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Abstract

For linear systems with a multi-symplectic structure, arising from the linearization of
Hamiltonian PDEs about a solitary wave, the Evans function can be characterized as the
determinant of a matrix, and each entry of this matrix is a restricted symplectic form.
This variant of the Evans function is useful for a geometric analysis of the linear stability
problem. But, in general this matrix of two-forms may have branch points at isolated
points, shrinking the natural region of analyticity. In this paper, a new construction
of the symplectic Evans matrix is presented which is based on individual vectors but
is analytic at the branch points – indeed maximally analytic. In fact this result has
greater generality than just the symplectic case: it solves the following open problem
in the literature: can the Evans function be constructed in a maximally analytic way
when individual vectors are used? Although the non-symplectic case will be discussed
in passing, the paper will concentrate on the symplectic case, where there are geometric
reasons for evaluating the Evans function on individual vectors. This result simplifies and
generalizes the multi-symplectic framework for the stability analysis of solitary waves, and
some of the implications are discussed.

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. The Evans function: theme and variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

3. Analyticity and decomposability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4. Maximally analytic construction of Evans matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1. The Evans function with non-maximally analytic individual solutions . . . . . . . . . . . . 13

5. Analyticity of the symplectic Evans matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1. Example: the Boussinesq equation revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

• References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

A. Appendix: An explicit calculation of a maximally analytic basis . . . . . . . . . . . . . . . . . . . . . .18

B. Appendix: Large λ behaviour of the Evans function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C. Appendix: Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



1 Introduction

The motivation for this paper is linear systems of the form

ux = A(x, λ)u , u ∈ C
n , x ∈ R , λ ∈ Λ ⊂ C , (1.1)

when A(x, λ) has the special form

A(x, λ) = J−1(B(x) − λM ) , (1.2)

with the real matrices

JT = −J , MT = −M , B(x)T = B(x) and det(J) 6= 0 . (1.3)

A precise list of hypotheses will be given in §2. Here, we will give an informal overview of the
main results of the paper for this class of systems.

Systems such as (1.1) arise in the linearization about solitary wave solutions of nonlinear
Hamiltonian PDEs, in which case B(x) is asymptotic to a constant real symmetric matrix as
x→ ±∞ (Bridges & Derks [4, 6]). The spectrum of the matrix

A∞(λ) = J−1(B∞ − λM ) where B∞ = lim
x→±∞

B(x) , (1.4)

which is associated with the system at infinity , ux = A∞(λ)u , is a function of λ and we will
assume that it is weakly hyperbolic: for each λ ∈ Λ, where Λ is an open simply-connected sub-
set of the complex λ -plane, there are k eigenvalues with strictly negative real part and n−k
eigenvalues with non-negative real part. (This hypothesis is not the most general, and can be
relaxed in various directions, see discussion in §2.) Denote the k−dimensional subspace asso-
ciated with the strictly negative eigenvalues by S

+(λ) , and the (n−k)−dimensional subspace
associated with the non-negative eigenvalues by S

−(λ) . Since the two sets of eigenvalues are
disjoint, the subspaces S

±(λ) are analytic for all λ ∈ Λ (cf. Kato [17], p. 67).
On the other hand, individual vectors – eigenvectors of A∞(λ) , for example – in either

S
+(λ) or S

−(λ) will not in general be analytic for all λ ∈ Λ. An individual vector ξ(λ)
in a subspace S(λ) will be called maximally analytic if it is analytic on the same set Λ as
S(λ) . Note that maximal is used here relative to the fixed set Λ. Typically, an individual
vector will have branch points in Λ, restricting its region of analyticity. A maximally analytic
basis for an analytic subspace, which is defined as the image of an analytic projection, can be
constructed using Kato’s Theorem ([17], p. 99). However, in the context that arises in this
paper, Kato’s Theorem will not be immediately applicable and therefore a new approach to
finding maximally analytic vectors will be introduced.

For systems of the type (1.1) – whether symplectic or otherwise – with the above splitting
of the system at infinity, there is a standard asymptotic theory for linear systems of ODEs
[9, 11], from which it follows that the system (1.1) has a k -dimensional subspace of solutions
which decays exponentially as x → +∞ and an (n − k)-dimensional subspace of solutions
which grows at most algebraically as x → −∞ . Each of these subspaces can be represented
by characterizing forms: a k -form U+(x, λ) and an (n − k)-form U−(x, λ) . These forms
represent the x−dependent extensions of the characterizing forms for S

±(λ) to all x ∈ R .
An important feature of the forms is that their natural construction is maximally analytic.

The Evans function, D(λ) , is a complex analytic function which measures the intersection
of the above k and (n− k) dimensional subspaces (Alexander, Gardner & Jones [2]),

D(λ) = e−
∫ x

0
τ(s,λ) ds U−(x, λ) ∧ U+(x, λ) where τ(x, λ) = Trace(A(x, λ)) . (1.5)
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With suitable hypotheses, the Evans function has the property that roots in the complex
λ -plane are related to eigenvalues of the spectral problem associated with the linearization
about solitary waves. The Evans function is analytic for all λ ∈ Λ where Λ determined by
the region of analyticity of S

±(λ) .
The construction and analyticity of the Evans function is independent of the symplec-

tic or other geometric property of (1.1). However, when A(x, λ) has the multi-symplectic
decomposition (1.2), it is possible to obtain more refined information about the geometric
structure of the Evans function. The Evans function can be transformed in a way that leads
to a representation in terms of the symplectic Evans matrix which is expressed in terms of
individual vector-valued solutions of (1.1) (cf. Bridges & Derks [6]). The symplectic Evans
matrix is

Ω(λ) =




Ω(w1,u1) · · · Ω(w1,uk)
...

. . .
...

Ω(wk,u1) · · · Ω(wk,uk)


 , (1.6)

where each entry is a restricted two form based on the symplectic operator J ,

Ω(a,b) = 〈Ja,b〉 , for any a,b ∈ C
n , (1.7)

and 〈·, ·〉 is a standard Hermitian inner product on C
n , with conjugation on the first element.

Each ui(x, λ) is a solution of (1.1) and each wj(x, λ) is a solution of an adjoint equation
associated with (1.1) (details are given in §5). On subsets of the λ -plane where both (1.6)
and the right-hand side of (1.5) are defined, it is proved in [6] that

D(λ) = det[Ω(λ)]V , (1.8)

where V is a volume form on C
n .

For systems of the form (1.1) without any symplectic structure, an Evans matrix can still
be formed by using solutions of the adjoint equation,

E(λ) =




〈z1,u1〉 · · · 〈z1,uk〉
...

. . .
...

〈zk,u1〉 · · · 〈zk,uk〉


 , (1.9)

where 〈·, ·〉 is a standard Hermitian inner product on C
n , with conjugation on the first

element. Each ui(x, λ) is a solution of (1.1) and each zj(x, λ) is a solution of an adjoint
equation associated with (1.1) (cf. Swinton [21], Bridges & Derks [5], Benzoni-Gavage,

Serre & Zumbrun [3]). On subsets of the λ -plane where both (1.9) and the right-hand side
of (1.5) are defined,

D(λ) = c(λ) det[E(λ)]V , (1.10)

where V is a volume form on C
n and c(λ) ∈ C is analytic and non-vanishing.

