Constructing VIL-MACs from FIL-MACs:
Message Authentication under Weakened
Assumptions

Jee Hea An and Mihir Bellare

Dept. of Computer Science & Engineering, University of California at San Diego
9500 Gilman Drive, La Jolla, CA 92093, USA
{jeehea,mihir}@cs.ucsd.edu
URL: http://wwu-cse.ucsd.edu/users/{jeehea,mihir}

Abstract. Practical MACs are typically designed by iterating applica-
tions of some fixed-input-length (FIL) primitive, namely one like a block
cipher or compression function that only applies to data of a fixed length.
Existing security analyses of these constructions either require a stronger
security property from the FIL primitive (eg. pseudorandomness) than
the unforgeability required of the final MAC, or, as in the case of HMAC,
make assumptions about the iterated function itself. In this paper we
consider the design of iterated MACs under the (minimal) assumption
that the given FIL primitive is itself a MAC. We look at three popular
transforms, namely CBC, Feistel and the Merkle-Damgard method, and
ask for each whether it preserves unforgeability. We show that the an-
swer is no in the first two cases and yes in the third. The last yields an
alternative cryptographic hash function based MAC which is secure un-
der weaker assumptions than existing ones, although at a slight increase
in cost.

1 Introduction

Directly (from scratch) designed cryptographic primitives (for example block ci-
phers or compression functions) are typically “fixed input-length” (FIL): they
operate on inputs of some small, fixed length. However, usage calls for “vari-
able input-length” (VIL) primitives: ones that can process inputs of longer, and
varying lengths. Much cryptographic effort goes into the problem of transform-
ing FIL primitives to VIL primitives. (To mention just two popular examples:
the various modes of operation of block ciphers address this problem when the
given FIL primitive is a block cipher and the desired VIL primitive a data en-
cryption scheme; and the Merkle-Damgard iteration method [N addresses
this problem when the given FIL primitive is a collision-resistant compression
function and the desired VIL primitive is a collision-resistant hash function.) In
this paper, we will address this problem for the design of VIL-MACs in the case
where the given FIL primitive is itself a MAC, which corresponds to a weak se-
curity assumption on the FIL primitive in this context. Let us begin by recalling
some background. We then describe more precisely the problem we consider, its
motivation and history, and our results.

Michael Wiener (Ed.): CRYPTO’99, LNCS 1666, pp. 252l 1999.
© Springer-Verlag Berlin Heidelberg 1999

Constructing VIL-MACs from FIL-MACs 253

1.1 Background

MACQCs. Recall that a message authentication code (MAC) is the most common
mechanism for assuring integrity of data communicated between parties who
share a secret key k. A MAC is specified by a function g that takes the key k
and data x to produce a tag 7 = g(k,x). The sender transmits (z,7) and the
receiver verifies that g(k,) = 7. The required security property is unforgeability,
namely that even under a chosen-message attack, it be computationally infeasible
for an adversary (not having the secret key k) be able to create a valid pair (x, 7)
which is “new” (meaning x has not already been authenticated by the legitimate
parties). As the main tool for ensuring data integrity and access control, much
effort goes into the design of (secure and efficient) MACs, and many constructions
are known. These include block cipher based MACs like the CBC MAC [
or XOR MACs []; hash function based MACs like HMAC [[] or MDx-MAC
[Ed]; and universal hash function based MACs [EET]. Many of the existing
constructions of MACs fall into the category of FIL to VIL transforms. For
example the CBC MAC iterates applications of a block cipher (the underlying
FIL primitive), while hash function based MACs iterate (implicitly or explicitly)
applications of the underlying compression function.

ASSUMPTIONS UNDERLYING THE TRANSFORMS. Analyses of existing block cipher
based MACs make stronger assumptions on the underlying FIL primitive than
the unforgeability required of the final VIL-MAC. For example, security analyses
of the CBC or XOR MACs provided in [AHE] model the underlying block cipher
as a pseudorandom function, assumed to be “unpredictable” in the sense of =],
a requirement more stringent than unforgeability.

The security analysis of 5YINe | provided in [makes two assumptions:
that the (appropriately keyed) compression function is a MAC and also that the
iterated compression function is “weakly collision resistant”. Thus, the security
of HMAC is not shown to follow from an assumption only about the underlying
FIL primitive.

Universal hash function based MACs don’t usually fall in the FIL to VIL
paradigm, but on the subject of assumptions one should note that they require
the use of block ciphers modeled as pseudorandom functions to mask the out-
put of the (unconditionally secure) universal hash function, and thereby use
assumptions stronger than unforgeability on the underlying primitives.

1.2 From FIL-MACs to VIL-MACs

THE PROBLEM. We are interested in obtaining VIL-MACs whose security can
be shown to follow from (only) the assumption that the underlying FIL primitive
is itself a MAC. In other words, we wish to stay within the standard paradigm
of transforming a FIL primitive to a VIL-MAC, but we wish the analysis to
make a minimal requirement on the security of the given FIL primitive: it need
not be unpredictable, but need only be a MAC itself, namely unforgeable. This

! To be precise, the security analysis we refer to is that of NMAC, of which HMAC is
a variant.

254 J. H. An, M. Bellare

is, we feel, a natural and basic question, yet one that surprisingly has not been
systematically addressed.

BENEFITS OF REDUCED ASSUMPTIONS. It is possible that an attack against
the pseudorandomness of a block cipher may be found, yet not one against its
unforgeability. A proof of security for a block cipher based MAC that relied on
the pseudorandomness assumption is then rendered void. (This does not mean
there is an attack on the MAC, but it means the MAC is not backed by a
security guarantee in terms of the cipher.) If, however, the proof of security
had only made an unforgeability assumption, it would still stand and lend a
security guarantee to the MAC construction. Similarly, collision-resistance of
a compression function might be found to fail, but the unforgeability of some
keyed version of this function may still be intact. (This is true for example for
the compression function of MD5.) Thus, if the security analysis of a (keyed)
compression-function based MAC relied only on an unforgeability assumption,
the security guarantee on the MAC would remain.

