
Algorithmica (2013) 66:329–345
DOI 10.1007/s00453-012-9639-1

Constructing the R* Consensus Tree of Two Trees
in Subcubic Time

Jesper Jansson · Wing-Kin Sung

Received: 8 March 2011 / Accepted: 29 February 2012 / Published online: 13 April 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The previously fastest algorithms for computing the R* consensus tree of
two given (rooted) phylogenetic trees with a leaf label set of cardinality n run in
Θ(n3) time (Bryant and Berry in Adv. Appl. Math. 27(4):705–732, 2001; Kannan
et al. in SIAM J. Comput. 27(6):1695–1724, 1998). In this manuscript, we describe
a new O(n2√logn)-time algorithm to solve the problem. This is a significant im-
provement because the R* consensus tree is defined in terms of a set Rmaj which
may contain Ω(n3) elements, so any direct approach that explicitly constructs Rmaj
requires Ω(n3) time.

Keywords Phylogenetic tree · R* consensus tree · Triplet · Strong cluster ·
Apresjan cluster · Lowest common ancestor · Offline orthogonal range counting

1 Introduction

Phylogenetic trees are leaf-labeled trees commonly used to describe the evolution-
ary history of a set of objects such as biological species or languages [1, 9, 10, 16,
18]. Typically, in a phylogenetic tree, each leaf represents one of the objects being
studied and the branching structure of the tree shows the assumed evolutionary re-
lationships among the objects. Depending on the available data, it can be difficult to

J. Jansson (�)
Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
e-mail: Jesper.Jansson@ocha.ac.jp

W.-K. Sung
School of Computing, National University of Singapore, COM 1, 13 Computing Drive, Singapore
117417, Singapore
e-mail: ksung@comp.nus.edu.sg

W.-K. Sung
Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672, Singapore

mailto:Jesper.Jansson@ocha.ac.jp
mailto:ksung@comp.nus.edu.sg

330 Algorithmica (2013) 66:329–345

infer an accurate phylogenetic tree. For example, small changes in the input data may
result in trees with very different structures. A consensus tree is a single phylogenetic
tree which summarizes the branching information contained in an input collection of
phylogenetic trees with identical leaf label sets. Consensus trees are useful when dif-
ferent data sets or different tree inference methods have produced a set of trees with
the same leaf labels and slightly conflicting structures, yet a single tree is required
to represent all of them [1, 3, 7, 9, 14, 18] (indeed, phylogenetic analyses often out-
put alternative trees for the same set of species [1]). Also, by exclusion, a consensus
tree indicates areas of conflict in the input trees [3]. Furthermore, consensus trees are
sometimes used as a basis for new phylogenetic inferences [3].

Over the years, many types of consensus trees have been defined and studied in de-
tail. For a survey, see, e.g., [3], Chap. 30 in [9], Chap. 3.2 in [18], or Chap. 8.4 in [19].
Different types of consensus trees use different criteria to resolve conflicts among the
input trees, so their mathematical properties vary. Thus, the most suitable type of con-
sensus tree to use in practice depends on the particular application. In this paper, we
focus on the so-called R* consensus tree. One advantage of the R* consensus tree is
that it provides a statistically consistent estimator of the species tree topology when
combining a set of gene trees, as recently demonstrated by Degnan et al. [8]; more-
over, R* consensus outperformed other methods such as majority-rule consensus in
the study conducted by [8]. For the case of two input trees, it is known [3] that the R*
consensus tree is equivalent to the RV-III tree introduced in [14].

The R* consensus tree is defined in Sect. 2 below.1 The idea is: For any set of
input phylogenetic trees on a fixed leaf label set L, there are certain small binary trees
called rooted triplets (each containing exactly three leaf labels from L) that occur as
embedded subtrees more frequently than others, and the R* consensus tree includes
as many of these rooted triplets as possible and none of the others. In short, if the
rooted triplet xy|z for any {x, y, z} ⊆ L is consistent with more input trees than each
of the two rooted triplets xz|y and yz|x is, then xy|z belongs to a set named Rmaj;
the R* consensus tree is the phylogenetic tree τ having the largest possible number
of internal nodes such that every rooted triplet consistent with τ belongs to Rmaj.

The goal of this paper is to develop a fast algorithm for constructing the R* con-
sensus tree for two input trees T1 and T2 with a leaf label set L of cardinality n.
The previous algorithms for this problem require Θ(n3) time [4, 14], which was
believed to be optimal because when T1 and T2 have similar branching structures,
|Rmaj| = Ω(n3). Our main result is that the time complexity of the problem is in
fact subcubic. In order to obtain a subcubic-time algorithm, we have to avoid explic-
itly constructing the set Rmaj. For this purpose, we compute the values of a function
named sRmaj associated to Rmaj by using a novel formulation based on distances from
leaves to lowest common ancestors of pairs of leaves, and then apply an algorithm
by Bryant and Berry [4] to compute the Apresjan clusters of sRmaj . Next, we check
each of the obtained Apresjan clusters to find all strong clusters of Rmaj, which are
subsequently used to build the R* consensus tree. In total, the running time of our
new algorithm R*_consensus_tree is O(n2√logn). (The preliminary confer-
ence version of this paper [13] described a slightly slower O(n2 logn)-time method.)

1See Sect. 2 for formal definitions of rooted triplet, consistent with, strong cluster, etc.

Algorithmica (2013) 66:329–345 331

Fig. 1 The four different triplets x|y|z, xy|z, xz|y, and yz|x leaf-labeled by {x, y, z}

The paper is organized as follows. Section 2 introduces the basic definitions and
terminology used throughout the paper and states some simple properties of clusters
and the R* consensus tree. Next, our algorithm R*_consensus_tree is presented
in Sect. 3. Two crucial steps of the algorithm (how to compute the values of the
function sRmaj efficiently and how to determine if a cluster is a strong cluster of Rmaj)
are described in detail in Sects. 4 and 5. Finally, Sect. 6 discusses open problems for
further research.

2 Preliminaries

2.1 Basic Definitions

A phylogenetic tree is a rooted, unordered, distinctly leaf-labeled tree in which every
internal node has at least two children. From here on, “tree” means “phylogenetic
tree”, and every leaf in a tree is identified with its label.