The advantage of (1.8) over (1.5) is that it can encode geometrical information implicit
in (1.2), associated with the multi-symplectic structure. This geometric information has
been used to prove abstract results about the Evans function for a wide range of Hamiltonian
PDEs [6]. However, the disadvantage of the Evans matrix representation is that the individual
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vector-valued solutions of (1.1) may have branch points in the complex λ -plane, associated
with multiple eigenvalues of A∞(λ) , and therefore the right-hand side of (1.8) or (1.10) may
be analytic only on a subset of Λ. Indeed, it has been claimed in the literature that it is not
possible to construct individual vectors which are globally analytic (cf. page 802 of Gardner

& Zumbrun [12]).
One of the main results of this paper is to prove that the determinant of the symplectic

Evans matrix (or more generally, the determinant of the Evans matrix) can in fact be extended
in such a way that it is analytic on the same subset of the complex λ -plane as (1.5). The
idea will be to construct the entries in the symplectic Evans matrix (or the Evans matrix)
using maximally-analytic individual vectors.

The backbone of the argument is the solution of the following problem, which as far as
we are aware, is an open problem: given a decomposable k -form U(λ) ∈

∧k(Cn) which
is analytic for all λ ∈ Λ, find a basis u1(λ), . . . ,uk(λ) which is analytic and such that
U(λ) = u1(λ) ∧ · · · ∧ uk(λ) . This can always be done locally in regions where A∞(λ) has
semisimple eigenvalues; see Gardner & Zumbrun [12], page 820-821 for a local construction
of this type. Here, the aim is to solve this problem globally.

The natural inclination towards solving this problem is to construct an analytic projection
whose image is the space required, and then Kato’s Theorem [17] can be applied. However,
a proof along these lines is not obvious. We solve this problem by approaching it a different
way. A linear operator on the exterior algebra is constructed whose kernel is equal to the
required space. Then results from complex function theory, and a theorem of Gohberg

& Rodman [14] – on the analyticity of the kernel of an analytic operator – is applied to
conclude.

This argument will be developed in the setting of systems of the form (1.1) with a multi-
symplectic decomposition, because there are geometric reasons for evaluating the Evans func-
tion on individual vectors. The result is however more general, and shows that an Evans
function can be constructed for (1.1) based on individual vectors which has the same region
of analyticity as (1.5). In other words, the Evans function (1.5) has the equivalent represen-
tation

D(λ) = e−
∫ x

0
τ(s,λ) ds q1(x, λ) ∧ · · · ∧ qn−k(x, λ) ∧ v1(x, λ) ∧ · · · ∧ vk(x, λ) , (1.11)

where each individual vector qi(x, λ),vj(x, λ) , i = 1, . . . , n − k , j = 1, . . . , k is maximally
analytic.

Another important observation is that if the systems at plus and minus infinity are con-
jugate, i.e., the matrices A+∞(λ) and A−∞(λ) are similar, then there exists a natural nor-
malisation for the k -form U+(x, λ) and the (n− k)-form U−(x, λ) , and this normalization
induces a normalization of the individual vector solutions. An important consequence is that
the Evans function D(λ) and the determinant of the Evans matrix are identical and unique in
any subset of the complex plane where they are both defined. With the chosen normalisation,
all definitions of the Evans function lead to the same unique function (without any freedom
in scaling). A curious by-product of this result is that the Evans function is analytic even
if non-analytic individual solutions are used in the construction! This last observation has
useful consequences for the numerical calculation of the Evans function [8].

In Section 2, the basic properties of the system (1.1) are recorded and the details of the
construction of the Evans function (1.5) and of an equivalent definition by using the adjoint
system are given. Section 3 contains the main new result on the existence of an analytic basis
for an analytic decomposable k -form.
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In Section 4, the main result on analytic extension of a matrix-based definition of the
Evans function to all of Λ is presented and it is shown that D(λ) is the analytic extension of
(1.10), or (1.6) in the symplectic case. In § 5 we apply the new construction to the symplectic
Evans matrix and show how it simplifies the proof of instability for the solitary wave solutions
of the Boussinesq model. The paper has three appendices. The first Appendix sketches how
an explicit proof of the analytic basis extraction in §3 would proceed. The second appendix
contains a new large−λ result for the Evans function, which is used in the proof of Proposition
5.1, which is recorded in Appendix C.

2 The Evans function: theme and variations

The starting point is the linear system (1.1) with the hypotheses

H1. The set Λ ⊂ C is an open simply-connected subset of the complex λ -plane.

H2. The matrix A(x, λ) is a continuously differentiable function of x .

H3. The matrix A(x, λ) is asymptotically constant, with A∞(λ) = limx→±∞ A(x, λ) and
the approach is exponential: limx→±∞ eσ|x|‖A(x, λ) − A∞(λ)‖ = 0 for some σ > 0,
uniform for λ ∈ Λ.

H4. For all λ ∈ Λ, the matrix A∞(λ) has k eigenvalues with strictly negative real part,
and (n− k) with non-negative real part, with 1 < k < n− 1.

Note that the multi-symplectic structure is not required in these hypotheses. It will arise a
posteriori in a geometric analysis of the symplectic Evans matrix in § 5.

The fourth hypothesis can be relaxed in a number of directions. First, k can equal 1 or
n−1 but these cases are trivial in the sense that S+(λ) (or S−(λ)) is one dimensional and so
the subspace is spanned by an individual vector which is naturally maximal. With the Gap
Lemma, the hypothesis that the spectrum of A∞(λ) split into nonoverlapping sets can be
weakened (cf. Gardner & Zumbrun [12], Kapitula & Sandstede [16]). The Gap Lemma
provides a sufficient condition for enlarging the basic set Λ on which (1.5) is analytic. On
the other hand, the size of Λ is independent of the question addressed in this paper: if the
basic set Λ is larger, it becomes the fixed set, and the question here would remain the same:
to construct individual vectors with the requirement that they are analytic on all of Λ.

The theory can easily be extended to the case where the limit matrices, A±∞(λ) , are
different at plus and minus infinity (as long as they are conjugate [6]), but adding this is
straightforward and so to avoid complicating notation we will restrict to the case where they
are equal.

In the remainder of this section, the background of the construction of the Evans function
needed for the later analysis is recorded. There will be several formulations of the Evans
function, and to calibrate and compare them it will be useful to fix the volume form. The
space C

n will be taken to be a Hermitian inner product space with standard Hermitian
inner product 〈·, ·〉 with complex conjugation on the first element. Given any λ independent
orthonormal basis for C

n , say e1, · · · , en , we will assume henceforth that the volume form is
fixed, say

V = e1 ∧ · · · ∧ en . (2.1)
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Associated with (1.1) are the induced systems

U+
x = A(k)(x, λ)U+ , U+ ∈

∧k(Cn) , (2.2)

and

U−
x = A(n−k)(x, λ)U− , U− ∈

∧(n−k)(Cn) , (2.3)

where for any decomposable U = u1 ∧ · · · ∧ uk ∈
∧k(Cn) ,

A(k)U =
k∑

j=1

u1 ∧ · · · ∧Auj ∧ · · · ∧ uk , (2.4)

with extension to any U ∈
∧k(Cn) by linearity.

