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Abstract A phylogenetic network is a directed acyclic graph that visualizes an

evolutionary history containing so-called reticulations such as recombinations, hy-

bridizations or lateral gene transfers. Here we consider the construction of a sim-

plest possible phylogenetic network consistent with an input set T , where T con-

tains at least one phylogenetic tree on three leaves (a triplet) for each combi-

nation of three taxa. To quantify the complexity of a network we consider both

the total number of reticulations and the number of reticulations per biconnected

component, called the level of the network. We give polynomial-time algorithms

for constructing a level-1 respectively a level-2 network that contains a minimum

number of reticulations and is consistent with T (if such a network exists). In

addition, we show that if T is precisely equal to the set of triplets consistent

with some network, then we can construct such a network with smallest possi-

ble level in time O(|T |k+1), if k is a fixed upper bound on the level of the net-

work.
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1 Introduction

One of the ultimate goals in computational biology is to create methods that can

reconstruct evolutionary histories from biological data of currently living organisms.

The immense complexity of biological evolution makes this an extremely challenging

task. This has motivated researchers to focus first on the simplest possible shape of

evolution, the tree-shape [21]. Now that treelike evolution has been well studied, a

logical next step is to also consider slightly more complicated evolutionary scenarios,

gradually extending the complexity that our models can describe. At the same time,

we also wish to take into account the parsimony principle, which tells us that amongst

all equally good explanations of our data, one prefers the simplest one.

For a set of taxa (e.g. species or strains), a phylogenetic tree describes (a hypoth-

esis of) the evolution that these taxa have undergone. The taxa form the leaves of the

tree while the internal vertices represent events of genetic divergence: one incoming

branch splits into two (or more) outgoing branches.

Phylogenetic networks form an extension to this model where it is also possible

that two branches combine into one new branch. We call such an event a reticula-

tion, which can model any kind of non-treelike (also called “reticulate”) evolutionary

process such as recombination, hybridization or lateral gene transfer. In addition,

reticulations can also be used to display different possible (treelike) evolutions in one

figure. In recent years, there has emerged enormous interest in phylogenetic networks

and their application [2, 12, 19, 21, 22].

This model of a phylogenetic network allows for many different degrees of com-

plexity, ranging from networks that are equal, or almost equal, to a tree to complex

webs of frequently diverging and recombining lineages. Therefore we consider two

different measures for the complexity of a network. The first of these measures is

the total number of reticulations in the network. Secondly, we consider the level of

the network, which is an upper bound on the number of reticulations per non-treelike

part (i.e. biconnected component) of the network. In this paper we consider two dif-

ferent approaches for constructing networks that are as simple as possible. The first

approach minimizes the total number of reticulations for a fixed level (of at most two)

and the second approach minimizes both the level and the total number of reticula-

tions, but under more heavy restrictions on the input.

Level-k phylogenetic networks were first introduced by Choy et al. [7] and further

studied by various authors [15, 16, 18]. Gusfield et al. gave a biological justification

for level-1 networks (which they call “galled trees”) [8]. Minimizing reticulations

has been very well studied in the framework where the input consists of (binary)

sequences [9, 23, 24]. For example, Wang et al. considered the problem of finding a

“perfect phylogeny” with a minimum number of reticulations and showed that this

problem is NP-hard [25]. Gusfield et al. showed that this problem can be solved in

polynomial time if restricted to level-1 networks [8]. There are also several results

known already about the version of the problem where the input consists of a set of

trees and the objective is to construct a network that is “consistent” with each of the

input trees. Baroni et al. give bounds on the minimum number or reticulations needed

to combine two trees [3] and Bordewich et al. showed that it is APX-hard to compute

this minimum number exactly [4]. However, there exists an exact algorithm [5] that
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Fig. 1 One of the three possible

triplets on the leaves x, y and z.

Note that, as with all figures in

this article, all arcs are directed

downwards

runs reasonably fast in many practical situations. If restricted to level-1 networks,

the problem becomes polynomial-time solvable even if there are more than two input

trees [13].

In this paper we also consider input sets consisting of trees, but restrict ourselves to

small trees with three leaves each, called triplets. See Fig. 1 for an example. Triplets

can for example be constructed by existing methods, such as Maximum Parsimony

or Maximum Likelihood, that work accurately and fast for small numbers of taxa.

Triplet-based methods have also been well-studied. Aho et al. [1] gave a polynomial-

time algorithm to construct a tree from triplets if there exists a tree that is consistent

with all input triplets. Jansson et al. [17] showed that the same is possible for level-1

networks if the input triplet set is dense, i.e. if there is a triplet for any set of three taxa.

Van Iersel et al. further extended this result to level-2 networks [15]. From non-dense

triplet sets it is NP-hard to construct level-k networks for any k ≥ 1 [16, 17]. From the

proof of this result also follows directly that it is NP-hard to find a network consistent

with a non-dense triplet set that contains a minimum number of reticulations.1 It is

unknown whether this problem becomes easier if the input triplet set is dense.

In the first part of this paper we consider fixed-level networks and aim to minimize

the total number of reticulations in these networks. In Sect. 3 we give a polynomial-

time algorithm that constructs a level-1 network consistent with a dense triplet set

T (if such a network exists) and minimizes the total number of reticulations over

all such networks. This gives an extension to the algorithm by Jansson et al. [17],

which can also reconstruct level-1 networks, but does not minimize the number of

reticulations. To illustrate this we give in Sect. 2 an example dense triplet set on n

leaves for which the algorithm in [17] (and the ones in [15] and [18]) creates a level-1

network with n−1
2

reticulations. However, a level-1 network with just one reticulation

is also possible and our algorithm MARLON is able to find that network. We have

implemented MARLON, tested it and made it publicly available [20]. The worst case

running time of the algorithm is O(n5) for n leaves (and hence O(|T |
5
3 ) with |T | the

input size).

In Sect. 4 we further extend this approach by giving an algorithm that even con-

structs a level-2 network consistent with a dense triplet set (if one exists) and again

minimizes the total number of reticulations over all such networks. This means that

if the level is at most two, we can minimize both the level and the total number of

reticulations, giving priority to the criterion that we find most important. The running

time is O(n9) (and thus O(|T |3)). This extends recent results [15] in which an al-

gorithm is described that also constructs level-2 networks, but does not minimize the

number of reticulations in such networks.

1This follows from the proof of Theorem 7 in [17], since only one reticulation is used in their reduction.
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While previous work [14–18] considered the construction of level-k networks

for k ≤ 2, Sect. 5 of this paper considers the case k > 2. This is an even more chal-

lenging problem, even without minimizing the total number of reticulations. Given

a dense set of triplets, it is a major open problem whether one can construct a min-

imum level phylogenetic network consistent with these triplets in polynomial time.

Moreover, it is not even known whether it is possible to construct a level-3 network

consistent with a dense input triplet set in polynomial time. In Sect. 5 of this paper

we show some significant progress in this direction. As a first step we consider the

restriction to “simple” networks, i.e. networks that contain just one nontrivial bicon-

nected component. We show how to construct, in O(|T |k+1) time, a minimum level

simple network with level at most k from a dense input triplet set (for fixed k).

Subsequently we show that this can be used to also generate general level-k net-

works if we put an extra restriction on the quality of the input triplets. Namely, we

assume that the input set contains exactly all triplets consistent with some network.

If that is the case then our algorithm can find such a network that simultaneously

minimizes level and the total number of reticulations used. The fact that in this case

optimal solutions for both measures coincide, is an interesting consequence of the

restriction on the input triplets. The algorithm runs in polynomial time O(|T |k+1) if

the upper bound k on the level of the network is fixed. (For k = 1,2 we can use exist-

ing, optimized simple level-1 and simple level-2 algorithms as subroutines to obtain

improved running times of O(|T |) and O(|T |
8
3 ) respectively.) This result constitutes

an important step forward in the analysis of level-k networks, since it provides the

first positive result that can be used for all levels k.

2 Preliminaries

A phylogenetic network (network for short) is defined as a directed acyclic graph

in which exactly one vertex has indegree 0 and outdegree 2 (the root) and all other

vertices have either indegree 1 and outdegree 2 (split vertices), indegree 2 and out-

degree 1 (reticulation vertices, or reticulations for short) or indegree 1 and outdegree

0 (leaves), where the leaves are distinctly labelled. A phylogenetic network without

reticulations is called a phylogenetic tree.