Another possibility enabled by this approach would be to design FIL-MACs
from scratch. Since the security requirement is weaker than for block ciphers, we
might be able to get FIL-MACs that are faster than block ciphers, and thereby
speed up message authentication.

1.3 Owur Results

The benefit (of a VIL-MAC with a security analysis relying only on the assump-
tion that the FIL primitive is a MAC) would be greatest if the construction were
an existing, in use one, whose security could now be justified under a weaker as-
sumption. In that case, existing MAC implementations could be left unmodified,
but benefit from an improved security guarantee arising from relying only on a
weaker assumption. Accordingly, we focus on existing transforms (or slight vari-
ants) and ask whether they preserve unforgeability.

CBC MAC. The first and most natural candidate is the CBC MAC. Recall
that given a FIL primitive f: {0,1}"* x {0,1}' — {0,1}! its CBC MAC is the
transform CBC[f], taking key k € {0,1}" and input z = x1 ...z, € {0,1}" to
return y,, where y; = f(k,yi_1 @ ;) for 1 < i < n, and yo = 0. We already
know that if f is a pseudorandom function then CBC|f] is a secure MAC [{], and
the question is whether the assumption that f itself is only a MAC is enough
to prove that CBC[f] is a secure MAC. We show that it is not. We do this by
exhibiting a f that is a secure MAC, but for which there is an attack showing
that CBC[f] is not a secure MAC. (This relies of course on the assumption that
some secure FIL-MAC exists, since otherwise the question is void.)

MD METHOD. Next we look at Damgard’s method [for transforming a keyed
compression function f: {0,1}* x {0,1}** — {0,1}" into a full-fledged hash
functionll Actually our method differs slightly in the way it handles input-length
2 The construction of Damgard is essentially the same as that of Merkle, except that

in the latter, the given compression function is keyless, while in the former, it is
keyed. Since MACs are keyed, we must use Damgard’s setting here.

Constructing VIL-MACs from FIL-MACs 255

variability, which it does by using another key. Our nested, iterated construction,
NI[f], takes keys k1, ko and input z = z1 . ..z, € {0, 1} to return fi, (yn|/{|z])),
where y; = fi, (yi—1]|@i) for 1 <i < n and yo = 0° and (|z|) is the length of x
written as a binary string of length exactly b bits.

Although the construction is (essentially) the one used in the collision-resis-
tant hash setting, the analysis needs to be different. This is because of two central
differences between MACs and hash functions: MACs rely for their security on
a secret key, while hash functions (which, in the Damgard setting, do use a
key) make this key public; and the security properties in question are different
(unforgeability for MACs, and collision-resistance for hash functions).

We show that if f is a secure MAC then so is NI[f]. The analysis has several
steps. As an intermediate step in the analysis we use the notion of weak-collision
resistance of [H], and one of our lemmas provides a connection between this and
unforgeability.

An appropriately keyed version of the compression function of any exist-
ing cryptographic hash function can play the role of f above, as illustrated in
Section IEl. This provides another solution to the problem of using keyed com-
pression functions to design MACs. In comparison with HMAC, the nested,
iterated construction has lower throughput because each iteration of the com-
pression function must use a key. Implementation also requires direct access to
the compression function, as opposed to being implementable only by calls to
the hash function itself. On the other hand, the loss in performance is low, it
is still easy to implement, and the supporting security analysis makes weaker
assumption than that of HMAC.

FEISTEL. The Feistel transform is another commonly used method of increas-
ing the amount of data one can process with a given FIL primitive. The basic
transform doubles the input length of a given function f. The security of this
transform as a function of the number of rounds r has been extensively analyzed
for the problem of transforming a pseudorandom function into a pseudorandom
permutation: Luby and Rackoff B3] showed that two rounds do not suffice for
this purpose, but three do. We ask whether r rounds of Feistel on a MAC f
result in a MAC. The answer is easily seen to be no for r = 2. But we also
show that it remains no for r = 3, meaning that the 3-round Feistel transform
that turns pseudorandom functions into pseudorandom permutations does not
preserve unforgeability. Furthermore, even more rounds do not appear to help
in this regard.

1.4 Related Work

The FIL to VIL question that we address for MACs is an instance of a classic one,
which has been addressed before for many other primitives and has played an
important role in the development of the primitives in question. The attraction
of the paradigm is clear: It is easier to design and do security analyses for the
“smaller”, FIL primitives, and then build the VIL primitive on top of them.
The modes of operation of block ciphers were probably the earliest construc-
tions in this area, but an analysis in the light of this paradigm is relatively

256 J. H. An, M. Bellare

recent [H]. Perhaps the best known example is the Merkle-Damgard [Efid] it-
eration method used in the case of collision-resistant functions. Another early
example is (probabilistic) public-key encryption, where Goldwasser and Micali
showed that bit-by-bit encryption of a message preserves semantic security [I=].
(The FIL primitive here is encryption of a single bit.) Extensive effort has been
put into this problem for the case of pseudorandom functions (the problem is
to turn a FIL pseudorandom function into a VIL one) with variants of the
CBC (MAC) construction [Bid] and the cascade construction [@ being solu-
tions. Bellare and Rogaway considered the problem and provided solutions for
TCR (target-collision-resistant) hashing [A, a notion of hashing due to Naor and
Yung [B5] which the latter had called universal one-way hashing.

Curiously, the problem of transforming FIL-MACs to VIL-MACs has not
been systematically addressed prior to our work. However, some constructions
are implicit. Specifically, Merkle’s hash tree construction [can be analyzed in
the case of MACs. Bellare, Goldreich and Goldwasser use such a design to build
incremental MACs [H, and thus a result saying that the tree design transforms
FIL-MACs to VIL-MACs seems implicit here.

