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1. Introduction

Robust optimization dates back at least 30 years to the work
of Soyster (1973). With the advent of efficient algorithms
for conic optimization problems, the field of robust opti-
mization has expanded significantly over the past decade.
Helping to spark this recent growth was the work of
Ben-Tal and Nemirovski (1999, 2000), who show that even
small perturbations of uncertain quantities can result in
highly infeasible solutions. More recent work has focused
on the properties of the solutions and the tractability of
various robust formulations, as well as extending robust-
ness to more general conic problems (e.g., Bertsimas et al.
2004, Bertsimas and Sim 2006, El Ghaoui and Lebret 1997,
El Ghaoui et al. 1998).

In this paper, we consider the case of robust optimization
in the context of linear optimization problems. In particular,
for linear optimization with uncertain constraint matrix A,
the robust problem is without loss of generality in the form

min{c'x: AX<b VA € U},

where x € R” is a decision vector, ¢ € R", b € R™, A e Rmn
is a matrix of uncertain coefficients, and % is an uncer-
tainty set for A. Note that this form is general enough to
capture uncertainty in the right-hand side vector and the
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cost vector as well; indeed, if b is uncertain, we may add
a variable x,; and include b as a column of the matrix A
and constrain x,_ ; = 1. If ¢ is uncertain, we may add a vari-
able ¢ and the constraint ¢’x > ¢, and change the objective
to minimizing ?.

The idea of the robust optimization approach is to com-
pute optimal solutions that retain feasibility for all possible
realizations of A within this prescribed uncertainty set %U.
The literature on robust optimization, however, is essen-
tially silent on the the question of constructing these uncer-
tainty sets. Ellipsoidal uncertainty sets, as well as other
norms, are common in many treatments (e.g., Bertsimas
et al. 2004). Although often rooted in some statistical con-
siderations, these approaches are fundamentally ad hoc,
with emphasis usually placed on sets that preserve compu-
tational tractability.

Here we provide a prescriptive methodology for con-
structing uncertainty sets within a robust optimization
framework for linear optimization problems with uncertain
data. We accomplish this by taking as primitive the deci-
sion maker’s attitude toward risk. We show that when this
attitude can be expressed in the form of a coherent risk
measure (Artzner et al. 1999), then the optimization prob-
lem with such a risk measure is equivalent to a robust opti-
mization problem with an explicit, convex uncertainty set.
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Our approach is “data-driven,” i.e., the only information
on the uncertain matrix A at our disposal is a finite set
of sampled matrices A, ..., Ay. In addition to avoiding
complicated, distributional assumptions, this data-driven
approach is well suited to practical settings, in which the
realizations of the uncertain parameters are typically the
only information available.

We summarize our key results as follows:

1. Given a coherent risk measure as a primitive, as
well as realizations of the uncertain data in the problem,
we construct a corresponding convex uncertainty set in a
robust optimization framework. This is important because
the uncertainty set becomes a consequence of the particular
risk measure the decision maker selects. Thus, risk prefer-
ences that can be expressed in the form of a coherent risk
measure lead to convex uncertainty sets of an explicit con-
struction. A converse implication also holds; convex uncer-
tainty sets within the parameter support induce a coherent
risk measure.

2. We consider an important subclass of coherent risk
measures that we call distortion risk measures, which sat-
isfy some additional risk hedging and distribution invari-
ance properties. In the case of a discrete distribution over
rational probabilities (which may always be converted to
a uniform one over a potentially larger probability space),
we show that these distortion measures are generated by
a finite number of conditional value-at-risk (CVaR) mea-
sures. Furthermore, we show that distortion risk measures
correspond to uncertainty polytopes with a special structure
that allows for efficiently solvable robust linear programs.

3. A further subclass of distortion risk measures induce
uncertainty polytopes that are symmetric through the sam-
ple mean regardless of the underlying support. We show
that this subclass is also finitely generated. Moreover, these
symmetric uncertainty sets may be described by a norm
and can be used to find inner approximations to arbitrary
polyhedral sets, as we show.

We emphasize that we are attempting to make a contri-
bution to robust optimization, not risk theory. For the most
part, we are leveraging known results from risk theory to
develop our approach. Indeed, the risk theory community
is generally focused on more general probability spaces; as
we have stated, our restriction to discrete spaces is moti-
vated in part by the practical issue of sampling, as well as
ease of insight into the geometry of the resulting uncer-
tainty sets (e.g., associating extreme points with mixtures
of particular “outlier” samples, etc.).!

A contemporaneous paper done independently by
Natarajan et al. (2009) also explores the connection bet-
ween risk measures and uncertainty sets. The thrust of their
work, however, is to derive risk measures from uncertainty
sets. The focus of our work here, on the other hand, is on
a methodology for uncertainty set construction beginning
with a risk measure as a primitive.

The outline of this paper is as follows. Section 2 intro-
duces some necessary background from risk theory. Sec-
tion 3 considers general coherent risk measures. Section 4

introduces distortion risk measures and develops the
associated polyhedral uncertainty sets in detail. Section 5
concludes the paper.

Notation. Throughout the paper, e will denote the vector
of ones and e, = e/N. We will denote the N-dimensional
probability simplex by A¥, i.e.,

AN £ (peRY: ep=1}.

Also, for any two probability measures @ and [P defined
on the same underlying measure space ({1, ¥ ), < denotes
absolute continuity; specifically,

QP <— QA =0 VAeF st P(A)=0.

Lastly, if @ < P, then dQ/dP denotes the Radon-
Nikodym derivative of @ with respect to P.

2. Background from Risk Theory

Before describing our approach to constructing uncertainty
sets, we need some background from risk theory.

2.1. Risk Measures

Consider a probability space (2, 7, [P). Let % be a linear
space of random variables on (), i.e., a set of functions
X: QO — R. It is typically assumed that X is bounded; in
particular, % C L*(Q, F,P).2 X, for the introduction, can
be thought of as a reward from an uncertain position. We
will use the notation X > Y for X, Y € & to represent state-
wise dominance, i.e., X(w) 2 Y(w) for all w € Q.
We have the following definition.

