. (Flat Models) We call a model 〈W, τ,R, h〉 flat if W = {τ} and R = ∅.

Definition 6.2. (The Least Flat Model of a Positive Program) A model M is called the
least flat model of a positive program P if it is a flat model of P and is less than or equal to any
flat model of P .
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Definition 6.3. (Almost Serial Modal Logics) Let L be a normal modal logic. We say that
L is almost serial if every L-frame 〈W, τ,R〉 satisfies the formula
∃x R(τ, x) → (∀y R∗(τ, y) → ∃z R(y, z)).

The logics KB, K5, K45, and KB5 are almost serial. Hence any non-flat connected frame
in KB (resp. K5, K45, KB5) is a frame in KDB (resp. KD5, KD45, S5). We say that
KDB, KD5, KD45, and S5 are the serial logics corresponding to KB, K5, K45, and KB5,
respectively. For L ∈ {KB,K5,K45,KB5}, we use LD to denote the serial logic corresponding
to L.

Theorem 6.1. Let P be a positive program in a modal logic L ∈ {KB, K5, K45, KB5}. Let
M be the least LD-model of P constructed by Algorithm 5.1, and let N = 〈W ′, τ ′, R′, h′〉 be a
non-flat L-model of P . Then M ≤ N .

The proof of this theorem is straightforward.

Theorem 6.2. The problem of checking whether a positive modal logic program P has flat
models is decidable in PTIME. If P has flat models then it has the least flat model, which can
be constructed in PTIME and has size bounded by a polynomial in the size of P .

Proof:
Let P ′ be the program obtained from P by replacing every formula 2φ in P by true, and every
atom 3p by a new primitive proposition p′. The program P ′ is a positive program in the classical
logic. Therefore it has the least model M , which can be constructed in PTIME and has size
bounded by a polynomial in the size of P . If there is a primitive proposition p′ satisfied in M

then P has no flat models; for otherwise let N be a flat model of P , we would have 3p satisfied
in N , which is impossible. If there is no primitive proposition p′ satisfied in M then M is a flat
model of P . If N is a flat model of P then it is easily seen that it is also a model of P ′, hence
M ≤ N . ut

Corollary 6.1. Let P be a positive program in a modal logic L ∈ {KB, K5, K45, KB5}. Let
M be the least LD-model of P . If P has no flat models then M is the least L-model of P . If
P has flat models then it has the least flat model M ′, and for every model N of P , if N is flat
then M ′ ≤ N , otherwise M ≤ N .

This corollary follows from Theorems 6.1 and 6.2.

Corollary 6.2. The problem of checking the satisfiability of a set of Horn formulae with finitely
bounded modal depth in KB is decidable in PTIME.

Corollary 6.3. (Chen and Lin [2]) The problem of checking the satisfiability of a set of Horn
formulae in K5, K45, or KB5 is decidable in PTIME.

These corollaries immediately follow from Proposition 2.1, Corollary 6.1, Theorems 5.2 and 6.2,
and Lemmas 2.2 and 2.1.
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7. Constructing the Least Models for Positive Programs in KD4

and S4

Algorithm 5.1 cannot be applied for the logics KD4 and S4, because it will not terminate, for
example, when P contains the formula 23p. Before giving an algorithm of constructing the
least models for positive programs in KD4 and S4, let us introduce some notations.

In Algorithm 7.1 given below, we use the following data structures:

• M = 〈W, τ,R∗,H〉 - a model graph, with R∗ being the transitive closure of R. We
sometimes refer to M as a model in the same way as described in Section 5.

• StatusW : W → {normal,minimal};
• StatusR : R→ {permanent, temporal};
• Next : W × F → W , which is interpreted as follows: Next(u,3φ) = v means R(u, v),
φ ∈ H(v), and the world u realizes the requirement 3φ by going to v.

We define the binary relation Permanent on W as follows

Permanent(x, y) ≡ (R(x, y) ∧ StatusR(x, y) = permanent),

and use Permanent∗ to denote its transitive closure. We also need the following notations:

H+(x) = {φ | ∃y Permanent∗(y, x) and

(2φ ∈ H(y) or (φ ∈ H(y) and φ = 2ψ for some ψ))},
H∗(x) = H+(x)

⋃
{φ | 2φ ∈ H(x) or (φ ∈ H(x) and φ = 2ψ for some ψ)},

where H+(x) can be interpreted as the potentiality inherited from the predecessors of x, and
H∗(x) - the potentiality inherited from both x and its predecessors.

Consider Algorithm 7.1 given below. We build the least L-model for P by constructing a
L-model graph for it. The relation Permanent, without self-referencing edges, forms a tree with
root τ , which is a skeleton of the model graph.

Consider step 2c. If we create a new world to realize the formula 3p, then it should contain
p and H∗(u). We first try to find a world v on the path from τ to u (in the tree generated by
Permanent) such that it contains 3p, and H∗(v) = H∗(u). If such v exists and the formula 3p

has been realized in v by a connection from v to w, then we just connect u to w; but this edge is
not permanent, because if a new formula 2ζ is later added to u while ζ or 2ζ is not present in w
then we will delete the edge. If such v exists but the formula 3p has not been realized in v, then
we do nothing; this means that the formula 3p will be realized in v before in u. If such v does
not exist, then we realize the formula 3p in u by creating a new world, denoted by v, assigning
p and H∗(u) to it, and connecting u to v, and v to a new minimal world. Minimal worlds are
elements that make M the least L-model of P . They have the same role as the infinite chains of
empty worlds used in Algorithm 5.1. In step 2(b)i, we do not add ψ to u because of the nature
of minimal worlds.

In Algorithm 7.1, we use a procedure called CreateNextMinNode(x), which is defined as:
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Let y be a new world.
Set W = W

⋃
{y}, StatusW (y) = minimal, H(y) = H∗(x),

R = R
⋃
{(x, y), (y, y)}, StatusR(x, y) = permanent.

