
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

November 2005

Constructing university timetable using constraint satisfaction Constructing university timetable using constraint satisfaction

programming approach programming approach

L. Zhang
University of Wollongong

Sim Kim Lau
University of Wollongong, simlau@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Zhang, L. and Lau, Sim Kim: Constructing university timetable using constraint satisfaction programming
approach 2005.
https://ro.uow.edu.au/infopapers/470

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages

Constructing university timetable using constraint satisfaction programming Constructing university timetable using constraint satisfaction programming
approach approach

Abstract Abstract
The timetabling problem consists of a set of subjects to be scheduled in different timeslots, a set of
rooms in which the subjects can take place, a set of students who attend the subjects, and a set of
subjects satisfied by rooms and required by timeslots. The heart of the problem is the constraints that
exist as regulations within each resource and between resources. There are various solution approaches
to solve the timetabling problem. This paper focuses on developing a constraint satisfaction problem
model for a university timetabling problem. A solution of a constraint satisfaction problem is a consistent
assignment of all variables to values in such a way that all constraints are satisfied. A sample case study
problem is investigated and a constraint satisfaction programming approach is implemented using ILOG
Scheduler and ILOG Solver. We use various goals in ILOG to investigate the performance of the CSP
approach.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
This paper was originally published as: Zhang, L & Lau, S, Constructing university timetable using
constraint satisfaction programming approach, International Conference on Computational Intelligence
for Modelling, Control and Automation 2005 and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce, 28-30 November 2005, 2, 55-60. Copyright IEEE 2005.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/470

https://ro.uow.edu.au/infopapers/470

Constructing university timetable using constraint satisfaction
programming approach

Lixi Zhang and SimKim Lau

Information Systems Discipline
School of Economics and Information System

University of Wollongong
Wollongong, NSW 2500, Australia

Email: {lxz01, simlau}@uow.edu.au

Abstract

The timetabling problem consists of a set of subjects
to be scheduled in different timeslots, a set of rooms in
which the subjects can take place, a set of students
who attend the subjects, and a set of subjects satisfied
by rooms and required by timeslots. The heart of the
problem is the constraints that exist as regulations
within each resource and between resources. There
are various solution approaches to solve the
timetabling problem. This paper focuses on developing
a constraint satisfaction problem model for a
university timetabling problem. A solution of a
constraint satisfaction problem is a consistent
assignment of all variables to values in such a way that
all constraints are satisfied. A sample case study
problem is investigated and a constraint satisfaction
programming approach is implemented using ILOG
Scheduler and ILOG Solver. We use various goals in
ILOG to investigate the performance of the CSP
approach.

1. Introduction

Every year or term in a university, every individual

department has to design a new timetable for subjects.

The timetabling problem consists of placing these

subjects, which share resources, such as lecturers and

classrooms, in a weekly calendar. The timetabling

problem is a historic problem and much research has

been investigated in this area. Solutions to timetabling

problems have been proposed since the 1960s [1--20].

The timetabling problem exhibits the unwelcome

nature of combinatorial problem. It is difficult to find

an optimal solution when the number of resources and

constraints increases. Actually, all problems related to

building a timetable are known to be NP-Complete [21,

22, 8]. Various methods have been proposed to solve

the timetabling problem such as graph-coloring

problem [1, 3, 5] and integer linear programming

technique [5]. There are also various meta-heuristic

methods such as simulated annealing [6], tabu search

[10, 19] and genetic algorithms [9, 16] that have been

used to solve a variety of timetabling problems.

The remainder of this paper is structured as follows.

Section 2 provides background knowledge of

timetabling problem and the constraint satisfaction

approach used to solve the problem. Detail discussion

of search algorithms and consistency techniques in

solving constraint satisfaction problem will be

presented. Section 3 presents the model used to solve

the timetabling problem. Section 4 presents the

implementation of the Constraint satisfaction approach

using the ILOG Scheduler and Solver. The results of

the sample case study problem are given. Finally,

promising paths of research are discussed in the

conclusion.