DEFINITION 2.1. A function u: % — R, which satisfies, for
all X,Y e%:

1. Monotonicity: If X > Y, then w(X) < u(Y).

2. Translation invariance: If ¢ € R, then u(X + ¢) =
w(X) —c, is called a risk measure.

A risk measure can be interpreted as the smallest amount
of capital necessary by which to augment a position X to
make it “acceptable.” As such, the properties above are
clear; if one position X never performs worse than another
position Y, then it cannot be any riskier. In addition, if we
augment our position by a guaranteed amount ¢, then our
capital requirement is reduced correspondingly by c¢ as
well. A classic example of a risk measure is the so-called
value-at-risk defined as

VaR, (X) £inf{teR: P{t+X >0} >1—a]}.

This risk measure can be interpreted as the smallest amount
of additional capital required to ensure that a position
breaks even with probability at least 1 — . See, for exam-
ple, Follmer and Schied (2004) for more on risk measures.
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2.2. Coherent Risk Measures

Although a risk measure need only satisfy translation in-
variance and monotonicity, we may desire additional, struc-
tural properties, such as the way risk measures should deal
with diversification, etc. Artzner et al. (1999) present an
axiomatic definition of risk measures satisfying some nat-
ural properties and termed such measures coherent, as we
now define.

DEFINITION 2.2. A function w: % — R that in addition to
being a risk measure satisfies for all X,Y € &:

1. Convexity: If A € [0, 1], then w(AX 4+ (1 — A)Y) <
Ap(X) + (1= )u(Y).

2. Positive homogeneity: If A > 0, then w(AX) = Au(X),
is called a coherent risk measure.

The intuition behind these axioms is fairly clear. For
example, the convexity property ensures that diversifica-
tion of positions can never increase risk under a coherent
risk measure; this is desirable for both economic reasons
(convex preferences) and computational ones (ensuring that
optimization over risk measures induces convex optimiza-
tion problems). The positive homogeneity axiom states that
risk scales linearly with the size of a position; when this
axiom is lifted, we obtain the more general class of convex
risk measures introduced by Follmer and Schied (2002).
Note also that, when positive homogeneity holds, the con-
vexity axiom is equivalent to the requirement of subaddi-
tivity, i.e.,

pX+Y)<pu(X)+u(Y) forall X,Yew.

One of most noteworthy coherent risk measures is the con-
ditional value-at-risk, defined as

w0 £ intfo (v - 2071}

for any a € (0, 1]. This coherent risk measure is explored
in detail by Rockafellar and Uryasev (2000). For atomless
distributions, this is equivalent to —E[X | X < —VaR, (X)].
Delbaen (2000) shows that CVaR is the smallest upper
bound to VaR among all coherent risk measures that depend
only on the distribution of the underlying random variable.
Acerbi and Tasche (2002) define the same risk measure,
but name it expected shortfall (explored also by Bertsimas
et al. 2004). Nemirovski and Shapiro (2006) use CVaR as
a means of finding convex approximations to chance con-
strained optimization problems.

We will also find this risk measure to be of central impor-
tance, and it will have a variety of interesting properties
which we will examine and discuss in §4.

2.3. Representation Theorem for Coherent
Risk Measures

The following is the main result related to coherent risk
measures. In essence, it states that we can describe any

coherent risk measure equivalently in terms of expectations
over a family of distributions. The result is largely a conse-
quence of the separation theorem for convex sets. The proof
actually predates the introduction of coherent risk measures
(see, e.g., Chapter 10 of Huber 1981 for one version of the
proof).

THEOREM 2.1 (REPRESENTATION OF COHERENT RISK MEA-
SURES). A function w: % — R is a coherent risk measure if
and only if there exists a family of probability measures @
on (Q,F) with Q K P for all Q € @ such that

p(X)=supEy[-X] VXeZ, (1)

Qe@

where Eg[X] denotes the expectation of the random vari-
able X under the measure Q (as opposed to the measure
of X itself).?

The representation theorem says that all coherent risk
measures may be represented as the worst-case expected
value over a family of “generalized scenarios.” For exam-
ple, the generating family for CVaR is @, = {Q < P:
dQ/dP < 1/a}.

This is a duality theorem, and the connection to robust-
ness is clear; a risk measure is coherent if and only if it
can be expressed as the worst-case expected value over a
family of distributions. This is a very clear ambiguity inter-
pretation and is the crucial idea as we attempt to construct
uncertainty sets in a robust optimization framework from a
given coherent risk measure.

3. Coherent Risk Measures and
Convex Uncertainty

In this section, we show how the concepts from risk
theory—in particular, coherent risk measures—allow us to
construct a robust counterpart to a linear optimization prob-
lem with uncertain data. We will focus on a single con-
straint of the form a’x > b. For multiple constraints, we can
obviously apply this framework in constraintwise fashion;
on the other hand, depending on how we wish to weigh
the risk associated with the various constraints, this may or
may not be appropriate. Chen et al. (2009) consider using
the CVaR risk measure as a tractable means of addressing
multiple chance constraints. The issue of vector-valued risk
measures is an interesting one and very much open; see,
for example, Jouini et al. (2004) for an effort at extend-
ing coherent risk measures to more general vector spaces.
Because this is still unresolved, our focus is therefore on a
single constraint.

We note the following issues in a practical context.

(1) We generally do not know the distribution of a. In
fact, we usually only have some finite number N of obser-
vations of the uncertain vector a.

(2) Even equipped with a perfect description of the dis-
tribution of a, it is not clear how we should construct an
uncertainty set % within a robust optimization setting.
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To address the first issue, we will make the following
assumption.

ASSUMPTION 3.1. The uncertain vector a is a random vari-
able in R" on the finite probability space (Q, F,P), where
|Q| =N, 7 =22 We denote a, 2 a(w,) and the support of
abys=/{a,,...,ay}.

