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Abstract. For programming and executing complex applications on grid infrastructures, scientific workflows have been proposed

as convenient high-level alternative to solutions based on general-purpose programming languages, APIs and scripts. GridSpace

is a collaborative programming and execution environment, which is based on a scripting approach and it extends Ruby language

with a high-level API for invoking operations on remote resources. In this paper we describe a tool which enables to convert

the GridSpace application source code into a workflow representation which, in turn, may be used for scheduling, provenance,

or visualization. We describe how we addressed the issues of analyzing Ruby source code, resolving variable and method de-

pendencies, as well as building workflow representation. The solutions to these problems have been developed and they were

evaluated by testing them on complex grid application workflows such as CyberShake, Epigenomics and Montage. Evaluation is

enriched by representing typical workflow control flow patterns.
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1. Introduction

Programming and running complex scientific appli-

cations on Grid infrastructures requires development

of high level programming abstractions and support-

ing environments. Among them, we can distinguish

two important classes which are based on differ-

ent concepts. In the first model, applications are

defined as complete workflows using specific work-

flow languages like Abstract Grid Workflow Lan-

guage (AGWL) or Yet Another Workflow Language

(YAWL). These solutions are implemented in scientific

workflow systems such as Taverna [9], Kepler [11],

WS-VLAM [3] or Pegasus [6]. The aim of the sec-

ond approach is to enable access to grid infrastructures

from general-purpose programming languages using

libraries and APIs. It gives grid users an opportunity

to use a grid infrastructure without having to learn grid

specific technologies, it is easier to modify existing

applications and test them. In this paper, we describe
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an attempt to bridge the gap between these two ap-

proaches by proposing a solution for converting script-

based applications of GridSpace [14] platform into sci-

entific workflows.

GridSpace environment provides capabilities of-

fered by a grid infrastructure over APIs and libraries

which are accessible from Ruby [15] scripts – also

called experiments. Experiment developer is allowed

to instantiate grid objects and to perform operations on

them.

Grid object operations can be invoked both syn-

chronously and asynchronously (Listing 1). An asyn-

chronous operation returns an operation handler which

represents state of a remote operation. Then, invoker

keeps an executing process during which further oper-

ations can be called (including other asynchronous op-

erations) till the result of an asynchronous operation is

not required. The result of an asynchronous operation

can be obtained by invoking get_result() method

on an operation handler as it is shown in Listing 1.

In GridSpace, there is a three level grid object

abstraction [13]. The top level includes grid object

classes, these are abstract entities which define opera-

tions. One grid object class may have many implemen-
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1a = GObj.create()
2b = a.as_op()
3c = b.get_result()

Listing 1. Simple example of the GridSpace script with asynchro-

nous Grid Operation.

tations which are build on various technologies and run

on different environments, their operations are consis-

tent. The third level of abstraction is a grid object in-

stance which is in the same relation with a grid ob-

ject implementation as a grid object implementation is

with a grid object class – one grid object implementa-

tion can have many grid object instances, running on

different resources.

One of the advantages of a scientific workflow

model is that it explicitly specifies tasks and depen-

dencies between them, which in turn allows an opti-

mization of a workflow execution in a process of task

scheduling [22]. Unfortunately, programming grid ap-

plications in a general-purpose language does not give

a possibility to use workflow optimization techniques

due to lack of information about dependencies between

application tasks. Moreover, it is hard to predict which

grid resource will be used by a particular application

and how results produced by these resources will be

consumed.

Resolving the issue of translating grid application

sources into workflow models may open an ability of

applying tools and theoretical statements designed for

a workflow scheduling. It also provides data that can be

used to validate applications by changing their control

structures to eliminate inefficient constructs.

The main objective of our work is to elaborate an ap-

proach of transforming scripts into workflow models.

As an example of script based applications, GridSpace

environment is taken.

To achieve a goal of transforming Ruby scripts into

workflows, the following goals have to be realized:

• find dependencies between grid object operations

invoked from Ruby scripts, analyze Ruby source

code, locate grid object classes, their instances

and operations, check operation arguments and

then, using these data, find dependencies between

grid operations,

• build a workflow basing on an application source

code, gather information collected during a real-

ization of a previous point and locate control flow

structures in Ruby source code,

• validate approach by building workflows for con-

trol-flow patterns and well known workflow appli-

cations (Montage, CyberShake, Epigenomics) –

the purpose is to prepare hypothetical GridSpace

implementations of these well known applications

and transform them into workflows,

• provide data needed to enable optimization which

is based on a Ruby source code structure –

a workflow representation.

This paper is organized as follows: in Section 2 we

describe the related work, including workflow descrip-

tion languages, scripting approaches and workflow pat-

terns. Subsequently, in Section 3 we give a theoretical

details of our solution followed by a description of im-

plementation related issues – Section 4. In Section 5

we report on the results we achieved regarding work-

flow patterns supported as well as typical benchmark

workflows, such as Montage or Cybershake applica-

tions. We conclude our paper with enumerating the list

of open issues and prospects for future work.

2. State of the art

2.1. Workflow description languages

Usually, workflow models are described using spe-

cific languages. Directed Acyclic Graph (DAG) is a

format used to represent workflows by Condor and

DAGMan [19]: it describes jobs with their dependen-

cies (control flow). XML-based DAX is a version of

DAG used by Pegasus [6] to represent abstract work-

flow which are mapped by Pegasus planner to exe-

cutable workflows in DAG format.