2 Definitions

FAMILIES OF FUNCTIONS. A family of functions is a map F': Keys(F')x Dom(F)
— Rng(F'), where Keys(F') is the set of keys of F'; Dom(F’) is some set of input
messages associated to F'; and Rng(F') is the set of output strings associated to
F'. For each key k € Keys(F') we let Fj(-) = F(k,-). This is a map from Dom(F)
to Rng(F). If Keys(F') = {0,1}" for some « then the latter is the key-length. If
Dom(F) = {0, 1}® for some b then b is called the input length.

MACs. A MAC is a family of functions F. It is a FIL-MAC (fixed-input-length
MAC) if Dom(F) is {0, 1}® for some small constant b, and it is a VIL-MAC (vari-
able input length MAC) if Dom(F') contains strings of many different lengths.
The security of a MAC is measured via its resistance to existential forgery under
chosen-message attack, following [A], which in turn is a concrete security adapta-
tion to the MAC case of the notion of security for digital signatures of [E4]. We
consider the following experiment Forge(A, F') where A is an adversary (forger)
who has access to an oracle for Fi(-):

Experiment Forge(A4, F)
k — Keys(F) ; (m, 1) « AFx()
If Fi,(m) = 7 and m was not an oracle query of A
then return 1 else return 0

mac

We denote by Succp®(A) the probability that the outcome of the experiment
Forge(A, F) is 1. We associate to F' its insecurity function, defined for any inte-

gers ¢, q, p by

mac mac

InSecy™“(t,q, 1) %ef max {Succr®(A) } .

Constructing VIL-MACs from FIL-MACs 257

Here the maximum is taken over all adversaries A with “running time” ¢, “num-
ber of queries” ¢, and “total message length” pu. We put the resource names
in quotes because they need to be properly defined, and in doing so we adopt
some important conventions. Specifically, resources pertain to the experiment
Forge(A, F) rather than the adversary itself. The “running time” of A is defined
as the time taken by the experiment Forge(A, F') (we call this the “actual running
time”) plus the size of the code implementing algorithm A, all this measured in
some fixed RAM model of computation. We stress that the actual running time
includes the time of all operations in the experiment Forge(A, F'); specifically it
includes the time for key generation, computation of answers to oracle queries,
and even the time for the final verification. To measure the cost of oracle queries
we let Q4 be the set of all oracle queries made by A, and let Q@ = Q4 U {m}
be union of this with the message in the forgery. Then the number of queries
q is defined as |@Q|, meaning m is counted (because of the verification query in-
volved). Note also that consideration of these sets means a repeated query is
not double-counted. Similarly the total message length is the sum of the lengths
of all messages in (). These conventions will simplify the treatment of concrete
security.

The insecurity function is the maximum likelihood of the security of the
message authentication scheme F' being compromised by an adversary using the
indicated resources. We will speak informally of a “secure MAC”; this means a
MAC for which the value of the insecurity function is “low” even for “reasonably
high” parameter values. When exactly to call a MAC secure is not something
we can pin down ubiquitously, because it is so context dependent. So the term
secure will be used only in discussion, and results will be stated in terms of the
concrete insecurity functions.

3 The CBC MAC Does not Preserve Unforgeability

Let f: {0,1}* x {0,1}' — {0,1}! be a family of functions. For any fixed in-
teger n > 0 we define the associated CBC MAC. It is the family of functions
CBC[f]: {0,1}% x {0,1}" — {0,1} defined as follows:

Algorithm CBC[f](k,z1...2p)
yo < 0
Fori=1,...,ndoy; «— f(k,yi-1 D x;)
Return y,,

Here k € {0,1}" is the key, and z; is the i-th [-bit block of the input message.
We know that if f is a pseudorandom function then CBC[f] is a secure MAC
[B]. Here we show that the weaker requirement that f itself is only a secure MAC
does not suffice to guarantee that CBC|[f] is a secure MAC. Thus, the security of
the CBC MAC needs relatively strong assumptions on the underlying primitive.
We stress that the number of message blocks n is fixed. If not, splicing attacks
are well-known to break the CBC MAC. But length-variability can be dealt with

258 J. H. An, M. Bellare

in a variety of ways (cf. [Hid]), and since the results we show here are negative,
they are only strengthened by the restriction to a fixed n.

We prove our claim by presenting an example of a MAC f which is secure,
but for which we can present an attack against CBC[f]. We construct f under
the assumption that some secure MAC exists, since otherwise there is no issue
here at all.

Assume we have a secure MAC g: {0,1}* x {0,1}?™ — {0, 1} whose input
length is twice its output length. We set [= 2m and transform ¢ into another
MAC f: {0,1}*x{0,1}! — {0,1}!. We show that f is a secure MAC but CBC|f]
is not. Below we present f as taking a x-bit key k and an [-bit input a = a1]|as
which we view as divided into two m-bit halves.

Algorithm f(k, a1a2)
o — g(k,ajaz)
Return oaq

That is, fr on any input simply returns gx on the same input, concatenated with
the first half of fi’s input. It should be clear intuitively that f is a secure MAC
given that g is a secure MAC, because the output of f contains a secure MAC on
the input, and the adversary already knows the data a; anyway. The following
claim relates the securities more precisely. Its proof can be found in [H].

Claim. Let g, f be as above. Then InSec?*“(t, ¢, 1) < InSec;*“(t, q, p).

We now show that the CBC MAC method is not secure if we use the function f
as the underlying base function. The following claim says that there is an attack
on CBC]f], which after obtaining the correct tag of only one chosen message,
succeeds in forging the tag of a new message. The attack is for the case n = 2
of two block messages, so that both the chosen message and the one whose tag
is forged have length 21.

Claim. There is a forger F' making a single 2[-bit query to CBC[f](k,-) and
achieving Sueclgoq (F) = 1.