If L = S4, set StatusR(y, y) = permanent;
otherwise, set StatusR(y, y) = temporal.

Algorithm 7.1.
Input: A positive modal logic program P in a modal logic L ∈ {KD4, S4}
Output: The least L-model M = 〈W, τ,R∗, h〉 of P .
Steps:

1. Set W = {τ}, StatusW (τ) = normal, H(τ) = P .
If L = S4, set R = {(τ, τ)} and StatusR(τ, τ) = permanent;
otherwise, set R = ∅.
CreateNextMinNode(τ).

2. For every world u ∈W , and for every formula φ ∈ H(u),

(a) Case φ = B ← C1, . . . , Ck for some k ≥ 1, and M,u � Ci for all 1 ≤ i ≤ k:

Set H(u) = H(u)
⋃
{B}.

(b) Case φ = 2ψ for some ψ :

i. If StatusW (u) = minimal, StatusR(u, u) = temporal, and ψ /∈ H(u), then
Set R = R− {(u, u)}, StatusW (u) = normal,
CreateNextMinNode(u).

ii. Otherwise,
For every v such that Permanent∗(u, v),

Set H(v) = H(v)
⋃
{φ, ψ},

For every v such that R(u, v), StatusR(u, v) = temporal,
and {φ, ψ} * H(v),

Set R = R− {(u, v)},
For every 3p such that Next(u,3p) = v,

Set Next(u,3p) undefined.

(c) Case φ = 3p for some primitive proposition p, and Next(u,3p) is undefined:

i. If there exist v and w such that:
Permanent∗(v, u) ∧ H∗(v) = H∗(u) ∧ φ ∈ H(v) ∧
Permanent(v, w) ∧ Next(v,3p) = w,

Set R = R
⋃
{(u,w)}, StatusR(u,w) = temporal, Next(u,3p) = w.

ii. Otherwise, if ¬(∃x x 6= u ∧ Permanent∗(x, u) ∧ H∗(x) = H∗(u) ∧ φ ∈ H(x)),
Let v be a new world, and set Next(u,3p) = v.
Set W = W

⋃
{v}, StatusW (v) = normal, H(v) = H∗(u)

⋃
{p},

R = R
⋃
{(u, v)}, StatusR(u, v) = permanent.
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If L = S4, set R = R
⋃
{(v, v)}, StatusR(v, v) = permanent.

CreateNextMinNode(v).

3. While some change occurred, repeat step 2.

We give below an auxiliary lemma. Its proof is straightforward.

Lemma 7.1. The following assertions hold at the end of each numerated step of the above
algorithm:

1. L = KD4→
∀x (StatusW (x) = normal→ ¬R(x, x))∧

(StatusW (x) = minimal→ StatusR(x, x) = temporal)
2. L = S4→ ∀x Permanent(x, x)
3. ∀x Permanent∗(x, x)→ Permanent(x, x)
4. For every formula 3q,
∀x, y Next(x,3q) = y → R(x, y) ∧ q ∈ H(y) ∧ (Permanent(x, y)∨

(∃z Permanent∗(z, x) ∧H∗(z) = H∗(x) ∧3q ∈ H(z)
∧ Permanent(z, y) ∧Next(z,3q) = y))

5. (L = KD4→ ∀x ∃y R(x, y)) ∧ (L = S4→ ∀x R(x, x)).

Lemma 7.2. If Algorithm 7.1 terminates, then the resulting model M is a L-model of P .

Proof:
We prove that for every world u, and a formula φ ∈ H(u), M,u � φ. It is easily seen that the
assertion holds for the case when φ is of the form 2ψ or (B ← C1, . . . Ck), with k ≥ 1. Suppose
that for some u and 3q ∈ H(u), Next(u,3q) is undefined. Without loss of generality, we can
assume that for every world x such that x 6= u and Permanent∗(x, u), Next(x,3p) is defined
for every 3p ∈ H(x). Since no more changes can be made to the model graph, there exists v
such that v 6= u∧Permanent∗(v, u)∧H∗(v) = H∗(u)∧3q ∈ H(v). Thus, we have Next(v,3q)
defined. Let Next(v,3q) = w. By Lemma 7.1:4, we have:

R(v, w) ∧ q ∈ H(w) ∧ (Permanent(v, w)∨
(∃z Permanent∗(z, v) ∧H∗(z) = H∗(v) ∧3q ∈ H(z) ∧ Permanent(z, w) ∧Next(z,3q) = w)).

If Permanent(v, w) holds, M can be extended by step 2(c)i, and we have a contradiction. If
there is z such that Permanent∗(z, v) ∧ (H∗(z) = H∗(v)) ∧ 3q ∈ H(z) ∧ Permanent(z, w) ∧
Next(z,3q) = w, then we have Permanent∗(z, u) ∧ H∗(z) = H∗(u) ∧ 3q ∈ H(z) ∧
Permanent(z, w) ∧Next(z,3q) = w, hence step 2(c)i can be applied to extend M , which is a
contradiction. Therefore for any world u ∈ W and 3p ∈ H(u), Next(u,3p) is defined, which
by Lemma 7.1:4 implies that N,u � 3p. The consequence is that M, τ � P , since P ⊆ H(τ).
Lemma 7.1:5 asserts that R∗ satisfies all L-frame axioms. ut

We give below the main lemma of this section. What we really want to claim by this lemma
is that the model M constructed by Algorithm 7.1 is less than or equal to any L-model of P .
One would expect only the first four assertions of the lemma, in a simpler form as follows:
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1. r(τ, τ ′)
2. ∀x, x′ ∀ ζ ∈ H(x) r(x, x′)→ N,x′ � ζ

3. ∀x, y, x′ R∗(x, y) ∧ r(x, x′)→ ∃y′ R′(x′, y′) ∧ r(y, y′)
4. ∀x, x′, y′ R′(x′, y′) ∧ r(x, x′)→ ∃y R∗(x, y) ∧ r(y, y′).