AGWL [7] is XML-based workflow language. Us-

ing AGWL constructs, we can describe grid workflows

on a high level of abstraction, since AGWL work-

flow does not include implementation details. Activi-

ties can be a computation (let associate it with a grid

object), sequence of activities, or a composed sub-

activity. Activity is represented by a black box with

input/output ports and additional information in con-

straints and properties. Constrains may define environ-

ment requirements. Properties contain data which is

used by workflow tools like scheduling applications.

AGWL supports hierarchical decomposition of activ-

ities – some part of the workflow (sequence of activ-

ities or composed sub-activity) can be represented by

a single activity. In that case input/output ports of en-

closed workflow are mapped to input/output ports of

composed activity.

The origin of YAWL [8] was preceded by gather-

ing a wide collection of workflow patterns [16] de-
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scribed in Section 2.2. YAWL has been designed based

on Petri nets enriched with additional constructions to

provide better support for workflow patterns. YAWL is

XML-based language.

Workflow in YAWL is a set of extended workflow

nets, they are formed in hierarchical structure. Activ-

ities can be one of both: atomic task and composite

task which refers to extended workflow net in the lower

level of hierarchy. Each extended workflow net con-

tains tasks and conditions (they can be interpreted as

places). One unique input condition and one unique

output condition are required for extended workflow

net. Atomic tasks, as well as composite, can have mul-

tiple instances, number of them is determined by upper

and lower bounds. The task is completed when all task

instances have finished (specification predicts thresh-

old for the number of instances that has to finish before

a whole task is done and parameter which indicates if it

is possible to add new instances during task execution).

2.2. Workflow patterns

The motivation for creating workflow patterns by

Workflow Patterns Initiative was to delineate funda-

mental requirements for workflow modeling [16,24].

The area of research included various perspectives –

control flow, resource, data, etc. Resulting patterns can

be used to examine these purposes of workflow mod-

eling tools.

Sequence pattern is a fundamental building block for

workflow processes [16]. Activities are executed in a

sequence, the activity that follows a running activity is

started as soon as the preceding activity is completed.

This pattern is widely supported by all workflow man-

agement systems. The typical realization of this pattern

is done by associating two activities with unconditional

control flow arrow [21].

The other patterns [21] are: parallel split which

is a point in workflow process where the particular

branch of a control flow splits into multiple branches

which can be executed concurrently, synchronization is

a point in the workflow process where many threads of

control are joined into one, exclusive choice is a point

in the workflow process where, basing on the decision,

one from several outgoing branches is chosen, simple

merge is a point in the workflow process where two or

more branches come together without synchronization.

2.3. Scripting languages for distributed processing

As an alternative to graph-based workflow notations,

scripting languages can be also effectively used to pro-

gram and execute complex scientific applications with
dependencies between tasks.

SWIFT [23] is a scripting language with a syn-
tax specifically designed to handle large-scale data
processing on distributed and parallel environments.
It supports such constructs as loops, conditions and
a convenient mappings from file to variable names.
SWIFT script is compiled into workflow and executed
by Karajan execution engine, which can dispatch tasks
on parallel machines, clusters or grids.

Makeflow [18] is a workflow system based on a
scripting language similar to Makefile syntax. It allows
specifying dependencies between tasks and files that
need to be transferred. Makeflow compiles the input
script and its execution engine dispatches the workflow
tasks on Condor on SGE clusters, providing fault tol-
erance and data staging.

Another approach implemented in Grid Superscalar
[17] is to use imperative language to describe applica-
tion workflow. It can use constructs such as loops and
conditions and the compiler uses techniques known
from parallelizing compilers to enable out-of-order ex-
ecution of tasks. Grid Supersclar can submit jobs to
grid sites using Globus.

All the above-mentioned solutions require defin-
ing a new specific programming language and a new
syntax to describe dependencies or control structures.
GridSpace, in contrast, relies on unmodified Ruby syn-
tax, which makes it easier to develop scripts and also
use the rich Ruby standard library in workflow scripts.
Another common feature of listed solutions is that
they compile the whole script before execution, while
GridSpace relies on standard Ruby interpreter. The ad-
vantages of compilation are that it is easier to detect all
the dependencies and plan (schedule) the execution in
advance. On the other hand, using standard interpreter
offers the possibility of interactive scripting and late-
binding which is useful for dynamic environments like
grids. The work described in this paper helps bridge
the gap between GridSpace and other compiler-based
scripting system by static analysis of script code to
detect dependencies and enable to take advantage of
scheduling optimization known from workflow sys-
tems.

3. Translation of scripts into workflows

In this section we described the process of extracting
data from the application sources written in a scripting
programming language in the purpose of transforming
them into a workflow of grid operations. To show de-
pendencies between steps more explicitly, a graph in-
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Fig. 1. A graph contains steps of analysis described in Section 3, arrows stand for data flow between operations.

cluded in Fig. 1 presents data flow among operations

of analysis.

3.1. Assumptions

Proposed approach is based on analysis performed

on Abstract Syntax Trees (ASTs). To implement the

described solutions a tool which can generate AST
from a source code has to be available for particular
programming language. To simplify process of analy-
sis, all statements, with the exception of control-flow
statements (loops and conditional statements), should
appear in following forms:

• x := y op z where op is a binary arithmetic or
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logical operation,

• x := op y where op is unrary operation,

• copy statement: x := y,

• procedure call: x := p(y1, y2, . . . , yn),

• indexed assignments: x := y[i] and x[i] := y.