2. The approaches to solve timetabling
problem

Wren [23, p.46] defines the timetabling problem as a

special case of scheduling: “Timetabling is the

allocation, subject to constraints, of given resources to

objects being placed in space time, in such a way as to

satisfy as nearly as possible a set of desirable

objectives.” Timetabling problem is generally

considered as a resource allocation problem in

Operations Research, where resources of lecturers,

students, classrooms and subjects are to be allocated

into timeslots of a weekly timetable to achieve an

objective function subject to constraints among

resources [18].

Timetabling problems is a type of assignment

problems with large amount of complex constraints,

thus usually can be easily modeled as constraint

satisfaction problems (CSP) [17]. The application for

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

solving the timetabling problem using constraint

satisfaction programming approach allows the

formulation of all the constraints of the problem in a

more declarative way than other approaches [13, 14].

Thus the CSP is particularly well suited for timetabling

problems, since it allows the formulation of all

constraints of the problem in a more declarative way

than other approaches.

Constraint satisfaction problem (CSP) deals with

assignment of values from its domains to each variable

such that no constraint is violated [24, 25]. CSP has

three components: variables, values and constraints. In

general, CSP consists of: a finite set of variable X =

{x1,…,xn} with respective domains D = {D1,…, Dn}

which list the possible values for each variable Di =

{vi,…,vk} and a set of constraints C = {C1, …, Ct} [25,

p.31]. The constraints limit the possible values that a

variable can have. A solution of a CSP is a consistent

assignment of all variables to values in such a way that

all the constraints are satisfied.

There are two approaches to solving CSP. One is

using the search algorithms and the other is using the

consistency technique. Consistency techniques have

been widely studied to simplify constraint network

before or during the search of solutions. Dechter [25]

defines arc-consistency as a process that ensures any

valid value in the domain of a single variable has a

valid match in the domain of any other variables in the

problem. Arc (Vi,Vj)is arc consistent if for every value

x in the current domain of Vi there is some value y in

the domain of Vj such that Vi=x and Vj=y is permitted

by the binary constraint between Vi and Vj. The

concept of arc-consistency is directional. If the process

involves three variables then it is known as path

consistency. In general a graph is k-consistent if there

exists (k-1) variables that satisfy all the constraints

among these variables and there also exists a value for

this k
th

 variable that satisfies all the constraints among

these k variables [25].

Most algorithms for solving the CSP search

systematically through the possible assignments of

values to variables. Such algorithms are guaranteed to

find a solution if one exists or to prove that the

problem has no solution, but this process may take a

very long time. Backtracking is the most common

method for performing systematic search. In the

backtracking algorithm, the current variable is

assigned a value from its domain. This assignment is

then checked against the current partial solution. If any

of the constraints between this variable and the last

variables is violated, the assignment is abandoned and

another value for the current variable is selected [25].

There are three disadvantages of backtracking

approach: thrashing, redundant work and late detection

of conflict [26]. Thus look-ahead scheme is proposed

to overcome some or all of these problems. The look-

ahead scheme is invoked whenever the algorithm is

preparing to assign a value to the next variable [25].

There are two approaches in the look ahead scheme.

The first approach is called forward checking. This

approach checks only the constraints between the

current variable and the future variables. When a value

is assigned to the current variable, any value in the

domain of a future variable, which results in conflicts

with this assignment, is removed from the domain.

This means if the domain of the future variable is

empty, it infers that the current partial solution is

inconsistent and another value should be tried or it

should backtrack to the previous variable [27]. The

second approach is called (full) look ahead or

maintaining arc-consistency. This is an approach that

uses full arc-consistency during the look ahead scheme.

It allows branches of the search tree that will lead to

failure to be pruned earlier [28].