We make the assertions stronger and add additional ones in order to prove themselves.

Lemma 7.3. Let N = 〈W ′, τ ′, R′, h′〉 be an arbitrary L-model of P . It is an invariant of the
algorithm2 that there exists a relation r ⊆W ×W ′ such that the following assertions hold:

1. r(τ, τ ′)
2. ∀x, x′ ∀ ζ ∈ H(x)

⋃
H+(x) r(x, x′)→ N,x′ � ζ

3. ∀x, y, x′ R∗(x, y) ∧ r(x, x′) → ∃y′ R′∗(x′, y′) ∧ r(y, y′)
4. ∀x, x′, y′ R′∗(x′, y′) ∧ r(x, x′)→ ∃y (Permanent∗(x, y) ∨ (y = x ∧R(x, y))) ∧ r(y, y′)
5. ∀x, y, y′ x 6= y ∧ Permanent∗(x, y) ∧ r(y, y′) → ∃x′ R′∗(x′, y′) ∧ r(x, x′)
6. For every formula 3q,
∀x, y, x′, y′ (Permanent(x, y) ∧Next(x,3q) = y ∧ r(x, x′) ∧R′∗(x′, y′) ∧N, y′ � q)

→ r(y, y′).

Note that R′∗ ≡ R′ since R′ is transitive. We write R′∗ instead of R′ for symmetry.

Proof:
For step 1:

Let u be the world created by CreateNextMinNode(τ).
Let r = {(τ, τ ′)}

⋃
{(u, x′) | R′∗(τ ′, x′)}.

It is obvious that the assertion 1 holds. The assertion 6 holds because the function Next is
totally undefined at this step.

2) Suppose that ζ ∈ H(x)
⋃
H+(x) and r(x, x′) holds. We show that N,x′ � ζ.

• Case x = τ : We have x′ = τ ′ since r(x, x′).

Case L = KD4 : We have ¬R(τ, τ), hence H+(τ) = ∅ and ζ ∈ H(τ). Since H(τ) = P and
N � P , it follows that N,x′ � ζ.

Case L = S4 : We have H(τ)
⋃
H+(τ) = P

⋃
{φ | 2φ ∈ P}. If ζ ∈ P , we have N,x′ � ζ

since N � P . If 2ζ ∈ P , we have N,x′ � 2ζ since N � P ; and N,x′ � ζ since L = S4.
• Case x = u : We have R′∗(τ ′, x′). Since ζ ∈ H(u)

⋃
H+(u), there are cases: 2ζ ∈ H(τ),

or (ζ ∈ H(τ) and ζ = 2ψ for some ψ), or (22ζ ∈ H(τ) and L = S4).

Case 2ζ ∈ H(τ) : We have N, τ ′ � 2ζ, since H(τ) = P and N, τ ′ � P . It follows that
N,x′ � ζ, since R′∗(τ ′, x′).

Case ζ = 2ψ and ζ ∈ H(τ) : We have N, τ ′ � 2ψ, since H(τ) = P and N, τ ′ � P . Hence
N, τ ′ � 22ψ, since N is a K4-model. It follows that N,x′ � ζ, since R′∗(τ ′, x′).

Case 22ζ ∈ H(τ) and L = S4 : We have N, τ ′ � 22ζ, since H(τ) = P and N, τ ′ � P .
Hence N,x′ � 2ζ, since R′∗(τ ′, x′). It follows that N,x′ � ζ, since N is a S4-model.

2i.e. the invariant holds at the end of each numerated step of the algorithm
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3) Suppose that R∗(x, y) ∧ r(x, x′) holds. We show that ∃y′ R′∗(x′, y′) ∧ r(y, y′).
Case x = y = τ : It follows that L = S4. We have x′ = τ ′ since r(x, x′). For y′ = τ ′, we

have R′∗(x′, y′) ∧ r(y, y′).
Case x = τ and y = u : We have x′ = τ ′ since r(x, x′). There exists y′ such that R′(τ ′, y′),

since KD ≤ L. For such y′ we have R′∗(x′, y′) ∧ r(y, y′).
Case x = u and y = u : We have R′∗(τ ′, x′) since r(x, x′). There exists y′ such that R′(x′, y′),

hence R′∗(τ ′, y′). For such y′ we have R′∗(x′, y′) ∧ r(y, y′).
4) Suppose that R′∗(x′, y′) ∧ r(x, x′) holds. We show that

∃y (Permanent∗(x, y) ∨ (y = x ∧R(x, y))) ∧ r(y, y′).
Case x = τ : It follows that x′ = τ ′. For y = u, we have Permanent∗(x, y) and r(y, y′).
Case x = u : We have R′∗(τ ′, x′) since r(x, x′), hence R′∗(τ ′, y′). For y = u, we have

y = x ∧R(x, y) ∧ r(y, y′).
5) Suppose that x 6= y ∧ Permanent∗(x, y) ∧ r(y, y′) holds. We show that ∃x′ R′∗(x′, y′) ∧

r(x, x′). It is true that x = τ and y = u. We have R′∗(τ ′, y′) since r(y, y′). For x′ = τ ′, we have
R′∗(x′, y′) ∧ r(x, x′).

We now prove the lemma for step 2. Fix one of steps 2a, 2(b)i, 2(b)ii, 2(c)i, 2(c)ii, and
suppose that before executing the step, M with StatusW , StatusR, Next, and r satisfies all of
the assertions 1 - 6. Let M2 = 〈W2, τ, R2,H2〉, StatusW2, StatusR2, and Next2 be obtained as
a result of executing the step. We construct a relation r2 such that all of the above mentioned
assertions hold for M2, StatusW2, StatusR2, Next2, r2.