REMARK 3.1. Actually, this assumption is not really needed
for the results in this section; the result will still go through
for infinite probability spaces (see Natarajan et al. 2009).
Because our underlying motivation in this paper is the case
in which we are data-driven, and because we will rely
heavily on the discrete space in the following sections,
however, we adopt the assumption now.

REMARK 3.2. We will occasionally refer to s/ as the data
of the problem. In some cases, it will also be convenient to

use the matrix form A =[a,,...,ay].
Thus, we assume that the sample space is confined to
{a,,...,ay}, and a is distributed across these N values. On

the one hand, this is restrictive because N could be much
smaller than the size of the actual sample space, which
may be astronomically large in number, if not continuous.
Moreover, this approach cannot capture events outside the
set of samples. On the other hand, it seems quite useful
practically because the data are many times (e.g., financial
applications relying on historical returns) the only informa-
tion we have about the distribution of a. In other words,
although such an approach admittedly has its shortcomings,
we nonetheless find it to be very useful in applications and
will therefore focus on this approach for the remainder of
the paper.

For the second issue, we take as primitive a coherent risk
measure. The choice of this risk measure clearly depends
on the preferences of the decision maker. Given a constraint
based on this coherent risk measure and a distribution de-
fined as above, we will show that there exists an equivalent
robust optimization problem with a unique convex uncer-
tainty set.

Specifically, the decision maker would like to ensure
some level of conservatism for satisfying the constraint,
and they impose this with a risk aversion constraint of the
form p(a’x —b) < 0. This is appropriate in situations when
simply taking the expected value of a is not a good enough
guarantee; notice also that this constraint is convex in X,
which contrasts with the approach of chance constraints
often proposed as a method for embedding conservatism
into the optimization problem.

To put this into more concrete terms, imagine X as a
decision vector representing allocation across n production
units with uncertain production levels a; we are concerned
about the possibility of not meeting a particular total pro-
duction level b. Meeting b in expectation is simply not
a good enough guarantee. Of course, we could enforce
P{a'x > b} > 1 — « for some sufficiently small «, but this
destroys convexity of the problem in general.

A coherent risk measure, on the other hand, is an ap-
proach that allows us to obtain some degree of conser-
vatism without compromising convexity of the problem.
For example, the constraint CVaR,(a’x —b) < 0 says,
roughly,* that the expected value of the total production, in
the a% worst cases, is no less than b. Notice also that this
implies P{a’x > b} 21— qa.

We have the first result, which stems in straightforward
fashion from Theorem 2.1.

THEOREM 3.1. If the risk measure ( is coherent and a is
distributed as in Assumption 3.1, then

{(xeR" uw@x—->0)20}={xecR"a'x>bVacU}, (2
where
U =conv({Aq: q € @}),

and @ is the family of generating measures for p. Con-
versely, if U C conv(sd), then (2) holds with the coherent
risk measure generated by

@={qeA":JacU s.t. Aq=a).

PROOF. Assume that w is given and coherent; by Theo-
rem 2.1 and the fact that a is distributed on s, we have

pw@x—b)=pu(ax)+b
=supE,[-a'’x]+b
Qea

=sup{—(Aq)'x} +b

qe@

=—inf{a'’x} + b

acU

= —inf{a'x} + b,
acU

where U = {Aq: q € @} and U = conv(%), and the last
line follows from the simple observation that the inf of a
linear function over any bounded set is equal to the inf of
that function over the convex hull of that set. The converse
direction follows in nearly identical fashion with the steps
reversed. [

Theorem 3.1 provides a methodology for constructing
robust optimization problems with uncertainty sets possess-
ing a direct, physical meaning. The decision maker has
some risk measure w that depends on their preferences.
If w is coherent, there is an explicit uncertainty set that
should be used in the robust optimization framework. This
uncertainty set is convex and its structure depends on the
generating family @ for u and the data s{. We provide a
few examples.

ExAMPLE 3.1 (SCENARIO-BASED SETS). Consider the co-
herent risk measure generated by

@ ZCOHV({ql’ cer qm})’
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where ¢, € AV, This is simply a coherent risk measure
based on scenarios for the underlying distribution, and the
connection to robustness is transparent. The uncertainty set
is just

U=conv({Aq,,...,Aq,})-

ExXAMPLE 3.2 (CONDITIONAL VALUE-AT-RISK). For CVaR,
we have the generating family @ = {q € A": ¢; < p;/a}.
This leads to the uncertainty set

1 1
U= — a—+(1—— a.:
CO“"({aZPzaz ( azpt>a./

iel iel

IC{l,...,N}, je{l,...,N]\I, Zp,.ga})
iel
This set is a polytope. When p, =1/N and a = j/N for
some j € Z_, this has the interpretation of the convex hull
of all j-point averages of 1. We will explore these kinds
of sets in more detail in the following section.

ExaMPLE 3.3 (ONE-SIDED MOMENTS). For an example
that uses higher-order moments, consider the risk measures

e o(X) = ~E[X] + 0o, _(X).
where r > 1, @ € [0, 1], and
o, _(X)£[E(X -E[X]))T"".

These are coherent risk measures (Fischer 2001). Moreover,
they are representable by the family of measures

Q.o ={q€A": g;=p;(1+a(5,-P'8)),5>0, [|8], <1},

where s =r/(r — 1) and ||q||, = (E|q]*)'/*. These lead to
norm-bounded uncertainty sets of the form

U={a+ a(Ay— (e'y)a): y=0, |y|,<1}.

The remainder of this paper focuses on classes of coher-
ent risk measures that give rise to uncertainty sets with
special structure.

4. Distortion Risk Measures and
Polyhedral Uncertainty

For an arbitrary coherent risk measure w, the uncertainty set
in the corresponding robust optimization problem depends
explicitly on the generator @ of u given by Theorem 2.1. In
general, without assuming a structural form for the coherent
risk measure or imposing some additional properties on it,
we cannot say anything more about the structure of the
resulting uncertainty sets.