Look back schemes are invoked when the algorithm

encounters a dead-end and prepares for the

backtracking step [25]. All look back schemas share

the disadvantage of late detection of the conflict. It

solves the inconsistency when it occurs but does not

prevent the inconsistency from occurring. There are

two approaches to look back scheme: backjumping and

backmarking. Backjumping works the same way as

backtracking. The difference is during the

backtracking step. In backjumping, it analyses the

situation in order to identify the source of

inconsistency. Backjumping backtracks to the most

recent conflicting variable, whereas backtracking

backtracks to the immediate past variable [27]. In

backmarking, it avoids redundant constraint checking

by recording the highest level that is last backtracked

to. This helps to reduce repetitive consistency checking

by remembering the success and failure of

compatibility checks, which have already been

performed [27].

3. CSP model for timetabling problem

The problem consists of scheduling a set of classes

(lectures and tutorials) in different timeslots subject to

satisfying the following constraint: no student attends

more than one class at the same time, the room must be

big enough for all the attending students, no core

subject is scheduled at the same time, and only one

class is scheduled in one room at any one timeslot.

Let

S = {s1, s2,…sn} be the set of students;

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

L= {l1, l2,…lo} be the set of subjects taught;

T= {t1, t2,…, tm } be the available teaching periods ;

R = {r1, r2, …, rp} be the set of rooms available.

where

Sl represents the set of students who take the

subject l;
Tl is the set of timeslots allocated to the subject l;
R l is the set of rooms assigned to the subject l.

Then Tl i is the number of teaching periods for

subjects li . Sli is the set of student’s wishes to attend

the subject li and Rli is the set of rooms that can be

assigned to the subject li. A feasible timetable is one in

which all events have been assigned a timeslot and a

room so that the following constraints are satisfied:

no student attends more than one subject at the

same time;

(Sli = Slj) Tli Tlj
where Sli = Slj represents the student who take two

subjects li and lj , these two subjects can not be held at

the same time.

only one subject is in each room at any

timeslot;

(li = lj) Tli Tlj
where Tli Tlj represents the timeslot is allocated to the

subject li and lj.. When the two subjects li and lj are held

in the same room, they need to be held at different

timeslots.

the room size RSize(Rj) of room Rj is satisfied

for all the features required by the subjects Rli
and is big enough for all the attending students

size SSize(Si);

(Rli = Rj) RSize(Rj)> SSize(Si)
where SSize(Sli) represents the size of students who

attend the subject li.

some of the timeslots have been reserved for

special events E. Therefore, these timeslots

should not be assigned any subjects;

(Tj =E) Tl Tj
where Tl Tj means the set of timeslots is allocated to

the subject l can not be equal to the special timeslot Tj
when Tj is equal to special event E.

In the sample case study, we have 24 subjects that

made up of 203 timetable items to be scheduled into 12

rooms in 54 timeslots. A timetable item refers to either

a lecture or a tutorial class. Background and problem

description of the case study is described as follows. A

subject on offer is always made up of weekly lecture

and tutorial. One or more lecturers can teach a subject.

Each lecture usually runs for two hours. However a

lecturer may request to have a one-hour lecture only.

There are two types of tutorial: classroom-based

tutorial or laboratory-based tutorial. Both types of

tutorial can either be one or two hour duration. In each

case, the lecturer will specify the maximum number of

students allowed to enrol in each tutorial group (this

way the number of classes or tutorial groups that are

required for the subject can be computed by the

system). Other constraints under consideration are in

the form of regulations such as lecture time can only

be scheduled from 8 o’clock in the morning to 6

o’clock in the evening and tutorials not to be scheduled

after 8pm. In addition, no lecture or tutorial must be

scheduled between 1pm and 2pm on Wednesday to

allow the teaching staff to attend meetings or seminars.

In addition, a lecturer may make special requests so

that individual requirements can be taken into

consideration during the timetabling planning process.