A directed acyclic graph is connected (also called “weakly connected”) if there is an

undirected path between any two vertices and biconnected if it contains no vertex

whose removal disconnects the graph. A biconnected component of a network is a

maximal biconnected subgraph and is called trivial if it is equal to two vertices con-

nected by an arc. To avoid “redundant” networks we only allow networks in which

every nontrivial biconnected component has at least three outgoing arcs. We call an

arc a = (u, v) of a network N a cut-arc if its removal disconnects N and call it trivial

if v is a leaf.

Definition 1 A network is said to be a level-k network if each biconnected compo-

nent contains at most k reticulations.
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A level-k network that contains no nontrivial cut-arcs and is not a level-(k−1) net-

work is called a simple level-k network.2 Informally, a simple network thus consists

of a nontrivial biconnected component with leaves “hanging” of it.

A triplet xy|z is a phylogenetic tree on the leaves x, y and z such that the lowest

common ancestor of x and y is a proper descendant of the lowest common ancestor of

x and z. The triplet xy|z is displayed in Fig. 1. Denote the set of leaves in a network

N by LN . For any set T of triplets define L(T ) =
⋃

t∈T Lt and let n = |L(T )|. A set

T of triplets is called dense if for each {x, y, z} ⊆ L(T ) at least one of xy|z, xz|y and

yz|x belongs to T .

For a set of triplets T and a set of leaves L′ ⊆ L(T ), we denote by T |L′ the triplets

t ∈ T with Lt ⊆ L′. Furthermore, if C = {S1, . . . , Sq} is a collection of leaf-sets we

use T ∇C to denote the induced set of triplets SiSj |Sk such that there exist x ∈ Si ,

y ∈ Sj , z ∈ Sk with xy|z ∈ T and i, j and k all distinct.

Definition 2 A triplet xy|z is consistent with a network N (interchangeably: N is

consistent with xy|z) if N contains a subdivision of xy|z, i.e. if N contains vertices

u �= v and pairwise internally vertex-disjoint paths u → x, u → y, v → u and v → z.

The above definitions enable us to give a formal description of the problems we

consider.

Problem: Minimum Reticulation Level-k network on dense triplet sets (DMRL-k).

Input: dense set of triplets T .

Output: level-k network N that is consistent with T (if such a network exists) and

has a minimum number of reticulations over all such networks.

A feasible solution to DMRL-1 can be found by the algorithm in [17] or [18] and the

algorithm in [15] finds a feasible solution to DMRL-2. To show that these algorithms

do not always minimize the number of reticulations, consider a triplet set over an odd

number n of leaves, labelled 1, . . . , n, containing all triplets ab|c with a, b > c and

the triplets a(a + 1)|n with a = 1,3, . . . , n − 2. The aforementioned algorithms find

for this input set a level-1 network with n−1
2

reticulations. However, a level-1 network

with just one reticulation is also possible and our algorithm MARLON, introduced

shortly, is able to find that network. See Fig. 2 for an example for n = 9.

Given a network N let T (N) denote the set of all triplets consistent with N . We

say that a network N reflects a triplet set T if T (N) = T . If, for a triplet set T , there

exists a network N that reflects it, we say that T is reflective. The second problem we

consider is thus the following:

Problem: MIN-REFLECT-k.

Input: set of triplets T .

Output: level-k network N that reflects T (if such a network exists) and, rang-

ing over all such networks, minimizes both the level and the number of

reticulations used.

2This definition is equivalent to Definition 4 in [15] by Lemma 2 in [15].
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Fig. 2 Example of a situation where previous algorithms (by Jansson et al. [17] and Van Iersel et al. [15])

construct a network like the one to the left with n−1
2

reticulations, while MARLON constructs the network

to the right, with just one reticulation

The above problem might at first glance seem strangely formulated because, in gen-

eral, minimizing level and minimizing number of reticulations are two distinct opti-

mization criteria. However, in the case of reflectivity it will turn out that any solution

that minimizes the number of reticulations also minimizes level.

Note that this problem is closely related to the mixed triplets problem (MT) studied

in [10], which asks for a phylogenetic network consistent with an input triplet set T

and not consistent with another input triplet set F . Namely, MIN-REFLECT-k is a

special case of MT restricted to level-k networks where the set F of forbidden triplets

contains all triplets that are not in T .

To describe our algorithms we need to introduce some more definitions. We say

that a cut-arc is a highest cut-arc if it is not reachable from any other cut-arc. We call

a cycle containing the root a highest cycle and a reticulation in such a cycle a highest

reticulation. We say that a leaf x is below an arc (u, v) (and below vertex v) if x is
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reachable from v. In the next section we will frequently use the set BHR(N), which

denotes the set of leaves in network N that is below a highest reticulation.

A subset S of the leaves is an SN-set (of triplet set T ) if there is no triplet xy|z in

T with x, z ∈ S, y /∈ S. An SN-set is called nontrivial if it does not contain all leaves.

Furthermore, we say that an SN-set S is maximal (under restriction X) if there is no

nontrivial SN-set (satisfying restriction X) that is a strict superset of S. An SN-set of

size one is called a singleton SN-set.

Any two SN-sets of a dense triplet set are either disjoint or one is included in the

other [18, Lemma 8], which leads to the following definition. The SN-tree is a directed

tree with vertices with outdegree greater or equal to two, such that the SN-sets of T

correspond exactly to the sets of leaves reachable from a vertex of the SN-tree. It

follows that there are at most 2(n − 1) nontrivial SN-sets of a dense triplet set T .

All these SN-sets can be found by constructing the SN-tree in O(n3) time [17]. If a

network is consistent with a dense triplet set T , then the set of leaves S below any

cut-arc is always an SN-set, since triplets of the form xy|z with x, z ∈ S, y /∈ S, are

not consistent with such a network. Furthermore, each maximal SN-set is equal to the

union of leaves below one or more highest cut-arcs [14, Lemma 5].

3 Constructing a Level-1 Network with a Minimum Number of Reticulations

We propose the following dynamic programming algorithm for solving DMRL-1.

The algorithm considers all SN-sets from small to large and computes an optimal

solution NS for each SN-set S, based on the optimal solutions for included SN-sets.

The algorithm considers both the case where the root of NS is contained in a cycle

and the case where there are two cut-arcs leaving the root. In the latter case there are

two SN-sets S1 and S2 that are maximal under the restriction that they are a subset

of S. If this is the case then the algorithm constructs a candidate for NS by creating a

root connected to the roots of NS1
and NS2

.

The other possibility is that the root of NS is contained in some cycle. For this

case the algorithm tries each SN-set as BHR(NS): the set of leaves below the highest

reticulation. The sets of leaves below other highest cut-arcs can then be found using

the property of optimal level-1 networks outlined in Lemma 1. Subsequently, an in-

duced set of triplets is computed, where each set of leaves below a highest cut-arc

is replaced by a single meta-leaf. A candidate network is constructed by comput-

ing a simple level-1 network and replacing each meta-leaf Si by an optimal network

NSi
for the corresponding subset of the leaves. The optimal network NS is then the

network with a minimum number of reticulations over all candidate networks.

A structured description of the computations is in Algorithm 1. We use f (L′)

to denote the minimum number of reticulations in any level-1 network consistent

with T |L′. In addition, g(L′, S′) denotes the minimum number of reticulations in

any level-1 network consistent with T |L′ with BHR(N) = S′. The algorithm first

computes the optimal number of reticulations. Then a network with this number of

reticulations is constructed using backtracking.

To show that the algorithm indeed computes an optimal solution we need the fol-

lowing crucial property of optimal level-1 networks.
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Algorithm 1 MARLON (Minimum Amount of Reticulation Level One Network)

1: compute the set SN of SN-sets of T

2: for i = 1 . . . n do

3: for each S in SN of cardinality i do

4: for each S′ ∈ SN with S′ ⊂ S do

5: let C contain S′ and all SN-sets that are maximal under the restriction that

they are a subset of S and do not contain S′

6: if T ∇C is consistent with a simple level-1 network then

7: g(S,S′) := 1 +
∑

X∈C f (X)

8: if there are exactly two SN-sets S1, S2 ∈ SN that are maximal under the

restriction that they are a strict subset of S then

9: g(S,∅) := f (S1) + f (S2) (C := {S1, S2})

10: f (S) := ming(S,S′) over all computed values of g(S, ·)

11: store the optimal C and the corresponding simple level-1 network

12: construct an optimal network by backtracking.

Lemma 1 If there exists a solution to DMRL-1, then there also exists an optimal so-

lution N , where the sets of leaves below highest cut-arcs equal either (i) BHR(N) and

the SN-sets that are maximal under the restriction that they do not contain BHR(N),

or (ii) the maximal SN-sets (if BHR(N) = ∅).