In the remainder of this proof, the phrase “by the assumption about the assertion i”, where
1 ≤ i ≤ 6, is understood as “because the assertion i is assumed to hold for M , StatusW ,
StatusR, Next, and r”. When we are proving the assertion i for M2, StatusW2, StatusR2,
Next2, and r2, the phrase “by assumption” in most of cases stands for “by the assumption
about the assertion i”.

For step 2a:
Let r2 = r. We only need to prove the assertion 2.
Suppose that ζ ∈ H2(x)

⋃
H2

+(x) and r(x, x′) holds. We show that N,x′ � ζ. The assump-
tions 1 - 4 assert that M ≤ N .

• Case x = u and ζ = B : We have N,x′ � φ and N,x′ � Ci for all 1 ≤ i ≤ k, since r(x, x′).
Therefore N,x′ � B, and N,x′ � ζ.
• Case x 6= u or ζ 6= B : It follows that if ζ ∈ H2(x) then ζ ∈ H(x). If B is not of the

form 2ξ, or ¬Permanent∗(u, x), or (B = 2ξ, ζ 6= ξ, and ζ 6= B), then ζ ∈ H2
+(x) implies

ζ ∈ H+(x), hence ζ ∈ H(x)
⋃
H+(x), and finally N,x′ � ζ. Suppose that B = 2ξ for

some ξ, Permanent∗(u, x), and (ζ = ξ or ζ = B).

Case x 6= u : By the assumption about the assertion 5, there exists u′ such that R′∗(u′, x′)∧
r(u, u′). Thus N,u′ � φ and ∀i 1 ≤ i ≤ k N, u′ � Ci. It follows that N,u′ � 2ξ, hence
N,x′ � ξ and N,x′ � 2ξ, since R′∗(u′, x′) and K4 ≤ L. Hence N,x′ � ζ.
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Case x = u : Since Permanent∗(u, x) holds, it follows from Lemma 7.1, items 3 and 1 that
L = S4. Similarly as for the case x = u and ζ = B, we derive N,x′ � B. The consequence
is that N,x′ � ζ.

For step 2(b)i:
By Lemma 7.1:2, we have L = KD4 since StatusR(u, u) = temporal.
Let v be the world created by CreateNextMinNode(u).
Let r2 = r

⋃
{(v, v′) | ∃u′ r(u, u′) ∧R′∗(u′, v′)}.

1) The assertion holds by assumption.
2) Suppose that ζ ∈ H2(x)

⋃
H2

+(x) and r2(x, x′) holds. We show that N,x′ � ζ.
• Case x 6= v : We have H2(x)

⋃
H2

+(x) = H(x)
⋃
H+(x) and r(x, x′). Hence, by assump-

tion, N,x′ � ζ.
• Case x = v : Since r2(x, x′), there exists u′ such that r(u, u′) ∧ R′∗(u′, x′). We have
H2

+(v) = H2(v) = H∗(u). Therefore 2ζ ∈ H(u)
⋃
H+(u) or (ζ ∈ H(u)

⋃
H+(u) and

ζ = 2ξ for some ξ).

Case 2ζ ∈ H(u)
⋃
H+(u) : By assumption, we have N,u′ � 2ζ. Hence N,x′ � ζ, since

R′∗(u′, x′).

Case ζ ∈ H(u)
⋃
H+(u) and ζ = 2ξ : By assumption, we have N,u′ � 2ξ. Since K4 ≤ L,

we have N,u′ � 22ξ. Hence N,x′ � ζ, since R′∗(u′, x′).
3) Suppose that R∗

2(x, y) ∧ r2(x, x′) holds. We show that ∃y′ R′∗(x′, y′) ∧ r2(y, y′).

• Case x 6= v and y 6= v : We have R∗(x, y) ∧ r(x, x′). By assumption and that r ⊆ r2, we
derive ∃y′ R′∗(x′, y′) ∧ r2(y, y′).
• Case x = v : We have y = v and ∃u′ r(u, u′) ∧ R′∗(u′, x′). Let y′ be a world such that
R′(x′, y′). Thus ∃u′ r(u, u′) ∧R′∗(u′, y′), and r2(v, y′). Therefore ∃y′ R′∗(x′, y′) ∧ r2(y, y′).

• Case y = v and x 6= v : Since R2
∗(x, y), we have x = u or R∗(x, u).

Case x = u : We have r(u, x′) since r2(x, x′). Let y′ be a world such that R′(x′, y′). We
have r(u, x′) ∧R′(x′, y′), hence r2(v, y′). Therefore ∃y′ R′∗(x′, y′) ∧ r2(y, y′).

Case R∗(x, u) : We have r(x, x′) since r2(x, x′) and x 6= v. Hence, by assumption, there
exists u′ such that R′∗(x′, u′)∧ r(u, u′). Since KD ≤ L, there exists y′ such that R′(u′, y′).
Thus we have r(u, u′) ∧R′∗(u′, y′), hence r2(v, y′), and finally R′∗(x′, y′) ∧ r2(y, y′).

4) Suppose that R′∗(x′, y′) ∧ r2(x, x′) holds. We show that
∃y (Permanent2∗(x, y) ∨ (y = x ∧R2(x, y))) ∧ r2(y, y′).

Case x 6= v and x 6= u : We have r(x, x′) since r2(x, x′). The assertion holds by assumption.
Case x = v : We have ∃u′ r(u, u′)∧R′∗(u′, x′) since r2(x, x′). Hence ∃u′ r(u, u′)∧R′∗(u′, y′),

since R′∗(x′, y′). It follows that r2(v, y′), and by choosing y = x we have R2(x, y) ∧ r2(y, y′).
Case x = u : We have R′∗(x′, y′) ∧ r(u, x′). Hence r2(v, y′), and by choosing y = v we have

Permanent2
∗(x, y) ∧ r2(y, y′).