Example of such request includes a certain lecturer can

only teach in a particular day or time of the week due

to the nature of the employment such as part-time

lecturer. In addition due to the way the subject is

designed, a lecturer may make request such that a

student can only take tutorial class after the lecture is

conducted. Other examples of pre-specified

requirements include a repeat lecture which caters

mainly for part-time students must be held in the

evening, and if a subject can only be taught by one

lecturer then different tutorial groups cannot be

scheduled concurrently.

The model we propose for a timetabling problem as

a CSP is as follows: a timetable is a constrained

variable the value of which is a function associating a

value to each slot in time t. The timetable item is given

by the set of subjects. Note that the subject can be

offered as a lecture or a tutorial, which is considered as

a timetable item. Basically our task consists in

instantiation of the set of three tuples CSP (timetable

item, classroom, time), i.e., each lecture or tutorial of a

subject has assigned its set of classroom and time.

We use ILOG to solve the timetabling problem in

our research. ILOG was created in 1987 to

industrialise the expertise of INRIA (the National

Institute for Research in Computer Science and

Control), Europe’s largest computer research centre in

the field of symbolic computer languages and object-

oriented environments [29]. ILOG decomposes the

problem by separating the models from the search

algorithms. This way, it is easy to change different

algorithms applied to the same model [29]. We use two

modules of ILOG in our implementation: Scheduler

and Solver.

In solving the problem, we define each timetable

item as an activity and the room as resource. In this

timetabling problem, we use IloActivity to

represent the subjects which is represented as the

timetable item of lecture and tutorial. We use

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

IloUnaryResource to represent the room resource.

Then we use the ILOG Scheduler to build the model of

the CSP. After the model is complete, it is extracted to

the ILOG Solver. ILOG Solver is needed to generate

the goal and to search for a solution. When the solution

is obtained, the timetable in term of subject number,

time and room number are displayed. ILOG Solver

also provides a set of control primitives that allow user

to implement his/her own heuristic search algorithm.

4. Implementation and Experimental
Results

We will present and analyze the results obtained

using different goals in ILOG Solver. The programs

are run on a DELL personal computer with Intel

Pentinum 4, 1.6 G CPU, 512 M memory and Linux 2.4

operating system.

In ILOG, a goal is used to define the search for a

solution to a model. The model for which an instance

of a goal will search for a solution is specified via the

IloSolver. In our experiment, we will use the

predefined functions such as IloRankForward,
IloRankBackward, IloSetTimesForward and

IloSetTimesBackward that return a goal to

assign start times to activities in a schedule.

To discuss the result of various goals for the sample

case study problem, we analyse the result from the

perspectives of number of fails and number of choice

points. Failure refers to the node which backtracks

when the search cannot find the goal. The number of

fails refers to the number of backtrack in the search

process until a goal is found. Choice point refers to the

node that has been explored or visited in the search

process. Therefore the number of choice points refers

to the number of nodes that has been visited in the

search process [31]. Figure 1 shows the number of

failures and number of choice points in the search tree.

In Figure 1, the grey circle represents choice point,

and black circle represents dead end. The black square

represents the goal is found, and the arrow represents

the failure. For this four level search tree, there are

seven choice points and three failures. A choice point

is created by the execution of the goal IlcOr.

Backtracking occurs as long as no subgoal succeeds.

Thus if no subgoal succeeds, the choice point is

considered as fail. We will also compare the result

using the total running time that is explored in seconds.

However, the time displays here returns the elapsed

time, sometimes known as wall clock time.

Figure 1. Number of failures and number of choice points

We have used the following various scenarios as a

discussion basis in terms of the goals in the Solver.

These include: Ranking goals and SetTime goals. For

each goal we have used various enforcement levels for

each of the scenario.

The first scenario uses the ranking goals approach.