In this section, we explore a subclass of coherent risk
measures that satisfy some additional properties that are
often desirable in practice. We show that the resulting
risk measures are equivalent to polyhedral uncertainty sets
of a special structure. We begin with a bit of necessary
background.

4.1. Comonotonicity, Choquet Integrals, and
Law Invariance

As stated, when a risk measure satisfies positive homogene-
ity, the convexity property is equivalent to the property of
subadditivity, i.e., for all X, Y € %, w(X +Y) < u(X) +
@(Y). This has the flavor of rewarding diversification;
aggregating positions should never increase the risk.

Often, however, it may be that two random variables
“move together” in a way that one cannot be hedged by
another. In such situations, it seems reasonable that the
risks should simply sum up rather than being reduced. We
now define the following.

DEFINITION 4.1. Two random variables X, Y € % that sat-
isfy, for all (0w, ®") € Q x Q,

(X (@) = X () (Y (w) = Y () 20,

are called comonotone. A risk measure u: ¥ — R that
satisfies, for all comonotone X, Y € &,

(X +Y)=p(X)+up(),
is called comonotonic.

As a simple example, consider a call option with strike
price K and the price S of the underlying stock. The
exercise value is C = max(0,S — K). Clearly, S and C
are comonotone. In this case, a comonotonic risk measure
would not allow us to reduce the risk of a long position in
the stock with a long position in the call.

On a related note, comonotonicity is an important prop-
erty when considering sums of random variables with arbi-
trary dependencies. Comonotone random variables have
worst-case summation properties among all dependence
structures, and, as such, have been used by Dhaene et al.
(2002) to compute upper bounds on sums of random vari-
ables. Coherent risk measures that are also comonotonic
are linked to Choquet integrals, which we now define with
some more terminology (originally introduced by Choquet
1954 himself).

DEFINITION 4.2. A set function g: ¥ — [0, 1] is called
monotone if g(A) < g(B) for all A C B C ), and normal-
ized if g(&) =0 and g(Q) = 1. If, in addition, g satisfies

g(AUB)+g(ANB) < g(A)+g(B),

we say g is submodular.

This now allows us to define the Choquet integral, intro-
duced in Choquet (1954).

DEFINITION 4.3. The Choquet integral of a random vari-
able X € & with respect to the monotone, normalized set
function g: F — [0, 1] is defined as

fngé/:o(g(X>x)—1)dx+/0wg(X>x)dx. 3)
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Choquet integrals have been used in the application of
pricing insurance premia (e.g., Denneberg 1990, Wang
2000). One direction of the following result is originally
due to Dellacherie (1970); Schmeidler (1986) later com-
pleted it.

THEOREM 4.1 (SCHMEIDLER 1986). A coherent risk mea-
sure p: ¥ — R is comonotonic if and only if it can be
written in the form [(—X)dg, where g: F — [0,1] is a
monotone, normalized, and submodular set function.

For example, CVaR can be written as the Choquet inte-
gral of the function g(A) = min{P {A}/a, 1}, which is
clearly monotone, normalized, and submodular; this alone
tells us that CVaR is comonotonic and coherent.

We define one more property of risk measures; this prop-
erty is intimately connected to the ability to estimate risk
measures from historical data.

DEFINITION 4.4. A risk measure u: % — R that satisfies
p(X)=pw(Y) for all X,Y €% such that X and Y have the
same distribution under P is called law invariant.

Although law invariance is intuitive, it could be violated
when there is some notion of ordering to the events of the
underlying probability space. As a simple example, con-
sider || =2 and let X = (1,0) and Y = (0, 1) be two
random variables on Q, with P = (1/2, 1/2). Clearly, X
and Y have the same distribution under P. On the other
hand, consider the coherent risk measure defined by the
singleton family @ = {(1/3,2/3)}; then u(X)=—1/3 #
n(Y)=-2/3.

On the other hand, law invariance is an eminently rea-
sonable property when we are dealing with the situation
when we are estimating risk measures from data, which is
our motivation. In fact, if a risk measure is not law invari-
ant, then in general it is impossible to consistently estimate
the risk measure from data. To see this, consider X and Y
with the same distribution and let u be a risk measure such
that w(X) # u(Y). Let {X;} and {Y;} be a sequence of N
i.i.d. samples of X and Y, and let fi: RY — R be any esti-
mator of u that depends only on the sample distribution.
As N — oo, the sequences are asymptotically identical,
solimy_  Aa(X,, ..., Xy)=1limy_  Aa(Y,,...,Yy). Onthe
other hand, w(X) # u(Y), so at least one of the estimators
must be asymptotically wrong. Therefore, law invariance
is a necessary condition to be able to consistently estimate
the risk measure.

Summarizing the properties in this section, we introduce
the following nomenclature.

DEFINITION 4.5. A coherent risk measure that is also
comonotonic and law invariant is called a distortion risk

measure.

4.2. Representation of Distortion Risk Measures

We now show a representation theorem for distortion risk
measures in terms of conditional value-at-risk. The main

result is already known in the case of atomless distributions
(Kusuoka 2001, Follmer and Schied 2004). Because our
focus is on the data-driven case, i.e., discrete distributions,
we cannot directly apply these previously known results.
Moreover, in contrast to the known results in the atom-
less case, our result shows generation by a finite number of
conditional value-at-risk measures. Throughout the remain-
der of the paper, we will operate under the following
assumption.

ASSUMPTION 4.1. The distribution P satisfies P{w,} =
1/N forallie{l,...,N}.

REMARK 4.1. Although this is obviously a very special dis-
tribution, it is not a very limiting assumption given that we
have already restricted ourselves to discrete spaces. One of
the central motivations of this paper is to explore the con-
nection between risk measures and uncertainty sets in the
setting, very common in practice, in which we are obtain-
ing distributional information from samples. As such, this
is obviously far and away the most relevant discrete dis-
tribution; of course, it also encompasses any distribution
P{w;} =k;/N, where k; € Z, and k; +---+ky =N sim-
ply by replicating samples (or discarding them if k; = 0).
Furthermore, given an arbitrary, discrete distribution rep-
resentable with rational numbers, we may always convert
it to such a form for some N. The price we will pay for
such a conversion to a larger N will be that of increased
complexity in terms of the size of the corresponding robust
problem.