The mapping A(x, λ) 7→ A(k)(x, λ) is clearly linear, in the sense that the entries of
A(k)(x, λ) are linear functions of the entries of A(x, λ) . Therefore, with the above hypotheses,
the induced systems will have the property that

lim
x→±∞

A(k)(x, λ) = A(k)
∞ (λ) , lim

x→±∞
A(n−k)(x, λ) = A(n−k)

∞ (λ) ,

and the matrices A(k)(x, λ) and A(n−k)(x, λ) will inherit the differentiability properties of

A(x, λ) . The set of eigenvalues of A
(k)
∞ (λ) consists of the k -fold sums of the eigenvalues of

A(x, λ) [18]. Therefore, under the above hypotheses, the eigenvalue of A
(k)
∞ (λ) with largest

negative real part is simple, and the eigenvalue of A
(n−k)
∞ (λ) of largest positive real part is

simple. Denote these eigenvalues by α+(λ) (satisfying Re(α+(λ)) < 0) and α−(λ) (satisfying
Re(α−(λ)) > 0) with their respective eigenvectors

ζ+(λ) ∈
∧k(Cn) and ζ−(λ) ∈

∧(n−k)(Cn) ,

satisfying

A(k)
∞ (λ)ζ+(λ) = α+(λ)ζ+(λ) and A(n−k)

∞ (λ)ζ−(λ) = α−(λ)ζ−(λ) . (2.5)

The eigenvectors can be chosen in a natural way to be maximally analytic – that is, analytic on
the same set Λ as S

±(λ) – and also chosen so that ζ+(λ) ∈
∧k(Rn) and ζ−(λ) ∈

∧(n−k)(Rn)
when λ ∈ R (cf. [20], pages 54-55, [12], Lemma 2.7). The two eigenvectors ζ±(λ) will be
normalized by

ζ−(λ) ∧ ζ+(λ) = V ∀ λ ∈ Λ . (2.6)

This normalization may appear odd, but it is in fact the standard normalization for a
simple eigenvalue. This relationship becomes evident using Hodge duality. The Hodge star
operator, which maps elements in

∧(n−k)(Cn) to
∧k(Cn) , exists on any oriented Hermitian

inner product space [22], and is defined by

V ∧ U = [[⋆V,U]]k V for any U ∈ ∧k(Cn), V ∈ ∧(n−k)(Cn) , (2.7)

(cf. Wells [22], page 155), where [[·, ·]]k is the induced inner product on
∧k(Cn) : for any

decomposable elements,

U = u1 ∧ · · · ∧ uk ∈
∧k(Cn) and V = v1 ∧ · · · ∧ vk ∈

∧k(Cn) ,
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the inner product of U and V is defined by

[[U,V]]k = det




〈u1,v1〉 · · · 〈u1,vk〉
...

. . .
...

〈uk,v1〉 · · · 〈uk,vk〉


 . (2.8)

The definition extends to any pair of elements of
∧k(Cn) (i.e. not necessarily decomposable)

by linearity, and satisfies all the conditions of an inner product [18].

Lemma 2.1 Let (A
(k)
∞ (λ))∗ be the adjoint of A

(k)
∞ (λ) with respect to the inner product [[·, ·]]k .

For any λ ∈ Λ , the k -form ⋆ζ− is an eigenvector of (A
(k)
∞ (λ))∗ with eigenvalue α+(λ) .

Proof For any U ∈
∧k(Cn) ,

[[(A
(k)
∞ )∗⋆ζ− , U]]k V = [[⋆ζ− , A

(k)
∞ U]]kV = ζ− ∧ A

(k)
∞ U

= Trace(A∞) ζ− ∧ U − A
(n−k)
∞ ζ− ∧ U

= (α+ + α−) ζ− ∧ U − α− ζ− ∧ U

= α+ ζ− ∧ U = [[α+ ⋆ζ− , U]]k .

In the second line, the following identity has been used

V ∧ A(k)
∞ U + A(n−k)

∞ V ∧ U = Trace(A∞)V ∧ U , U ∈
∧k(Cn) , V ∈

∧(n−k)(Cn) .

For any λ ∈ Λ, α+(λ) is simple; hence it follows that Ker[(A
(k)
∞ )∗ −α+I] = span{⋆ζ−} . ✷

Therefore the natural normalization for the simple eigenvalue α+(λ) is [[⋆ζ−(λ), ζ+(λ)]]k = 1,
and so (2.6) is justified by

ζ−(λ) ∧ ζ+(λ) = [[⋆ζ−(λ), ζ+(λ)]]kV = V . (2.9)

An important consequence of this normalization is that the Evans function (1.5) can be
calibrated in a unique way. Indeed, by standard asymptotic theory (e.g. [9, 11]), there exists

a U+(x, λ) ∈
∧k(Cn) satisfying (2.2) and a U−(x, λ) ∈

∧(n−k)(Cn) satisfying (2.3) with
the properties that

lim
x→+∞

e−α+(λ)xU+(x, λ) = ζ+(λ) and lim
x→−∞

e−α
−

(λ)xU−(x, λ) = ζ−(λ) , (2.10)

with the limits uniform on compact subsets of the λ -plane (cf. [2], Lemma 4.1, [20], Propo-
sition 1.2).

The Evans function is the complex analytic function on
∧n(Cn) ,

D(λ) = e−τ(x,λ)U−(x, λ) ∧ U+(x, λ) , with τ(x, λ) =

∫ x

0
Trace(A(s, λ)) ds . (2.11)

The function D(λ) is analytic for all λ ∈ Λ and independent of x [2].
Now, observe that the only freedom in the functions U±(x, λ) is in the choice of (scaling

of) one of the eigenvectors ζ±(λ) . If another eigenvector is chosen, say ζ̃+(λ) = C(λ)ζ+(λ) , for
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some analytic nonvanishing function C(λ) , then the normalization (2.6) implies that ζ̃−(λ) =
(C(λ))−1ζ−(λ) . Replacing ζ±(λ) by ζ̃±(λ) in (2.10) generates new functions Ũ±(x, λ) , and
the associated Evans function becomes

D̃(λ) = e−τ(x,λ)Ũ−(x, λ) ∧ Ũ+(x, λ)

= C(λ)(C(λ))−1 e−τ(x,λ)U−(x, λ) ∧ U+(x, λ) = D(λ) .

The Hodge star operator also leads to a dual expression for the Evans function. In [5],
the following lemma is proved.

Lemma 2.2 The k -form W(x, λ) = e−τ(x,λ)(⋆V(x, λ)) ∈
∧k(Cn) , where V(x, λ) is a

solution of (2.3), satisfies the adjoint differential equation

d

dx
W = −(A(k)(x, λ))∗W . (2.12)

It follows that the k -form ⋆U−(x, λ) = e−τ(x,λ)(⋆U−(x, λ)) ∈ ∧k(Cn) solves the adjoint
differential equation (2.12) and has the asymptotic behaviour

lim
x→−∞

e+α+(λ)x
⋆U−(x, λ) = ⋆ζ−(λ) ∈ ∧k(Cn) .

Hence the solution ⋆U−(x, λ) is a dual characterization of the subspace of solutions which
decay exponentially as x → −∞ . Note that ⋆ζ−(λ) is analytic for all λ ∈ Λ, since ⋆

includes conjugation which is then cancelled by the overall conjugation (cf. [5, 6]). This
equation is to be contrasted with the asymptotics of U−(x, λ) as x → −∞ in (2.10). Now
we have the following dual expression for the Evans function

D(λ) = e−τ(x,λ) U−(x, λ) ∧ U+(x, λ) = [[⋆U−,U+]]k V . (2.13)

The following observation is another convenient consequence of the normalisation.

Proposition 2.3 The Evans function D(λ) is real when λ ∈ Λ ∩ R .