We shall use the following terminology and notation. For any tree T and any
node u of T , the subtree of T rooted at u is denoted by T [u]. The set of all leaves
in a tree T is written as Λ(T). To simplify the presentation, every node in a tree is
considered to be an ancestor as well as a descendant of itself. For any nodes u,v in
a tree, in case u is a descendant of v and u �= v then we call u a proper descendant
of v. For any set A of nodes in a tree T , the lowest common ancestor of A in T

is the node w such that: (1) every node in A is a descendant of w; and (2) w is
a proper descendant of x for every other node x which is an ancestor of all nodes
in A. The lowest common ancestor of any two nodes u and v in a tree T is denoted
by lcaT (u, v).

A triplet is a tree with three leaves. Any non-binary tree containing exactly three
leaves {x, y, z} is called a fan triplet and is written as x|y|z. On the other hand, any
binary tree with exactly three leaves {x, y, z} is called a rooted triplet, and is denoted
by xy|z if the lowest common ancestor of x and y is a proper descendant of the lowest
common ancestor of x and z. Note that there are precisely four different triplets for
any set of three leaf labels {x, y, z}, namely x|y|z, xy|z, xz|y, and yz|x; see Fig. 1.

For any tree T and {x, y, z} ⊆ Λ(T), the fan triplet x|y|z is said to be con-
sistent with T if lcaT (x, y) = lcaT (x, z) = lcaT (y, z). Similarly, the rooted
triplet xy|z is consistent with T if lcaT (x, y) is a proper descendant of lcaT (x, z)

332 Algorithmica (2013) 66:329–345

Fig. 2 The rooted triplet xy|z
and the fan triplet x|c|d are
consistent with the tree T .
Hence, xy|z ∈ r(T),
xy|z ∈ t (T), and x|c|d ∈ t (T)

= lcaT (y, z). Let T ||{x,y,z} denote the unique triplet with leaf label set {x, y, z}
which is consistent with T . Finally, for any tree T , let r(T) be the set of all
rooted triplets which are consistent with T , i.e., define r(T) = {T ||{x,y,z} : {x, y, z} ⊆
Λ(T) and T ||{x,y,z} is a rooted triplet}, and define t (T) as the set of all triplets
(rooted triplets and fan triplets) consistent with T , i.e., t (T) = {T ||{x,y,z} : {x, y, z} ⊆
Λ(T)}. (See Fig. 2 for some examples.) It follows that |t (T)| = Θ(|Λ(T)|3) for any
tree T , and |r(T)| = Θ(|Λ(T)|3) when T is a binary tree because |r(T)| = |t (T)| in
this case.

2.2 Strong Clusters and Apresjan Clusters

Below, let R be a given set of triplets over a leaf label set L = ⋃
r∈R Λ(r) such

that for each {x, y, z} ⊆ L, at most one of x|y|z, xy|z, xz|y, and yz|x belongs to R.
A cluster of L is any non-empty subset of L. We define two special types of clusters:

Definition 1 A cluster A of L is called a strong cluster of R if aa′|x ∈ R for all
a, a′ ∈ A and x ∈ L \ A. Furthermore, L as well as every singleton set of L is also
defined to be a strong cluster of R.

Definition 2 For each a, b ∈ L with a �= b, define sR(a, b) = |{y ∈ L \ {a, b} :
ab|y ∈ R}|, and for each a ∈ L, define sR(a, a) = |L| − 1. A cluster A of L is called
an Apresjan cluster of sR if sR(a, a′) > sR(a, x) for all a, a′ ∈ A and x ∈ L \ A.

Write n = |L|. By Theorem 2.3 and Corollary 2.1 of [4], the following holds:

Lemma 1 (Bryant and Berry [4])

1. There are O(n) Apresjan clusters of sR.
2. Given the values of sR(a, b) for all a, b ∈ L, the Apresjan clusters of sR can be

computed in O(n2) time.

There is a connection between the strong clusters of R and the Apresjan clusters
of sR:

Lemma 2 Every strong cluster of R is an Apresjan cluster of sR.

Algorithmica (2013) 66:329–345 333

Proof Let C be a strong cluster of R. Consider any fixed a, a′ ∈ C and x ∈ L \ C.
We need to show that sR(a, a′) > sR(a, x).

First of all, for every y ∈ L \ C, we have aa′|y ∈ R by the definition of a strong
cluster, which gives sR(a, a′) = |{aa′|y : aa′|y ∈ R}| ≥ |L \ C|. In the same way,
ab|x ∈ R holds for every b ∈ C, which (along with the requirement that for each
{x, y, z} ⊆ L, at most one of x|y|z, xy|z, xz|y, and yz|x belongs to R) implies that
ax|b �∈ R. Thus, sR(a, x) = |{ax|y : ax|y ∈ R}| ≤ |(L \ C) \ {x}| < |L \ C|. Since
sR(a, x) < sR(a, a′), C is an Apresjan cluster of sR by definition. �

2.3 R* Consensus Trees

Let T1 and T2 be two given trees with Λ(T1) = Λ(T2) = L. For any {a, b, c} ⊆ L,
define #ab|c as the number of trees Ti for which ab|c ∈ r(Ti). The set of “majority
rooted triplets” Rmaj is defined as {ab|c : a, b, c ∈ L and #ab|c > #ac|b,#bc|a}. An
R* consensus tree of T1 and T2 is a tree τ with Λ(τ) = L which satisfies r(τ) ⊆ Rmaj

and which maximizes the number of internal nodes.2

The next two lemmas describe some useful properties of the strong clusters
of Rmaj.

Lemma 3 Let T be a tree with Λ(T) = L and r(T) ⊆ Rmaj. For any node u of T ,
Λ(T [u]) is a strong cluster of Rmaj.

Proof If u is a leaf or the root of T then Λ(T [u]) is trivially a strong cluster
of Rmaj. If u is an internal non-root node then for any two a, a′ ∈ Λ(T [u]) and
any x �∈ Λ(T [u]), the triplet aa′|x belongs to Rmaj, so Λ(T [u]) is a strong cluster
of Rmaj. �

Lemma 4 There exists a tree τ such that {Λ(τ [u]) : u is a node in τ} equals the set
of strong clusters of Rmaj.