The considered forms are almost identical with

three-address statements [1]. They can be translated

from constructs that do not fulfill above requirements.

Foregoing description, where each statement has clear

indication which variables are used and which vari-

able is produced, allows to focus only on analysis of

dependencies and control flow rather than code trans-

formations. To achieve the goal of creating workflows,

required information from source code have to be ex-

tracted. The obtained data is used to identify all work-

flow activities and detect how data-flow and control-

flow are realized:

• detecting activities – activities are identified as

grid object operations,

• data and control flow – the interaction between

grid operations occurs when the result of the first

one affects any of the arguments of the second one

(a data flow dependency), or when the second grid

operation is in a control structure (such as loop
or if statement), which condition depends on the

result of the first grid operation (a control flow

dependency).

To detect the activities and data and control flow,

several analysis steps have to be performed, which are

described in detail in the following sections.

3.2. Data and control flow dependency analysis

Resolving variable dependencies can be performed

on plain AST form. For that purpose and for purpose of

further analysis described in following sections, AST

has to be reflected in the internal data structure which

should enable easy traversing and handling additional

information.

Resolve variables dependencies – Dependency graph.

Using the information contained in AST, each node is

examined to check if there are any variable occurrences

in its subtree. If so, all found variable occurrences are

assigned as its dependencies. Basing on this principle,

AST is traversed and all direct dependencies are noted

in the AST-based internal representation.

Fig. 2. An example of an assignment in AST form.

3.2.1. Detecting assignments

According to assumptions, the basic entity that
should be taken into account is an assignment. In Fig. 2
there is an example of an assignment as AST. Within
analysis, AST is traversed with the purpose of finding
all assignments and control-flow statements. As a re-
sult of this operation AST nodes corresponding to as-
signments and control-flow constructs are marked.

Detecting reaching definitions. An equation that
specifies how information is accessible in various
points of a program can be written as: out[S] =

gen[S] ∪ (in[S] − kill[S]) [1], where S represents a
statement, out[S] represents information accessible af-
ter a statement, in[S] and kill[S] are respectively sets
of information that is accessible before a statement and
that is killed in a statement. To adopt the above method
to the issue of detecting reaching definitions, the fol-
lowing remarks have to be made:

• in AST, information is propagated in the order de-
termined by depth-first traversal algorithm,

• according to the assumptions, every assignment
generates (defines) a new variable. If in the partic-
ular programming language lexical scoping inter-
action occurs between local variables and block
local variables, an assignment can also kill the in-
formation making it inaccessible.

To apply the above method, AST has to be traversed
with depth-first traversal algorithm, and for every as-
signment found the above equation has to be computed
to determine which variables can be reached in every
assignment. After this operation, each assignment –
represented by AST node – has associated information
on which variables are reachable in this point in a form
of a list of AST nodes – representing other assignments
in which these variables are created.

Detecting transitive dependencies. Once dependency
graph is established and analysis of reaching defini-
tions is complete, transitive dependencies can be re-
solved. First, each node which stands for a variable is
linked with the assignment in which considered vari-
able is created. This step requires the information of
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Algorithm 1. Detecting transitive dependencies

changed ← true

while changed do

changed ← false

for all s1 ∈ statements do

for all s2 ∈ statements do

if s2 and s1 are mutually independent then

for all variable d which is a dependency of variable s2 do

if d depends on s1 and s2 depends on d and s1 is reachable in s2 then

s2 depends on s1

changed ← true

end if

end for

end if

end for

end for

end while

Algorithm 2. Linking assignments with control-flow statements

1: s ← AST.root

2: for all s ∈ statements do

3: if s is assignment then

4: i ← s

5: while i has parent do

6: i ← i.parent

7: if i is a control statement then LINKSTATEMENTS(s, i)

8: end if

9: end while

10: end if

11: end for

variables dependencies and data from the analysis of
reaching definitions. Then, information about depen-
dency is spread among statements as it is shown in
an Algorithm 1. All assignments and control-flow con-
structs are considered statements. After a transitive de-
tection is performed, all assignments in AST contain
information about mutual dependencies.

3.2.2. Analyzing control flow structures

To allow the final workflow representation to include
control-flow statements from the script applications,
each assignment should be linked with a control-flow
construct in which it is located. To achieve that, all as-
signments – represented by AST nodes – are individ-
ually linked with all loops and conditional statements
that appear in the path from the root node of AST to
given node, as it is shown in Algorithm 2. Function
LinkStatements links assignment (first argument) with
control statement (second argument). Conditions of

control-flow statements are included into AST which

makes it possible to reconstruct them as a program-

ming language expression.

Detecting reaching definitions in loops. An impor-

tant aspect of reaching definitions occurs in loops.

It has to be noted that definitions performed in one

iteration are accessible in subsequent executions of

loop body. It implies that algorithm presented in

Section 3.2.1 which detects transitive dependencies,

should be extended to mark all nodes of AST located

in the same loop statement, apart from limiting itself

to nodes located at the right site of it. Information

about dependencies previously created in Section 3.2.1

should be enriched by data collected in this step.