Proof. If λ ∈ R , then the matrix A∞(λ) has only real coefficients. Hence A
(k)
∞ (λ) and

A
(n−k)
∞ (λ) are real too. The eigenvalues α±(λ) must be real, since they are simple and have

the largest postive or negative real part. This implies that ζ±(λ) can be chosen to be real
and since the normalisation is real too, the Evans function is real (see also Lemma 2.7 and
its proof in [12].) �

3 Analyticity and decomposability

In this section we consider the following general question. Given a decomposable k -form,
depending analytically on a parameter λ for all λ ∈ Λ, with Λ an open simply-connected
subset of C , does there exist a basis for the k -dimensional space that U(λ) characterizes,
which is also analytic for all λ ∈ Λ?

A decomposable k -form U ∈ ∧k(Cn) is said to characterize a k -dimensional subspace
of C

n if there exists linearly independent vectors u1, . . . ,uk ∈ C
n with the property that

U = u1 ∧ · · · ∧ uk .

8



Without the requirement of analyticity, the result is trivial and reduces to an exercise in
linear algebra – see pages 95-98 of Crampin & Pirani [10]. The central question here is
how to construct such a basis in an analytic way. We will give a positive answer to the above
question by first constructing a linear operator whose kernel is the required vector space. The
problem is then reduced to that of finding an analytic basis for the kernel of an analytic linear
operator.

In order to construct an analytic basis for the kernel of a linear operator, we will need the
following two results due to Gohberg & Rodman [14]. The form of the first result that we
need is Lemma S6.2 on page 389 in Gohberg, Lancaster & Rodman [13].

Lemma 3.1 ([14, 13]) Let u1(λ), . . . ,uk(λ) be n-dimensional vector functions which are
analytic for all λ ∈ Λ . Suppose that for some λ0 ∈ Λ the vectors u1(λ0), . . . ,uk(λ0) are
linearly independent, and let

Λ0 = {λ ∈ Λ : u1(λ), . . . ,uk(λ) are linearly dependent } .

Then there exist n-dimensional vector-valued functions v1(λ), . . . ,vk(λ) with the properties:
v1(λ), . . . ,vk(λ) are analytic and linearly independent for all λ ∈ Λ , and

span{v1(λ), . . . ,vk(λ)} = span{u1(λ), . . . ,uk(λ)} for every λ ∈ Λ \ Λ0 .

The proof of this Lemma can be found on pages 389-392 in [13]. The proof is inductive,
and it systematically divides out each singularity using a variant of Weierstrass’s Theorem.
Moreover, if for some ℓ ≤ k the vector functions u1(λ), . . . ,uℓ(λ) are linearly independent
for all λ ∈ Λ then ui(λ) = vi(λ) for i = 1, . . . , ℓ . Lemma 3.1 is the basic result needed to
prove the result on analyticity of the image and kernel of a linear operator due to Gohberg

& Rodman [14]. The form of this result needed here is a minor variation of Theorem S6.1
on page 388 in [13].

Theorem 3.2 ([14, 13]) Let Φ(λ) be a complex d × n matrix-valued function with d ≥ n

which is analytic in a domain Λ ⊂ C . Let

r = n− max
λ∈Λ

{rankΦ(λ)} .

Then there exist n-dimensional vector-valued functions v1(λ), . . . ,vr(λ) which are analytic
for all λ ∈ Λ with the properties: v1(λ), . . . ,vr(λ) are linearly independent for every λ ∈ Λ ,

span{v1(λ), . . . ,vr(λ)} = Ker(Φ(λ)) .

at every point λ ∈ Λ , except for a set of isolated points which consists exactly of those λ0 ∈ Λ
at which rank Φ(λ) < n− r . For such exceptional λ ∈ Λ , the following inclusion holds

span{v1(λ), . . . ,vr(λ)} ⊂ Ker(Φ(λ)) .

On pages 392-394 in [13] this Theorem is proved for the case d = n , but with elementary
modification, the proof goes through when d ≥ n .

This Theorem is now applied to the question stated in the first paragraph of this section.
Let U(λ) be any analytic decomposable k -form. The idea will be to construct a linear
operator whose kernel is equal to the required space. The appropriate operator is suggested
by the following Theorem whose proof can be found on page 5 in Marcus [18].
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Theorem 3.3 ([18]) Let U ∈
∧k(Cn) . Then U is decomposable if and only if there exists

a linearly independent set of vectors u1, . . . ,uk in C
n such that U∧ui = 0 for i = 1, . . . , k .

For fixed U ∈
∧k(Cn) , introduce the linear mapping

ϕk(U) :
∧1(Cn) →

∧k+1(Cn) defined by ϕk(U)v = U ∧ v .

There are two immediate consequence of Theorem 3.3

Corollary 3.4 ([18, 15]) A form U ∈ ∧k(Cn) is decomposable if and only if the rank of
the mapping ϕk(U) is n− k .

Corollary 3.5 ([18, 15]) Suppose U ∈ ∧k(Cn) is decomposable. An element ui ∈ C
n is

in the space characterized by U if and only if ui ∈ Ker(ϕk(U)) .

Corollary 3.5 together with Theorem 3.2 are the main tools needed to solve the problem
stated in the first paragraph of this section.

Theorem 3.6 Let U(λ) ∈
∧k(Cn) be nonzero and decomposable, and suppose that it is

analytic for each λ ∈ Λ . Then there exists vectors vj(λ) ∈ C
n , j = 1, . . . , k which are

analytic and linearly independent for each λ ∈ Λ such that U(λ) = v1(λ) ∧ · · · ∧ vk(λ) .

Proof. Choose any constant basis for
∧1(Cn) ,

∧k(Cn) and
∧k+1(Cn) . Then the operator

ϕk(U(λ)) can be represented by a d×n matrix Φ(λ) where d is the dimension of
∧k+1(Cn) .

The entries of the matrix Φ(λ) are linear functions of the coefficients of U(λ) and hence
analytic for each λ ∈ Λ. Now, by Corollary 3.4 and Corollary 3.5, the Kernel of Φ(λ) has
dimension k for all λ ∈ Λ, and so Φ has constant rank (n−k) . Therefore, an analytic basis
v1(λ), . . . ,vk(λ) for the kernel exists by Theorem 3.2. The kernel is independent of the basis
chosen, and so the construction is independent of the bases chosen for

∧1(Cn) ,
∧k(Cn) and∧k+1(Cn) : the basis of the kernel of Φ(λ) is precisely a basis for the space characterized by

U(λ) . Therefore there exists a complex analytic nonzero function b(λ) such that

U(λ) = b(λ)v1(λ) ∧ · · · ∧ vk(λ) for all λ ∈ Λ .

By scaling elements in the kernel, the function b(λ) can be taken to be unity. �

In Appendix A, a sketch of how an explicit proof would proceed for the case n = 4 and
k = 2 is given.

4 Maximally analytic construction of Evans matrices

In this section, the results of the previous two sections are combined to construct a new
maximally analytic expression for the Evans function by using individual solution vectors.
By using the dual expression for the Evans function (2.13) and the analytic decomposition
of § 3 a maximally-analytic Evans matrix can be constructed whose determinant equals the
Evans function. Finally, we show that the Evans function and matrix constructed with the
maximally analytic solution vectors are analytic extensions of the Evans function and matrix
constructed by using non-maximally analytic solution vectors. This observation has important
practical consequences.