Proof First observe that for any two strong clusters A and B of Rmaj, either A � B ,
B � A, or A ∩ B = ∅. To prove this claim, suppose for the sake of contradiction that
there are x, y, z ∈ L such that x ∈ A\B , y ∈ B \A, and z ∈ A∩B . Since A is a strong
cluster, xz|y ∈ Rmaj. Since B is a strong cluster, yz|x ∈ Rmaj. But by the definition
of Rmaj, we cannot have both of xz|y and yz|x in Rmaj. The claim follows.

As a direct consequence, the strong clusters of Rmaj form a nested hierarchy (lam-
inar family) on L. By Theorem 13.21 of [17], the collection of strong clusters of Rmaj

can be represented by a rooted tree τ together with a function π : L → {nodes of τ }
such that the strong clusters of Rmaj are in one-to-one-correspondence with the nodes
of τ in the following sense: For any strong cluster A and any x ∈ L, it holds that x ∈ A

2Observe that every rooted triplet consistent with τ must also belong to Rmaj , i.e., the R* consensus
tree is not allowed to introduce any new rooted triplets. In a related problem called the maximum rooted
triplets consistency problem (MaxRTC), the input is a set R of (possibly conflicting) rooted triplets and
the objective is to infer a tree T consistent with as many rooted triplets as possible from R; in particular,
the output T may also be consistent with rooted triplets not present in R. MaxRTC is NP-hard; see [5] for
more details and references.

334 Algorithmica (2013) 66:329–345

if and only if π(x) is a descendant of the node τ(A) corresponding to A (as before,
every node is also defined to be a descendant of itself).3

Next, we show that:

• For every x ∈ L, the node π(x) must be a leaf: Suppose that for some x ∈ L, the
node π(x) is an internal node. Consider the strong cluster {x}. By the above, the
node π(x) is equal to or a proper descendant of the node τ({x}). Since π(x) has
at least one child, there exists some node v in τ which is a proper descendant
of τ({x}). The (non-empty) strong cluster corresponding to node v is therefore a
proper subset of {x}, which is impossible. Hence, π cannot map any element of L

to an internal node of τ .
• Every internal node of τ has at least two children: If A and B are strong clusters

of Rmaj with A � B then there exists some strong cluster C of Rmaj such that
C � B and C ∩ A = ∅. For example, take any c ∈ B \ A and use the fact that {c} is
a strong cluster of Rmaj.

By these observations, there exists a tree τ leaf-labeled by L where every internal
node has at least two children such that each strong cluster of Rmaj equals Λ(τ [u])
for some rooted subtree τ [u] of τ . �

Say that a tree T includes a cluster A of L if T contains a node u such that
Λ(T [u]) = A.

Theorem 1 An R* consensus tree of T1 and T2 always exists. In particular, it includes
every strong cluster of Rmaj and no other clusters of L.

Proof By Lemma 4, there exists a tree τ that includes all the strong clusters of Rmaj

and does not include any other clusters. For any aa′|x ∈ r(τ), there exists a node u

in τ such that a, a′ ∈ Λ(τ [u]) and x �∈ Λ(τ [u]), i.e., a, a′ ∈ A and x �∈ A for some
strong cluster A of Rmaj, which implies that aa′|x ∈ Rmaj. Thus, r(τ) ⊆ Rmaj.

To prove the optimality of τ , suppose that there exists a tree τ ′ which satisfies
r(τ ′) ⊆ Rmaj and has more internal nodes than τ . By Lemma 3, the set of leaves in
each rooted subtree of τ ′ forms a strong cluster of Rmaj. Since τ ′ has more internal
nodes than τ , it follows that τ ′ includes some strong cluster of Rmaj which τ does not
include. This contradicts Lemma 4. Hence, τ is an R* consensus tree of T1 and T2. �

2.4 Constructing a Tree from a Set of Clusters

Here, we address the problem of constructing a tree from a given set of clusters. We
first recall a problem known as the directed perfect phylogeny problem with binary
characters. Suppose M is a binary matrix. Let I be the set of rows and J the set of
columns in M . A directed perfect phylogeny for M is a tree T such that: (1) the leaves
of T are bijectively labeled by I ; and (2) each c ∈ J is associated with exactly one

3In other words, each strong cluster A corresponds to a node τ(A) in τ and the set of elements from L

that are mapped by π to the subtree rooted at τ(A) is precisely A. Also, A � B , where A and B are strong
clusters of Rmaj, if and only if the node τ(A) is a proper descendant of the node τ(B).

Algorithmica (2013) 66:329–345 335

Algorithm R*_consensus_tree

Input: Two trees T1, T2 with Λ(T1) = Λ(T2)

Output: The R* consensus tree of T1 and T2

1: Define L := Λ(T1) = Λ(T2) and compute sRmaj (a, b) for all a, b ∈ L as described in Sect. 4
2: Compute the Apresjan clusters of sRmaj according to Lemma 1
3: for each Apresjan cluster A of sRmaj do
4: Determine if A is a strong cluster of Rmaj as described in Sect. 5
5: end for
6: Let C be the set of strong clusters of Rmaj, and build a tree T which includes all clusters in C and no

other clusters of L in accordance with the method in Lemma 5
7: Output T

Fig. 3 Algorithm R*_consensus_tree

node T (c) of T in such a way that for any x ∈ I , it holds that M[x, c] = 1 if and
only if leaf x belongs to the subtree of T rooted at node T (c). The directed perfect
phylogeny problem with binary characters (DPPB) is to, given a binary matrix M ,
construct a directed perfect phylogeny for M (if one exists). For examples and more
details, refer to, e.g., Sect. 17.3 in [10] or Sect. 7.2.2 in [19]. DPPB can be solved
in O(|I | · |J |) time by Gusfield’s algorithm; see Sect. 17.3.4 in [10] or Sect. 7.2.2.1
in [19].

Now, suppose we are given a set L of leaf labels and a set C of clusters of L. To
build a tree that includes all clusters in C and no other clusters of L (if such a tree
exists), we first construct a binary matrix M of size |L| × |C| whose rows represent
the leaf labels in L and whose columns represent the clusters in C by letting each
entry M[i, j] = 1 if and only if the ith leaf label belongs to the j th cluster. Then, we
try to build a directed perfect phylogeny T for M by applying Gusfield’s algorithm.
If such a T exists, it must be unique since all columns of M are distinct (see the
comments in Sect. 2 in [11]). However, T might include some clusters not present
in C; to ensure that this is not the case, count the number of nodes in T and check if
it is equal to |C|. This gives:

Lemma 5 Given a set L of leaf labels and a set C of clusters of L, we can build a
tree that includes all clusters in C and no other clusters of L (or determine that no
such tree exists) in O(|L| · |C|) time.