3.2.3. Reassignment issue

The limitations of application model proposed in

Section 3.1 enable to reuse assigned values. Since the
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Algorithm 3. Changing variable names to solve re-

assignment issue

s ← AST.root

while s do

if s has the form x := y and x is reachable at s

then CHANGEVARIABLENAME(s, AST )

end if

s ← NEXT(s, AST )

end while

operation of resolving dependencies is based on vari-

able names (Section 3.2), it is important to recognize

these names properly and to be certain that a variable

name represents the value that is expected. The prob-

lem occurs when a new variable value is assigned to

the variable label that was already used and still ap-

pears in the scope. It might make impossible to resolve

dependencies correctly even in simple scripts and as a

result, impossible to create workflows.

Solution – Single static assignment. The solution to

this problem is based on changing the variable names.

The required information was already gathered dur-

ing analysis of reaching definitions (Section 3.2.1). In

the Algorithm 3, function Next implements depth-first

search.

A storing variable x is a left operand of assign-

ment operation and it denotes location where the value

is stored. The function ChangeVariableName changes

label of storing variable of the assignment which is

identified by the first argument and all its occurrences

basing on the data gathered in reaching definitions step.

As a result, alternative names of storing variables of

assignments that kill information are stored in AST.

3.2.4. Control flow and SSA

Using a Single Static Assignment (SSA) form may

influence the ability of tracking the control flow. How-

ever, in our case, SSA is performed after variable de-

pendencies are released and after variable scopes are

detected. It implies that in the final form the inter-

nal representation keeps all dependencies and original

names. Depending on how the conditions and loops are

evaluated during execution time, corresponding alter-

native variable names should be used.

3.2.5. Detecting activities

Activities in GridSpace application model are iden-

tified as grid object operations [13]. In the case of

the synchronous operations the activity is in a one to

one relationship with a grid object operation. Asyn-

chronous operations are split into two statements – re-

quest for operation handler performed on the grid ob-
ject and the result request invoked on the operation

handler, as it is shown in Listing 1. A synchronous grid

object operation is a special case of an asynchronous

operation where an operation handler is requested for a

result immediately after it was acquired. To detect ac-
tivities, the algorithm has to find grid objects and grid

operations.

Finding grid objects. Grid objects are returned as a

result of a functions which are provided by the API.

Depending of a implementation, this function can be

provided as a standalone function or method of the ob-
ject or class.

AST should be traversed to find assignments where

the storing value is computed in expression that can

be identified as a grid object creation. It is a matter of

convention to design the API in such a way that pro-
cedures that instantiate grid objects can be distinguish-

able. For example, in GridSpace grid objects must be

created by calling GObj.crate() factory method.

This process should produce the AST with all the grid

object assignments marked.

Finding grid operations and grid operation handlers.

Once grid objects are identified, it is possible to find
grid operations. Assignments in which storing value is

computed by invoking a method on grid object are se-

lected. Variables that are assigned in this kind of state-

ments are marked as grid operation handlers.

3.3. Building a workflow

While building a workflow, all the data gathered in

the analysis are combined. From the whole AST, only

assignments of grid objects are filtered. Starting with

these of them that do not have any dependencies on
other grid objects, the final workflow representation

is built. Dependencies are designated by relations es-

tablished in reaching definitions and variable depen-

dencies phases – two assignments are dependent if

their storing variables are dependent and if their stor-
ing variable definitions are reachable. To determine

if control-flow node should be inserted between con-

sidered pair of operations, a set s is individually de-

fined for each grid object assignment. Set s specifies in

which control-flow constructs the particular operation
is included. If set s1 stands for control-flow operations

linked with operation o1 and s2 stands for control-

flow operations linked with operation o2, s1 − s2 de-

termines which control-flow statement occur between

operations o1. o2 and s2−s1 determines on which con-
dition operation o2 is dependent on operation o1.
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4. Implementation

4.1. Source code analysis

According to the assumptions made in Section 3.1,

Ruby source code has to be translated to AST or to

equivalent form. We use Ruby parser [5]. It converts

Ruby source code to symbolic expressions (also called

S-expression or sexp) using Ruby arrays and base

types. Ruby parser transforms this source code from

Listing 1 into s-expressions as in Listing 2.

S-expression produced by this tool are equivalent

to AST regarding to the definition of AST from [1]:

“A useful starting point for thinking about the transla-

tion of an input string is an AST in which each node

represents an operator and the children of the node

represent the operands. (. . . ) superficial distinctions

of form, unimportant for translation, do no appear in

AST”.

s(:block,
s(:lasgn, :a,

s(:call, s(:const, :GObj), :create,
s(:arglist))),

s(:lasgn, :b,
s(:call, s(:lvar, :a), :as_op, s(:arglist))),

s(:lasgn, :c,
s(:call, s(:lvar, :b), :get_result,

s(:arglist))))

Listing 2. Listing presents S-expressions produced from script 1. In

the analyzed example, there is one block operation which contains

three left assignments. The first one saves the result of a

function call to variable a. Function is called by the constant GObj,

its name is create and it has an empty argument list. The second

and third assignments are very similar, except that the function is

reached by a variable, not by the constant.

S-expressions analysis. Full list of Ruby operations

holds 105 elements. 38 most important operations,

such as :lasgn, :call or :iter were selected,

and for each of them a routine which can analyze its

S-expression was implemented. To allow further anal-

ysis, S-expressions are converted into internal repre-

sentation. Its data structure is prepared to keep addi-

tional data for each operation and optimized for easy

and efficient traversing (Fig. 3).