Proof. The attacker F' is given an oracle for CBC|[f](k, -) and works as follows:

Forger FCBCII()
Let a1, as be distinct m-bit strings and let x < a1a20™0™
o201 «— CBC[f](k, z)
xh — arag; h — aras ® o1aq ; ¥’ — xhh
Return (2, 01a1)

Here F' first defined the 21 bit message . It then obtained its I-bit tag from the
oracle, and split it into two halves. It then constructed the I-bit blocks zf, x4 as
shown, and concatenated them to get x’, which it output along with the claimed
tag o101.

To show that this is a successful attack, we need to check two things. First
that the forgery is valid, meaning CBC[f](k,2') = o1a1, and second that the
message x’ is new, meaning =’ # x.

Constructing VIL-MACs from FIL-MACs 259

Let’s begin with the second. We note that the last m bits of 2’ are as & a;.
But F chose a1, as so that as # a1 so ag ® a1 # 0. But the last m bits of x are
zero. So ' # x.

Now let us verify that CBC[f](k,x") = o1a;1. By the definition of f in terms
of g, and by the definition of CBC[f], we have

CBC[f](k,z) = f(k, f(k,a1az2) & 0™0™)
= f(k, g(k,a1a2)a1)
= g(kv g(kv a1a2)a1)||g(ka a1a2) .

This implies that o1 = g(k, a1a2) and o2 = g(k, 01a1) in the above code. Using
this we see that

CBCIf](k, z")

f(k, f(k,a1a2) ® (@102 ® 0101))
(k,o101 ® (a1a2 ® 01a1))
(

ka a1a2)

f
f
g

101

as desired. O

The construct f above that makes the CBC MAC fail is certainly somewhat
contrived; indeed it is set up to make the CBC MAC fail. Accordingly, one
reaction to the above is that it does not tell us anything about the security of,
say, DES-CBC, because DES does not behave like the function f above. This
reaction is not entirely accurate. The question here is whether the assumption
that the underlying cipher is a MAC is sufficient to be able to prove that its CBC
is also a MAC. The above says that no such proof can exist. So with regard to
DES-CBC, we are saying that its security relies on stronger properties of DES
than merely being a MAC, for example pseudorandomness.

4 The NI Construction Preserves Unforgeability

Here we define the nested, iterated transform of a FIL-MAC and show that the
result is a VIL-MAC.

4.1 The Construction

We are given a family of functions f: {0,1}* x {0,1}*** — {0,1}* which takes
the form of a (keyed) compression function, and we will associate to this the
nested iterated (NI) function NI[f]. The construction is specified in two steps;
we first define the iteration of f and then show how to get NI[f] from that. See
Figure l for the pictorial description.

CONSTRUCTION. As the notation indicates, the input to any instance function
f(k,-) of the given family has length £+ b bits. We view such an input as divided
into two parts: a chaining variable of length ¢ bits and a data block of length
b bits. We associate to f its iteration, a family IT[f]: {0,1}* x {0,1}=F —

260 J. H. An, M. Bellare

1 To - Tn <|£IZ|>

- = e NIff()
A A

Fig. 1. The nested, iterated construction of a VIL-MAC given a FIL-MAC f.

{0,1}*?, where L is to be defined, and for any key k and string = of length at
most L we define:

Algorithm IT[f](k, x)
yo « 0°
Break x into b-bit blocks, x = x1...x,
Fori=1,...,ndoy; «— f(k,yi—1||z:)
a < yn||(|z])
Return a

Above if |z| is not a multiple of b, some appropriate padding mechanism is used
to extend it. By (|Jz|) we denote a binary representation of |z| as a string of
exactly b bits. This representation is possible as long as |z| < 2°, and so we
set the maximum message length to L = 2° — 1. This is hardly a restriction in
practice given that typical values of b are large.

Now we define the family NI[f]: {0,1}%% x {0, 1}=F — {0, 1}*. A key for this
family is a pair kjko of k-bit keys, and for a string = of length at most L we set:

Algorithm NI[f](k1k2, x)
a — IT[f](k1, x)
Return f(kz,a)

RELATION TO OTHER CONSTRUCTS. Our f has the syntactic form of a (keyed)
compression function. The quantity y, computed in the code of IT[f] is obtained
via the iteration method of Damgard [E&]; our iterated function is different only
in that it appends to this the length of the input x. The main difference is in
the security properties. Whereas Damgard assumes f is collision-resistant and
wants to show that IT[f] is too, we assume f is a FIL-MAC and want to show
NI[f] is a VIL-MAC. The difference is that for MACs the key is secret while for
hash functions it is public, and the notions of security are not the same.

Preneel and Van Oorschot [Z] suggest that in designing MACs from iterated
hash functions, one might use a keyed compression function with a secret key and
keyed output transformation. Modulo the handling of length-variability, this is
exactly our construction. Preneel et. al. however did not analyze this construction
under the assumption that the compression function is a MAC.

Constructing VIL-MACs from FIL-MACs 261

Comparing our construction to HMAC/NMAC, the difference, roughly speak-
ing, is that HMAC is based on a hash function (like MD5 or SHA-1) that uses a
compression function that is keyless, and iterated in the Merkle style [i]. Had
we instead started with a hash function that iterated a keyed compression func-
tion in the Damgard style, and applied the HMAC transform to it, we would end
up with essentially our construction. This tells us that the Damgard’s setting
and construction have a nice extra feature not highlighted before: they adapt to
the MAC setting in a direct way.

Another difference between our construction and NMAC lies in how the out-
put of the internal functions of the nested functions are formed. Our internal
function IT[f] appends the length of the message and the appended length is a
part of the function’s output whereas F' (in NMAC) applies the base function
once more on the length of the message.