3 Constructing the R* Consensus Tree

Based on the properties mentioned in Sects. 2.2–2.4, we can construct the R* con-
sensus tree of two given trees T1 and T2 as outlined in our main algorithm
R*_consensus_tree (displayed in Fig. 3).

The strategy of Algorithm R*_consensus_tree is as follows: First compute
sRmaj and all the Apresjan clusters of sRmaj .

4 Next, check each Apresjan cluster to

4Recall from Sect. 2.2 that for a set R of triplets over a leaf label set L, the function sR is defined as
sR(a, b) = ∣

∣{y : ab|y ∈ R}∣∣ for each a, b ∈ L with a �= b, and sR(a, a) = |L| − 1 for each a ∈ L.

336 Algorithmica (2013) 66:329–345

see if it is a strong cluster of Rmaj (by Lemma 2, the set of strong clusters of Rmaj

is a subset of the set of Apresjan clusters of sRmaj). Finally, construct a tree T that
includes all the strong clusters of Rmaj and no other clusters of L by the method in
Lemma 5. According to Theorem 1, the resulting T is the R* consensus tree of T1

and T2.
We now analyze the time complexity of Algorithm R*_consensus_tree. We

shall explain how to implement step 1 in O(n2√logn) time in Sect. 4 (step 1 is in fact
the only step that does not take O(n2) time). In step 2, the Apresjan clusters of sRmaj

are computed by running the algorithm of Bryant and Berry from [4], which takes
O(n2) time according to Lemma 1 above. Next, there are O(n) Apresjan clusters to
consider in the loop of step 3 by Lemma 1, and each one is checked in O(n) time in
step 4, as detailed in Sect. 5 below. Finally, in step 5, the set C satisfies |C| = O(n)

because C is a subset of the Apresjan clusters, so applying the method of Lemma 5
takes O(n2) time.

In summary, we have the following theorem.

Theorem 2 Algorithm R*_consensus_tree constructs the R* consensus tree
of T1 and T2 in O(n2√logn) time.

The following two sections are devoted to implementing steps 1 and 4 of
R*_consensus_tree efficiently.

4 Computing sRmaj(a,b) for All a,b ∈ L with a �= b

From the definition of Rmaj, we have:

Lemma 6 For any a, b, c ∈ L, ab|c ∈ Rmaj if and only if either

1. ab|c ∈ t (T1) ∩ t (T2); or
2. ab|c ∈ t (T1) and a|b|c ∈ t (T2); or
3. a|b|c ∈ t (T1) and ab|c ∈ t (T2).

We introduce the following three auxiliary functions:

⎧
⎪⎪⎨

⎪⎪⎩

countr,r (a, b) = ∣
∣
{
w ∈ L \ {a, b} : ab|w ∈ t (T1) ∩ t (T2)

}∣
∣,

countr,f (a, b) = ∣
∣
{
w ∈ L \ {a, b} : ab|w ∈ t (T1), a|b|w ∈ t (T2)

}∣
∣,

countf,r (a, b) = ∣
∣
{
w ∈ L \ {a, b} : a|b|w ∈ t (T1), ab|w ∈ t (T2)

}∣
∣.

For any a, b ∈ L, the function countr,r (a, b) tells us how many times a triplet
involving a and b and some other leaf w occurs as a rooted triplet of the form ab|w in
both T1 and T2. Similarly, countr,f (a, b) counts how many times a triplet involving a

and b and some other leaf w occurs as a rooted triplet of the form ab|w in T1 and
as a fan triplet of the form a|b|w in T2 (and analogously for countf,r (a, b)). Then,
Definition 2 and Lemma 6 immediately imply:

Algorithmica (2013) 66:329–345 337

Corollary 1 For every a, b ∈ L with a �= b,

sRmaj(a, b) = countr,r (a, b) + countr,f (a, b) + countf,r (a, b).

(Observe that three auxiliary count-functions suffice to express the value of
sRmaj(a, b). For our purposes, it is unnecessary to define a fourth auxiliary function
countf,f (a, b) that would count how many fan triplets of the form a|b|w that are
consistent with both T1 and T2.)

To compute countr,r , countr,f , and countf,r , we could preprocess T1 and T2 in
O(n) time so that lowest common ancestor queries in T1 and T2 could be answered
in O(1) time [2, 12]. Then, for any given a, b ∈ L, a brute-force solution would easily
obtain all of countr,r (a, b), countr,f (a, b), and countf,r (a, b) in O(n) time by check-
ing T1||{a,b,w} and T2||{a,b,w} for every w ∈ L\ {a, b}. This approach would therefore
take O(n3) time to compute countr,r (a, b), countr,f (a, b), and countf,r (a, b) for all
a, b ∈ L. In the rest of this section, we show how to obtain these values more effi-
ciently.

First, in Sect. 4.1, we reformulate the count-functions in terms of distances from
leaves to lowest common ancestors of leaves. All of these distances may be computed
in O(n2) time. Then, based on this alternative formulation, for any fixed leaf label
a ∈ L, Sect. 4.2 describes an O(n

√
logn)-time method for computing countr,r (a, b)

for all b ∈ L \ {a}, and Sect. 4.3 describes an O(n)-time method for computing
countr,f (a, b) for all b ∈ L \ {a}. (By symmetry, we can obtain countf,r (a, b) for all
b ∈ L \ {a} in O(n) time with the same technique as in Sect. 4.3.) To summarize, af-
ter O(n2) time preprocessing, O(n

√
logn) time is enough to compute countr,r (a, b),

countr,f (a, b), and countf,r (a, b) for all b ∈ L \ {a} for each fixed a ∈ L. There-
fore, we only need O(n2√logn) time in total to obtain sRmaj(a, b) for all a, b ∈ L

according to Corollary 1.

4.1 Distances from Leaves to Lowest Common Ancestors

For any tree T and any a, b ∈ Λ(T), let da,T (b) be the distance (i.e., the number
of edges) between a and lcaT (a, b) in T , and let ea,T (b) be the child of lcaT (a, b)

which is an ancestor of b. Without loss of generality, define ea,T (a) = ∅. See Fig. 4(a)
for an illustration of these definitions.