4.2. Find grid objects and operations

Listing 1 presents a script with a grid operation

as_op() performed on grid object b. The analyzer

identifies which variables are grid objects and then,

it is able to find grid operations as function calls on

grid objects and grid operation handlers as their re-

turn values. In GridSpace, by the convention, grid ob-

jects are created by a method create of a class

GObj. Method accepts an argument which can demand

particular type of grid object, as follows: g_obj =

GObj.create("some_string"). Based on a de-

scription from Section 3.2.5, it is assumed that ev-

ery assignment which has identical structure to a tree

graph in Fig. 4 is a grid object creation. Follow-

ing a definition of grid operation from Section 3.2.5,

all assignments that fulfill requirements described in

this section should be marked as grid operations. In

GridSpace model however, we are considering only

asynchronous operations that by the conventions meth-

ods name should start with as_. Operation handler is

a returning value of a grid operation. In GridSpace, by

convention, the only method which can be executed

on the operation handler object is get_result. Grid

operations are dependent if assignments in which they

appear are dependent.

Fig. 3. Internal representation of a script from Listing 1. It shows a transformed S-expression from Listing 2. At this point of analyzing process,

each tree node contains type and name.
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Fig. 4. The grid object creation pattern – a fragment of internal repre-

sentation which stands for operation: a = GObj.create(). Grid

objects can be located by searching thought the internal representa-

tion for that kind of constructs.

4.3. Find dependencies from block statements –

Analyzing control flow

Regarding the Ruby programming language feature

which was already mentioned in Section 3.2.1, depen-

dency with source in a control-flow statement can oc-

cur if the particular variable was already assigned be-

fore the statement.

Eliminate reassignments. In order to eliminate reas-

signments, the internal representation is traversed, as it

was described in Section 3.2.3. The name changes are

implemented by adding a suffix to variable names. The

following source code with reassignments:

a = "foo"
a = 0
b = a + 2

is translated to:

a = "foo"
a_1 = 0
b = a_1 + 2

Find dependencies in if, while, iter and loop state-

ments. It has to be noted that in Ruby programming

language occurs a lexical scoping interaction between

local variables and block local variables. It means

that statements inside the block can modify local vari-

ables. Moreover, block local variables are not acces-

sible outside the block (in opposition to Python pro-

gramming language mechanisms). Taking into account

above facts, following rules are applied:

• dependencies with assignments in control-flow

constructs are treated as with local dependen-

cies with understanding that these operations are

placed in control-flow statement,

a = 1
b = 2
if a == 1

b = a + 1
end

c = b

Listing 3. Example of dependencies from if statement block. When

the condition is fulfilled, variable c is dependent on a and b,

otherwise, c is dependent only from b.

• assignments from control-flow statements can not
be lined as a dependency for assignments from
outside these constructs unless storing variables
were already initialized.

4.4. Final form of internal representation

The final form of internal representation includes all
the gathered data from the analysis process and all the
modifications. Example of internal representation of
script from Listing 3 is presented in Fig. 5.

4.5. Workflow builder tool

The implementation of the analysis process resulted
in creating a tool which allows to process Ruby scripts
and produce all discussed data and graphs. The two
external tools used to implement the workflow builder
for GridSpace scripts are parse tree [5] for source code
analysis and GraphViz [2] for drawing graphs.

The workflow builder tool which was developed dur-
ing research on the problem is composed from fol-
lowing modules, presented in Fig. 6. Class DagEdge
which keeps information about edges and DagNode
about nodes of a workflow, both of them are used
in a dag-tree module. Dag is a class which con-
tains procedures that build all dot graphs from in-
ternal representation – internal representation graph
trees, variable dependencies, operation dependencies
and workflows. DagTree is a class which handles in-
ternal representation of workflow. It is produced di-
rectly from experiment tree, ExperimentNode is a
class of experiment_tree node. It includes node
type read from s-expression and all information gath-
ered during analyzing process. ExperimentPro-
cessor is an extension of SexpProcessor class
from parse tree [5] tool. It contains methods, one
per s-expression type, e.g. block, args, class,
defn, etc – in total 38. It produces internal represen-
tation from parsed Ruby code. ExperimentTree
is a class which handles internal representation pro-
duced in experiment_processor. Moreover, it
contains main methods used in analyzing process.
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Fig. 5. Processed internal representation of a script from Listing 3. Each node contains identified type, direct and transitive dependencies,

dependencies from the blocks and separately dependencies from if statements which occurs two times in a current example.

Fig. 6. The architecture diagram presents relations between mod-

ules – DAG which generates graphs from internal representation

using GraphViz and its dot representation, ExperimentPro-

cessor which implements Ruby parser routines using external

ParseTree tool and ExperimentTree which handles internal

script representation using ExperimentNode module. Modules

DagTree, DagEdge and DagNode are used in Experiment-

Tree module to handle and operate on internal workflow represen-

tation.

Workflow description language based on YAML.

There is a need to keep workflows in permanent stor-

age to enable easy access of complete workflows from

the application. In addition to the existing possibility of

exporting workflows to dot files, the support for serial-

ization in YAML language [25] was added. It is easy

to read by a human and it has import/export tool in ma-

jority of programming languages. The exported work-

flow in YAML representation contains all information

which are gathered in graphical workflow representa-

tion.