Proof If BHR(N) = ∅ then there are two highest cut-arcs and the sets below them

are the maximal SN-sets. Otherwise, the root of N is part of a cycle. We prove the

following. �

Claim 1 Let S be an SN-set. Either S equals a (sub)set of the leaves below a highest

cut-arc or there exists a directed path P ending in the highest reticulation or in one of

its parents, such that S equals the set of leaves that are below a highest cut-arc with

its tail on P .

Proof Assume that an SN-set S does not equal a (sub)set of the leaves below a highest

cut-arc. It follows that S equals the union of sets of leaves below several highest cut-

arcs. Indeed, if there are leaves x, z ∈ S below distinct highest cut-arcs then for any

leaf y below any of these cut-arcs holds that xy|z ∈ T and hence that y ∈ S. Now

observe that no two leaves in S have the root as their lowest common ancestor, since

this would imply that all leaves are in S. It now follows that there exists a directed

path P on the highest cycle such that all leaves in S are below a highest cut-arc with

its tail on P . Let P be a minimal such path. We now argue that all leaves below

a highest cut-arc with tail on P are in S. If this would not be the case, then there

would be leaves x, z, y below highest cut-arcs with tails respectively p1,p2,p3 that

are on P (in this order) with x, y ∈ S and z /∈ S. However, this would lead to a

contradiction because then the triplet xy|z is not consistent with N , whilst yz|x and

xz|y are not in T since S is an SN-set. It remains to prove that P ends in either the

highest reticulation or in one of its parents. Assume that this is not true, then there

exists a vertex v on the interior of a path from the last vertex of P to the highest
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reticulation. Consider some leaf z /∈ S below the highest cut-arc with v as tail and

some leaves x, y ∈ S below distinct highest cut-arcs with tails on P . Then this again

leads to a contradiction because xy|z is not consistent with N . �

To prove the lemma, consider a maximal SN-set S that is not equal to the set of

leaves below a single highest cut-arc. By the maximality of S, it cannot equal a strict

subset of the leaves below a highest cut-arc. Thus, from the above claim it follows that

there exists a path P such that S equals the set of leaves that are below a highest cut-

arc with its tail on P . First suppose that P ends in a parent of the highest reticulation.

In this case we can modify the network by putting S below a single cut-arc, without

increasing the number of reticulations. To be precise, if p and p′ are the first and

last vertex of P respectively and r is the highest reticulation, then we subdivide the

arc entering p by a new vertex v, add a new arc (v, r), remove the arc (p′, r) and

suppress p′, since it now has indegree and outdegree both equal to one. It is not too

difficult to see that the resulting network is still consistent with T .

Now suppose that P ends in the highest reticulation. The sets of leaves below

highest cut-arcs are all SN-sets (as is always the case). One of these sets is equal to

BHR(N). Suppose that another such set X is not maximal under the restriction that

it does not contain BHR(N). Then X is a strict subset of a nontrivial SN-set S′ that

is maximal under the restriction that it does not contain BHR(N). We apply Claim 1

to S′. Observe that S′ cannot be equal to a (sub)set of the leaves below a highest

cut-arc, since it is a strict superset of X. Thus, S′ equals the set of leaves that are

below a highest cut-arc with a tail on a path P ′ on the highest cycle. Moreover, since

S′ does not contain BHR(N), P ′ does not end in the highest reticulation, but in one

of its parents. Thus, the procedure from the previous paragraph can be used to put S′

below a highest cut-arc.

The lemma now follows from the following. If there exists a solution to DMRL-1,

then there exists an optimal solution to DMRL-1. After applying the modifications

described above to this optimal solution, for each maximal SN-set S, the sets of leaves

below highest cut-arcs in the resulting network N ′ are indeed equal to BHR(N ′) and

the SN-sets that are maximal under the restriction that they do not contain BHR(N ′).

An example is given in Fig. 3. In the network on the left one maximal SN-set

equals the set of leaves below the grey path. In the middle is the same network, but

Fig. 3 Visualisation of the proof of Lemma 1. From the maximal SN-sets (encircled in the network on

the left) to the sets of leaves below highest cut-arcs (encircled in the network on the right). Remember that

all arcs are directed downwards
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now we encircled BHR(N) and the SN-sets that are maximal under the restriction

that they do not contain BHR(N). There is still an SN-set (S′) below a path on the

cycle (again in grey). However, in this case the network can be modified by putting

S′ below a single cut-arc, without increasing the number of reticulations. This gives

the network to the right, where the sets of leaves below highest cut-arcs are indeed

equal to BHR(N) and the SN-sets that are maximal under the restriction that they do

not contain BHR(N).

Theorem 1 Given a dense set of triplets T , algorithm MARLON constructs a level-

1 network that is consistent with T (if such a network exists) and has a minimum

number of reticulations in O(n5) time.

Proof The proof is by induction on the size i of S. Suppose that N is an optimal level-

1 network consistent with T |S. If BHR(N) = ∅ then the sets of leaves below highest

cut-arcs are the two maximal SN-sets S1 and S2. In this case f (S) can be computed

by adding up the f (S1) and f (S2). Otherwise, it follows from Lemma 1 and the

observation that BHR(N) has to be an SN-set, that at some iteration the algorithm

will consider the set C equal to the sets of leaves below the highest cut-arcs of N . In

this case the number of reticulations can be computed by adding one to the sum of

the values f (X) over all X ∈ C . This is because the network N consists of a (highest)

cycle, connected to optimal networks for the different X ∈ C . By induction, all values

of f (X) for |X| < i have been computed correctly and correctness of the algorithm

follows. The number of SN-sets is O(n) because any two SN-sets are either disjoint

or one is included in the other [18, Lemma 8]. These SN-sets can be found in O(n3)

time by computing the SN-tree [17]. Simple level-1 networks can be found in O(n3)

time [17] and T ∇C can be computed in O(n3) time. These computations are repeated

O(n2) times: for all S ∈ SN and all S′ ∈ SN with S′ ⊂ S. Therefore, the total running

time is O(n5). �

In Fig. 4 we present an example of a network constructed by MARLON. This net-

work (which has 80 leaves and 13 reticulations) could be constructed by MARLON

in less than six minutes on a Pentium IV 3 GHz PC with 1 GB of RAM.

4 Constructing a Level-2 Network with a Minimum Number of Reticulations

This section extends the approach from Sect. 3 to level-2 networks. We describe how

one can find a level-2 network consistent with a dense input triplet set containing a

minimum number of reticulations, or decide that such a network does not exist.

The general structure of the algorithm is the same as in the level-1 case. We loop

though all SN-sets S from small to large and compute an optimal solution NS for

that SN-set, based on previously computed optimal solutions for included SN-sets.

For each SN-set we still consider, like in the level-1 case, the possibility that there are

two cut-arcs leaving the root of NS and the possibility that this root is in a biconnected

component with one reticulation. However, now we also consider a third possibility,

that the root of NS is in a biconnected component containing two reticulations.
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Fig. 4 Example of a network constructed by MARLON

In the construction of biconnected components with two reticulations, we use the

notion of “non-cycle-reachable”-arc, or n.c.r.-arc for short, introduced in [16]. We

call an arc a = (u, v) an n.c.r.-arc if v is not reachable from any vertex in a cycle.

These n.c.r.-arcs will be used to combine networks without increasing the network

level. In addition, we use the notion highest biconnected component to denote the

biconnected component containing the root.
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Fig. 5 The four possible

structures of a biconnected

component containing two

reticulations

Our complete algorithm is described in detail in Algorithm 2. To get an intuition

of why the algorithm works, consider the four possible structures of a biconnected

component containing two reticulations displayed in Fig. 5. In particular, consider

the graph that displays the form of the highest biconnected component of NS . Let X

(respectively Y , Z, Q) be the set of leaves below all cut-arcs leaving the side labelled

X (respectively Y , Z, Q) in the figure. Observe that after removing Z in each case

X, Y and Q become a set of leaves below a single cut-arc and hence an SN-set (w.r.t.

T |(S \ Z)). In cases 2a, 2b and 2c the highest biconnected component becomes a

cycle, Q the set of leaves below the highest reticulation and X and Y sets of leaves

below highest cut-arcs. We will first describe the approach for these cases and show

later how a similar technique is possible for case 2d.