INSTANTIATION. Appropriately keying the compression function of some existing
cryptographic hash function will yield a candidate for f above. For example, let
sha-1: {0, 1}160+512 {0 1}169 he the compression function of SHA-1. We can
key it via its 160-bit chaining variable. We would then use the 512 bit regular
input as the input of the keyed function. This means we must further subdivide it
into two parts, one to play the role of a new chaining variable and another to be
the actual data input. This means we set kK = ¢ = 160 and b = 352, and define the
keyed sha-1 compression function ksha-1: {0, 1}169 x {0, 1}160+352 —, {(1}160
by

ksha-1(k, al|b) = sha-1(kl|la||b) ,

for any key k € {0,1}159 any a € {0,1}15% and any b € {0,1}3°2. Now, we can
implement NI[ksha-1] and this will be a secure MAC under the assumption that
ksha-1 was a secure MAC on 352 bit messages.

Note that under this instantiation, each application of sha-1 will process
352 bits of the input, as opposed to 512 in a regular application of sha-1 as
used in SHA-1 or HMAC-SHA-1. So the throughput of NI[ksha-1] is a factor of
352/512 &~ 0.69 times that of HMAC-SHA-1. Also, implementation of NI[ksha-1]
calls for access to sha-1; unlike HMAC-SHA-1, it cannot be implemented by calls
only to SHA-1. On the other hand, the security of NI[ksha-1] relies on weaker
assumptions than that of HMAC-SHA-1. The analysis of the latter assumes
that ksha-1 is a secure MAC and that the iteration of sha-1 is weakly collision-
resistant; the analysis of NI[ksha-1] makes only the former assumption.

4.2 Security Analysis

Our assumption is that f above is a secure FIL-MAC. The following theorem
says that under this condition (alone) the nested iterated construction based on
f is a secure VIL-MAC. The theorem also indicates the concrete security of the
transform.

Theorem 1. Let f: {0,1}* x {0,1}¥+° — {0,1}* be a fized input-length MAC.
Then the nested, iterated function family NI[f]: {0,1}2% x {0,1}=F — {0,1}* is

262 J. H. An, M. Bellare

a variable input-length MAC with
2
InSecyff} (¢, ¢, 1) < (1 + Z) -InSec?™(t', ', i)
where t' =t +O0(y'), ¢ = p/b, and ' = (b+4£) - u/b.

TIGHTNESS OF THE BOUND. There is an appreciable loss in security above, with
the insecurity of the nested iterated construct being greater than that of the
original f by a factor of (roughly) the square of the number p/b of messages
in a chosen-message attack on f. This loss in security is however unavoidable.
Iterated constructs of this nature continue to be subject to the birthday attacks
illustrated by Preneel and Van Oorschott B, and these attacks can be used to
show that the above bound is essentially tight.

PROOF APPROACH. A seemingly natural approach to proving Theorem Ml would
be to try to imitate the analyses of Merkle and Damgard [ESEN which showed
that transforms very similar to ours preserve collision-resistance. This approach
however turned out to be less straightforward to implement here than one might
imagine, due to our having to deal with forgeries rather than collisions. Accord-
ingly we take a different approach. We first reduce the question of forgeries to one
about a certain kind of collision-resistance, namely “weak-collision resistance”,
showing that the insecurity of our construct as a MAC can be bounded in terms
of its weak collision-resistance and the insecurity of the original f as a MAC.
We can bound the weak collision-resistance of the iterated construct in terms
of the weak collision-resistance of the original f using the approach of [EEJd],
and finally bound the weak-collision resistance of f in terms of its insecurity as
a MAC. Putting the three together yields the theorem.

Underlying many of these steps are general lemmas, and we state them in
their generality since they might be of independent interest. In particular, we
highlight the connections between weak collision-resistance and MACs. We need
to begin, however, by saying what is weak collision-resistance.

WEAK COLLISION-RESISTANCE. In the usual attack model for finding collisions,
the adversary is able to compute the hash function for which it seeks collisions;
either it is a single, public function, or, if a family F', the key k (defining the
map Fy, for which the adversary seeks collisions) is given to the adversary. In
the weak collision-resistance setting as defined in [M], the adversary seeking to
find collisions for F} is not given k, but rather has oracle access to Fj. Weak
collision-resistance is thus a less stringent requirement than standard collision-
resistance.

Let F: {0,1}" x Dom(F') — Rng(F') be a family of functions. To formally
define its weak collision-resistance we consider the following experiment. Here A
is an adversary that gets an oracle for F} and returns a pair of points m,m’ in
Dom(F). It wins if these points are a (non-trivial) collision for Fj.

Experiment FindWeakCol(A, F)
k — Keys(F); (m,m/) — AF()
If m # m’ and Fj(m) = Fj(m’) then return 1 else return 0

Constructing VIL-MACs from FIL-MACs 263

WCI

We denote by Succy
We then define

(A) the probability that the above experiment returns 1.

InSecy™ (t,q, 1) “ max { Succy™(4) } .

As before the maximum is taken over all adversaries A with “running time” ¢,
“number of queries” ¢, and “total message length” u, the quantities in quotes be-
ing measured with respect to the experiment FindWeakCol(A, F'), analogously to
the way they were measured in the definition of InSec™?*¢ described in Section B
Specifically the running time is the actual execution time of FindWeakCol(A4, F')
plus the size of the code of A. We let @ = Q4 U {m,m'} where Q4 is the set
of all queries made by A. Then ¢ = |@| and g is the sum of the lengths of all
messages in Q.

ReEDUCTION TO WCR. We bound the insecurity of the nested construct as a
MAC in terms of its weak-collision resistance and MAC insecurity of the original
function. The following generalizes and restates a theorem on NMAC from [H].
In our setting h will be IT[f], and then N becomes NI[f].

Lemma 1. Let f: {0,1}" x {0,1}+* — {0,1}¢ be a fived input-length MAC,
and let h: {0,1}* x D — {0,1}° be a weak collision-resistant function family
on some domain D. Define N: {0,1}?* x D — {0,1}* via

N(kiks,x) = f(k2, h(k1,))
for any keys ki,ko € {0,1}" and any x € D. Then N is a MAC with
InSecy™(t, ¢, 1) < InSec?*“(t,q,q(b+ () + InSecy (¢, q, i)
for allt,q, p.