The strategy will be to start with the definition of the Evans function using elements
from

∧k(Cn) and
∧(n−k)(Cn) , which are naturally maximally analytic, and then to extract

individual vectors from these forms.
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Now, let U+(x, λ) satisfy (2.2) with the asymptotic condition (2.10). Then

U+(0, λ) ∈
∧k(Cn)

is a decomposable k -form which is analytic for all λ ∈ Λ. By Theorem 3.6, there exist vectors
θ1(λ), . . . , θk(λ) which are analytic and linearly independent for all λ ∈ Λ, and satisfy

U+(0, λ) = θ1(λ) ∧ . . . ∧ θk(λ) . (4.1)

The decomposed form U+(0, λ) can be extended to all x ∈ R .

Lemma 4.1 There exist vectors v1(x, λ), . . . ,vk(x, λ) for all x ∈ R satisfying

d

dx
vj = A(x, λ)vj , vj(0, λ) = θj(λ) , j = 1, . . . , k , (4.2)

which are analytic for all λ ∈ Λ such that U+(x, λ) = v1(x, λ) ∧ · · · ∧ vk(x, λ) .

Proof. By standard results in the theory of ODEs, each solution vj(x, λ) of (4.2) exists
and is analytic for all x . Furthermore, U(x, λ) = v1(x, λ) ∧ · · · ∧ vk(x, λ) satisfies the ODE
Ux = A(k)(x, λ)U in

∧k(Cn) and has the initial condition U(0, λ) = θ1(λ) ∧ . . . ∧ θk(λ)
(cf. Lemma 4.7). But also U+(x, λ) satisfies this ODE and initial condition. Uniqueness of
solutions of ODEs gives that U+(x, λ) = v1(x, λ) ∧ · · · ∧ vk(x, λ) . �

Similarly, suppose U−(x, λ) satisfies (2.3) and the asymptotic condition (2.10). Then

U−(0, λ) ∈
∧(n−k)(Cn) is a decomposable (n− k)-form which is analytic for all λ ∈ Λ. By

Theorem 3.6, there exist vectors ψ1(λ), . . . , ψn−k(λ) which are analytic and linearly indepen-
dent for all λ ∈ Λ, and satisfy

U−(0, λ) = ψ1(λ) ∧ . . . ∧ ψn−k(λ) . (4.3)

The decomposed form U−(0, λ) can be extended to all x ∈ R .

Lemma 4.2 There exist vectors q1(x, λ), . . . ,qn−k(x, λ) for all x ∈ R satisfying

d

dx
qj = A(x, λ)qj , qj(0, λ) = ψj(λ) , j = 1, . . . , n− k , (4.4)

which are analytic for all λ ∈ Λ such that U−(x, λ) = q1(x, λ) ∧ · · · ∧ qn−k(x, λ) .

Proof. Same as proof of Lemma 4.1. �

Corollary 4.3 The Evans function (2.11) can be represented in terms of individual vectors,

D(λ) = e−τ(x,λ)U−(x, λ) ∧ U+(x, λ)

= e−τ(x,λ)q1(x, λ) ∧ · · · ∧ qn−k(λ) ∧ v1(x, λ) ∧ · · · ∧ vk(x, λ) .

and it is analytic for all λ ∈ Λ .

This result gives an expression for the Evans function in terms of maximally analytic
individual solutions. In a similar way, the dual expression for the Evans function (2.13) can
be expressed in terms of maximally analytic individual solutions. This is shown by extracting
k maximally-analytic individual vectors from the complex conjugate of the k -form ⋆U−(x, λ) .
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Evaluating ⋆U−(x, λ) ∈
∧k(Cn) at x = 0 gives a decomposable k -form (since Hodge

star preserves decomposability [18, 5]) which is analytic for all λ ∈ Λ. By Theorem 3.6, there
exist vectors χ1(λ), . . . , χk(λ) which are analytic and linearly independent for all λ ∈ Λ, and
satisfy

⋆U−(0, λ) = χ1(λ) ∧ . . . ∧ χk(λ) . (4.5)

Comparison with (4.3) leads to

χ1(λ) ∧ . . . ∧ χk(λ) = ⋆U−(0, λ) = ⋆ (ψ1(λ) ∧ . . . ∧ ψn−k(λ)) ∈
∧k(Cn) . (4.6)

Lemma 4.4 There exist vectors y1(x, λ), . . . ,yk(x, λ) for all x ∈ R satisfying

d

dx
yj = −A(x, λ)Tyj , yj(0, λ) = χj(λ) , j = 1, . . . , k , (4.7)

which are analytic for all λ ∈ Λ such that ⋆U−(x, λ) = y1(x, λ) ∧ . . . ∧ yk(x, λ) .

Proof. Similar to proof of Lemma 4.1 with the additional observation that the adjoint in
C

n induces an adjoint in
∧k(Cn) . Indeed, it is elementary algebra to show that (A(k))∗ =

(A∗)(k) , where (A(k))∗ denotes the adjoint of A(k) on
∧k(Cn) defined using the Hermitian

inner product [[·, ·]]k and A∗ is the adjoint of A on C
n using the Hermitian inner product

〈·, ·〉 . �

The results of Lemmas 4.1 and 4.4 can now be introduced into the dual expression for
the Evans function in (2.13). First, write D(λ) = E(λ)V , with E(λ) = [[⋆U−,U+]]k . Then,
using the definition of the inner product on

∧k(Cn) ,

E(λ) = det




〈y1(x, λ),v1(x, λ)〉 · · · 〈y1(x, λ),vk(x, λ)〉
...

. . .
...

〈yk(x, λ),v1(x, λ)〉 · · · 〈yk(x, λ),vk(x, λ)〉


 . (4.8)

The matrix in (4.8) will be called an Evans matrix.
With the constructions in this section, we have proved the following,

Theorem 4.5 Let yj(x, λ) as defined in Lemma 4.4, let vi(x, λ) be the maximally analytic
vectors given by Lemma 4.1, and let qi(x, λ) be the maximally analytic vectors given by
Lemma 4.2. Then for each λ ∈ Λ , the Evans function has the representations

D(λ) = e−τ(x,λ) U−(x, λ) ∧ U+(x, λ)

= e−τ(x,λ) q1(x, λ) ∧ · · · ∧ qn−k(x, λ) ∧ v1(x, λ) ∧ · · · ∧ vk(x, λ)

= [[⋆U−,U+]]k V

= det




〈y1(x, λ),v1(x, λ)〉 · · · 〈y1(x, λ),vk(x, λ)〉
...

. . .
...

〈yk(x, λ),v1(x, λ)〉 · · · 〈yk(x, λ),vk(x, λ)〉


 V .

with all four equal and maximally analytic.

This result extends the Evans matrices introduced by Swinton [21] and Benzoni-Gavage,

Serre & Zumbrun [3] to maximally analytic Evans matrices.
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4.1 The Evans function with non-maximally analytic individual solutions

The individual solutions constructed in Lemmas 4.1, 4.2, and 4.4 are obtained by extracting
a basis from the k and n− k forms at x = 0. On the other hand, the usual way to construct
an Evans matrix based on individual vectors is to use solutions which are asymptotic to
eigenvectors of A∞(λ) . The latter individual vectors are not in general analytic functions for
all λ ∈ Λ. Let µ1(λ), . . . , µk(λ) be the k eigenvalues of A∞(λ) with strictly negative real
part. Let Λb ⊂ Λ be any simply-connected subset of Λ with the branch points and branch
cuts associated with the eigenvalues excised.