Note that the values of da,T (b) and ea,T (b) for all a, b ∈ Λ(T) can be obtained in
O(n2) time in total by performing n simple traversals of T , where n = |Λ(T)|. More
precisely, for each leaf a ∈ Λ(T), spend O(n) time to compute da,T (b) and ea,T (b)

for all b ∈ Λ(T) as follows: Let da,T (a) := 0 and ea,T (a) := ∅. Start at a and follow
the upwards path P from a to the root of T while using a variable d to remember the
distance from a to the current location on P . Whenever a new node u on P is visited,
let C be the set of children of u not belonging to P , and for each c ∈ C, traverse the
subtree of T rooted at c and assign the values da,T (b) := d and ea,T (b) := c for all
leaves b that are encountered.

The next lemma states the relationship between d and e and the triplets consistent
with T . For an example, refer to Fig. 4(b). The first part of Lemma 7 is a special
case of Theorem 1 in [15], which was derived by Lee et al. [15] to solve a different
problem known as the maximum agreement subtree problem (MAST).

338 Algorithmica (2013) 66:329–345

Fig. 4 (a) Illustrating the definitions of da,T (b) and ea,T (b). (b) The tree T satisfies da,T (x) < da,T (z)

so by Lemma 7, ax|z must be consistent with T ; similarly, da,T (x) = da,T (y) while ea,T (x) �= ea,T (y),
so a|x|y is consistent with T

Lemma 7 For any tree T and any three distinct a, x,w ∈ Λ(T), it holds that:

• da,T (x) < da,T (w) if and only if ax|w ∈ t (T);
• da,T (x) = da,T (w) and ea,T (x) �= ea,T (w) if and only if a|x|w ∈ t (T).

Proof For the first part, da,T (x) < da,T (w) if and only if lcaT (a, x) is a proper de-
scendant of lcaT (a,w). This is equivalent to ax|w ∈ t (T) by the definition of “con-
sistent with T ” for a rooted triplet and the definition of t (T).

For the second part, a|x|w ∈ t (T) if and only if lcaT (a, x) = lcaT (a,w) =
lcaT (x,w) by the definition of “consistent with T ” for a fan triplet and the definition
of t (T). The condition lcaT (a, x) = lcaT (a,w) = lcaT (x,w) directly implies that
da,T (x) = da,T (w) and ea,T (x) �= ea,T (w). On the other hand, if da,T (x) = da,T (w)

and ea,T (x) �= ea,T (w) then lcaT (a, x) = lcaT (a,w); denote this node by v. Since
ea,T (x) and ea,T (w) are two different children of v, we have lcaT (x,w) = v and
thus lcaT (a, x) = lcaT (a,w) = lcaT (x,w). �

Next, consider two trees T1 and T2 with Λ(T1) = Λ(T2) = L. We have:

Lemma 8 For any a, b ∈ L with a �= b:

• countr,r (a, b) = |{w : da,T1(b) < da,T1(w) and da,T2(b) < da,T2(w)}|.
• countr,f (a, b) = |{w : da,T1(b) < da,T1(w), da,T2(b) = da,T2(w), and ea,T2(b) �=

ea,T2(w)}|.
• countf,r (a, b) = |{w : da,T1(b) = da,T1(w), ea,T1(b) �= ea,T1(w), and da,T2(b) <

da,T2(w)}|.

Proof By Lemma 7, da,T1(b) < da,T1(w) and da,T2(b) < da,T2(w) mean that ab|w ∈
t (T1) ∩ t (T2). Hence, countr,r (a, b) = |{w : da,T1(b) < da,T1(w) and da,T2(b) <

da,T2(w)}|.
Again, by Lemma 7, da,T1(b) < da,T1(w), da,T2(b) = da,T2(w), and ea,T2(b) �=

ea,T2(w) mean that ab|w ∈ t (T1) and a|b|w ∈ t (T2). Therefore, countr,f (a, b) =
|{w : da,T1(b) < da,T1(w), da,T2(b) = da,T2(w), and ea,T2(b) �= ea,T2(w)}|.

Algorithmica (2013) 66:329–345 339

Algorithm Compute_count_rr

Input: a ∈ L

Output: The values of countr,r (a, b) for all b ∈ L \ {a}
1: Initialize the data structure for offline orthogonal range counting on an (n × n)-grid G containing the

following n − 1 points: for b ∈ L \ {a}, include the point (da,T1 (b), da,T2 (b))

2: for b ∈ L \ {a} do
3: Let Qb be the rectangle [(da,T1 (b) + 1) : n] × [(da,T2 (b) + 1) : n]
4: end for
5: Make a query to the data structure for G to ask how many points lie inside each of the n − 1 rectan-

gles Qb , where b ∈ L \ {a}
6: for b ∈ L \ {a} do
7: Set countr,r (a, b) to the reported number of points for the rectangle Qb

8: end for

Fig. 5 Algorithm Compute_count_rr

The formula for countf,r (a, b) follows by symmetry. �

4.2 Computing countr,r (a, b) for All b ∈ L \ {a}
Suppose a ∈ L is fixed. This section describes how to compute countr,r (a, b) for all
b ∈ L \ {a} in O(n

√
logn) time, assuming all values of da,T1(b), da,T2(b) have been

precomputed.
Our algorithm is named Compute_count_rr and is listed in Fig. 5. It works

as follows. Suppose that G is an integer grid of size (n × n) and each b ∈ L \ {a} is
represented by the point (da,T1(b), da,T2(b)) on G. Then:

Lemma 9 For each b ∈ L \ {a}, the value of countr,r (a, b) equals the number of
points inside the rectangle [(da,T1(b) + 1) : n] × [(da,T2(b) + 1) : n] in G.

Proof Lemma 8 states that countr,r (a, b) equals |{w : da,T1(b) < da,T1(w) and
da,T2(b) < da,T2(w)}|. Every element w that contributes to this expression satisfies
da,T1(b) < da,T1(w) and da,T2(b) < da,T2(w), and thus, da,T1(w) ∈ [(da,T1(b)+1) : n]
and da,T2(w) ∈ [(da,T2(b) + 1) : n]. �

According to Lemma 9, we can obtain countr,r (a, b) by calculating how many
points lie inside the corresponding rectangle on G. Actually, we have to do this for all
of the n− 1 rectangles defined by the elements of L \ {a}. So to implement Lemma 9
efficiently, we borrow a data structure by Chan and Pǎtraşcu [6] for offline orthogo-
nal range counting on G. More precisely, we use the following result (Corollary 2.3
in [6]):

Lemma 10 (Chan and Pǎtraşcu [6]) Given n points and n axis-aligned rectangles in
the plane, we can count the number of points inside each rectangle in O(n

√
logn)

total time.