We now work toward a representation theorem, which
tells us that a risk measure in this setting is a distortion risk
measure if and only if it is a mixture of CVaR measures.
We start with the following lemma.

LEmMMA 4.1. A risk measure w is a distortion risk measure
if and only if there exists a function v: [0, 1] — [0, 1], sat-
isfying fa]:O v(da) =1, such that

w(X) = / ':O CVaR, (X) v (da).

ProoF. Note that the result is known (Kusuoka 2001) in
the case of atomless distributions. Leitner (2005) proves a
result for second-order stochastic dominance preserving
(a stronger condition than law invariance) coherent risk
measures on general probability spaces, but does not con-
sider comonotonicity. As far as we know, our claim in this
special case has not been shown; nonetheless, our proof
closely follows the proof of the atomless case from Follmer
and Schied (2004).

One direction is clear because it is well known that CVaR
is a distortion risk measure, and such risk measures are
closed under convex combinations. For the other direction,
let w be a distortion risk measure; because it is comono-
tonic and coherent, Theorem 4.1 tells us there exists a nor-
malized, monotone, and submodular function g such that
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w(X) = [(—X)dg. Furthermore, because p is law invari-
ant, g must be a function of the probability alone, i.e., there
exists a function 6: [0, 1] — [0, 1] that is nondecreasing
and satisfies 6(0) =0 and 6(1) =1 such that (P {A}) :=
g(A) for all A € F. Note that this only defines 6 at the
points i/N, i € {0, ..., N}; we simply take the piecewise-
linear function through these points. If we can show that
this piecewise-linear function 6 is concave, the result fol-
lows by Follmer and Schied (2004, Theorem 4.64).

To this end, we need to show that 8(i/N)—0((i—1)/N)
>6((i+1)/N)—0(i/N) forallie{l,..., N —1}. Choos-
ing A, =,_, w,, this is equivalent to g(A,) — g(A\w,) >
g(A;Uw,;, ) — g(4;). However, a function g is submodu-
lar if and only if it satisfies this very property of nonin-
creasing second differences (e.g., Queyranne 2002), so we
are done. [

REMARK 4.2. Note that Assumption 4.1 is critical for
the reverse direction of the proof above. Indeed, con-
sider a probability space P{w,} = 1/3, P{w,} = 2/3
on O = {w,, w,}. The function g(¥) =0, g({w,}) =0,
g({w,}) =1, and g(Q) =1 is normalized, monotone, sub-
modular, and a function of the probability alone, but the
resulting 6 above is not concave. If the probabilities are
equal, however, law invariance requires g({w,}) = g({w,}).
which eliminates the possibility of such counterexamples.

We can strengthen this representation to one of finite
generation, as we now show. We start with a definition.

DEFINITION 4.6. The restricted simplex in N-dimensions is
denoted by A" and defined as

AV E2{qeA: g > >qy).

THEOREM 4.2. A risk measure  is a distortion risk mea-
sure if and only if there exists a q € AN such that

u(X)=— Z qiX(iy» 4)

where X are the increasing order statistics of X, i.e.,
X1y S < X(y). Moreover; every such q € AN may be writ-
ten in the form

qZZAj(]j’ (5)

where N >0, Z;V:l Aj=1,and § € A¥N corresponds to the
distortion risk measure CVaR;y.

Proor. First, consider a risk measure given as in (4). Such
a risk measure is coherent because it is generated by the
set @ ={q € AY: ¢/ = q,, 0 € S(N)}, where S(N) is
all permutations of N elements. It also obviously comono-
tonic. Law invariance follows because if X and Y have the
same distribution under Assumption 4.1, they must have
Xi =Y forallie{l,..., N}

For the other direction of the first part, note that we have,
fora>1/N,

CVaR, (X) = sup
{qeaAN:¢;<1/(Na)}

] el Na — |Na|
= Na 2 X~ T Naj )N

i=1

[Eq[_X]

N
2= 4t
i=1

(and for a < 1/N, we have q% = q'/"). Via Lemma 4.1, we
can write u in the form (4) with ¢, = [ ¢?'v (da); because
q“ € AV, we have q € A" as well, which completes the first
part of the proof.

To show finite generation of q, consider the matrix Q,
with columns ¢/, i.e.,

'1 1 1 17
N—-2 N-1
0.=|0 o 1 1 1
N N—-2 N-1 N |’
1 1
0 0 S
N—1 N
1
o -.. 0 0 —
L N

and define the vector A € RY as Ay = Ngy, Ay_; = (N —Aj)
(qy_j—qn—j1) forall je{1,...,N—1}. We have q € A",
$0 g; < ¢;41, and thus A > 0. In addition,

N N
2N =29=1

j=1 j=1
Finally, we compute the vector QA and see that

i

[QN)\]I' = Z

j=1
=qy+(qy-1 —aqy) + -+ Qi1 — Giy2)
+(4; — Git1)

N_—j_HAN—j+1

=4
which completes the proof. [J

4.3. Connecting to Polyhedral Uncertainty

With the representation for distortion measures in hand, we
now connect to their induced uncertainty sets. Theorem 4.2
indicates that any distortion risk measure is generated by
the family

@={q €A": ¢/ =g, 0 €S(N)}

for some q € A¥. This motivates the following definition.
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Figure 1. 1l (/) for various q for an example with

N =5.

M0, q = (1/5,1/5,1/5,1/5, 1/5)

a3

0 w0, q = (112, 172,0,0,0
7 (1), q = (1/4, 1/4, 1/4,1/4,0) Ty a=( )

Ty(s0), q =(1,0,0,0,0)

DEFINITION 4.7. For some measure q € AV and discrete set
d={a,,...,ay} with a, e R" for all i € {1,..., N}, we
define the q-permutohull of i by

N
I, (s4) = conv({qu(i)ai: = SN}>.
i=

Figure 1 illustrates a family of such polyhedra. With
most of the work done, we are now able to link these sets
to distortion measures.