For each λ ∈ Λb the k eigenvalues are simple or semisimple and therefore analytic, and
an analytic eigenvector, denoted by ξj(λ) , j = 1, . . . , k , can be associated with each of the
eigenvalues. As in §2, the standard form of Levinson’s Theorem can be applied to show that
there exists uj(x, λ) ∈ C

n satisfying (1.1) and

lim
x→+∞

e−µj(λ)xuj(x, λ) = ξj(λ) , j = 1, . . . , k ,

with the limits uniform on compact subsets of the λ -plane. The following result is an imme-
diate consequence of the definition of the vectors uj .

Proposition 4.6 For all λ ∈ Λb and x ∈ R , U+(x, λ) ∧ uj(x, λ) = 0 , j = 1, . . . , k .

In other words, the subspace span{u1(x, λ), . . . ,uk(x, λ)} is precisely the subspace charac-
terized by U+(x, λ) , for each λ ∈ Λb .

The adjoint equation associated with (1.1) takes the form

u∗
x = −A(x, λ)∗u∗ , u∗ ∈ C

n . (4.9)

The adjoint matrix −[A∞(λ)]T has k eigenvalues with strictly positive real part for λ ∈ Λb ,
with analytic eigenvectors ηj(λ) , j = 1, . . . , k , which are normalised, i.e., for all i, j =
1, . . . , k

−[A∞(λ)]T ηj(λ) = −µj(λ)ηj(λ) and 〈ηi(λ), ξj(λ)〉 =





1, if i = j

0, otherwise .
(4.10)

Invoking Levinson’s Theorem for the x-asymptotic behaviour, there exist zj(x, λ) ∈ C
n

satisfying the u∗ -system in (4.9) and

lim
x→+∞

e+µj(λ)xzj(x, λ) = ηj(λ) , j = 1, . . . , k ,

with the limits uniform on compact subsets of the λ -plane.
An Evans matrix for λ ∈ Λb is then

Eb(λ) =




〈z1(x, λ),u1(x, λ)〉 · · · 〈z1(x, λ),uk(x, λ)〉
...

. . .
...

〈zk(x, λ),u1(x, λ)〉 · · · 〈zk(x, λ),uk(x, λ)〉


 . (4.11)

This matrix is independent of x , an analytic function of λ for all λ ∈ Λb . Note that the order
in which the eigenvalues µ1, . . . , µk are chosen, does not affect the value of the determinant
of the Evans matrix, since permutation of eigenvalues µi and µj leads to permutation of the
ith and jth rows and columns, leaving the determinant invariant.

For Λ ∩ Λb the determinant of Eb(λ) is equal to the Evans function. To prove this we
first need the following preliminary result.
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Lemma 4.7 Let u1(x, λ), . . . ,uk(x, λ) be solutions of ux = A(x, λ)u , and let U(x, λ) ∈∧k(Cn) be a solution of Ux = A(k)(x, λ)U , for x ∈ X ⊂ R , where A(k)(x, λ) is the induced
matrix on

∧k(Cn) associated with A(x, λ) . Suppose that for some x0 ∈ X ,

uj(x0, λ) = ξj(λ) , j = 1, . . . , k and U(x0, λ) = ζ(λ) .

If ζ(λ) ∧ ξj(λ) = 0 for each j , then for all x ∈ X , U(x, λ) ∧ uj(x, λ) = 0 for j = 1, . . . , k .

Proof. Differentiate U(x, λ) ∧ uj(x, λ) with respect to x ,

d

dx
U(x, λ) ∧ uj(x, λ) = A(k)U(x, λ) ∧ uj(x, λ) + U(x, λ) ∧ Auj(x, λ)

:= A(k+1)(x, λ)U(x, λ) ∧ uj(x, λ) .

For every j , the initial data is trivial. By uniqueness of solutions of ordinary differential
equations, this linear system on

∧k+1(Cn) , has only the trivial solution. �

Combining Proposition 4.6 with Lemma 4.1 proves the following result.

Corollary 4.8 span{v1(x, λ), . . . ,vk(x, λ)} = span{u1(x, λ), . . . ,uk(x, λ)} ∀λ ∈ Λb .

Hence v1(x, λ)∧ . . .∧vk(x, λ) = b(λ)u1(x, λ)∧ . . .∧uk(x, λ) for some b(λ) , which is analytic
and non-zero for all λ ∈ Λb .

In a similar way, we have for the solutions of the adjoint system

Corollary 4.9 span{y1(x, λ), . . . ,yk(x, λ)} = span{z1(x, λ), . . . , zk(x, λ)} ∀λ ∈ Λb .

Because of the normalisation (2.6), it follows that y1(x, λ)∧ . . .∧yk(x, λ) = (b(λ))−1z1(x, λ)∧
. . .∧zk(x, λ) for λ ∈ Λb . So we can conclude that the Evans function is an analytic extension
of the determinant of the Evans matrix Eb(λ) , which is constructed using the eigenvectors.

Theorem 4.10 For λ ∈ Λb , we have det(Eb(λ)) = D(λ) .

5 Analyticity of the symplectic Evans matrix

In this section we consider the case when A(x, λ) has the special form (1.2)-(1.3). The
asymptotic matrix is

A∞(λ) = J−1(B∞ − λM ) where B∞ = lim
x→±∞

B(x) , (5.1)

For applications, the following hypothesis is added to the list in § 2.

H5. The matrix A(x, λ) has the form (1.2)-(1.3) and the set Λ includes a neighbourhood
of the positive real axis, with the origin in the closure of Λ.

When A(x, λ) has the multi-symplectic decomposition (1.2), it is possible to obtain more
refined information about the geometric structure of the Evans function. The Evans matrix
can be expressed in a way that explicitly shows the symplectic structure of the original PDE.
With hypothesis H5, the adjoint equation (4.9) takes the form

u∗
x = −A(x, λ)∗u∗ , u∗ ∈ C

n , −A(x, λ)∗ = (B(x) + λM)J−1 . (5.2)
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It is immediate from (5.2) that

zj(x, λ) = Jwj(x, λ) , (5.3)

with uj(x, λ) and wj(x, λ) satisfying

J (uj)x = [B(x) − λM]uj and J (wj)x = [B(x) + λM]wj , j = 1, . . . , k . (5.4)

The Evans matrix Eb(λ) can be written as the symplectic Evans matrix, which is

Ωb(λ) =




Ω(w1(x, λ),u1(x, λ)) · · · Ω(w1(x, λ),uk(x, λ))
...

. . .
...

Ω(wk(x, λ),u1(x, λ)) · · · Ω(wk(x, λ),uk(x, λ))


 . (5.5)

where each entry is a restricted two form based on the symplectic operator J ,

Ω(a,b) = 〈Ja,b〉 , for any a,b ∈ C
n . (5.6)

For λ ∈ Λb , define Db(λ) = det[Ωb(λ)] . Since Eb(λ) = Ωb(λ) , the following result is an
immediate consequence of Theorem 4.10

Theorem 5.1 For λ ∈ Λb , the Evans function satisfies D(λ) = det[Ωb(λ)]V = Db(λ)V .

The main consequence of this Theorem is that D(λ) is an analytic extension of Db(λ) and
therefore Db(λ) can be used in regions of the λ−plane where geometric information is re-
quired, for example near λ = 0, and D(λ) can be used as an extension in regions where
Db(λ) is not defined.