As explained, ILOG uses the AC-5 algorithm that is

the default search strategy in ILOG to remove

inconsistent values from variables domain [30]. When

a constraint is ranked first, the activity corresponding

to it is positioned at the head of the activities not

already ranked. A set of instances of

IloResourceConstraint may be ranked

(ordered along the time line) for a resource. Ranking is

defined for the classes IloUnaryResource and

IloStateResource.The resource constraint

selector selects the next resource constraint to be

ranked first. A resource is chosen and the activities at

each iteration, which require the chosen resource, are

put in order. For this ordering at each iteration, a

resource constraint is chosen [32].

The ranking goals include IloRankForward and

IloRankBackward. IloRankForward creates

and returns a goal that ranks all resource constraints of

unary resource. By default (when no resource

constraint selector is given as an argument), the

resource constraint selector selects the next resource

constraint to be ranked first. The difference with

IloRankForward is that the next resource to be

ranked backward by using IloRankBackward. The

results show that these two ranking goals have similar

performance. From the detail timetable schedule

produced, the difference is that subjects were not held

on the same time in different goals.

In terms of SetTime goals, we use

IloSetTimesForward and

IloSetTimesBackward. When we use the goal

IloSetTimesBackward, the Solver will choose

the latest timeslots for the activities (subjects) to build

the timetable. On the contrary, the Solver will choose

the start timeslots for the activities (subjects) when the

goal IloSetTimesForward is selected. When the

IloSetTimesForward goal is applied, the Solver

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

puts the lecture at the earliest timeslots. In the sample

case study, most of the tutorials are run after the

lecture. When the temporal constraints such as tutorial

must be scheduled after the lecture it is thus easy to

satisfy. However for the IloSetTimesBackward
goal, it will put the lecture at the latest timeslots. So

the lecture needs to move backward to another

timeslots when the program tries to satisfy the above

constraints of scheduling tutorial after the lecture that

will result in more failures than using the

IloSetTimesForward goal. From the results

obtained, we can see that using

IloSetTimesBackward results in more number of

failures and choice points than using

IloSetTimesForward. The CPU time of these

two scenarios only has a subtle difference due to small

sample data. Obviously, the running time of using

IloSetTimesBackward is more than using

IloSetTimesForward. Due to a higher number

of failures in IloSetTimesBackward, results

obtained using this goal requires more CPU time.

We use IloEnforcementLevel to allow how

much effort is specified in a given resource constraint.

The enforcement level allows specifying with how

much effort a given resource constraint may be

expressed on a given resource. IloBasic is the

default enforcement level. There are other enforcement

levels that represent degrees of enforcement lower or

higher than the IloBasic. Each level represents a

certain degree of effort spent by the Scheduler to

enforce constraints. IloMediumHigh, IloHigh
and IloExtended correspond to a scale of

enforcement levels higher than the default level

IloBasic. When the enforcement level of a type of

constraint is higher than IloBasic, then the

Scheduler will spend more effort at enforcing those

constraints than it would by default. When higher

enforcement levels is applied it causes more

propagation of constraints, this results in fewer failures

and fewer choice points, but more CPU time

consumption in each search state. On the other hand,

IloLow and IloMediumLow represent enforcement

levels lower than the default level IloBasic. Thus

Scheduler will spend less effort at enforcing those

constraints than it would by default. The higher

enforcement levels typically cause more propagation

of constraints; this results in fewer fails and fewer

choice points, but more CPU time consumption in each

search state. Also, the use of enforcement level should

be chosen in accordance with the resource and how it

is being used [32].Table 1 shows the summary of the

various results for different scenarios.