Note that one query to the data structure returns the number of points in each of
the rectangles. By Lemma 10, the running time of Algorithm Compute_count_rr
becomes O(n

√
logn).

340 Algorithmica (2013) 66:329–345

4.3 Computing countr,f (a, b) for All b ∈ L \ {a}

Again, suppose a ∈ L is fixed. Here, we show how to compute countr,f (a, b) (and by
symmetry, countf,r (a, b)) for all b ∈ L\ {a} in O(n) time. We assume that the values
of da,T1(b), da,T2(b), ea,T1(b), ea,T2(b) for all b ∈ L \ {a} have been precomputed.

For any given a, b, we need to count how many leaves w appear in a rooted triplet
of the form ab|w in t (T1) and in a fan triplet of the form a|b|w in t (T2) at the same
time. Our idea is to first use T2 to partition L \ {a} into disjoint subsets C1, . . . ,Cp in
such a way that for every pair of elements x, y in the same Ci , it holds that da,T2(x) =
da,T2(y). Also, further partition each Ci into Ci,1, . . . ,Ci,q so that for every pair of
elements x, y in the same Ci,j , it holds that ea,T2(x) = ea,T2(y). The second part of
Lemma 7 immediately yields:

Lemma 11 For any b,w ∈ L \ {a}, the fan triplet a|b|w belongs to t (T2) if and only
if b and w belong to the same Ci -set but different Ci,q -sets.

Then, for any b ∈ Ci,j , the number of fan triplets of the form a|b|w that are con-
sistent with T2 equals |Ci \ Ci,j |. However, what we need to know is when a fan
triplet a|b|w from T2 also satisfies ab|w ∈ t (T1). To also include this crucial condi-
tion on T1, we refine Lemma 11 in the following way:

Lemma 12 Let b ∈ L \ {a} and suppose b ∈ Ci,j . Then, countr,f (a, b) = |{w ∈ Ci :
da,T1(b) < da,T1(w)}| − |{w ∈ Ci,j : da,T1(b) < da,T1(w)}|.

Proof By Lemma 8, countr,f (a, b) = |{w : da,T1(b) < da,T1(w), da,T2(b) = da,T2(w),
and ea,T2(b) �= ea,T2(w)}|. Since da,T2(b) = da,T2(w) if and only if w ∈ Ci , and
moreover, ea,T2(b) = ea,T2(w) if and only if w ∈ Ci,j , we have countr,f (a, b) =
|{w : da,T1(b) < da,T1(w),w ∈ Ci , and w �∈ Ci,j }|. Next, to count the total number of
leaves w from Ci \ Ci,j that satisfy da,T1(b) < da,T1(w), just count how many leaves
in Ci that satisfy the condition and then subtract the number of leaves in Ci,j that
also satisfy it. This gives the desired formula for countr,f (a, b). �

Our algorithm Compute_count_rf is specified in Fig. 6. It uses Lemma 12
to compute countr,f (a, b) for all b ∈ L \ {a} for any fixed a ∈ L. For each b, de-
fine s(b) = |{w ∈ Ci : da,T1(b) < da,T1(w)}| and ss(b) = |{w ∈ Ci,j : da,T1(b) <

da,T1(w)}|, where b ∈ Ci,j . Then, by Lemma 12, countr,f (a, b) = s(b) − ss(b). The
algorithm computes the values of s(b) for all leaves b in each set Ci in steps 4–13 by
simple counting and by using a variable named c to keep track of how many consec-
utive elements from Ci that have the same da,T1 -value. Next, ss(b) for all leaves b

in each set Ci,j are obtained analogously in steps 17–26. At last, step 30 assigns the
value s(b) − ss(b) to countr,f (a, b). The correctness follows from the correctness of
Lemma 12.

Algorithm Compute_count_rf can be implemented to run in O(n) time by us-
ing radix sort to sort the elements inside each Ci - and Ci,j -set in steps 3 and 16. Each
b ∈ L \ {a} belongs to exactly one Ci -set and exactly one Ci,j -set, and is therefore
treated once in steps 4–13 and once in steps 17–26.

Algorithmica (2013) 66:329–345 341

Algorithm Compute_count_rf

Input: a ∈ L

Output: The values of countr,f (a, b) for all b ∈ L \ {a}
1: Partition L \ {a} into C1, . . . ,Cp by letting x ∈ Ci if and only if da,T2 (x) = i

2: for every Ci do
3: Sort the elements of Ci according to their da,T1 -values and denote the resulting ordering

b1, b2, . . . , b|Ci | so that da,T1 (b1) ≤ da,T1 (b2) ≤ · · · ≤ da,T1 (b|Ci |)
4: Let da,T1 (b|Ci |+1) := ∞, s(b|Ci |+1) := 0, and c := 0
5: for j = |Ci |, . . . ,1 do
6: if da,T1 (bj) < da,T1 (bj+1) then
7: s(bj) := s(bj+1) + c

8: c := 1
9: else

10: s(bj) := s(bj+1)

11: c := c + 1
12: end if
13: end for
14: Partition Ci into Ci,1, . . . ,Ci,q so that for every pair of elements x, y in the same Ci,j , it holds

that ea,T2 (x) = ea,T2 (y)

15: for every Ci,j do
16: Sort the elements of Ci,j according to their da,T1 -values and denote the resulting ordering

b1, b2, . . . , b|Ci,j | so that da,T1 (b1) ≤ da,T1 (b2) ≤ · · · ≤ da,T1 (b|Ci,j |)
17: Let da,T1 (b|Ci,j |+1) := ∞, ss(b|Ci,j |+1) := 0, and c := 0
18: for k = |Ci,j |, . . . ,1 do
19: if da,T1 (bk) < da,T1 (bk+1) then
20: ss(bk) := ss(bk+1) + c

21: c := 1
22: else
23: ss(bk) := ss(bk+1)

24: c := c + 1
25: end if
26: end for
27: end for
28: end for
29: for every b ∈ L \ {a} do
30: countr,f (a, b) := s(b) − ss(b)

31: end for

Fig. 6 Algorithm Compute_count_rf

5 Determining if a Cluster Is a Strong Cluster

This section shows how to check whether any given cluster A of L with |A| ≥ 2 is a
strong cluster of Rmaj in O(n) time (recall from the definitions in Sect. 2.2 that A is
trivially a strong cluster if |A| = 1). Our solution relies on the next lemma, illustrated
in Fig. 7. For any node u of a tree T , each subtree of T rooted at a child of u is said
to be attached to u.