5.1 Example: the Boussinesq equation revisited

The Boussinesq equations form a class of model partial differential equations for dispersive
shallow-water waves, nonlinear strings and condensed matter physics. In [6] a geometric
instability condition based on the symplectic Evans matrix was applied to show instability
for a class of solitary waves of the following Boussinesq model:

utt = ∂xx(u− u2 − uxx), x ∈ R , t > 0 , (5.1)

where u(x, t) is a scalar-valued function. The two-parameter family of solitary waves is

u(x, t) = 1
2(1 − c2) − 2δ2 + 6δ2sech2(δ(x− ct)) , (5.2)

where c is the wave speed,

δ = 1
2

√√
1 + 4a− c2 with the condition a > 1

4(c4 − 1) .

In [6] it is proved that this two parameter family of solitary waves is unstable whenever
a > − 1

4 and c2 < 1
4

√
1 + 4a . The system (5.1) can be formulated as a multi-symplectic

Hamiltonian PDE. The proof of instability in [6] proceeds by constructing the symplectic
Evans matrix, and proving that

Db(λ) =
λ2

192δ4
√

1 + 4a

(
4c2 −

√
1 + 4a

)
+ O(λ3) , as λ→ 0 , (5.3)
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and that Db(λ) → 1 as λ→ +∞ along the real axis. One then concludes by an intermediate
value theorem (IVT) argument that there exists an unstable real positive eigenvalue when
D′′

b (0) < 0. In [6] the IVT argument is delicate because the symplectic Evans matrix Ωb(λ)
has a branch point on the real axis.

With our result in Theorem 5.1 a simplified proof of the instability result in [6] can be
given. Since D(λ) is analytic on the full real axis and an analytic extension of Db(λ)V ,
the application of the IVT is elementary: Db(λ) is analyzed for λ near zero, and D(λ) is
analyzed for large |λ| . It remains only to study the asymptotic behaviour of D(λ) .

Proposition 5.1 The Evans function for the Boussinesq model linearized about the two pa-
rameter family of solitary waves (5.2) has the asymptotic property, D(λ) → 1 as λ → +∞
along the real λ-axis.

A Proof of this result is given in Appendix C. For the Boussinesq model hypothesis H5 is
satisfied. Therefore combining Proposition 5.1 with (5.3) proves that the solitary wave (5.2)
is unstable when D′′

b (0) < 0.
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A An explicit calculation of a maximally analytic basis

In this Appendix, a sketch of an explicit proof of the existence of a maximally analytic basis
– i.e. Theorem 3.6 – is given for the case k = 2 and n = 4.

Let e1, . . . , e4 be an orthonormal basis for C
4 , and take a standard constant lexical basis

for
∧2(C4) ,

ω1 = e1 ∧ e2 , ω2 = e1 ∧ e3 , ω3 = e1 ∧ e4 ,

ω4 = e2 ∧ e3 , ω5 = e2 ∧ e4 , ω6 = e3 ∧ e4 ,

and let U(λ) be an element of
∧2(C4) which depends analytically on λ for all λ ∈ Λ where

Λ is an open simply-connected subset of the complex λ -plane. Then U(λ) can be expressed
as

U(λ) =
6∑

j=1

aj(λ)ωj ,

where each of the coefficients aj(λ) is an analytic function for all λ ∈ Λ. It is a standard
result in algebraic geometry that a 2-form in

∧2(C4) is decomposable if and only if U(λ)
wedged with itself vanishes [15], and in terms of the above basis

U(λ) ∧ U(λ) = I(λ)V where I(λ) = a1(λ)a6(λ) − a2(λ)a5(λ) + a3(λ)a4(λ) ,

and V = e1 ∧ e2 ∧ e3 ∧ e4 is the standard volume form. Hence U(λ) is decomposable if and
only if I(λ) = 0.

Let U(λ) be a decomposable k -form (i.e., I(λ) = 0). A matrix representation for
ϕ2(U(λ)) , which we will denote by Φ(λ) ∈ C

4×4 , can be constructed by introducing a
basis for

∧1(C4) and for
∧3(C4) . For

∧1(C4) take the standard basis, e1 , . . . , e4 , and
volume form (2.1). For

∧3(C4) take the natural basis generated by Hodge duality,

σ1 = ⋆e1 = −e2 ∧ e3 ∧ e4 , σ2 = ⋆e2 = e1 ∧ e3 ∧ e4

σ3 = ⋆e3 = −e1 ∧ e2 ∧ e4 , σ4 = ⋆e4 = e1 ∧ e2 ∧ e3 .

In terms of this basis we find,

ϕ2(U)e1 = U(λ) ∧ e1 = a6(λ)σ1 − a5(λ)σ3 + a4(λ)σ4

ϕ2(U)e2 = U(λ) ∧ e2 = −a6(λ)σ1 + a3(λ)σ3 − a2(λ)σ4

ϕ2(U)e3 = U(λ) ∧ e3 = a5(λ)σ1 − a3(λ)σ2 + a1(λ)σ4

ϕ2(U)e4 = U(λ) ∧ e4 = −a4(λ)σ1 + a2(λ)σ2 − a1(λ)σ3

and so, writing Φ(λ) for this matrix representation,

Φ(λ) =




0 −a6(λ) a5(λ) −a4(λ)

a6(λ) 0 −a3(λ) a2(λ)

−a5(λ) a3(λ) 0 −a1(λ)

a4(λ) −a2(λ) a1(λ) 0



. (1.1)

An analytic basis for the kernel of Φ(λ) , when U(λ) is decomposable, provides the
required basis. Although the matrix Φ(λ) is skew symmetric when the entries are real, this
is irrelevant in the present context because the entries are complex in general.
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For general k , the matrix representation Φ(λ) is rectangular. However, for the special
case k = 2 and n = 4 it is square, and therefore it is useful to use the spectrum of Φ(λ) to
illuminate its properties.

The characteristic polynomial associated with Φ(λ) in (1.1) is

∆(µ, λ) = det[Φ(λ) − µI] = µ4 +




6∑

j=1

aj(λ)2


 µ2 + I(λ)2 ,

and since U(λ) is decomposable, I(λ) = 0, this reduces to

∆(µ, λ) = µ2


µ2 +

6∑

j=1

aj(λ)2


 .

Zero is a root of algebraic multiplicity at least two. It is also easy to check that the rank of
Φ(λ) is always two, when ‖U(λ)‖ 6= 0. When the entries of Φ(λ) are real, the algebraic
multiplicity of the zero eigenvalue of Φ(λ) is equal to two. However, when the entries of
Φ(λ) complex – the case of interest – the algebraic multiplicity of zero as an eigenvalue may
be greater than 2.

It is tempting to try to characterize the kernel as the image of an analytic projection of
the form

P(λ) =
1

2πi

∮
[µI − Φ(λ)] dµ ,

taking the contour to be any Jordan curve encircling the origin in the µ-plane which does
not include any of the nonzero eigenvalues of Φ(λ) inside or on the contour. However, this
approach fails because the dimension of the image of P(λ) will be equal to the algebraic
multiplicity of the zero root, which may exceed the dimension of the kernel in general.

However, in this case, the kernel of Φ(λ) can be obtained by explicit calculation, and
explicit application of Weierstrass’ Theorem. The argument is straightforward (albeit lengthy)
and so the details are omitted.

B Large λ behaviour of the Evans function

There are many results in the literature on the large λ behaviour of the Evans function
(e.g. [2], [6], [12], [16], [20]). The result of this paper shows that any of the equivalent
representations of the Evans function, which are valid for large λ , can be analyzed. In other
words, particular forms of the Evans function may be better suited for large λ analysis.