5) Suppose that x 6= y ∧ Permanent2∗(x, y) ∧ r2(y, y′) holds.
We show that ∃x′ R′∗(x′, y′) ∧ r2(x, x′). We have x 6= v.
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• Case y 6= v : We have Permanent∗(x, y) ∧ r(y, y′). By assumption, it follows that
∃x′ R′∗(x′, y′) ∧ r(x, x′). Hence ∃x′ R′∗(x′, y′) ∧ r2(x, x′), since r ⊆ r2.
• Case y = v : We have x = u or Permanent∗(x, u), since Permanent2

∗(x, y). Since
r2(y, y′), there exists u′ such that r(u, u′) ∧R′∗(u′, y′).

Case x = u : For x′ = u′, we have R′∗(x′, y′) ∧ r(x, x′). Thus ∃x′ R′∗(x′, y′) ∧ r2(x, x′).

Case x 6= u : We have x 6= u ∧ Permanent∗(x, u) ∧ r(u, u′), hence, by assumption,
∃x′ R′∗(x′, u′) ∧ r(x, x′). Thus ∃x′ R′∗(x′, y′) ∧ r(x, x′), which implies ∃x′ R′∗(x′, y′) ∧
r2(x, x′).

6) Suppose that Permanent2(x, y) ∧Next2(x,3q) = y ∧ r2(x, x′) ∧ R′∗(x′, y′) ∧ (N, y′ � q)
holds. We show that r2(y, y′). Since Next2(x,3q) = y, we have y 6= v and x 6= v. It follows that
Permanent(x, y) ∧Next(x,3q) = y ∧ r(x, x′). By assumption, we derive r(y, y′), and r2(y, y′).

For step 2(b)ii:
Since StatusW (u) = normal or StatusR(u, u) = permanent or ψ ∈ H(u), by Lemma 7.1:1,

we have ¬R(u, u) or L = S4 or ψ ∈ H(u).
Let r2 = r. It is easily seen that Permanent2∗ = Permanent∗. We also have R2

∗ ⊆ R∗, and
Next is an extension of Next2, i.e. for any 3p, ∀x ∀y Next2(x,3p) = y → Next(x,3p) = y.
Therefore, by assumption, the assertions 1, 3, 5, and 6 hold. It is easily seen that ∀x R(x, x)→
R2(x, x), hence the assertion 4 also holds.

2) Suppose that ζ ∈ H2(x)
⋃
H2

+(x) and r(x, x′) holds. We show that N,x′ � ζ.
• Case ¬Permanent∗(u, x) : We have ζ ∈ H(x)

⋃
H+(x), and then by assumption, N,x′ � ζ.

• Case Permanent∗(u, x) :
We have H2(x)

⋃
H2

+(x) ⊆ H(x)
⋃
H+(x)

⋃
{ξ | ψ = 2ξ}.

If ζ ∈ H(x)
⋃
H+(x), then by assumption, we have N,x′ � ζ. Suppose that ζ /∈

H(x)
⋃
H+(x) and ψ = 2ζ. It follows that ψ /∈ H(u).

– Case x = u : By Lemma 7.1:3, we have Permanent(u, u), and L = S4. By assump-
tion, we have N,x′ � φ since r(x, x′). Hence N,x′ � ζ.

– Case x 6= u : There are two cases: L = S4, or ∃y y 6= u∧y 6= x∧Permanent∗(u, y)∧
Permanent∗(y, x); (for otherwise we would have ζ ∈ H(x)

⋃
H+(x)).

Case L = S4 : By the assumption about the assertion 5, we have ∃u′ R′∗(u′, x′) ∧
r(u, u′). By assumption, this implies ∃u′ R′∗(u′, x′)∧N,u′ � φ. Thus N,x′ � ζ, since
L = S4.
The second case : By the assumption about the assertion 5, there exists y′ such that
R′∗(y′, x′) ∧ r(y, y′), and u′ such that R′∗(u′, y′) ∧ r(u, u′). By assumption, we have
N,u′ � φ, hence N,x′ � ζ.

For step 2(c)i:
Let r2 = r. It is easily seen that Permanent2∗ = Permanent∗. Therefore the assertions 1,

2, 4, 5, and 6 hold by assumption.
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3) Suppose that R2
∗(x, y)∧ r(x, x′) holds. We show that ∃y′ R′∗(x′, y′)∧ r(y, y′). If R∗(x, y),

then by assumption, we have ∃y′ R′∗(x′, y′) ∧ r(y, y′). Suppose that R∗(x, y) does not hold.
Since R2

∗(x, y), we have (x = u or R∗(x, u)) and (y = w or R∗(w, y)). If x = u, let u′ = x′,
we have r(u, u′). If R∗(x, u), by assumption, there exists u′ such that R′∗(x′, u′) ∧ r(u, u′). We
have v 6= u because Next(u, φ) is undefined while Next(v, φ) is defined. By the assumption
about the assertion 5, there exists v′ such that R′∗(v′, u′) ∧ r(v, v′). We have N,u′ � φ since
r(u, u′) and φ ∈ H(u). Therefore there exists w′ such that R′(u′, w′) and N,w′ � p. We have
Permanent(v, w)∧Next(v,3p) = w∧r(v, v′)∧R′∗(v′, w′)∧N,w′ � p, hence, by the assumption
about the assertion 6, r(w,w′) holds.

If y = w, we have ∃y′ = w′ R′∗(x′, y′) ∧ r(y, y′). If y 6= w, we have R∗(w, y), hence, by
assumption, ∃y′ R′∗(w′, y′) ∧ r(y, y′), and finally ∃y′ R′∗(x′, y′) ∧ r(y, y′).