Lemma 13 Let A ⊆ L with |A| ≥ 2 and define u1 and u2 to be the lowest common
ancestor of A in T1 and T2, respectively. A is a strong cluster of Rmaj if and only if:

(1) For i = 1,2, every subtree U attached to ui in Ti satisfies either Λ(U) ⊆ A or
Λ(U) ⊆ L \ A; and

342 Algorithmica (2013) 66:329–345

Fig. 7 In this example, A � L is a cluster that does not include any of the leaves i, j, k, l, v,w,x, y, z.
Nodes u1 and u2 are the lowest common ancestors of A in T1 and T2, respectively. The leaves v,w,x, y, z

are not descendants of u1 in T1, and i, j, k, l are not descendants of u2 in T2. According to the condition
in Lemma 13, A is a strong cluster of Rmaj because: (1) for each subtree attached to u1 and u2, either all
its leaves belong to A or none of them do; and (2) the two sets X1 = {i, j, k, l} and X2 = {v,w,x, y, z}
(each consisting of leaves that are descendants of u1 and u2 but do not belong to A) are disjoint

(2) X1 ∩ X2 = ∅, where Xi = Λ(Ti[ui]) \ A.

Proof (⇒) Let A be a strong cluster of Rmaj. We shall prove that both conditions (1)
and (2) hold.

We first prove (1). For the sake of obtaining a contradiction, suppose that for some
i ∈ {1,2}, there exist a ∈ A, x ∈ L \ A where both a and x are in the same subtree
attached to ui . Then, lcaTi (a, x) is a proper descendant of ui . The node ui is defined
as the lowest common ancestor of A, so lcaTi (a, a′) = ui for some a′ ∈ A. However,
then lcaTi (a, x) is a proper descendant of lcaTi (a, a′), giving ax|a′ ∈ t (Ti). This
implies that aa′|x cannot belong to Rmaj, which contradicts the fact that A is a strong
cluster of Rmaj. Thus, condition (1) must hold.

To prove condition (2), we first show that there exist two leaves a, a′ ∈ A such that
lcaT1(a, a′) = u1 and lcaT2(a, a′) = u2. Observe that for both i = 1,2, the leaves
from A are located in at least two different subtrees attached to ui . Thus, there ex-
ists at least one pair a, a′ ∈ A with lcaT1(a, a′) = u1. Now, assume on the contrary
that for every pair a, a′ ∈ A such that lcaT1(a, a′) = u1, lcaT2(a, a′) is a proper de-
scendant of u2. Consider any pair of different subtrees attached to u1 that contain
elements from A, and denote their two sets of leaves by A1 and A2. By the assump-
tion, lcaT2(x, y) is a proper descendant of u2 for all x ∈ A1 and y ∈ A2, and thus all
leaves in A1 ∪A2 must appear in a single subtree attached to u2. By repeating this ar-
gument, all elements of A appear in one subtree attached to u2, which is impossible.
Therefore, there exists a pair a, a′ ∈ A with lcaT1(a, a′) = u1 such that lcaT2(a, a′) is
not a proper descendant of u2, i.e., lcaT2(a, a′) = u2.

Finally, we are ready to prove (2). Take any a, a′ ∈ A with lcaT1(a, a′) = u1 and
lcaT2(a, a′) = u2 as in the preceding paragraph. To obtain a contradiction, suppose
that X1 ∩X2 �= ∅. Then there exists an x ∈ X1 ∩X2, and moreover, x|a|a′ ∈ t (T1) and
x|a|a′ ∈ t (T2) because the subtree attached to ui for i = 1,2 that contains x cannot
contain a or a′ by condition (1) above. But then aa′|x �∈ Rmaj, contradicting the fact
that A is a strong cluster of Rmaj. Hence, (2) holds.

Algorithmica (2013) 66:329–345 343

Algorithm Check_if_strong_cluster

Input: A cluster A of L with |A| ≥ 2
Output: “yes”, if A is a strong cluster of Rmaj; “no”, otherwise

1: Let u1 and u2 be the lowest common ancestor of A in T1 and T2, respectively
2: for i = 1,2 do
3: if any subtree of Ti attached to ui contains leaves from A as well as from L \ A then
4: return “no”
5: end if
6: end for
7: Let Xi = Λ(Ti [ui]) \ A for i = 1,2
8: if X1 ∩ X2 = ∅ then
9: return “yes”

10: else
11: return “no”
12: end if

Fig. 8 Algorithm Check_if_strong_cluster, based on Lemma 13

(⇐) Suppose A satisfies the two conditions stated in the lemma. We will prove
that for every a, a′ ∈ A and c ∈ L \ A, it holds that aa′|c ∈ Rmaj. The leaf c belongs
to exactly one of the three disjoint sets X1, X2, and L \ (A ∪ X1 ∪ X2), which gives
three cases:

– If c ∈ L \ (A ∪ X1 ∪ X2): Then lcaTi (a, a′) is a proper descendant of lcaTi (a, c)

for both i = 1,2. Thus, aa′|c ∈ Rmaj.
– If c ∈ X1: Then c is not a descendant of u2 in T2 because c �∈ X2, so aa′|c ∈ t (T2)

always holds. There are two subcases depending on whether or not lcaT1(a, a′) is
a proper descendant of u1. If yes, then aa′|c ∈ t (T1), and thus aa′|c ∈ Rmaj. If no,
then lcaT1(a, a′) = u1, and thus a|a′|c ∈ t (T1), which also yields aa′|c ∈ Rmaj.

– If c ∈ X2: Then it follows that aa′|c ∈ Rmaj in the same way as for the case c ∈ X1
above.

By definition, A is a strong cluster of Rmaj. �

Armed with Lemma 13, it is straightforward to check if any given cluster A of L is
a strong cluster of Rmaj in O(n) time as shown in Algorithm Check_if_strong_
cluster in Fig. 8.