Our algorithm loops through all SN-sets that are a subset of S and will hence at

some iteration consider the SN-set Z. The algorithm removes the set Z and com-

putes the SN-sets of T |(S \ Z). The sets of leaves below highest cut-arcs (in some

optimal solution, if one exists) are now equal to X,Y,Q and the SN-sets that are

maximal under the restriction that they do not contain X, Y or Q (by the same ar-

guments as in the proof of Lemma 1). Therefore, the algorithm tries each possible

SN-set for X, Y and Q and in one of these iterations it will correctly determine the

sets of leaves below highest cut-arcs. Then the algorithm computes the induced set

of triplets, where each set of leaves below a highest cut-arc is replaced by a single

meta-leaf. All simple level-1 networks consistent with this induced set of triplets are

obtained by the algorithm in [17]. Our algorithm loops through all these networks

and does the following for each simple level-1 network N1. Each meta-leaf V , not

equal to X or Y , is replaced by an optimal network NV , which has been computed

in a previous iteration. To include leaves in Z, X and Y , we compute an optimal

network N2 consistent with T |(X ∪ Z) and an optimal network N3 consistent with

T |(Y ∪ Z) where in both networks Z is the set of leaves below an n.c.r.-arc. Then we

combine these three networks into a single network like in Fig. 6. A new reticulation

is created and Z becomes the set of leaves below this reticulation. Finally, we check

for each constructed network whether it is consistent with T |S. The network with the

minimum number of reticulations over all such networks is the optimal solution NS

for this SN-set.

Now consider case 2d. Suppose we remove Z and replace X, Y (= Q) and each

SN-set of T |(S \ Z) that is maximal under the restriction that it does not contain X

or Y by a single leaf. Then the resulting network consists of a path ending in a simple
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Fig. 6 Example of the construction of network N from N1, N2 and N3

Fig. 7 Example of the construction of network N from N1, N2 and N3 in case 2d

level-1 network, with X a child of the root and Q the child of the reticulation; and

each vertex of the path has a leaf as child. Such a network can easily be constructed

and subsequently one can use the same approach as in cases 2a, 2b and 2c. See Fig. 7

for an example of the construction in case 2d.
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Theorem 2 Given a dense triplet set T , Algorithm MARLTN constructs a level-2

network consistent with T (if such a network exists) that has a minimum number of

reticulations in O(n9) time.

Proof Consider some SN-set S and assume that there exists an optimal solution NS

consistent with T |S. The proof is by induction on the size of S. If the highest bicon-

nected component of NS contains one reticulation then the algorithm constructs an

optimal solution by the proof of Theorem 1. Hence we assume from now on that the

highest biconnected component of NS contains two reticulations.

Consider the four graphs in Fig. 5. Any biconnected component containing two

reticulations is a subdivision of one of these graphs [14, Lemma 13]. These graphs

are called simple level-2 generators in [15] and X, Y , Z and Q each label, in each

generator, a side of the generator, i.e. either an arc or a vertex with indegree 2 and

outdegree 0. Suppose that the highest biconnected component of a network N is a

subdivision of a generator G. We say that a leaf x is on side S of G if there exists

a cut-arc (u, v) in N such that u is on the subdivision of S (if S is an arc) or u is a

reticulation (if S is a reticulation), and there is a directed path from v to x (possibly

v = x). Furthermore, we identify the side S with the set of leaves that are on side S.

In each generator in Fig. 5, X, Y , Z and Q are sides of the generator. Thus,

if the highest biconnected component of NS is a subdivision of a generator G ∈

{2a,2b,2c,2d} then we identify X (Y , Z, Q respectively) with the set of leaves

in NS on side X (Y , Z, Q respectively) of G.

To find an optimal network consistent with T |(X ∪ Z) (or T |(Y ∪ Z)) such that

Z is below an n.c.r.-arc we can use the following approach. If there are more than

two maximal SN-sets then it is not possible. Otherwise, we create a root and connect

it to two networks for the two maximal SN-sets. If one of these maximal SN-sets

contains Z as a strict subset then we create a network for this set recursively. For

other maximal SN-sets we use the optimal networks computed in earlier iterations.

Given a network N ′ and a set of leaves L′ below a cut-arc (u, v) we denote by

N ′ \ L′ the network obtained by removing v and all vertices reachable from v from

N ′, deleting all vertices with outdegree zero and suppressing all vertices with inde-

gree and outdegree both one.

Claim 2 There exists an optimal solution N ′ such that the sets of leaves below highest

cut-arcs of N ′ \ Z are X, Y , Q and the SN-sets of T |(S \ Z) that are maximal under

the restriction that they do not contain X, Y or Q.

Proof The highest biconnected component of N ′ \ Z contains just one reticulation

and the same arguments can be used as in the proof of Lemma 1. �

Let N ′ be a network with the property described in the claim above and C the

collection of sets of leaves below highest cut-arcs of N ′ \ Z. At some iteration the

algorithm will consider this set C . Let T ′ equal T |(S \ Z). If we replace in N ′ \ Z

each set of leaves below a highest cut-arc by a single leaf, then we obtain a network

consistent with T ′∇C which is either a simple level-1 network or a path ending in a

simple level-1 network, with X a child of the root, Q the child of the reticulation; and
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Algorithm 2 MARLTN (Minimum Amount of Reticulation Level Two Network)

1: – compute the set SN of SN-sets of T

2: for i = 1 . . . n do

3: for each S in SN of cardinality i do

4: \\ try to construct a network for S with one reticulation in its highest

biconnected component

5: for each S′ ∈ SN with S′ ⊂ S do

6: – let C contain S′ and all SN-sets that are maximal under the restriction

that they are a subset of S and do not contain S ′

7: if T ∇C is consistent with a simple level-1 network N1 then

8: – construct N∗ from N1 by replacing each leaf V by an optimal network

NV constructed in a previous iteration

9: – g(S,S′) is the number of reticulations in N∗

10: if there are exactly two SN-sets S1, S2 ∈ SN that are maximal under the re-

striction that they are a strict subset of S then

11: – N∗ consists of a root connected to the roots of optimal networks NS1
and

NS2
that have been constructed in previous iterations

12: – g(S,∅) is the number of reticulations in N∗

13: \\ try to construct a network for S with two reticulations in its highest

biconnected component

14: for each Z ∈ SN with Z ⊂ S do

15: – T ′ := T |(S \ Z)

16: – compute the set SN ′ of SN-sets of T ′

17: for each X,Y,Q ∈ SN ′ do

18: – C is the collection consisting of X,Y,Q and all SN-sets in SN ′ that

are maximal under the restriction that they do not include X,Y or Q

19: – construct an optimal network N2 consistent with T |(X ∪ Z) such that

Z is the set of leaves below an n.c.r.-arc (u, v)

20: – construct an optimal network N3 consistent with T |(Y ∪ Z) such that

Z is the set of leaves below an n.c.r.-arc (u′, v′)

21: – construct all simple level-1 networks consistent with T ′∇C

22: – construct all networks consistent with T ′∇C that consist of a path end-

ing in a simple level-1 network, with X a child of the root, Q the child

of the reticulation; and with a leaf below each internal vertex of the path

23: for each network N1 from the networks constructed in the above two

lines do

24: – construct N∗ from N1 by doing the following: replace X by N2, Y

by N3 and each other leaf V by an optimal network NV constructed

in a previous iteration, then subdivide (u, v) into (u,w) and (w,v),

delete everything below u′ and add an arc (u′,w)

25: if N∗ is consistent with T |S then

26: – h(S,X,Y,Z,Q) is the number of reticulations in N∗

27: – f (S) is the minimum of all computed values of g(S,S ′) and

h(S,X,Y,Z,Q)

28: – store network NS , which is a network N∗ attaining the minimum number

f (S) of reticulations
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each vertex of the path has a leaf as child. The algorithm considers all networks

of these types, so in some iteration it will consider the right one. Let N∗ be the

network constructed by the algorithm in this iteration. It remains to prove that N∗ (i)

is consistent with T |S, (ii) contains a minimum number of reticulations and (iii) is a

level-2 network.

To prove that N∗ is consistent with T |S, consider any triplet xy|z ∈ T |S. First

suppose x, y and z are all in Z or all in the same set of C \ {X,Y }. Then x, y and

z are elements of some SN-set S′ with |S′| < |S|. Triplet xy|z is consistent with the

subnetwork NS′ by the induction hypothesis and hence with N∗.

Now suppose that x, y and z are all in X ∪ Z (or all in Y ∪ Z). Consider the

construction of the network consistent with X ∪ Z such that Z is below an n.c.r.-

arc. First suppose that at some level of the recursion there are two maximal SN-

sets, each containing leaves from {x, y, z}. Then it follows that x and y are in one

maximal SN-set and z in the other one, by the definition of SN-set, and hence that

xy|z is consistent with the constructed network. Otherwise, x, y and z are all in some

subnetwork N ′
S with |S′| < |S| and is xy|z consistent with this subnetwork (by the

induction hypothesis) and hence with N∗.