THEOREM 4.3. If a risk measure W is a distortion risk mea-
sure, the following hold:

[xeR" u(@x—b) >0}
={xeR"ax>bVacll, ()]
={xeR" 3y, y,) eR" xR", s.t. €y, +€y, >0,
Y1,i+Y2,j<fIi'(a;X) V(i,j)e{l,,,,,N}z},

Proor. The first equality follows by applying Theo-
rems 3.1 and 4.2. To show the second one, we consider the
problem for fixed x, minaenq(w) x'a. This is equivalent to
the problem

minimize ) g; - (a)x) - wy,
ij
N
subject to Y w,; =1 Vie{l,...,n},
Jj=1 (6)
N
Zwijzl vie{l,...,n},

i=1

w; >0 V(i j)efl,...,N}%
in variables w;; € R™. The dual problem is

. , ,
maximize ey,+evy,

™)

subject to e}y, +e€y, < g;-aX,

in variables y, € RV, y, € RY. Because strong duality holds
between (6) and (7) (because (6) has a nonempty, bounded

feasibleset), we may replace the left-hand side of the robust
constraint with the objective from (7) and add in the dual
constraints as well, leaving us with the desired result. [

We remark that although II, (s/) has as many as N!
extreme points, the complexity of using it as an uncertainty
set is polynomial in N. Specifically, the equivalent prob-
lem formulation has only 2N extra variables and N? extra
constraints. In the case of CVaR, this reduces to @(N) addi-
tional variables and constraints.

COROLLARY 4.3. The class of polytopes
N 1 J

Uy () = conv({Z/\j[—_ Zagj(i)]: a;€S(N),
=1 LJ iz

N
je{l,...,N}}), A0, ) A =1,
j=1

is the class of all uncertainty sets induced by all distortion
risk measures.

PrOOF. From Theorems 4.2 and 4.3, the possible robust
constraints for distortion risk measures are of the form

. ael‘lqj (s4)

N
D> A; min (a'x)>b, ®)
=1

where A >0 and szvzl /\j = 1. From here, (8) holds if and
only if Z’j\;l A;Vix 2 b for all choices of extreme points v,
of Tl (sf). The result then follows by recognizing that
these extreme points are contained in the set of all j-point
averages of all permutations of the elements of /. [

Figure 2 highlights the result of Theorem 4.3. The
CVakR;  measures effectively generate the space of all dis-
tortion risk measures and, in this sense, are fundamental.

4.4. Distortion Risk Measures and Centrally
Symmetric Polytopes

In this section, we study a more restricted class of gen-
erating measures ; specifically, we study those that lead
to polyhedral uncertainty sets obeying a specific symmetry
property. These structures are useful because they naturally
induce norm spaces that we will use in the next section to
approximate arbitrary polyhedral uncertainty sets by those
corresponding to distortion risk measures.

DEFINITION 4.8. A set P is centrally symmetric through
X, € P if X, +x € P implies X, —x € P.

Here we will be interested in uncertainty sets that are
symmetric through the sample mean of the data. It turns out
that this will be true for any data if and only if q satisfies
a certain property.

PROPOSITION 4.1. For q € AV, I, (4) is centrally symmet-
ric through a = Aey for any 3 if and only if
q= 2eN — s> (9)

where o is a permutation and ey is the vector with 1/N
at each entry.
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Figure 2. Generation of AV by the CVaR measures for N =2, 3, 4.
N=2 N=3
9> (1,0) q3

A2

(1/2,1/2)

(1,0,0)

(1/3,1/3,1/3)

A3

(1/2,1/2,0,0)
(1/3,1/3,1/3,0)

(1/2,1/2,0)

q1 q3

q q1

ProOF. 11, (50) is centrally symmetric if and only if every
extreme point is centrally symmetric. An extreme point of
I, (s4) is of the form Aq, for some permutation o’. Let-
ting & = Aq,, — Aey, 11, () is symmetric if and only if
Aey — 8 =2Aey —Aq, €Il () for every permutation ¢’
Because this must hold for any A, this is true if and only
if there exists a permutation o” such that 2ey — q, = q,~
for every permutation o’. Clearly, (9) implies this to be
true. Conversely, choose ¢’ as the identity, which means
q =2ey —q,~ for some other permutation o, which is the
same as (9). O

This motivates the following definition.

DEFINITION 4.9. The symmetric restricted simplex in
N-dimensions is denoted by A = and defined by

AN = {qe AV q satisfies (9)}.

sym

We now prove that, like the restricted simplex, Ai‘;m is
generated by a finite family of distortion risk measures.

THEOREM 4.4. The class of distortion risk measures that
generates centrally symmetric sets 1L, (s0) for any si is
equivalent to the class of risk measures

N N
(X)) =D MA(X), A=0, Y A=1,

j=1 j=1
where N = |[N/2| + 1 and w;(X) is the distortion risk
measure pu;(X)=— Y1 q/xq with

2/N ifi<],
gl ={1/N ifj<i<N—j+1, (10)
0 otherwise.

PrOOF. We assume that N is odd; the proof for N even is
nearly identical, with some small changes on summation
limits. We define the matrix Q, € R¥*V by

QN=[ﬁ1 g ]

92 (1/4,1/4,1/4,1/4)
7

Analogous to Theorem 4.2, if we can show thgt the convex
hull of the columns of Q, is equivalent to Ag,m, we will
prove the claim.