4.6. Constructing a workflow

In order to build workflows, the internal representa-

tion is traversed and all the nodes which are not asyn-

chronous operations on grid objects are filtered out.

The remaining nodes are grouped into:

(1) pairs of explicit dependencies,

(2) pairs of transitive dependencies,

(3) pairs of dependencies from if or loop state-

ments.
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To make the workflow building process more clear

to understand, two intermediate forms between the in-

ternal representation and workflow representation are

created. The first intermediate graph represents depen-

dencies between assignments. The second intermedi-

ate graph distinguishes between different dependency

types and assignments of different operations.

The final workflow graph can be then produced

based on second intermediate graph with the following

transformations:

(1) grid objects are removed,

(2) grid operation handler nodes are replaced by la-

bels on edges which indicate data flow,

(3) transitive dependencies are removed except for

the cases where there is no direct dependency

(there is no label on the edge).

The examples of the intermediate representation

and the resulting workflow graph are shown in Sec-

tion 5.1.1.

5. Results

To validate the analysis process and the developed

workflow builder tool, a set of test cases was prepared.

The first group of tests included all the workflows pat-

terns as described in Section 2.2. The second group

was used to demonstrate how to use the workflow

builder tool to build typical benchmark workflows such

as Montage [10] from the corresponding GridSpace ex-

periments.

5.1. Supporting workflow patterns

In Section 2.2 control-flow patterns, which are

building blocks of larger workflows, were presented.

To prove that these aspects of process-control can be

implemented in GridSpace Ruby scripts, a workflow

creation process was performed for each pattern. The

following section presents this process on the example

of exclusive choice pattern.

5.1.1. Exclusive choice

In GridSpace experiment, as in any Ruby script, op-

erations which are executed under certain condition are

commonly located in if statement. Exclusive choice

workflow pattern implementation should comprise a

group of several operations where only one can be exe-

cuted depending on a condition. In Listing 4, first grid

1a = GObj.create()
2b = a.as_op()
3c = b.get_result()
4if c == true

5d = a.as_op(c)
6e = d.get_result()
7elsif c == false

8f = a.as_op(c)
9g = f.get_result()
10else

11h = a.as_op(c)
12i = h.get_result()
13end

Listing 4. Exclusive choice workflow pattern implementation. First

grid operation b = a.as_op() is always executed but following

operations depend on conditions of if statements in lines 4 and 7.

Fig. 7. Operation dependencies of the exclusive choice pattern im-

plementation. Grid operations are represented as circles, result re-

quests are squares and grid objects are hexagons. Direct dependen-

cies are represented by solid lines (dependency edge which points to

a grid operation is bold and has a filled arrow), transitive dependen-

cies have dotted or dashed lines (edges pointing to a grid operations

are dashed and also have filled arrows). Edges without arrows show

which grid objects operation is invoked on. Three operations d, f
and h are independent but because of a lack of control flow struc-

tures in this graph representation, it can not be determined if these

grid operation can be executed in parallel.

operation b = a.as_op() is always executed but

the subsequent operations depend on conditions of if
statements.

Building a final workflow representation. During the

translation of application sources to the workflow

model and subsequent intermediate models are created

as it is described in Section 4.6. Figure 7 presents the

second intermediate representation which shows de-

pendencies between grid operations.
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Fig. 8. Exclusive choice workflow pattern built from its GridSpace

implementation (Listing 4). Triangle shaped nodes represent condi-

tions and dotted edges point to the places where control flow exits

conditional blocks. When the control flow goes through a triangle

shaped node, only one outgoing edge is chosen depending on the

condition expression and its evaluation.

Figure 8 includes workflow representation of ex-

clusive choice pattern built from its GridSpace imple-
mentation. This workflow can be considered as an ex-
plicit representation of exclusive choice since there is
a special construct which determines which outgoing
branch is chosen – a triangle shaped node.

5.1.2. Introducing a parallel for construct

If operations in loop body do not modify values from
outside of the loop and the result is not dependent on
iterations order, particular iterations can be executed
concurrently. The motivation of extending GridSpace

constructs by parallel for is to provide explicit method
for defining which parts of GridSpace application can
be executed in parallel. Existing GridSpace libraries
does not contain any routines which allow such kind of

facilities. A statement presented in Listing 5 was intro-
duced to provide parallel execution for given block.

5.2. Benchmark workflows

Benchmark workflows, inspired by real world ap-

plications, are often used for testing and scheduling
systems. The workflow generator allows creating ar-
bitrarily large workflow models, providing ability of
benchmarking and comparing implementations effi-

a = GObj.create()
b = a.as_op()
c = b.get_result()
P.pFor([1, 2, 3, 4]) do |i|

d = a.as_op(c + i)
e = d.get_result()

end

Listing 5. The usage of parallel for statement. In execution, the

block will be launched in parallel, each thread with corresponding

argument from the array: [1, 2, 3, 4]. Workflow built from the

script is presented in Fig. 9.

ciency of workflow systems [4]. To test our work-
flow builder tool, hypothetical GridSpace applications
were created for the following benchmark workflows:
Montage [10], CyberShake [12] and Epigenomics [20].
They have the form of GridSpace scripts that reflect
both the control and data flow of original workflow
applications. CyberShake is an application developed
by Southern California Earthquake Center to model
earthquake processes in the purpose of seismic hazard
analysis. It contains many concurrent control branches.
Epigenomics is an application used for research on the
epigenetic state on a human genome, it performs inde-
pendent conversions, mappings and filters on DNA se-
quences separated into several chunks. This workflow
in turn is an example of pipelined application.