Now consider any other triplet xy|z ∈ T |S, which thus contains leaves that are

below at least two different highest cut-arcs. Observe that the highest biconnected

components of N∗ and N ′ are identical; the only differences between these networks

occur in the subnetworks below highest cut-arcs. Therefore xy|z is consistent with

N∗ since it is consistent with N ′.

To show that N∗ contains a minimum number of reticulations consider any set S′

of leaves below a highest cut-arc a = (u, v) of N∗. The subnetwork NS′ rooted at v

contains a minimum number of reticulations by the induction hypothesis. Hence N∗

contains at most as many reticulations as N ′, which is an optimal solution.

In the networks N2 and N3 is Z the set of leaves below an n.c.r.-arc. This im-

plies that none of the potential reticulations in these networks end up in the highest

biconnected component of N ′. Therefore, this biconnected component contains ex-

actly two reticulations. All other biconnected components of N ′ also contain at most

two reticulations by the induction hypothesis. We thus conclude that N ′ is a level-2

network.

To conclude the proof we analyze the running time of the algorithm. The number

of SN-sets is O(n) and hence there are O(n) choices for each of S,X,Y,Z and Q.

For each combination of S,X,Y,Z and Q there will be O(n) networks N∗ con-

structed and for each of them it takes O(n3) time to check if it is consistent with T |S

(in line 23). Hence the overall time complexity is O(n9). �

5 Constructing Networks Consistent with Precisely the Input Triplet Set

In this section we consider the problem MIN-REFLECT-k. Given a triplet set T , this

problem asks for a level-k network N that is consistent with precisely those triplets in

T (if such a network exists) and amongst all such solutions minimizes both the level

and number of reticulations used. We will show that this problem is polynomial-time

solvable for each fixed k.
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Recall that we use T (N) to denote the set of all triplets consistent with a net-

work N . Furthermore, we say that a network N reflects a triplet set T if T (N) = T .

Note that, if N reflects T , that N is in general not uniquely defined by T . There

are, for example, several distinct simple level-2 networks that reflect the triplet set

{xy|z, xz|y, zy|x}.

Theorem 3 Given a dense set of triplets T , it is possible to construct all simple

level-k networks consistent with T in time O(|T |k+1).

This will be proven in Sect. 5.1. We note that it is already known how to generate

all simple level-1 networks consistent with T in time O(|T |) [17] and all simple

level-2 networks consistent with T in time O(|T |
8
3 ) [14].

Lemma 3 Let N be any simple network. Then all the nontrivial SN-sets of T (N) are

singletons.

This lemma, as well as Theorem 4, will be proven in Sect. 5.2. As we will show,

Lemma 3 allows us to solve the problem MIN-REFLECT-k by recursively construct-

ing simple level-k networks, which we can do by Theorem 3. This leads to the al-

gorithm MINPITS (MINimum network consistent with Precisely the Input Triplet

Set).

Theorem 4 Given a set of triplets T , Algorithm MINPITS solves MIN-REFLECT-k

in time O(|T |k+1), for any fixed k.

For k = 1,2 we can actually do slightly better: running time O(|T |) and O(|T |
8
3 )

respectively.

5.1 Constructing All Simple Level-k Networks in Polynomial Time

We start by proving the following utility lemma.

Lemma 2 For fixed k, any level-k network on n leaves contains O(n) vertices and

O(n) arcs.

Proof We first show that any simple level-k network N ′ = (V ′,A′) on n leaves has

2n + 2k − 1 vertices and 2n + 3k − 2 arcs. Let s be the number of split vertices. The

sum of the indegrees of all vertices is s + 2k + n, while the sum of their outdegrees

is 2 + 2s + k. It is well known that in any directed graph the sum of all outdegrees

equals the sum of all indegrees. It follows that s = n + k − 2. Using this formula we

obtain that the total number of vertices equals:

|V ′| = s + k + n + 1 = (n + k − 2) + k + n + 1 = 2n + 2k − 1. (1)

Split vertices and reticulation vertices have total degree 3, leaves have total degree 1,

and the root of N ′ has total degree 2. Thus the total number of arcs in N ′ is:

|A′| =
3s + 3k + n + 2

2
=

3(n + k − 2) + 3k + n + 2

2
= 2n + 3k − 2.
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Now consider a general level-k network N = (V ,A) with q nontrivial biconnected

components. Let B(N) be the result of replacing each nontrivial biconnected compo-

nent C by a single vertex (i.e. contracting all arcs in C). Thus B(N) is a tree, q of the

internal vertices of B(N) represent biconnected components of N and the other in-

ternal vertices represent split-vertices of N . Let B(N) contain b internal vertices with

n1, . . . , nb outgoing arcs respectively. Denote by ki the number of reticulations in the

biconnected component of N represented by the i-th internal vertex of B(N) and let

ki = 0 if this internal vertex represents a split-vertex of N . Then B(N) contains b+n

vertices in total and b + n − 1 arcs.

Assume the i-th internal vertex of B(N) represents a biconnected component Ci

of N . Consider Ci , the cut-arcs leaving Ci and the ni vertices that have a parent on Ci .

This forms a simple level-ki network with ni leaves. By (1) it has 2ni + 2ki − 1

vertices. Replacing Ci by a single vertex thus reduces the number of vertices by

ni + 2ki − 2.

The number of vertices of N is equal to the number of vertices in B(N) plus the

number of vertices that have been deleted while replacing each Ci by a single vertex:

|V | = b + n +

b∑

i=1

(ni + 2ki − 2)

≤ b + n + (b + n − 1) + 2q · k − 2b ≤ 2n − 1 + k(n − 1).

For the first inequality we use that n1 + . . . + nb is equal to the number of arcs

of B(N), which is b + n − 1. For the second inequality we use that each nontrivial

biconnected component of N has at least three outgoing arcs. This implies that b ≤

n − 1 − q and hence that q ≤ n − 1 − q and hence q ≤ (n − 1)/2. Similarly, the

number of arcs of N is at most:

|A| = b + n − 1 +

b∑

i=1

(ni + 3ki − 2)

≤ b + n − 1 + (b + n − 1) + 3q · k − 2b ≤ 2n − 2 +
3

2
k(n − 1). �

Let N be a network with at least one reticulation vertex, and let v be the child of

a reticulation vertex in N . If v has no reticulation vertex as a descendant, then we

call the subnetwork rooted at v a Tree hanging Below a Reticulation vertex (TBR).

We additionally introduce the notion of the empty TBR, which corresponds to the

situation when a reticulation vertex has no outgoing arcs. This cannot happen in a

normal network but as explained shortly it will prove a useful abstraction.

Observation 1 Every network N containing a reticulation vertex contains at least

one TBR.

Proof Suppose this is not true. Let v be the child of a reticulation vertex in N maxi-

mizing the longest path from the root to v. There must exist some vertex v′ �= v which
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is a child of a reticulation vertex and which is a descendent of v. But then the longest

path from the root to v′ is greater than to v, contradiction. �

Note that, because a TBR is (as a consequence of its definition) below a cut-arc,

there exists an SN-set S of T such that T |S is consistent with (only) the TBR. An

SN-set S such that T |S is consistent with a tree, we call a CandidateTBR SN-Set.

Every TBR of N corresponds to some CandidateTBR SN-Set of T , but the opposite

is not necessarily true. For example, a singleton SN-set is a CandidateTBR SN-Set,

but it might not be the child of a reticulation vertex in N .

We abuse definitions slightly by defining the empty CandidateTBR SN-Set, which

will correspond to the empty TBR. (This is abusive because the empty set is not an

SN-set.) Furthermore we define that every triplet set T has an empty CandidateTBR

SN-Set.

Observation 2 Let T be a dense set of triplets on n leaves. There are at most O(n)

CandidateTBR SN-sets. All such sets, and the tree that each such set represents, can

be found in total time O(n3).