For one difection, consider an arbitrary convex combi-
nation A € R of the columns of Qy, i.e., a vector q € RY
such that q = QuA\. Clearly, q > 0 and q sums to one. We
find that

Ly % A N
- - ) 1< s
_ N Nj=i+1 !
4i 1 2N—i =
N Z )\j, Z>N

We see that we can rearrange this to find that

gy =A(/N,
n-i=qn-is1 T A /N, 1<i<SN-1, (11)
1<i

95— =45-im1 + Ag_i1 /N, <i<N-—1,

from which it follows that g, > ¢,,, as well, so q € AY. We
now check the symmetry condition from Proposition 4.1.
We have

N 2
= —e¢ —
q N q
1 1 & -
——— Y"1, i<N,
_ N NJ.::.JrI /
2 12N7i N
———>"), i=N,
N NI
1 d ~
— /\], i<N,
— Nj:l
B Ly ﬁj A, i=N
-~ - j? 1z s
N Nj:2ﬁ—i+1

and we see that g, = g, under the permutation o (i) =
N — i+ 1 for all i€ {l,...,N}. This shows that
conv(Qy) C AY

sym*
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Figure 3.

For a case with N =6 data points (denoted by x): the six generators for I1, (s¢) (upper left) and the corre-

sponding distortion (CVaR; ) functions (lower left); the four generators for the centrally symmetric subclass
of Il (s¢) (upper right) and the corresponding distortion functions (lower right).

All

-05F

-1.0

Distortion functions

0 1/6 1/3 172 2/3 5/6 1.0
u

N
sym*

construct a X € RY by reversing the construction above
in (11). This leads us to

For the reverse inclusion, consider any q € A Now

Ay = Ngy,
N =N(Gy_is1 —qv-ir2) Vi€{2,....N}.

From the fact that the ¢, are nonincreasing, we see that
A > 0. In addition, we find that

N
YA =N(gq ,+q5)—1=N@2/N)—1=1,

i=1
so q € conv(Qy ), and we are done. [

Figure 3 depicts a simple two-dimensional case with
N =6 data points. Shown are the polytopes corresponding
to CVaR;  that generate all Il (s¢), as well as those cor-
responding to the distortion risk measures that generate the
space of all centrally symmetric polytopes.

4.5. Tight Distortion Risk Measure
Approximations to Arbitrary Polytopes

Given an arbitrary polytope contained within the support
as the uncertainty set, we can construct a corresponding
coherent risk measure, but not necessarily a distortion risk

Symmetric
1.0 *
*

0.5 *
a
So0F  * *

05+

*
-1.0 - L
-2 -1 0 1 2
aj
Distortion functions

1.0+

0.8 |
3 0.6
S0

04

02

0 1 1 1 1 1
0 1/6 1/3 12 2/3 5/6 1

u

measure. In this section, we consider the problem of find-
ing the largest uncertainty set contained in a polytope that
also corresponds to a distortion risk measure. This would
be useful, for example, in determining how conservative a
particular coherent risk measure (or, uncertainty set in the
robust setting) is compared to a distortion risk measure.

In general, it is not clear how to do this algorithmically,
but among the special class of distortion risk measures
inducing centrally symmetric II, (s/), we are able to do so
in a tractable way. This is because these risk measures nat-
urally induce a norm, and thus provide a convenient way
of approximating more general measure structures, as we
now illustrate.

We first describe the norm induced by the sets Il (s4),
where q € AY

sym*

N
sym

PROPOSITION 4.2. For a comonotone generator q € A
and any A, with a = Aey, the function

A : a—a
||a—a||qY%=1nf{a>0 ‘ ewq(&d)}, (12)
where 7 (s1) is 11, (1) shifted by —a, is a norm.

PROOF. ||-[|, ;; is a form of a Minkowski function, and it

is well known that this function is convex whenever the
underlying set in question (here 7, (s{)) is closed and con-
vex, which is the case in this construction. Without loss of
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generality, we assume that a = 0 in the remainder of this
proof.

lally; = O implies that a/e € I, (s/) for all € > 0.
Because I, (4) is a bounded set, this can only be the case
ifa=0.

If B> 0, it is easy to see that |Bal|, , = Blally ., by a
simple scaling argument. If 8 < 0, we have Ba € I1 (1)

if and only if II, (s¢) is centrally symmetric through zero;

N

this is the case, however, because q € Asym.

this, we see that ||Bal|, ., = |B]l|allq -
Finally, noting that this function is convex, we have, for
all a;,a, eR",

Combining all

la; + aZ”q,&Z =112(0.5a, + 0-532)”(1,:%
=20.5a; + 0.5a, [,
< la, ||q,yz + ||a2||q,:97’
which completes the proof that it is a norm. O

The norm ||-||
interest.

g« has one particular property that is of

Ay ]
LEMMA 4.2. Let q € A(,,, be any centrally symmetric gen-

erator and A € R. Then, the vector @ = Aq + (1 — A)ey
satisfies

1 A
oilla—alg . (13)

a—al; =
|| ||q,,/1 |)\|

for all a e R".

ProoF. The proof follows by noting that ITg (/) is a scaled
version of IT; (s¢) around a by a factor of A. Indeed, it is
easy to see that the extreme points of Il () are affine
combinations of the extreme points of Il (/) and a. Note
that because of this we may as well assume that A > 0
because A < 0 reflects the set through a, and it is centrally
symmetric through this point by construction. The result
then follows from the definition of |||, ,. O

Now consider a robust optimization constraint with an
arbitrary polytope % as the uncertainty set. We assume that
the sample mean a € %. In particular, assume that % has
the form

U={acR" wa>v, ie{l,...,m}}. (14)

In such cases, we can always find a distortion risk mea-
sure that leads to an inner approximation (a less conser-
vative uncertainty set) on the robust problem with %. We
will find an inner approximation that is centrally symmet-
ric through a and use the norm |||, ., derived in Proposi-
tion 4.2 to measure the quality of the approximation.

Lemma 4.2 immediately suggests a method for find-
ing an inner approximation to an arbitrary uncertainty
polytope “: Begin with a centrally symmetric generator
qe Af;m and “mix” it with as little of the generator ey
such that the result is contained in %. From Lemma 4.2,
the resulting I1. (s¢) will be the largest in the |-[|, ., sense
among all such mixtures contained in %. We now show
how to compute this algorithmically via linear optimization.