For step 2(c)ii:
Let v be the world mentioned in the step, and let w be the world created by

CreateNextMinNode(v). Let

r2 = r
⋃
{(v, v′) | ∃u′ r(u, u′) ∧R′∗(u′, v′) ∧N, v′ � p}⋃
{(w,w′) | ∃u′, v′ r(u, u′) ∧R′∗(u′, v′) ∧N, v′ � p ∧R′∗(v′, w′)}

1) The assertion holds by assumption.
2) Suppose that ζ ∈ H2(x)

⋃
H2

+(x) and r2(x, x′) holds. We show that N,x′ � ζ.

• Case x 6= v and x 6= w : We haveH2(x)
⋃
H2

+(x) = H(x)
⋃
H+(x) and r(x, x′). Therefore,

by assumption, N,x′ � ζ.
• Case x = v : Since r2(x, x′), there exists u′ such that r(u, u′) ∧ R′∗(u′, x′) ∧ N,x′ � p.

Because ζ ∈ H2(x)
⋃
H2

+(x) and H2(v) = H∗(u)
⋃
{p}, there are the following cases:

– Case ζ ∈ H(u)
⋃
H+(u) and ζ = 2ξ for some ξ : By assumption, we have N,u′ � 2ξ.

It follows that N,u′ � 22ξ, since K4 ≤ L. Hence N,x′ � ζ, since R′∗(u′, x′).

– Case 2ζ ∈ H(u)
⋃
H+(u) : By assumption, we have N,u′ � 2ζ. Hence N,x′ � ζ,

since R′∗(u′, x′).

– Case 22ζ ∈ H(u)
⋃
H+(u) and L = S4 : By assumption, we have N,u′ � 22ζ.

Hence N,u′ � 2ζ, since L = S4. Consequently, N,x′ � ζ, since R′∗(u′, x′).

– Case ζ = p : We have N,x′ � ζ since N,x′ � p.

• Case x = w : Since r2(x, x′), there exist u′ and v′ such that r(u, u′) ∧R′∗(u′, v′) ∧N, v′ �

p ∧R′∗(v′, x′). Since ζ ∈ H2(x)
⋃
H2

+(x), there are the following cases:

– Cases (ζ ∈ H(u)
⋃
H+(u) and ζ = 2ξ for some ξ) or (2ζ ∈ H(u)

⋃
H+(u)): Reason-

ing as for the case x = v, we obtain N,x′ � ζ.

– Case 22ζ ∈ H(u)
⋃
H+(u) : By assumption, we have N,u′ � 22ζ. Hence N,x′ � ζ,

since R′∗(u′, v′) and R′∗(v′, x′).
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– Case 23ζ ∈ H(u)
⋃
H+(u) and L = S4 : By assumption, we have N,u′ � 23ζ. Hence

N,u′ � 2ζ, since L = S4. Consequently, N,x′ � ζ, since R′∗(u′, x′).

3) Suppose that R2
∗(x, y) ∧ r2(x, x′) holds. We show that ∃y′ R′∗(x′, y′) ∧ r2(y, y′).

• Case x 6= v and x 6= w : It follows that r(x, x′).

Case y 6= v and y 6= w : It follows that R∗(x, y). By assumption, we have ∃y′ R′∗(x′, y′)∧
r(y, y′), which implies ∃y′ R′∗(x′, y′) ∧ r2(y, y′).

Case y = v or y = w : Since R2
∗(x, y), we have x = u or R∗(x, u). If x = u, then

let u′ = x′, and we have r(u, u′). If R∗(x, u), then by assumption, there exists u′ such
that R′∗(x′, u′) ∧ r(u, u′). Thus, in both of the cases, N,u′ � φ. Therefore there exists
v′ such that R′(u′, v′) and N, v′ � p. Let w′ be a world such that R′(v′, w′). We have
r2(v, v′) and r2(w,w′). If y = v then choose y′ = v′, if y = w then choose y′ = w′. Thus
R′∗(x′, y′) ∧ r2(y, y′).

• Case x = v : We have y = v or y = w. Since r2(x, x′), we have ∃u′ r(u, u′) ∧ R′∗(u′, x′) ∧
N,x′ � p.

Case y = v : Since R2
∗(x, y), we have L = S4. Therefore, for y′ = x′, we have R′∗(x′, y′)∧

r2(y, y′).

Case y = w : Let y′ be a world such that R′(x′, y′). It is easily seen that R′∗(x′, y′)∧r2(y, y′)
holds.

• Case x = w : We have y = w, and ∃u′, v′ r(u, u′) ∧ R′∗(u′, v′) ∧ (N, v′ � p) ∧ R′∗(v′, x′).
Let y′ be a world such that R′(x′, y′). It is easily seen that R′∗(x′, y′) ∧ r2(y, y′) holds.

4) Suppose that R′∗(x′, y′) ∧ r2(x, x′) holds. We show that
∃y (Permanent2∗(x, y) ∨ (y = x ∧R2(x, y))) ∧ r2(y, y′).

Case x 6= v and x 6= w : The assertion holds by assumption.
Case x = v : Since r2(x, x′), we have ∃u′ r(u, u′) ∧R′∗(u′, x′) ∧ (N,x′ � p). Hence r2(w, y′),

since R′∗(x′, y′). Therefore ∃y = w Permanent2
∗(x, y) ∧ r2(y, y′).

Case x = w : Since r2(x, x′), we have ∃u′, v′ r(u, u′) ∧ R′∗(u′, v′) ∧ (N, v′ � p) ∧ R′∗(v′, x′).
Hence r2(w, y′), since R′∗(x′, y′). By choosing y = w we have y = x ∧R2(x, y) ∧ r2(y, y′).

5) Suppose that x 6= y ∧ Permanent2∗(x, y)∧ r2(y, y′) holds. We show that ∃x′ R′∗(x′, y′)∧
r2(x, x′).