Proof First we construct the SN-tree for T , this takes time O(n3). There is a bijection

between the SN-sets of T and the vertices of the SN-tree. (In the SN-tree, the children

of an SN-set S are the maximal SN-sets of T |S.) Observe that a vertex of the SN-tree

is a CandidateTBR SN-set if and only if it is a singleton SN-set or it has in total two

children, and both are CandidateTBR SN-sets. We can thus use depth first search to

construct all the CandidateTBR SN-sets; note that this is also sufficient to obtain the

trees that the CandidateTBR SN-sets represent, because (for trees) the structure of

the tree is identical to the nesting structure of its SN-sets. Given that there are only

O(n) SN-sets, the running time is dominated by construction of the SN-tree. �

We claim that algorithm SL-k constructs all simple level-k networks consistent

with a dense input triplet set T . The high-level idea is as follows. Consider a simple

level-k network N . From Observation 1, we know that N contains at least one TBR.

(Given that N is simple we know that all TBRs are equal to single leaves. That is why

the outermost loop of the algorithm can restrict itself to considering only single-leaf

TBRs.) By looping through all CandidateTBR SN-sets we will eventually find one

that corresponds to a real TBR. If we remove this TBR and the reticulation vertex

from which it hangs, and then suppress any resulting vertices with both indegree and

outdegree equal to 1, we obtain a new network (not necessarily simple) with one

fewer reticulation vertex than N . Note that this new network might not be a “real”

network in the sense that it might have reticulation vertices with no outgoing arcs.

Repeating this k times in total we eventually reach a tree which we can construct

using the algorithm of Aho et al. (and is unique, as shown in [18]). From this tree

we can reconstruct the network N by reintroducing the TBRs back into the network

(each TBR below a reticulation vertex) in the reverse order to which we found them.

We don’t, however, know exactly where the reticulation vertices were in N , so every

time we reintroduce a TBR back into the network we exhaustively try every pair

of arcs (as the arcs which will be subdivided to hang the reticulation vertex, and
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thus the TBR, from.) Because we try every possible way of removing TBRs from

the network N , and every possible way of adding them back, we will eventually

reconstruct N .

The role of the dummy leaves in SL-k is linked to the empty TBRs (and their cor-

responding empty CandidateTBR SN-Sets). When a TBR is removed, it can happen

(as mentioned above) that a network is created containing reticulation vertices with

no outgoing arcs. (For example: when one of the parents of a reticulation vertex from

which the TBR hangs, is also a reticulation vertex.) Conceptually we say that there is

a TBR hanging below such a reticulation vertex, but that it is empty. Hence the need

in the algorithm to also consider removing the empty TBR. If this happens, we will

also encounter the phenomenon in the second phase of the algorithm, when we are

re-introducing TBRs into the network. What do we insert into the network when we

reintroduce an empty TBR? We use a dummy leaf as a place-holder, ensuring that

every reticulation vertex always has an outgoing arc. The dummy leaves can be re-

moved once that outgoing arc is subdivided later in the algorithm, or at the end of the

algorithm, whichever happens sooner. The dummy root, finally, is needed for when

there are no leaves on a side connected to the root.

Theorem 3 Given a dense set of triplets T , it is possible to construct all simple

level-k networks consistent with T in time O(|T |k+1).

Proof Correctness follows from the discussion above. We now analyze the running

time. For k ∈ {1,2} we can actually generate all simple level-1 networks in time

O(n3) using the algorithm in [17], and all simple level-2 networks in time O(n8) us-

ing the algorithm in [14]. For k ≥ 3 we use SL-k. From Observation 2 we know that

each execution of FindCandidateTBRs (which computes all TBRs in a dense triplet

set plus the empty TBR) takes O(n3) time and returns at most O(n) TBRs. Oper-

ations such as computing T ′
i , and the construction of the tree N ′

k , all require time

bounded above by O(n3). The for loops when we “guess” the TBRs are nested to a

depth of k. The for loops when we “guess” pairs of arcs from which to hang TBRs,

are also nested to a depth of k. (There will only be O(n) arcs to choose from by

Lemma 2.) Checking whether N ′ is consistent with T , which we do inside the inner-

most loop of the entire algorithm, takes time O(n3) [6, Lemma 2]. So the running

time is O(n(n3 + n(n3 . . . n(n3 + n2k+3)) which is O(n3k+3). �

Corollary 1 For fixed k and a triplet set T it is possible to generate in time O(n3k+3)

all simple level-k networks N that reflect T .

Proof The algorithm SL-k (or, for that matter, the algorithms from [15, 17]) can

easily be adapted for this purpose: we change in line 43 “network consistent with T ”

to “network that reflects T ”. The running time is unchanged because, whether we are

checking consistency or reflection, the implementation of [6, Lemma 2] implicitly

generates T (N ′). �
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Algorithm 3 SL-k (Construct all Simple Level-k networks)

1: Net := ∅

2: TBR1 := L(T )

3: for each leaf b1 ∈ TBR1 do

4: L′
1 := L(T ) \ {b1}

5: T ′
1 := T |L′

1

6: TBR2 := FindCandidateTBRs(T ′
1)

7: for each b2 ∈ TBR2 do

8: . . .

{Continue nesting for loops to a depth of k.}

9: . . .

10: TBRk := FindCandidateTBRs(T ′
k−1)

11: for each bk ∈ TBRk do

12: L′
k := L′

k−1 \ bk

13: T ′
k := T ′

k−1|L
′
k

{At this point we have finished “guessing” where the TBRs are,}

{and ({b1}, b2, . . . , bk) is a vector of (possibly empty) subsets of L(T ).}

{We now “guess” all possible ways of hanging the TBRs back in.}

14: if L′
k contains 2 or more leaves then

15: build the unique tree N ′
k = (V ,A) consistent with T ′

k if it exists (see

[18])

16: else

17: If L′
k contains 1 leaf {x}, let N ′

k be the network comprising the single

leaf {x}

18: If L′
k contains 0 leaves, let N ′

k be the network comprising a single, new

dummy leaf

19: V := V ∪ {r ′};A := A ∪ {(r ′, r)} {with r the root of N ′
k and r ′ a new

dummy root}

20: Let H(bk) be the unique tree consistent with bk

{Note: H(bk) is a single vertex if |bk| = 1 and empty if |bk| = 0.}

21: for every two arcs a1
k , a2

k in N ′
k (not necessarily distinct) do

22: Let p (respectively q) be a new vertex obtained by subdividing a1
k (re-

spectively a2
k )

23: Connect p and q to a new reticulation vertex retk
24: Hang H(bk) (or a new dummy leaf if H(bk) is empty) from retk
25: if a1

k (or a2
k ) was the arc above a dummy leaf d then

26: Remove d and if its former parent has indegree and outdegree 1,

suppress that

27: Let N ′
k−1 be the resulting network

28: Let H(bk−1) be the unique tree consistent with bk−1

29: for every two arcs a1
k−1, a2

k−1 in N ′
k−1 (not necessarily distinct) do

30: . . .

{Continue nesting for loops to a depth of k.}
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31: . . .

32: Let N ′
1 be the resulting network

33: Let H(b1) be the tree consisting of only the single vertex b1

for every two arcs a1
1 , a2

1 in N ′
1 (not necessarily distinct) do

34: Let p (respectively q) be a new vertex obtained by

subdividing a1
1 (respectively a2

1 )

35: Connect p and q to a new reticulation vertex ret1
36: Hang H(b1) from ret1

if a1
1 (or a2

1 ) was the arc above a dummy leaf d then

37: Remove d and if its former parent has indegree and

outdegree 1, suppress that

{This is the innermost loop of the algorithm.}

38: Let N ′ be the resulting network

39: Remove the dummy root r ′ from N ′

40: Remove (and if needed suppress former parents of) any

remaining dummy leaves in N ′

if N ′ is a simple level-k network consistent with T then

41: Net := Net ∪ {N ′}

42: return Net

5.2 From Simple Networks that Reflect, to General Networks that Reflect

For a triplet xy|z and a network N , we define an embedding of xy|z in N as any set

of four paths (q → x, q → y,p → q,p → z) which, except for their endpoints, are

mutually vertex disjoint, and where p �= q . We say that the vertex p is the summit of

the embedding. Clearly, xy|z is consistent with N if and only if there is at least one

embedding of xy|z in N .

Lemma 3 Let N be any simple network. Then all the nontrivial SN-sets of T (N) are

singletons.

Proof We prove the lemma by contradiction. Assume thus that there is some SN-set

S of T (N) such that 1 < |S| < |L(N)|.