THEOREM 4.5. Given a centrally symmetric generator qe
Ag‘;m and an arbitrary polytope U CR" described by (14)
such that a € U, the centrally symmetric 11, (1), which is
largest in the ||-||4 , sense among all such 11 (1) C U, is

given by the solution to the linear optimization problem

maximize A

subject to q=Aq+ (1 —A)e/N,
e(s,+t)>v, Vke{l,...,m}, (15)
Sei 1 < (wa))g,
V@i, j)ell,...,N}?, Vke{l,...,m},

in variables s, € RY, k € {1,...,m}, t, € RY, k ¢
{1,...,m}, q € RY, and A € R. Moreover, the resulting
approximating uncertainty set corresponds to a distortion
risk measure if and only if the optimal value A* of (15)
satisfies

1

N 16
1_]quin ( )

Proor. Consider a single inequality constraint uw'a > v. We
have w'a > v for all a € I (/) if and only if the optimal
value of the problem

N N
minimize ) g, ) (u'a;)y;

=1 j=1

N
subject to "y, =1 Vje{l,...,N},

i=1
N
Yoy;=1 Vie{l,...,N},
j=1

yi; 20, V(@ j)e{l,....N}?,

is no smaller than v. We note that this is optimization over a
bounded, nonempty polyhedron, and thus by strong duality
the optimal value of this problem equals the optimal value
of its dual:

maximize €'(s+t)

subject to s, +1; < (wa;)g, V(i,j)e{l,....N}.

It is then easy to see that 1 (s¢) € U if and only if there
exist §y,...,S,,t,...,t, such that

e(s,+t)=v, Vkel{l,...,m},

seiti <wa)g, V(i j)efl,....N}, Vke{l,...,m}.
Now, to find the largest such Il (sf) € U in the [|-[[4 4
sense, we can, by Lemma 4.2, set q = Aq+ (1 — A)e, and

maximize A, which leads us to the desired linear program.
The bound (16) follows by noting that in order for q to



Bertsimas and Brown: Constructing Uncertainty Sets for Robust Linear Optimization

1494 Operations Research 57(6), pp. 1483-1495, ©2009 INFORMS
Figure 4. Optimal inner approximation for a class of centrally symmetric generators for the example from Figure 3 and
an arbitrary polyhedral uncertainty set.
1.0 1.0 1.0
* ¥ s *
. \"\ - T~
05 ; S 0.5 0.5 A
\ \ 3 d i v
y ‘/ >
0 . 0 e - 0 St
-05 -0.5 -0.5
¥ ¥ *
-1

-1.0
-25-20-15-10-05 0 05 1.0 15 20

_1'92.5—20—1.5 -10-05 0 05 1.0 15 20

'(—)2.5—20—1.5 -1.0-05 0 05 1.0 15 20

Notes. The dashed line indicates the nonscaled version of TI, (s¢) in each case, and in solid gray is the tightest inner approximation. In the first two
cases, the approximations are “shrunken” and thus correspond to distortion risk measures. In the last case, the optimal approximation is actually larger

than IT (s0).

correspond to a distortion risk measure, it must have non-
negative components. [

Figure 4 shows an example of an inner approximation to
an arbitrary polyhedral uncertainty set. Note that the result-
ing optimal measure q* from this optimization problem is
q* = A*q + (1 — A*)ey; we can therefore interpret the cor-
responding distortion risk measure u in the following way:

B(X) = X g (X) + (1 — A)E[X]
= —E[X]+ A" (g (X) + E[X])
= —E[X]+ A"03(X),

where 07 (X) = SUPgert ({e;....en)) E,[—X +E[X]]. Prob-
lem (15), then, is equivalent to the problem

sup{)\ € R+Z — [E[X] +)\0'(1(X) = I»LG/I(X)}’

where u., is the coherent risk measure corresponding to %
(via Theorem 3.1). This has the flavor of a Sharpe ratio
problem with the usual standard deviation measure replaced
by the deviation measure defined above.

5. Conclusions

In this paper, we have proposed the framework of coherent
risk measures as a starting point for uncertainty set con-
struction for robust linear optimization problems. Our focus
has been on the case when the underlying probability space
is discrete, which is motivated by sampling considerations.
We drew a connection between distortion risk measures
and polytopes of a particular structure and explored the
geometry and underlying generation of these classes of risk
measures and corresponding uncertainty sets.

Some possible future directions are the following:

1. Multiple constraints and risk over vector spaces.
Obviously, we could apply our framework in a constraint-
wise fashion, but there are undoubtedly more sophisti-
cated ways to balance risk among multiple constraints. It
would be interesting to explore the resulting implications
for robustness under appropriately defined risk measures
over more general vector spaces.

2. More general conic problems. We have restricted our-
selves to linear optimization here. It is not immediately
clear how to extend this to more general robust optimiza-
tion problems.

3. Integrating information beyond samples. How can we
introduce additional knowledge of the distribution (e.g., pri-
or distributions, moments, or other, “physical” constraints
such as no-arbitrage conditions), and what are the implica-
tions from the robust perspective?

Endnotes

1. For some more-recent work using samples in the context
of chance-constrained optimization, see, e.g., Calafiore and
Campi (2005) and Nemirovski and Shapiro (2005).

2. Obviously, when we impose that |Q}| must be finite and
supported by finite elements, this is automatically satisfied.
3. Strictly speaking, Theorem 2.1 only holds if w satis-
fies a technical condition known as the Fatou property,
which means w(X) > lim sup w(X,) for any sequence X,, of
bounded random variables converging to X in probability.
If |Q] is finite, as is our focus throughout the paper, the
Fatou property is automatically satisfied. We refer the inter-
ested reader to Delbaen (2000) and Follmer and Schied
(2004) for the technical details on dealing with general
probability spaces.

4. Again, this interpretation is not exact if the distribution
is not atomless, but it is approximately true. We are just
trying to provide intuition here.

5. Acerbi (2002) studies such risk measures and calls them
“spectral” risk measures.
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