Case y 6= v and y 6= w : The assertion holds by assumption.
Case y = v : We have x = u or Permanent∗(x, u). Since r2(y, y′), there exists u′ such

that r(u, u′) ∧ R′∗(u′, y′) ∧ N, y′ � p. If x = u, for x′ = u′, we have R′∗(x′, y′) ∧ r2(x, x′). If
x 6= u, we have Permanent∗(x, u), hence, by assumption, ∃x′ R′∗(x′, u′) ∧ r(x, x′), and finally
∃x′ R′∗(x′, y′) ∧ r2(x, x′).

Case y = w : We have x = v or x = u or Permanent∗(x, u). Since r2(y, y′), there exist u′

and v′ such that r(u, u′) ∧ R′∗(u′, v′) ∧ (N, v′ � p) ∧ R′∗(v′, y′). If x = v then choose x′ = v′,
if x = u then choose x′ = u′; we will have R′∗(x′, y′) ∧ r2(x, x′). Now suppose that x 6= v and
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x 6= u. We have Permanent∗(x, u). Hence, by assumption, ∃x′ R′∗(x′, u′) ∧ r(x, x′), and finally
∃x′ R′∗(x′, y′) ∧ r2(x, x′).

6) Suppose that Permanent2(x, y) ∧ Next2(x,3q) = y ∧ r2(x, x′) ∧ R′∗(x′, y′) ∧ (N, y′ � q)
holds. We show that r2(y, y′) holds. Since Next2(x,3q) is defined, we have x 6= v and x 6= w.
It follows that r(x, x′).

Case x 6= u or (x = u and y 6= v) : We have Next(x,3q) = Next2(x,3q) = y, and
Permanent(x, y). Hence, by assumption, r(y, y′), and then r2(y, y′).

Case x = u and y = v: We have q = p, hence r2(y, y′). ut

Corollary 7.1. Let M be the model obtained as a result of executing Algorithm 7.1 for a positive
program P in a modal logic L. Then M is less than or equal to every L-model of P .

We now estimate the complexity of the given algorithm. In the remainder of this section we
assume that at step 2 of Algorithm 7.1, every world x such that Permanent∗(x, u) has been
previously processed.

Lemma 7.4. Let P be a positive modal logic program. Let k be the modal depth of P , n be the
number of rules in P of the form 2s(2A ← B1, . . . , Bp), where s ≥ 1, p ≥ 1, and let m be the
number of rules in P of the form 2s(3A ← B1, . . . , Bp), where s ≥ 1, p ≥ 1. Then during the
execution of Algorithm 7.1 for P , the depth of every world in W is less than k+(n+1).(2m+1).

Proof:
When a new world x is created, define f(x), f1(x), f2(x), and H0(x) as follows:

H0(x) = {2φ | ∃y (y = x ∨ Permanent∗(y, x)) ∧2φ ∈ H(y)};
f1(x) = #{y ∈W | (y = x ∨ Permanent∗(y, x)) ∧H0(y) = H0(x);

and y was created at step 2(c)ii }
f2(x) = #{y ∈W | (y = x ∨ Permanent∗(y, x))

and y was created at step 2(b)i };
f(x) = |H0(x)|.2m+ f1(x) + f2(x).

Note that depth(x) = i iff there are i different worlds w1, . . . , wi such that:
Permanent(τ, w1) ∧ Permanent(w1, w2) ∧ . . . ∧ Permanent(wi−1, wi) ∧ wi = x.

For every x ∈ W such that x is created at step 2(c)ii, at the moment of creating x we have
∀y Permanent∗(y, x) ∧H0(y) = H0(x) → H∗(y) = H∗(x). We claim that ∀x depth(x) ≥ k →
f1(x) ≤ 2m. As a consequence, we have ∀x, y depth(x) ≥ k ∧Permanent(x, y) → f(x) < f(y).

We now show that ∀x, y depth(x) ≥ k ∧ Permanent∗(x, y) → (f2(y) − f2(x) ≤ n). Sup-
pose that depth(u) ≥ k and it is the time we are creating a new world v at step 2(b)i by
CreateNextMinNode(u). Since depth(u) ≥ k ∧2ψ ∈ H(u) ∧ ψ /∈ H(u), we claim that ψ must
be a primitive proposition p such that 2p has been added to H(u) at step 2a. Moreover, by the
assumption made immediately above this lemma, we have ∀x Permanent∗(x, u)→ 2p /∈ H(x).
We conclude that ∀x, y depth(x) ≥ k ∧ Permanent∗(x, y) → (f2(y)− f2(x) ≤ n).

Let t > k, and let w1, . . . , wt be different worlds such that
Permanent(τ, w1) ∧ Permanent(w1, w2) ∧ . . . ∧ Permanent(wt−1, wt).
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We have |H0(wt)−H0(wk)| ≤ n, hence
f(wt)− f(wk) ≤ (n+ 1).2m+ f2(wt)− f2(wk) < (n+ 1).(2m+ 1).
Since ∀x, y depth(x) ≥ k ∧ Permanent(x, y) → f(x) < f(y), we derive that t − k ≤ f(wt) −
f(wk) < (n+ 1).(2m+ 1), and finally t < k + (n+ 1).(2m+ 1). This completes our proof. ut

Lemma 7.5. Let P be a positive program with size n. If during the execution of Algorithm 7.1
for P , the depth of every world in W is less than t, then the algorithm terminates in O(n3t+2)
steps.

Proof:
The number of worlds in M is always bounded by nt. For any action of adding a formula 2φ to
the model graph, we need no more than O(nt+1) units of time to update the model graph with
respect to the action. Therefore the total time of execution of step 2b is bounded by O(n2t+2).

We pay O(n2t+1) units of time to extend the model graph at step 2a or to certify that no
more changes can be made by step 2a.