Let r be the root of N . An in-out root embedding is an embedding of any triplet

xz|y with x, z ∈ S and y /∈ S that has r as its summit. We begin by proving that an

in-out root embedding exists in N . Suppose by contradiction this is not true. For all

x, z ∈ S and y /∈ S, the triplet xz|y must be in T (N) because T (N) is dense. Consider

a triplet embedding (q → x, q → z,p → q,p → y) with p �= r , x, z ∈ S, y /∈ S that

minimizes (amongst all such embeddings) the length of the shortest directed path

from r to p. Let P be any shortest directed path from r to p. Now, consider a path

Q beginning somewhere on the path P . First observe that Q cannot intersect with

the path p → y or p → q , because this would contradict the minimality of the length

of P . In addition, Q may not intersect with the path q → x (q → z) because this

would mean y ∈ S. We conclude that such a path Q either terminates at a leaf l, or re-

intersects with the path P . It cannot terminate at a leaf l /∈ S because then we obtain an
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embedding of xz|l that has a summit closer to the root than p, thus contradicting the

minimality of P . It can also not end at a leaf l ∈ S, because then we have that y ∈ S.

We conclude that all outgoing paths from P must re-intersect with P . However, given

that P includes the root, and that in a network every vertex is reachable by a directed

path from the root, it follows that the last arc on the path P must be a cut-arc. But

this violates the biconnectivity of N , contradiction. We conclude that there exists at

least one in-out root embedding in N .

Let (q → x, q → z, r → q, r → y) be any in-out root embedding. We observe

that the path r → y must contain at least one internal vertex, by biconnectivity. Also,

at least one of q → x and q → y must contain an internal vertex, because it is not

possible for a vertex in a simple network to have two leaf children.

We now argue that there must exist a twist cover of the path r → q . This is defined

as a non-empty set C of undirected paths (undirected in the sense that not all arcs need

to have the same orientation) where (i) all paths in C are arc-disjoint from the in-out

root embedding, (ii) exactly one path starts at an internal vertex s of (without loss

of generality) q → z, (iii) exactly one path ends at an internal vertex t of r → y,

(iv) all other start and endpoints of the paths in C lie on r → q and (v) for every

vertex v of the path r → q (including r and q), there is at least one path in C that

has its startpoint to the left of v, and its endpoint to the right. Property (v) is crucial

because it says (informally) that every vertex on r → q is “covered” by some path

that begins and ends on either side of it and is arc-disjoint from the embedding. The

length of C is defined to be the sum of the number of arcs in each path in C.

Suppose for contradiction that a twist cover does not exist. We define a partial

twist cover as one that satisfies all properties of a twist cover except property (v).

Partial twist covers have thus at least one vertex on r → q that is not covered. (To

see that there always exists at least one partial twist cover note that properties (ii)

and (iii) in particular are satisfied by the fact that neither the removal of q nor r is

allowed to disconnect N .) Let C be a partial twist cover with a minimum number of

uncovered vertices. Let d be the uncovered vertex that is closest to q . If we removed

d we would, by definition, disconnect the union of the paths in C with the in-out root

embedding into a left part G and a right part H . The vertex d does not, however,

disconnect N , so there must be some path P not in C that begins somewhere in G

and ends somewhere in H . If P has its startpoint on a path X ∈ C (where X will be

in G) and/or an endpoint on a path Y ∈ C (where Y will be in H ) then these paths can

be “merged” into a new path that strictly increases the number of vertices covered.

The merging occurs as follows. We take the union of the arcs in P with those in

X and/or Y and discard superfluous arcs until we obtain a path that covers a strict

superset of the union of the vertices covered by X and/or Y . (In particular, the fact

that P begins in G and ends in H means that the vertex d becomes covered.) In this

way we obtain a new partial twist-cover with fewer uncovered vertices, contradiction.

If P has both its startpoint and endpoint on vertices of r → q that are not on paths in

C, then P can be added to the set C and this extends the number of covered vertices,

contradiction. If P begins and/or ends elsewhere on the embedding then P can be

added to C which again increases the number of vertices covered, contradiction. (If

P begins on, without loss of generality, q → z then it becomes the new property-

(ii) path and the old property-(ii) path should be discarded. Symmetrically, if P ends
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Fig. 8 Several examples of

twist covers (the grey,

undirected paths) from the proof

of Lemma 3. Note that these

exhibit the regular, interleaved

structure associated with

minimum-length twist covers

on r → y then it becomes the new property-(iii) path and the old property-(iii) path

should be discarded.) We conclude that for every in-out root embedding there thus

exists a twist cover, and in particular a minimum length twist cover.

We observe that a minimum-length twist cover C has a highly regular, interleaved

structure. This regularity follows because it cannot contain paths that completely con-

tain other paths (simply discard the inner path) and if two paths X,Y ∈ C have start-

points that are both covered by some other path Z ∈ C, and (without loss of general-

ity) X reaches further right than Y , then we can simply discard Y . For similar reasons

minimum-length twist covers are vertex- and arc-disjoint. In Fig. 8 we show several

simple examples of twist covers exhibiting this regular structure (although it should

be noted that minimum-length twist covers can contain arbitrarily many paths.)

Let C be a twist cover of minimum length ranging over all in-out root embeddings

of triplets xz|y with x, z ∈ S and y �∈ S. Note that if C contains exactly one path,

which is a directed path, then (irrespective of the path orientation) y ∈ S, contradic-

tion. The high-level idea is to show that we can always find, by “walking” along the

paths in C, a new in-out root embedding and twist cover that is shorter than C, yield-

ing a contradiction. Let X be the path in C that begins at s, and consider the arc on

this path incident to s. The first subcase is that this arc is directed away from s. Note

that in that case X cannot be a directed path since then there would be a directed cy-

cle. Continuing along the path we will thus eventually encounter an arc with opposite

orientation. Let v be the vertex between these two arcs. There must exist a directed

path Q leaving v which eventually reaches a leaf m. If Q intersects with r → y then

we have that y ∈ S, contradiction. If Q intersects with either q → x or q → z then we

obtain a new in-out root embedding of xz|y and a new twist cover for that embedding

that is shorter than C, contradiction. If Q does not intersect with the embedding at

all, then it must be true that m ∈ S (because the triplet mz|x is consistent with the

network). But then we have an in-out root embedding of the triplet zm|y with twist

cover shorter than C, contradiction.

The second subcase (see Fig. 9) is when the first arc of X is entering s. There

must exist some directed path R from r to s that uses this arc. The fact that r is the

summit of the embedding means that at some point this directed path departs from

the embedding. Let w be the vertex where R departs from the embedding for the last

time. If w is on the path r → y then it follows that y ∈ S, a contradiction. If w is

on one of the paths q → x or q → z then this leads to a new in-out root embedding

with shorter twist cover, a contradiction. The last case is when w lies on the path

r → q . We create a new in-out root embedding by using the part of R reachable

from w, as an alternative route to z. In this way w becomes the “q” vertex of the
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Fig. 9 The case in the proof of

Lemma 3 where the arc incident

to s is incoming

new embedding (denoted q ′ in the figure). To see that we also obtain a new twist

cover, note principally that paths in C that covered w become legitimate candidates

for property-(ii) paths in the new twist cover; in the figure s′ denotes the beginning

of the property-(ii) path in the new cover. (Such a path can however partly overlap

with R. In this case it is necessary to first remove the part that overlaps with R.)

We can furthermore discard all paths from C that covered w except for the one with

endpoint furthest to the right. Even if this means that no paths from C are discarded

(this happens when w is to the left of all the paths in C that have their beginning

points on r → q) we still get a twist cover at least one arc smaller than C, because (in

particular) the first arc of X is no longer needed in C. In any case, contradiction. �

Corollary 2 Let T be a set of triplets, and suppose there exists a simple network N

that reflects T . Let N ′ be any network that reflects T . Then N ′ is also simple.

Proof If N ′ is not simple then it contains a cut-arc below which at least two leaves

can be found. Consider the set A of leaves below this cut-arc. This is an SN-set since

triplets of the form xy|z with x, z ∈ A and y /∈ A are not consistent with such a

network. This is a contradiction because all the SN-sets of T are singletons. �

Let T be a reflective set of triplets and N a network that reflects T . Observe

that this implies that T is dense. Let a1, . . . , aq be the highest cut-arcs of N , let

S1, . . . , Sq be the sets of leaves below these highest cut-arcs and let CN denote the

collection {S1, . . . , Sq}. Denote by Collapse(N) the result of replacing everything

reachable from ai by a single leaf Si , for i = 1, . . . , q . The following observation

will be critical in the proof of Lemma 4, which shows correctness of our algorithm

MINPITS, displayed in Algorithm 4.

Observation 3 (1) Collapse(N) is a simple network reflecting T ∇CN and

(2) S1, . . . , Sq are the maximal SN-sets of T .