Montage (An Astronomical Image Mosaic Engine)
[10] combines both features of other two workflows
described above, it consists of both parallel and pipe-
lined sections. It is an open source toolkit maintained
by NASA/IPAC Infrared Science Archive which can
merge sky images into mosaics. It was designed as a
portable application which can be used by astronomers
on their desktop computers and also adapted to running
on grid infrastructure.

There are four main steps in the image assembling
process:

(1) gather information from images about its geom-
etry (they are kept in a Flexible Image Transport
System – FITS format, which can represent that
kind of data) and process it to calculate geometry
of the result mosaic,

(2) rescale, rotate, change coordinates of input im-
ages to gain the same spatial scale,

(3) get background radiation values of each image to
align flux scales and background levels in whole
mosaic,

(4) join images which corrected background.

Listing 6 presents a hypothetical GridSpace experi-
ment which implements the data and control flow of
Montage application.
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Fig. 9. Workflow of an application with a parallel for statement. An

independent branches between pFor node and dotted arrows will be

executed in parallel.

Comparing the GridSpace implementation and the
original Montage application following modifications
and simplifications has been applied:

(1) since presented workflow tool is limited to in-
formation gathered from code parsing, it is im-
possible to resolve dependencies between objects
stored in collections, such as Array, Hash or
Set,

(2) parallel loops in lines 15, 21 and 33 would be
replaced by normal loops if operation handlers
were stored in a collection such as Hash or List.
In such a case the original dependencies between
mProjectPP and mDiffFit could be recon-
structed then – the issue is also mentioned in fu-
ture work Section 6.

1dataRepository = GObj.create("fotos")
2mProjectPP = GObj.create("mProjectPP")
3mDiffFit = GObj.create("mDiffFit")
4mConcatDiff = GObj.create("mConcatDiff")
5mBgModel = GObj.create("mBgModel")
6mBackground = GObj.create("mBackground")
7mImgTbl = GObj.create("mImgTbl")
8pipeline = GObj.create("pipeline")
9
10# asynchronous operation returns operation

handler
11data_hdlr = dataRepository.as_load("12")
12data = data_hdlr.get_result()
13
14fotos_result = nil

15P.pFor(data) do |f|
16fotos_hdlr = mProjectPP.as_op(data)
17fotos_result = fotos_hdlr.get_result()
18end

19
20diffFit_result = nil

21P.pFor(fotos_result) do |f|
22diffFit_hdlr = mDiffFit.as_op(fotos_result)
23diffFit_result = diffFit_hdlr.get_result()
24end

25
26concatDiff_hdlr =

mConcatDiff.as_op(diffFit_result)
27concatDiff_result =

concatDiff_hdlr.get_result()
28
29bgModel_hdlr =

mBgModel.as_op(concatDiff_result)
30bgModel_result = bgModel_hdlr.get_result()
31
32backgrounds_result = nil

33P.pFor(fotos_result) do |f|
34backgrounds_hdlr =

mBackground.as_op(fotos_result,
bgModel_result)

35backgrounds_result =
backgrounds_hdlr.get_result()

36end

37
38imgTbl_hdlr =

mImgTbl.as_op(backgrounds_result)
39imgTbl_result = imgTbl_hdlr.get_result()
40
41pipeline_hdlr = pipeline.as_op(imgTbl_result)
42pipeline_result = pipeline_hdlr.get_result()

Listing 6. Script shows hypothetical situation – how Montage would

look like if it was written in Ruby and with usage of GridSpace Grid

interface.

Resulting Montage workflow is presented in Fig. 10.

Hypothetical GridSpace applications that implement

Cybershake and Epigenomics workflows are shown

in Listings 7 and 8. Workflow graphs generated from

these scripts are included in Figs 11 and 12.

6. Conclusions and future work

The described tool enables to convert the GridSpace

application source code into a workflow model, which

in turn may be used for scheduling, provenance, or vi-
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Fig. 10. Montage workflow created for a script from Listing 6.
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sgt = GObj.create("sgt")
synthesis = GObj.create("synthesis")
peak = GObj.create("peak")
zip_seis = GObj.create("zip_seis")
zip_psa = GObj.create("zip_psa")

input_handler = sgt.as_op("data")
input = input_handler.get_result()

s = []
P.parallelFor([1,2,3,4]) do |i|

s[i] = synthesis.as_op(input[i])
end

p = []
s_result = []
P.pFor([1,2,3,4]) do |i|

s_result[i] = s[i].get_result()
p[i] = peak.as_op(s_result[i])

end

s_result = s.get_result()
zs = zip_seis.as_op(s_result)

p_result = p.get_result()
zp = zip_psa.as_op(p_result)

zp_result = zp.get_result()
zs_result = zs.get_result()

Listing 7. Script shows hypothetical situation – how Cybershake

workflow would look like if it was written in Ruby and with usage

of GridSpace Grid interface.