The proof of the above is an adaptation of the proof in [H] which is omitted here,
but for completeness is provided in [H].

To prove Theorem Mwe will apply the above lemma with A = IT[f]. Accord-
ingly our task now reduces to bounding the weak collision-resistance insecurity
of IT[f]. But remember that we want this bound to be in terms of the insecurity
of f as a MAC. We thus obtain the bound in two steps. We first bound the weak
collision-resistance of IT[f] in terms of the weak collision-resistance of f, and
then bound the latter via its insecurity as a MAC.

WEAK COLLISION-RESISTANCE OF IT[f]. We now show that if f is a weak
collision-resistant function family, then the iterated construction IT[f] is also a
weak collision-resistant function family.

Lemma 2. Let f: {0,1}* x {0,1}*** — {0,1}* be a weak collision-resistant
function family. Then,

wWCr WCrI u u
InS t <InS t b+ ¢
nSeciffy (t,q,11) < InSecy (1, ', (v + 0)*)
The proof is analogous to those in [EEH which analyze similar constructs with

regard to (standard, not weak) collision-resistance. To extend them one must
first observe that their reductions make only black-box use of the underlying

264 J. H. An, M. Bellare

function instances and can thus be implemented in the weak collision-resistance
setting via the oracle for the function instance. Second, our way of handling the
length variability, although different, can be shown to work. The proof is omitted
here, but for completeness is provided in [i].

Given the above two lemmas our task has reduced to bounding the weak
collision-resistance insecurity of f in terms of its MAC insecurity. The connection
is actually much more general.

WEAK COLLISION-RESISTANCE OF ANY MAC. We show that any secure MAC
is weakly collision-resistant, although there is a loss in security in relating the
two properties. This is actually the main lemma in our proof, and may be of
general interest.

Lemma 3. Let g: {0,1}* x Dom(g) — {0, 1} be a family of functions. Then,

InSecy* (t,q, 1) < - InSec,™(t + O(u), q, 1)

The proof of the above is given in Appendix Bl

Proor ofF THEOREM Bl We now use the three lemmas above to complete the

mac

proof of Theorem W Letting ¢ = InSec}*“(t, ¢, ¢(b+)) for conciseness, we have:

ac

InSecyi[f(t, g, 1)

< e+ InSecyrjy (¢, q, 11) (1)
< e+InSect(t,", (b +0)"") (2)
b b
2 mac N p

<

_e+ InSecy™(t + O((b+ 0,). 0+ 0)1) 3)
. 1% 2’ mac/yl 11

= (1+7) -InSecy™(t'.q.1). (4)

where t' =t + O(), ¢ = p/band ' = (b+ ¢) - p/b. In Equation Bl we used
Lemmalll In Equation B we used Lemma l In Equation B LemmaH is used,
and the two terms of InSec}™* are added in Equation M with the larger of the
two resource parameters taken as the final resource parameters to obtain the

conclusion of the theorem.
5 Feistel Does not Preserve Unforgeability

Let f: {0,1}" x {0,1} — {0,1}! be a family of functions. For any fixed inte-
ger v > 0, we define the r-round Feistel transform. It is a family of functions
FST"[f]: {0,1}* x {0,1}? — {0,1}?". Given keys ki,..., k. and input LR
where |L| = |R| =1, we define

Algorithm FST"[f](ky ... k,, LR)
Lo+—L; Ry — R
Fori=1,...,7do Z;_1 « fkl(szl) s Ry — Ly 1D Zi1; Ly +— R
Return L. R,

Constructing VIL-MACs from FIL-MACs 265

Here L; R; is the 2[-bit block at the end of the i-th round. The Feistel transform
has been used extensively to extend (double) the input size of a given pseudo-
random function. Luby and Rackoff have shown that FST?[f] is a pseudorandom
permutation if f is a pseudorandom function [i]|. Here we examine the possibil-
ity of FST"[f] being a secure MAC under the assumption that f is only a secure
MAC.

Luby and Rackoff showed that FST?[f] is not pseudorandom even if f is
pseudorandom [i]. Tt is easy to design an attack showing that FST?[f] is not a
secure MAC even if f is a secure MAC. (This is provided in [[] for completeness.)
Here we go on to the more interesting case of three rounds, where the transform
is known to be pseudorandomness preserving.

We show however that the three round Feistel transform does not preserve
unforgeability. Namely the assumption that f is a secure MAC does not suffice
to guarantee that FST?[f] is a secure MAC. We prove our claim by presenting
an attack against FST?[f] when f is the MAC of Section B for which we had
presented an attack against CBC[f]. Recall that f: {0,1}" x {0,1}* — {0,1}!
was designed in terms of an underlying secure but arbitrary MAC g: {0,1}?™ —
{0,1}™, and we set | = 2m. Let us now see what happens when we evaluate
FSTS[f](klekg,LoRo). We write LO = a0||a1 and RO = b()”bl where ‘ao‘ =
lai| = |bo| = |b1] = m = 1/2 bits, and work through the three Feistel rounds,
writing the intermediate results in terms of the notation used in describing the
Feistel algorithm above:

Lo | Ro= aolla1 | bolb1
| Zo = | 1o

Ly | Ry = bol|b1 | a0 @ plar @ bo
| Zy = | Wllao @ p

Ly | Ry = ag D pllar ® b | bo ® p'||b1 B ao ® p
| Zy = | 1 |[bo @ 4/

Ly | Rs=bo@ p/[[b1@ac®p | ao® p® p’lar & p/

Here we have set

p = g(k1,bob1)
p' = g(kz, a0 ® pllar @ bo)
1 = g(ks,bo & pt/[|by S ao & p) .