Proof To show that Collapse(N) is consistent with T ∇CN , consider triplets XY |Z ∈

T ∇CN . For each such triplet there exists at least one triplet xy|z ∈ T with x ∈ X,

y ∈ Y and z ∈ Z. Since N is consistent with xy|z it follows that Collapse(N)

is consistent with XY |Z. To show that only triplets in T ∇CN are consistent wit

Collapse(N), consider a triplet XY |Z consistent with Collapse(N). It follows that

all triplets xy|z with x ∈ X, y ∈ Y and z ∈ Z are consistent with N . Since N reflects

T this implies that all such triplets xy|z are in T and hence that XY |Z ∈ T ∇CN . By
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the construction of Collapse(N) it clearly contains no cut-arcs and is thus a simple

network reflecting T ∇CN . For (2) first observe that each set Si is an SN-set of T since

the set of leaves below any cut-arc is always an SN-set. Assume for contradiction that

Si is not maximal. Then there exists a maximal SN-set S of T that is a strict superset

of Si . Any maximal SN-set can be written as the union of sets of leaves below highest

cut-arcs [14, Lemma 5]. Suppose (without loss of generality) that S = S1 ∪ . . . ∪ Sr

with 1 < r < q and 1 ≤ i ≤ r . It follows that {S1, . . . , Sr} is an SN-set of T ∇CN ,

since the existence of a triplet XY |Z ∈ T ∇CN with X,Z ⊂ S, Y �⊂ S would imply

the existence of a triplet xy|z ∈ T with x, z ∈ S and y /∈ S. However, this is a contra-

diction since by Lemma 3 all SN-sets of T ∇CN are singletons. �

Lemma 4 Let T be a reflective set of triplets and let SN be the set of maximal SN-

sets of T . Let N ′ be a simple network of minimum level that reflects T ∇SN . Then

replacing each leaf V of N ′ by a network that reflects T |V and which (ranging over

all networks that reflect T |V ) simultaneously minimizes both level and number of

reticulations, yields a network N that reflects T and which simultaneously minimizes

both level and number of reticulations (ranging over all networks that reflect T ).

Proof Let N0 be any network that reflects T . The sets of leaves below highest cut-

arcs of N0 are the maximal SN-sets of T by Observation 3. It follows that N and

N0 have the same sets of leaves below highest cut-arcs, i.e. CN = CN0 = SN . Thus

T ∇SN = T ∇CN0 = T ∇CN . Note also that for any maximal SN-set V the set of

triplets T |V is reflective: the subnetwork of N0 below the highest cut-arc correspond-

ing to V reflects T |V . This ensures that the recursive step does find some network.

To show that N reflects T , consider a triplet xy|z. First assume that x, y and z are

all in the same maximal SN-set V , i.e. below the same highest cut-arc a of N . Then

is xy|z consistent with N if and only if xy|z ∈ T , since the subnetwork of N below

the cut-arc a reflects T |V .

Now consider a triplet xy|z with two leaves in the same maximal SN-set and the

third leaf in a different maximal SN-set. Such a triplet is consistent with N if and

only if x and y are below the same highest cut-arc and z below a different one. By

the definition of SN-set (and using that T is dense), such a triplet is in T if and only

if x and y are in the same maximal SN-set and z in a different one. Consequently,

xy|z is consistent with N if and only if xy|z ∈ T .

Finally, consider triplets xy|z where x, y and z are all in different maximal SN-sets

X, Y and Z respectively. First suppose xy|z ∈ T . Then it follows that XY |Z ∈ T ∇SN

and hence that XY |Z is consistent with N ′. From this it follows that xy|z is consistent

with N , since an embedding of XY |Z in N ′ can easily be extended to an embedding

of xy|z in N . To show the other direction, assume that xy|z is consistent with N .

Then is XY |Z consistent with N ′ and hence XY |Z ∈ T ∇SN = T ∇CN0 . From the

fact that N0 reflects T it follows that Collapse(N0) reflects T ∇CN0 . It follows that

XY |Z is consistent with Collapse(N0). It follows that for any x′ ∈ X, y′ ∈ Y and

z′ ∈ Z the triplet x′y′|z′ is consistent with N0, implying that x′y′|z′ ∈ T . This thus

means that also xy|z ∈ T .

It is left to show that N is optimal, i.e. that it has a minimum number of retic-

ulations and a minimum level over all networks that reflect T . Remember that any
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Algorithm 4 MINPITS (MINimum network consistent with Precisely the Input

Triplet Set)
1: N := ∅

2: compute the set SN of maximal SN-sets of T

3: if |SN | = 2 then

4: N consists of a root connected to two leaves: the elements of SN

5: else

6: if there exists a simple level-≤ k network that reflects T ∇SN then

7: let N be such a network of minimum level

8: else

9: N := ∅

10: for each leaf V of N do

11: recursively create a level-k network NV of minimal level (and which uses a

minimum number of reticulations) that reflects T |V

12: if N �= ∅ and all NV �= ∅ then

13: replace each leaf V of N by the recursively created NV .

14: return N

15: else

16: return ∅

network reflecting T has the maximal SN-sets of T as its sets of leaves below highest

cut-arcs. Given that the subnetworks of N below its highest cut-arcs are optimal it

follows that N is optimal if and only if N ′ is optimal. Finally, N ′ is optimal since it

has minimum level and simple networks with minimum level also contain a minimum

number of reticulations. �

Theorem 4 Given a set of triplets T , Algorithm MINPITS solves MIN-REFLECT-k

in time O(|T |k+1), for any fixed k.

Proof For k = 0 we can simply use the algorithm of Aho et al., which (with an

advanced implementation [11]) can be implemented to run in time O(n3), which is

O(|T |). For k ≥ 1 we use algorithm MINPITS. Correctness of the algorithm follows

from Lemma 4. It remains to analyze the running time. A simple level-k network (that

reflects the input) can be found (if it exists) in time O(n3k+3) using algorithm SL-k.

(To find the simple network of minimum level we execute in order SL-1, SL-2, . . . ,

SL-k until we find such a network. This adds a multiplicative factor of k to the running

time but this is absorbed by the O(.) notation for fixed k.) Therefore, lines 6 and 7 of

MINPITS take O(|SN |3k+3) time. At every level of the recursion the computation

of the maximal SN-sets of T can be done in time O(n3), and computation of T ∇SN

also takes O(n3). The critical observation is that (by Observation 3) every SN-set in

T appears exactly once as a leaf inside an execution of SL-k. The overall running time

is thus of the form O(
∑

i(n
3 + s3k+3

i )) where
∑

i si is equal to the total number of

SN-sets in T . Noting that
∑

i s
3k+3
i ≤ (

∑
i si)

3k+3, and that there are at most O(n)

SN-sets in T , we obtain for k ≥ 1 an overall running time of O(n3k+3), which is

O(|T |k+1) because T is dense. Note that for k ∈ {1,2} we can actually do slightly
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better by using the faster simple level-1 and simple level-2 algorithms from [14, 17].

This yields for k = 1,2 overall running times of O(|T |) and O(|T |
8
3 ) respectively. �

6 Conclusions and Open Questions

In this article we have shown that, for level 1 and 2, constructing a phylogenetic

network consistent with a dense set of triplets that minimizes the number of retic-

ulations, is polynomial-time solvable. We feel that, given the widespread use of the

principle of parsimony within phylogenetics, this is an important development, and

testing on simulated data has yielded promising results. However, the complexity

of finding a feasible solution for level-3 and higher, let alone a minimum solution,

remains unknown, and this obviously requires attention. Perhaps the feasibility and

minimization variants diverge in complexity for higher k. It would be fascinating to

explore this.

We have also shown, for every fixed k, how to generate in polynomial time all sim-

ple level-k networks consistent with a dense set of triplets. This could be an important

step towards determining whether the aforementioned feasibility question is tractable

for every fixed k. We have used this algorithm to show how MIN-REFLECT-k is

polynomial-time solvable for fixed k. Clearly the demand that a set of triplets is ex-

actly equal to the set of triplets in some network is an extremely strong restriction on

the input. However, for small networks and high accuracy triplets such an assumption

might indeed be valid, and thus of practical use. In any case, the concept of reflection

is likely to have a role in future work on “support” for edges in phylogenetic networks

generated via triplets. Also, the complexity of some fundamental questions like “does

any network N reflect T ?” remains unclear.

The complexity of constructing a minimum level network consistent with a dense

triplet set is still an important open problem. The same holds for constructing a net-

work with a minimum number of reticulations, without restrictions on the level. When

restricting to simple networks, these two problems coincide. However, also in this re-

stricted case, their complexity remains open.
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