Table 1. Comparisons of results for different scenarios

Scenarios Number

of fails

Number

of

choice

points

CPU

time

(seconds)

IloRankForward 373 761 4.91

IloRankBackward 380 766 4.96

IloSetTimesForward 2377 2767 5.86

IloSetTimesBackward 6460 6856 8.72

IloLow+IloRankForward 373 761 5.23

IloLow+IloRankBackward 380 766 5.3

IloLow+IloSetTimesForward 2377 2767 5.87

IloLow+IloSetTimesBackward 6460 6856 8.72

IloHigh+IloRankForward 3 391 3.91

IloHigh+IloRankBackward 10 396 3.93

loHigh+IloSetTimesForward 2007 2397 5.25

IloHigh+IloSetTimesBackforwad 6090 6486 9.33

IloExtended+IloRankForward 3 391 20.3

IloExtended +IloRankBackward 10 396 20.75

IloExtended +IloSetTimesForward 2007 2397 31.34

IloExtended+IloSetTimesBackward 6090 6486 68.25

5. Conclusions and Recommendations

In this paper, we have demonstrated that it is

possible to apply the CSP approach to solve a

university timetabling problem. The data for sample

case study problem were derived from a department in

the local university. We have used the CSP model to

solve the problem. ILOG Solver and ILOG Scheduler

tools are used to solve the CSP problem. Various

scenarios in term of using different goals have been

conducted and the results obtained are satisfactory.

From the test results, we can see that using

IloHigh+IloRankForward can lead to the better

result compare to other goals. This means by enforcing

tight constraint level and ranking the constraints by

positioning the constraints at the beginning of the

activities can lead to better result. In addition we find

that using Ranking goals can obtain better result

compare to using SetTime goals.

There are two enhancements that can be made to the

program. We propose future work to be conducted in

the following areas: ILOG Solver has its default search

algorithm that is similar to AC-5. As a matter of

conclusion, we will highlight that ILOG can make its

own algorithm to search the solution. For future

comparison, these algorithms can be implemented and

compare to the results obtained here. Currently the

program just read the data from a data file. Future

enhancement can be conducted to design a graphical

user interface and a subject database connection. In

addition the users can specify whether the preferences

are of hard or soft constraints. This way when no

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

optimal schedule is found, we can remove those

preferences that are of soft constraints.

6. References

[1] Almond, M., 1966, An algorithm for constructing

university timetables, Computer Journal, vol.8, pp.331-

340.

[2] Brittan, J. N. G. and Farley, F. J. M., 1971, College

timetable construction by computer, The Computer
Journal, vol.14, pp.361–365.

[3] Vit'anyi, P. M. B., 1981, How well can a graph be n

coloured, Discrete mathematics, vol.34, pp.69-80.

[4] Tripathy, A., 1984, School Timetabling--A Case in

Large Binary Integer Linear Programming,

Management Science, vol.30, pp.1473–1489.

[5] de Werra, D., 1985, An introduction to timetabling,

European Journal of Operations Research, vol.19,

pp.151–162.

[6] Abramson, D., 1991, Constructing schools timetables

using simulated annealing: sequential and parallel

algorithms, Management Science, vol.1, No.37, pp.98-

113.

[7] Abramson, D. and Abela, J., 1991, A Parallel Genetic

Algorithm for Solving the School Timetabling Problem,

Technical Report, Division of Information Technology,

C.S.I.R.O.

[8] Hertz, A., 1992, Finding a feasible course schedule

using tabu search, Discrete Applied Mathematics,

vol.35, pp.255-270.

[9] Burke, E., Elliman, D. and Weare, R., 1994, A genetic

algorithm based university timetabling system, East-
West Int. Conf. Computer Technologies in Education
vol.1, pp.35-40.

[10] Costa, D., 1994, A tabu search algorithm for computing

an operational timetable, European Journal of
Operational Research, vol.76, No.1, pp.98–110.

[11] Jaffar, J. and Maher, M. J., 1994, Constraint logic

programming: A survey, The Journal of Logic
Programming, vol.19~20, pp.503-581.

[12] Gunadhi, H., Anand, V. J. and Yeong, W. Y., 1996,

Automated timetabling using an object-oriented

scheduler, Expert systems with Applications, vol.10, No.

2, pp.243-256.