Here we present a large λ result which is simple to verify. It is new, but it is really a
reinterpretation of Proposition 1.17 of Pego & Weinstein [20]: indeed, the proof carries over
almost verbatim. It generalizes their result for the case k = 1 to k > 1 by simply applying the
result on

∧k(Cn) , rather than to the system on C
n . The result gives a sufficient condition

for D(λ) → 1 as λ → ∞ along the real axis. It provides a neat proof in the case of the
Boussinesq analysis, and may be useful for other examples (see [7] for an application of this
result to the fifth-order KdV equation).

Lemma 2.1 (Pego-Weinstein Lemma) Consider the system

ux = A(x, λ)u , u ∈ C
n , λ ∈ Λ ,
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where C
n is considered to be an oriented inner product space, and Λ is as defined in §2.

Suppose that the spectrum of

A∞(λ) = lim
x→±∞

A(x, λ) ,

is such that, for all λ ∈ Λ , the eigenvalue of A
(k)
∞ (λ) with largest negative real part is unique

and simple. Denote this eigenvalue by α(λ) and its right eigenvector by ζ+(λ) and its left
eigenvector by ⋆ζ−(λ) with normalization ζ−(λ)∧ ζ+(λ) = V (see §2 and §4 for definition).

Let U(x, λ) ∈
∧k(Cn) be the solution of the system

Ux = A(k)(x, λ)U satisfying lim
x→+∞

e−α(λ)xU(x, λ) = ζ+(λ) ∈
∧k(Cn) .

Similarly, let W(x, λ) ∈
∧k(Cn) be the solution of the system

Wx = −A(k)(x, λ)TW satisfying lim
x→−∞

eα(λ)xW(x, λ) = ⋆ζ−(λ) ∈
∧k(Cn) .

Using U(x, λ) and W(x, λ) , the Evans function can be expressed in the form

D(λ) = W(0, λ) · U(0, λ) = 〈W(0, λ),U(0, λ)〉 ,
where 〈·, ·〉 is the standard inner product on C

d , with d the dimension of
∧k(Cn) .

Now, suppose A
(k)
∞ (λ) is diagonalisable for large λ and let V(λ) be the matrix of right

eigenvectors such that first column corresponds to ζ+(λ) . If
∫ ∞

−∞
‖V(λ)−1[A(k)(x, λ) − A(k)

∞ (λ)]V(λ)‖dx ≤ C, independent of λ

∫

|x|≥x0

‖V(λ)−1[A(k)(x, λ) − A(k)
∞ (λ)]V(λ)‖dx → 0, as x0 → ∞, uniformly in λ

∫ ∞

−∞
‖V(λ)−1[A(k)(x, λ) − A(k)

∞ (λ)]ζ(λ)‖dx → 0, as |λ| → ∞.

Then

V(λ)−1U(0, λ) = V(λ)−1ζ+(λ) + o(1), for |λ| → ∞
and W(0, λ)V(λ) is bounded with

W(0, λ)V(λ)e1 = W(0, λ)ζ+(λ) = 1 + o(1) for |λ| → ∞.

This implies that D(λ) → 1 as |λ| → ∞ .

Proof. The proof of Proposition 1.17 in [20] carries over almost verbatim. �

C Proof of Proposition 5.1

The matrix A∞(λ) associated with the system at infinity for the multi-symplectic form of
the Boussinesq model takes the following form [6]

A∞(λ) =




0 1 0 0

1 − 2u0 0 −λ c

0 0 0 1

λ −c 0 0



,
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where u0 = 1
2 [1 −

√
1 + 4a] is the asymptotic (x → ±∞) value of the u -component of the

solitary wave solution.
Hence the induced matrix on

∧2(C4) , relative to the standard basis,

{ e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4 }
is

A(2)
∞ (λ) =




0 −λ c 0 0 0

0 0 1 1 0 0

−c 0 0 0 1 0

0 1 − 2u0 0 0 1 −c
−λ 0 1 − 2u0 0 0 −λ
0 −λ 0 c 0 0




.

For |λ| large, the eigenvalues of A∞(λ) are

µ = µ0

√
λ− c

2
µ2

0 + O( 1√
λ
), where µ4

0 = −1.

Note that at leading order, order λ , the term in the expansion vanishes. This is due to the
fact that at order λ the matrix A∞(λ) is given by J−1

c M and this matrix has zero as an
eigenvalue of algebraic multiplicity four. The six eigenvalues of the induced matrix are

±2
√
λ+ O(

√
λ), ±i2

√
λ+ O(

√
λ), and ± ic+ O(

√
λ).

An eigenvector of A∞(λ) associated with an eigenvalue µ takes the form

ξ = (µ2, µ3, (λ− µc), µ(λ− µc)) ∈ C
4 .

¿From this expression, the induced eigenvectors on
∧2(C4) can be constructed, and it can be

easily shown, by explicit construction using the eigenvectors, that A
(2)
∞ (λ) is diagonalisable

when |λ| is large. The matrix of eigenvectors for A
(2)
∞ (λ) for |λ| large is given by

V(λ) =
1√
λ




4 −4 4 4 4i −4

2
√

λ
0 2i

√

λ

−2i
√

λ
0 2

√

λ

−2 2i 2 2 −2 2

−2 −2i 2 2 2 2

4
√
λ 0 −4i

√
λ 4i

√
λ 0 4

√
λ

1 1 1 1 −i −1




+ O
(

1

λ

)
V1(λ)

where

V1(λ) =




1 1 1 1 1 1

1
√

λ

1
√

λ

1
√

λ

1
√

λ

1
√

λ

1
√

λ

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1




.
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The induced residual matrix associated with the x-dependent part of A(x, λ) is

R(2)(x, λ)
def
= [A(2)(x, λ) − A(2)

∞ (λ)] =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 f(x) 0 0 0 0

0 0 f(x) 0 0 0

0 0 0 0 0 0




,

where f(x) = 6δ2sech2(δx) . The inverse of V(λ) is

V(λ)−1 =

√
λ

32




1 4
√
λ −2 −2 2√

λ
4

−2√
λ

O( 1
λ
) −4i√

λ

4i√
λ

O( 1
λ
) 8√

λ

1 −4i
√
λ 2 2 2i√

λ
4

1 4i
√
λ 2 2 −2i√

λ
4

−2i√
λ

O( 1
λ
) −4√

λ

4√
λ

O( 1
λ
) 8i√

λ

−1 4
√
λ 2 2 2√

λ
−4




+ h.o.t,

where the higher order terms are the next order in 1√
λ

for each entry in the matrix.

Altogether this gives

V(λ)−1R(2)(x, λ)V(λ) =
f(x)

8




0 i 0 0 −1 0

0 0 0 0 0 0

0 −1 0 0 −i 0

0 1 0 0 i 0

0 0 0 0 0 0

0 i 0 0 −1 0




+ O
(

1√
λ

)

Thus

‖V(λ)−1R(2)(x, λ)V(λ)‖ =
f(x)

8
+ O

(
1√
λ

)

and

‖V(λ)−1R(2)(x, λ)ζ‖ = ‖V(λ)−1[A(2)(x, λ) − A(2)
∞ (λ)]V(λ)e1‖

= O
(
f(x)√
λ

)

So all three integral conditions of the Pego-Weinstein Lemma in Appendix B are satisfied and
we can conclude from that Lemma that the Evans function converges to unity for λ → ∞
along the real axis.
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