epigenomics = GObj.create("epigenomics")
fqs_h = epigenomics.as_fastQSplit

map_h = []
P.pFor([1,2,3,4]) do |i|

fqs_res = fqs_h.get_result()
fc_h = epigenomics.as_filterContams(fqs_res)
fc_res = fc_h.get_result()
s2s_h = epigenomics.as_sol2sanger(fc_res)
s2s_res = s2s_h.get_result()
f2b_h = epigenomics.as_fastq2bfq(s2s_res)
f2b_res = f2b_h.get_result()
map_h[i] = epigenomics.as_map(f2b_res)

end

map_res = map_h.get_result()
mm_h = epigenomics.as_mapMerge(map_res)
mm_res = mm_h.get_result()
mi_h = epigenomics.as_maqIndex(mm_res)
mi_res = mi_h.get_result()
pileup_h = epigenomics.as_pileup(mi_res)
pileup_res = pileup_h.get_result()

Listing 8. Script shows hypothetical situation – how Epigenomics

workflow would look like if it was written in Ruby and with usage

of GridSpace Grid interface.

sualization. We addressed the issues of analyzing Ruby

source code, resolving variable and method dependen-

cies, as well as building workflow representation. The

results of our approach are advanced enough to pro-

duce workflows for simple grid applications and to de-

termine which requirements have to be fulfilled to pro-

vide translations for complex grid applications with

wide usage of collections, such as Array and Hash
and user defined functions and classes.

The presented methodology was validated by per-

forming conversions of workflow patterns implementa-

tions and well as of known benchmark workflows such

as Montage.

Processing Ruby source code (Section 3) gives

knowledge about which Grid Object Classes are used

in application and which grid operations are per-

formed. Information about relations between these op-

erations is obtained by resolving variable dependen-

cies. Control statements are parsed and their impact

on grid objects is determined. The main conclusion af-

ter development of this process is that Ruby program-

ming language has very complex syntax and dynamism

of the language. This, on one hand, gives the oppor-

tunity and flexibility to develop complex applications,

but on the other hand it causes many problems during

the script analysis. Nevertheless, most of other com-

monly used programming languages also can manipu-

late complex data structures, which exclude the possi-

bility of complete source code analysis.

The information extracted from GridSpace scripts

is used to build graphs of workflow representation

(Section 5). Basic four workflow patterns were im-

plemented as GridSpace applications and the whole

process of building workflow graph was presented.

It was shown how complex Ruby scripts with loop
and if statements affect workflow structure. Well-

known workflow applications (Montage, CyberShake,

Epigenomics) were reimplemented as hypothetical

GridSpace applications and then successfully con-

verted to workflows.

It was observed that source to workflow conversion

problem brought many of research issues and although

many of them were solved, there is still much room for

improvement in the future.

As it was mentioned in Section 4.1, there are

105 types of Ruby statements which can be distin-

guished by used Ruby parser – ParseTree [5] while

the current implementation of builder tool can ana-

lyze only 38 types. Implementation of each type would

complement internal representation and improve the

whole process.

Flexibility in programming language usually goes

with complexity in its syntax which implies problems

in parsing and analyzing process. The specific Ruby

language features (which has to be limited to improve

application source to workflow conversions) that raise

issues include:
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Fig. 11. Cybershake workflow created for a script from Listing 7.

(1) Lack of syntax distinction between variable and

function usage, e.g. in Ruby statement foo =
bar, variable foo is assigned to value which is

returned from function bar or to a value of vari-

able bar.

(2) Passing block as function arguments. It is not

known when and how this block will be executed.

If there is yield statement in the function, the

block will be executed immediately (one or more

times), or it can be kept and used later as a call-

back or in different conditions.

(3) The fact that Ruby classes and objects can be eas-

ily changed, methods can be aliased, added or re-

moved in runtime.

(4) Allowing of code modification at runtime (mon-

key patching) and lack of any relation between

Ruby program logic and structure of files.

(5) When tracked values (e.g. grid operation results)

are passed to the collections (Array, Hash or

Set), it becomes impossible to resolve exact de-
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Fig. 12. Epigenomics workflow created for a script from Listing 8.
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pendencies between these values. Solution may

involve the introduction of some code translation

similar to Lisp macro instructions.

Immutable variables (value assigned to a particular

label cannot be changed) solves issue of variable track-

ing by reducing the necessity of considering reassign-

ments and resolving global variable dependencies.

The understanding of application structure provides

data for Ruby script validation and optimization. The

possible optimization include:

• Changing sequential iterations into parallel for

loops if there are no looped dependencies and the

order of execution does not affect variables from

outside of the loop.

• Basing on the variable dependencies graph, asyn-

chronous grid operations and its result request can

be moved within their blocks to ensure that con-

trol flow would not be suspended before all pos-

sible asynchronous operations are performed.

• Having a knowledge about operations and vari-

ables dependencies gives a possibility of mak-

ing validations which usually cannot be made

in pre-execution time like finding operations on

variables which were not initialized. If there is

a get_result() request on operation handler

which does not have corresponding asynchronous

grid operation, many costly calculation may turn

out pointless since this error can interrupt appli-

cation execution.

Also, more general question can be raised: “How to

define language syntax and semantics to keep relations

between grid operations detectable while the program-

mer have possibility of any use of collections, function

and class definitions” – it opens a discussion about di-

vergence from unmodified Ruby syntax (and all its ad-

vantages mentioned in Section 2.3) or imposing some

restrictions on GridSpace scripts.

The code of the tool and the examples are avail-

able on Github: http://github.com/mikolajb/script_to_

workflow.
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