Write L3 = agllal and Rs = bs||bs. We notice that given the output LsRj
and the input LRy, it is possible to extract the values u, ', i”’, even without
knowledge of any of the keys. Namely y = by © ap ® aj and p/ = ag ® by and
' = ag @ p ® bs. Furthermore notice that once an attacker has these values, it
can also compute Zy, Z1, Zo, the internal Feistel values. Based on this we will
present an attack against against FST[f].

266 J. H. An, M. Bellare

Claim. There is a forger A making four 2i-bit queries to FST?[f](k, -) and achiev-
ing Succpdts g (4) =1 - O(27h.

Proof. The attacker A is given an oracle for FST?[f](k, -), where k = kikokz €
{0,1}3" is the key. It makes the four queries displayed, respectively, as the first
rows of the first four columns in Figure ll. The first two queries generated by A
are random. A then generates the next two queries adaptively, using the results
of the previous queries. Notice that the third and fourth queries are functions of
Z-values occurring in the 3-round Feistel computation on the first two queries.
The attacker A can obtain these values using the observation above. Finally, A
comes up with the forgery (z,7), where x and 7 are displayed, respectively, as
the first and last rows in the fifth column of the same Figure.

query 1 query 2 query 3 query 4 forgery
Li | Ry L§ | RS Ly | RS Zi &2t RI®ZS | Ri®Zi®Zi Ri®Z | R
| 26 1Z8 |Z | Z§ | 28
R | Rt R§ | RY | Ri®Zi®Zi | RY R§ | Ri
|zt |zt | | ¢ | i
Ri|R; R | RS | R} | Riozi Ri | Riezi
|z | Zz3 | | Z3 | Z3
|

Ry | Ry R | R} | Ri®Zi | ieZ;

Fig. 2. Contents of the queries and the intermediate/final results and the forgery.

Notice that in queries 3 and 4 in Figure B the rows after certain values (Z3,73)
are empty. They are omitted for simplicity because only those two values (Z3,23)
are needed to form the next queries or the forgery, and the rest of the values are
not needed. In the actual attack, those values are computed from the outputs of
the oracle.

To show that this is a successful attack, we need to check two things. First
that the forgery is valid, meaning FST?[f](k, z) = 7, and second that the message
x is new, meaning x ¢ {x1...x4}.

We can easily see that the forgery is valid by examining the values in the table.
The second requirement that x is new can be achieved with high probability if
the adversary chooses the strings L§, L, and L3 randomly. If the said strings are
chosen randomly, then the [-bit left-half of each queried string becomes random
and the probability of the forgery string matching any one of the four queried
strings is very small (O(27!)). This means that the probability of the forgery
being new is 1 —O(27!) as shown in the claim. Hence, the above attack succeeds
with high probability (1 — O(27!)) as desired. O

Constructing VIL-MACs from FIL-MACs 267

Acknowledgments

Thanks to the Crypto 99 program committee for their comments.

The first author was supported in part by a NSF Graduate Fellowship. The

second author was supported in part by NSF CAREER Award CCR-9624439
and a 1996 Packard Foundation Fellowship in Science and Engineering.

References

1.

10.

11.

12.

13.

14.

J. AN AND M. BELLARE, “Constructing VIL-MACs from FIL-MACs: Message
authentication under weakend assumptions,” Full version of this paper, available
via http://www-cse.ucsd.edu/users/mihir.

. ANSI X9.9, “American National Standard for Financial Institution Message Au-

thentication (Wholesale),” American Bankers Association, 1981. Revised 1986.
M. BELLARE, R. CANETTI AND H. KrRAWCZYK, “Keying hash functions for mes-
sage authentication,” Advances in Cryptology — Crypto 96 Proceedings, Lecture
Notes in Computer Science Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

M. BELLARE, R. CANETTI AND H. KrRAWCZYK, “Pseudorandom functions revis-
ited: the cascade construction and its concrete security,” Proceedings of the 37th
Symposium on Foundations of Computer Science, IEEE, 1996.

M. BELLARE, A. DEsal, E. Jokipit AND P. ROGAWAY, “A concrete security
treatment of symmetric encryption: Analysis of the DES modes of operation,”
Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE,
1997.

M. BELLARE, J. KiLIAN AND P. RoGAwWAY, “The security of cipher block chain-
ing,” Advances in Cryptology — Crypto 94 Proceedings, Lecture Notes in Com-
puter Science Vol. 839, Y. Desmedt ed., Springer-Verlag, 1994.

M. BELLARE AND P. RoGgawAy, “Collision-Resistant Hashing: Towards Making
UOWHFs Practical,” Advances in Cryptology — Crypto 97 Proceedings, Lecture
Notes in Computer Science Vol. 1294, B. Kaliski ed., Springer-Verlag, 1997.

M. BELLARE, O. GOLDREICH AND S. GOLDWASSER, “Incremental cryptography
with application to virus protection,” Proc. 27th Annual Symposium on the The-
ory of Computing, ACM, 1995.

M. BELLARE, R. GUERIN AND P. Rocaway, “XOR MACs: New methods for
message authentication using finite pseudorandom functions,” Advances in Cryp-
tology — Crypto 95 Proceedings, Lecture Notes in Computer Science Vol. 963,
D. Coppersmith ed., Springer-Verlag, 1995.

L. CARTER AND M. WEGMAN, “Universal Hash Functions,” Journal of Computer
and System Science, Vol. 18, 1979, pp. 143-154.

I. DAMGARD, “A Design Principle for Hash Functions,” Advances in Cryptology —
Crypto 89 Proceedings, Lecture Notes in Computer Science Vol. 435, G. Brassard
ed., Springer-Verlag, 1989.

O. GOLDREICH, S. GOLDWASSER AND S. MICALI, “How to construct random
functions,” Journal of the ACM, Vol. 33, No. 4, 210-217, (1986).

S. GOLDWASSER AND S. MIcALI, “Probabilistic encryption,” Journal of Computer
and System Science, Vol. 28, 1984, pp. 270-299.