6 Concluding Remarks

In this paper, we have shown how to construct the R* consensus tree of two input
trees in O(n2√logn) = o(n3) time. It is an open problem to determine if the time
complexity can be further improved to O(n2) or better. The bottleneck of our al-
gorithm R*_consensus_tree is the computation of countr,r in Sect. 4.2, which
uses O(n

√
logn) time for each fixed a ∈ L to obtain the values of countr,r (a, b) for

all b ∈ L \ {a}.
We remark that for the restricted case where both input trees are binary, the prob-

lem becomes much easier because then the R* consensus tree is equivalent to the

344 Algorithmica (2013) 66:329–345

so-called RV-I tree in [14]. The RV-I tree differs slightly from the R* consensus tree
in general in that if ab|c belongs to one of t (T1) and t (T2), and a|b|c belongs to
the other, then ab|c may never be consistent with the output tree; however, for the
special case of binary trees, neither t (T1) nor t (T2) contain any fan triplets so Rmaj

equals the set of all rooted triplets that are consistent with both T1 and T2, and this
is precisely the “set of triples which are resolved identically in T1 and T2” in Defini-
tion 5.1 in [14]. Furthermore, according to Theorem 5.1 in [14], the RV-I tree of T1
and T2 is always equivalent to the strict consensus tree (see also [3, 7, 9, 18, 19]) of T1
and T2, which can be constructed in O(n) time by a classical algorithm of Day [7].
Thus, there is a large gap in the time complexity of constructing the R* consensus
tree of two trees in the binary case (O(n) time) and in the general, non-binary case
(O(n2√logn) time).

The definition of the set of majority rooted triplets Rmaj as well as the definition
of an R* consensus tree can be naturally extended to the case of k > 2 input trees;
see [3]. The currently fastest algorithm for the case k > 2, outlined in [3], runs in
O(kn3) time. It can be implemented by explicitly constructing the sets r(Ti) for every
input tree Ti using O(kn3) total time, then obtaining Rmaj in O(kn3) time by finding
the most frequently occurring rooted triplet (if it exists) for each {x, y, z} in the leaf
label set in O(k) time, and finally applying the O(n3)-time strong cluster algorithm
from Corollary 2.2 in [4] to Rmaj. An important open problem is to reduce the time
complexity to o(kn3). It seems difficult to extend the approach used in this paper
because it would yield an exponential number (in k) of cases in Lemma 6 and thus
express sRmaj(a, b) as the sum of an exponential number of auxiliary count-functions,
causing the total running time to be exponential in k.

Acknowledgements The authors would like to thank David Bryant for some clarifications and the
anonymous referees for their helpful comments. JJ was supported by the Special Coordination Funds
for Promoting Science and Technology and KAKENHI grant number 23700011.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially resolved trees. In:
Proceedings of the 8th Latin American Symposium on Theoretical Informatics (LATIN 2008). LNCS,
vol. 4957, pp. 72–83. Springer, Berlin (2008)

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Proceedings of the 4th Latin Amer-
ican Symposium on Theoretical Informatics (LATIN 2000). LNCS, vol. 1776, pp. 88–94. Springer,
Berlin (2000)

3. Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz, M.F., Lapointe,
F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.) Bioconsensus. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 61, pp. 163–184. Am. Math. Soc., Providence
(2003)

4. Bryant, D., Berry, V.: A structured family of clustering and tree construction methods. Adv. Appl.
Math. 27(4), 705–732 (2001)

5. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets consistency. Discrete
Appl. Math. 158(11), 1136–1147 (2010)

Algorithmica (2013) 66:329–345 345

6. Chan, T.M., Pǎtraşcu, M.: Counting inversions, offline orthogonal range counting, and related
problems. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2010), pp. 161–173. SIAM, Philadelphia (2010)

7. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. J. Classif. 2(1), 7–28
(1985)

8. Degnan, J.H., DeGiorgio, M., Bryant, D., Rosenberg, N.A.: Properties of consensus methods for in-
ferring species trees from gene trees. Syst. Biol. 58(1), 35–54 (2009)

9. Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland (2004)
10. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York

(1997)
11. Gusfield, D.: Haplotyping as perfect phylogeny: conceptual framework and efficient solutions. In:

Proceedings of the 6th Annual International Conference on Computational Biology (RECOMB 2002),
pp. 166–175. ACM, New York (2002)

12. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput.
13(2), 338–355 (1984)

13. Jansson, J., Sung, W.-K.: Constructing the R* consensus tree of two trees in subcubic time. In: Pro-
ceedings of the 18th Annual European Symposium on Algorithms (ESA 2010). LNCS, vol. 6346, pp.
573–584. Springer, Berlin (2010)

14. Kannan, S., Warnow, T., Yooseph, S.: Computing the local consensus of trees. SIAM J. Comput.
27(6), 1695–1724 (1998)

15. Lee, C.-M., Hung, L.-J., Chang, M.-S., Shen, C.-B., Tang, C.-Y.: An improved algorithm for the
maximum agreement subtree problem. Inf. Process. Lett. 94(5), 211–216 (2005)

16. Nakhleh, L., Warnow, T., Ringe, D., Evans, S.N.: A comparison of phylogenetic reconstruction meth-
ods on an Indo-European dataset. Trans. Philol. Soc. 103(2), 171–192 (2005)

17. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics,
vol. 24/A. Springer, Berlin (2003)

18. Scornavacca, C.: Supertree methods for phylogenomics. PhD thesis, University of Montpellier II,
France (2009)

19. Sung, W.-K.: Algorithms in Bioinformatics: A Practical Introduction. Chapman & Hall/CRC, Boca
Raton (2010)

	Constructing the R* Consensus Tree of Two Trees in Subcubic Time
	Abstract
	Introduction
	Preliminaries
	Basic Definitions
	Strong Clusters and Apresjan Clusters
	R* Consensus Trees
	Constructing a Tree from a Set of Clusters

	Constructing the R* Consensus Tree
	Computing sRmaj(a,b) for All a,b inL with a <>b
	Distances from Leaves to Lowest Common Ancestors
	Computing countr,r(a,b) for All b inL \{a}
	Computing countr,f(a,b) for All b inL \{a}

	Determining if a Cluster Is a Strong Cluster
	Concluding Remarks
	Acknowledgements
	References