We pay O(t.nt+1) units of time to extend the model graph at step 2c or to satisfy all formulae
of the form 3q at every worlds.

There are no more than O(nt+1) times the model graph is extended by steps 2a and 2c,
therefore the algorithm terminates in O(n3t+2) steps. ut

Here is the main result of this section:

Theorem 7.2. For any positive program P in a modal logic L ∈ {KD4, S4}, there exists the
least L-model of P . Moreover, if the modal depth of P and the number of rules of the form
2s(A← B1, . . . , Bp), where s ≥ 1, p ≥ 1, and A is of the form 2p or 3p, are finitely bounded,
then the least L-model can be constructed in PTIME and its size is bounded by a polynomial in
the size of P .

Note that the modal depth of any program in S4 can be assumed to be less than or equal to 2,
since in S4 we have 22φ ≡ 2φ. The theorem immediately follows from Lemmas 7.4, 7.5, 7.2,
and Corollary 7.1.

One can observe that the time complexity of Algorithm 7.1 is bounded by a polynomial
in the size of the resulting model and the size of the input program. If the least S4-model
constructed by Algorithm 7.1 for any positive program with finitely bounded modal depth always
has polynomial size, then the problem of checking the satisfiability of a set of Horn formulae
with finitely bounded modal depth in S4 would be decidable in PTIME. But this problem is
PSPACE-complete, because the problem of checking the satisfiability of a set of Horn formulae
in S4 is PSPACE-complete, and in S4 we have 22φ ≡ 2φ. That is why the least model
constructed by Algorithm 7.1 can be large even when the input program has finitely bounded
modal depth.
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8. A Problem with Positive Programs in K and K4

In this section, we show that there are positive programs that cannot be characterized (see
Definition 8.1) in the logic K by a finitely bounded number of models. We also give a positive
program that cannot be characterized in K4 by a finite set of models. In particular, there is a
positive program that has neither the least K -model nor the least K4-model.

Definition 8.1. (Characterizing Positive Programs by Models) We say that a positive
program P is characterized in a normal modal logic L by a setM of models ifM contains only
L-models of P , and for any positive formula φ, P �L φ iff φ is satisfied in every model of M.

Definition 8.2. (Short Diameter of a Kripke Model) For a Kripke model M =
〈W, τ,R, h〉, we define the short diameter of M to be the smallest number k such that
there exists a world w ∈ W such that Rk(τ, w) and there are no worlds reachable from w. If
such k does not exist then we define the short diameter of M to be infinite.

We show that the program P = {2p,22p, . . . ,2np}, n ≥ 1, cannot be characterized in K by
less than n+1 models. Suppose oppositely that it can. Without loss of generality we can assume
that P is characterized in K by exactly n models, denoted by Mi = 〈Wi, τi, Ri, hi〉, for 1 ≤ i ≤ n.
Let k ≥ 0 be the smallest number such that k is not the short diameter of any model Mi, for
1 ≤ i ≤ n. It is clear that k ≤ n. Let φ = 2q ∨32q ∨ . . .∨3k−12q ∨3k+1p. It is easy to check
that Mi � φ for all 1 ≤ i ≤ n, hence P �K φ. Consider the model M = 〈{τ, 1, 2, . . . , k}, τ, R, h〉
with R = {(τ, 1), (1, 2), . . . , (k − 1, k)} and h(w) = {p} for any w ∈ W . It is easily seen that
M � P but M 2 φ, hence P 2K φ, which is a contradiction.

We now show that the program {2p} cannot be characterized in K4 by a finite set of
models. Suppose oppositely that {2p} is characterized in K4 by n models, denoted by Mi =
〈Wi, τi, Ri, hi〉, for 1 ≤ i ≤ n. If in each of these models, there exists an infinite path starting from
the actual world, then Mi � 3p for all 1 ≤ i ≤ n, and hence 2p �K4 3p, which is a contradiction.
So, we can assume that there are some models without any infinite path starting from the actual
world. Denote these models by Mi1 , . . . ,Mik , where k ≥ 1 and 1 ≤ i1 < . . . < ik ≤ n. Let m > 0
be a number such that there is no h, 1 ≤ h ≤ k, and no world w ∈Wih such that Rih

m(τih , w).
Let φ = 2m3q∨3m+1p. It is easily seen that Mi � φ for all 1 ≤ i ≤ n. It follows that 2p �K4 φ,
which is a contradiction (to see this just consider the model M = 〈{τ, 1, 2, . . . ,m}, τ, R, h〉 with
R = ExtK4({(τ, 1), (1, 2), . . . , (m − 1,m)}) and h(w) = {p} for any w ∈ W ). Therefore the
program {2p} cannot be characterized in K4 by a finite set of models.

As a consequence, the program {2p} has neither the least K -model nor the least K4-model.

9. Conclusions

We have shown that for any positive modal logic program P in a modal logic L ∈ {KD, T ,
KDB, B, KD4, S4, KD5, KD45, S5} there exists the least L-model of P . If P has no flat
models then P also has the least models in KB, K5, K45, and KB5. Algorithms of constructing
the least models have been given and analyzed.
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We have also shown that the problem of checking the satisfiability of a set of Horn formulae
with finitely bounded modal depth in KD, T , KB, KDB, or B is decidable in PTIME. The
known result [3, 2] that the problem of checking the satisfiability of a set of Horn formulae in
K5, KD5, K45, KD45, KB5, or S5 is decidable in PTIME has been also studied in this work
via a different method.

Our results for the modal logics KD, T , KB, KDB, B, K5, KD5, K45, KD45, KB5, and
S5 can be useful from the point of view of modal deductive databases. In [11] the results of
this work are extended for positive modal logic programs with universally quantified rules; and
a modal query language, called MDatalog, is defined and studied.
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