S. GOLDWASSER, S. MIcALI AND R. RIVEST, “A digital signature scheme secure
against adaptive chosen-message attacks,” SIAM Journal of Computing, Vol. 17,
No. 2, pp. 281-308, April 1988.

268 J. H. An, M. Bellare

15. M. LuBy AND C. RACKOFF, “How to Construct Pseudorandom Permutations
from Pseudorandom Functions,” SIAM Journal of Computing, Vol. 17, No. 2,
pp. 373-386, April 1988.

16. R. MERKLE, “One way hash functions and DES,” Advances in Cryptology —
Crypto 89 Proceedings, Lecture Notes in Computer Science Vol. 435, G. Brassard
ed., Springer-Verlag, 1989.

17. R. MERKLE, “A certified digital signature,” Advances in Cryptology — Crypto 89
Proceedings, Lecture Notes in Computer Science Vol. 435, G. Brassard ed.,
Springer-Verlag, 1989.

18. M. NAOR AND M. YUNG, “Universal one-way hash functions and their crypto-
graphic applications,” Proceedings of the 21st Annual Symposium on Theory of
Computing, ACM, 1989.

19. E. PETRANK AND C. RACKOFF, CBC MAC for real time data sources. DIMACS
Technical Report 97-26, 1997.

20. B. PRENEEL AND P. vAN OORSCHOT, “MD-x MAC and building fast MACs from
hash functions,” Advances in Cryptology — Crypto 95 Proceedings, Lecture Notes
in Computer Science Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995.

21. R. RIVEST, “The MD5 message-digest algorithm,” IETF RFC 1321 (April 1992).

22. FIPS 180-1. Secure Hash Standard. Federal Information Processing Standard
(FIPS), Publication 180-1, National Institute of Standards and Technology, US
Department of Commerce, Washington D.C., April 1995.

23. WEGMAN AND CARTER, “New hash functions and their use in authentication and
set equality,” Journal of Computer and System Sciences, Vol. 22, 1981, pp. 265—
279.

A Proof of Lemma @

Let C be an arbitrary collision-finder attacking the security of the function g as
a weak collision-resistant function and having resources at most ¢, ¢ and p as
previously defined. We want to upper bound the weak-collision insecurity of g in
terms of insecurity of g as a MAC. To do this, we specify an adversary (forger)
A that uses the collision-finder C to attack the security of the function family g
as a MAC.

Our algorithm for A is composed of two sub-algorithms: A; and As. They
get an oracle for gx(-) so that they can mount a chosen-message attack and
eventually output a pair (m, 7). They run C providing answers to C’s queries
using the oracle they are given. Each of them is allowed to have resources at
most t,¢" and p’ as defined before. We denote by ¢. the number of queries made
by C. The algorithms are specified as follows:

Algorithm A{* O

; gk (*)
Fori=1,...,q.do Algorithm A;

Choose i < {1,...,qc}; 7 {1,...,i—1}

C -z)

C — gulay) Fors=1,...,ido
O*}(ylayZ) C‘}IS
Choose m <~ {1,2} s <

' CHgk(Is)

Let n = {1,2} — {m}

Return (g .ge(yn)) Return (z;, gr(x;))

Constructing VIL-MACs from FIL-MACs 269

To handle the case where both of the final strings y; and ys that C outputs were
queried by the collision-finder C, we have the forger A5. For the other case, where
at least one of the strings that C' outputs was not queried by C, we have the
forger A;. Ay makes two random guesses (4,7, 1 < j < i < q.) for the positions
in which the queries for the output strings y;, y2 are made by C among its query
positions {1, ..., ¢.}. Without making the query for the guessed second position
i, Ao outputs the forgery using the unqueried string x; as the new message and
the output of the queried string gi(z;) as its tag. A; randomly chooses one of
the output strings of C' and outputs that string as the message and uses the
other string to obtain its tag.

We now upper bound Succy® (C) in terms of Succ,** (A1) and Succ,*(Asz).
For notational convenience, we define the following. Let “C' Succeeds” denote
the event where the experiment FindWeakCol(C, g) outputs 1. Let Pr[-] denote
the probability of some event occurring in the experiment FindWeakCol(C, g).
And let E denote the event where, in the two output strings of C, at least one
of them is unqueried.

Forge(A1, g) will output 1 when FindWeakCol(C, g) outputs 1 (the event “C'
Succeeds”) and at least one of the two output strings of C'is unqueried (the event
E) and A; chooses the unqueried string correctly. Since A; chooses the string
randomly (out of the two strings), the probability of choosing right is at least 1/2.
This means that Succ**(4;) > 5 Pr[C Succeeds A\ E). For the algorithm Ay, its
success requires that it guesses the correct positions for the two queried strings in
addition to the success of C' with both of its output strings queried. Since the two
positions are randomly chosen among g. numbers, the probability of choosing
the correct position pair among the (qg) possible position pairs is at least 1 / (q;).
Notice that the event where both of the output strings of C are queried is F (from
the definition of the event). Hence, Succ,***(Az2) > Pr[C Succeeds N EY/(%).

Putting all this together we have
Succy” (C) = Pr[C Succeeds]

= Pr[C Succeeds A E] + Pr[C Succeeds A E|

< 2Suce™(4;) + (q) -Succ™(A4,)

2
QZ*QC+4 ro
S ¢ 2 'Insecg (taqa.u) (5)

The analysis of the resource parameters is omitted here, but for completeness
is provided in [#].
2
Regarding Equation ll, the multiplicative factor % 7(21c+2 is less than ¢ since

we know that ¢. < ¢. Combining all this, we obtain the conclusion of Lemma B

	Introduction
	Background
	From FIL-MACs to VIL-MACs
	Our Results
	Related Work

	Definitions
	The CBC MAC Does not Preserve Unforgeability
	The NI Construction Preserves Unforgeability
	The Construction
	Security Analysis

	Feistel Does not Preserve Unforgeability
	Proof of unhbox voidb@x hbox {Lemmanobreakspace {}ref {lem-macwcr}}