[13] Guéret, C., Jussien, N., Boizumault, P. and Prins, C.,

1996, Building university timetables using constraint

logic programming, In: Burke, E. and Ross, P. (Eds.),

Practice and Theory of Automated Timetabling,

Springer-Verlag LNCS 1153, pp. 130–145.

[14] Lajos, G., 1996, Complete university modular

timetabling using constraint logic programming, In:

Burke, E. and Ross, P. (Eds.), Practice and Theory of
Automated Timetabling, Springer-Verlag LNCS 1153,

pp. 146–161.

[15] Deris, S. B., Omatu, S., Ohta, H. and Samat, P. A. B.

D., 1997, University timetabling by constraint-base

reasoning: A case study, Journal of the Operational
research Society, vol.48, pp.1178-1190.

[16] Terashima-Marín, H., 1998, Combinations of GAs and

CSP Strategies for Solving the Examination

Timetabling Problem, PHD thesis.
[17] Brailsford, S. C., Potts, C. N. and Smith, B. M., 1999,

Constraint satisfaction problems: algorithms and

applications, European Journal of Operational
Research, vol.119, pp.557-581.

[18] Schaerf, A., 1999a, A survey of automated timetabling,

Artificial Intelligence Review. vol.13, pp.87-127.

[19] Schaerf, A., 1999b, Local search techniques for large

high school timetabling problems, IEEE Transactions
on Systems Man and Cybernetics Part A – Systems and
Humans, vol.29, pp.368-377.

[20] Abdennadher, S. and Marte, M. 2000, University course

timetabling using Constraint Handling Rules, Journal of
Applied Artificial Intelligence, vol.14, No.4, pp.311–

326.

[21] Duncan, A. K., 1965, Letters to the editor: Further

results on a computer construction of school timetables,

Communications of the ACM, vol.8, No.1, pp.72.

[22] Even, S., Itai, A., and Shamir, A., 1976, On the

complexity of timetable and multicommodity flow

problems, SIAM J. Computing, vol.5, No.4, pp.691–703.

[23] Wren, A., 1996, Scheduling, Timetabling and

Rostering–A special Relationship, In: Burke, E. and

Ross, P. (Eds.), Practice and Theory of Automated
Timetabling, Springer-Verlag LNCS 1153, pp.46-75.

[24] Nadel, B. A., 1989, Constraint Satisfaction Algorithms,

Computational Intelligence, vol.5, pp.188-224.

[25] Dechter, R., 2003, Constraint Processing, Morgan

Kaufmann.

[26] Kumar, V., 1992, Algorithms for constraint Satisfaction

Problems: A Survey, AI magazine, vol.13, No.1, pp.32-

44.

[27] Barták, R., 1998, On-line Guide to Constraint
Programming,

<http://kti.ms.mff.cuni.cz/~bartak/constraints/>

(Access: 25 March, 2004).

[28] Sabin, D. and Freuder, E., 1994. Contradicting

conventional wisdom in constraint satisfaction, In:

Cohn, A.G. (Eds.), Proceedings of European
Conference on Artificial Intelligence (ECAI-94). Wiley,

Chichester, UK, pp. 125-129.

[29] IlOG, 2004, < http://www.ilog.com>, (Access: 25 July,

2004).

[30] Van Hentenryck, P., Deville, Y., Teng, C. M., 1992, A

generic arc-consistency algorithm and its

specializations, Artificial Intelligence, vol.57, pp.291-

321.

[31] ILOG, Inc. 2001a, ILOG Solver 5.1 User’s Manual,
ILOG Inc.

[32] ILOG, Inc. 2001b, ILOG Scheduler 5.1 User’s Manual,

ILOG Inc.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

	Constructing university timetable using constraint satisfaction programming approach
	Recommended Citation

	Constructing university timetable using constraint satisfaction programming approach
	Abstract
	Disciplines
	Publication Details

	Author Guidelines for 8

