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Abstract

We present a network framework for analyzing multi-level regulation in higher eukaryotes based on systematic integration
of various high-throughput datasets. The network, namely the integrated regulatory network, consists of three major types
of regulation: TFRgene, TFRmiRNA and miRNARgene. We identified the target genes and target miRNAs for a set of TFs
based on the ChIP-Seq binding profiles, the predicted targets of miRNAs using annotated 39UTR sequences and
conservation information. Making use of the system-wide RNA-Seq profiles, we classified transcription factors into positive
and negative regulators and assigned a sign for each regulatory interaction. Other types of edges such as protein-protein
interactions and potential intra-regulations between miRNAs based on the embedding of miRNAs in their host genes were
further incorporated. We examined the topological structures of the network, including its hierarchical organization and
motif enrichment. We found that transcription factors downstream of the hierarchy distinguish themselves by expressing
more uniformly at various tissues, have more interacting partners, and are more likely to be essential. We found an over-
representation of notable network motifs, including a FFL in which a miRNA cost-effectively shuts down a transcription
factor and its target. We used data of C. elegans from the modENCODE project as a primary model to illustrate our
framework, but further verified the results using other two data sets. As more and more genome-wide ChIP-Seq and RNA-
Seq data becomes available in the near future, our methods of data integration have various potential applications.
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Introduction

Eukaryotic gene regulation is performed at multiple levels, each

distinguished by different spatial and temporal characteristics. The

combination and orchestration between regulatory mechanisms in

various levels are central to a precise gene expression pattern,

which is essential to many critical biological processes [1,2].

Transcriptional regulation and post-transcriptional regulation,

mediated by regulators including transcription factors (TFs) and

small non-coding RNAs, such as microRNAs (miRNAs), are two

of the most important regulatory mechanisms [3,4]. At the

transcriptional level, TFs bind to promoters and enhancers to

either activate or repress gene transcription [4]. At the post-

transcriptional level, miRNAs repress the expression of genes by

degrading or inhibiting the translation of their target mRNAs

[5,6]. In spite of the dramatic differences in their molecular types,

TFs and miRNAs share a common ‘‘logic’’ for the control of gene

expression [7]. Both of them are trans-acting factors that function

through recognizing and binding specific cis-regulatory elements

in DNA or RNA. TFs bind to DNA elements often located in or

near their target genes, while miRNAs hybridize to RNA elements

mostly located in the 39 untranslated region (39UTR) of their

target mRNAs. TFs and miRNAs tightly coordinate with each

other to ensure accurate and precise gene expression. Further-

more, translated proteins form complexes via physical interactions.

These complexes can function only if their constituents are

properly regulated. Therefore, each TF or miRNA regulates a

large number of interacting target genes [8–11] and different TFs

and miRNAs control one gene in a combinatorial manner

[3,12,13]. This essentially forms an integrated gene regulatory

network by connecting TFs and miRNAs with their interacting

targets. A deep investigation of this network would help to further

understand the ‘‘language’’ of gene expression regulation at

multiple levels.

Network analysis has proven to be useful in unraveling the

complexity of biological regulation [14–16]. Different approaches

can be employed to gain more insight into the design principles of

biological networks. Recently, studies have shown that transcrip-

tional regulation follows a hierarchical organization and regulators

at different levels have their own characteristics [17]. In particular,
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the rearrangement of networks into hierarchy facilitates comparison

with other commonplace systems, and provide more intuitive

understanding of biological networks [18]. Apart from a top-down

approach, one could also study networks via a bottom-up approach

by identifying their simple building blocks [19,20]. These blocks,

referred to as network motifs, are patterns that recur within a

network at numbers that are significantly higher than expected at

random. Examples such as feedback loops and feed-forward loops in

transcriptional regulatory networks are found to be conserved in

diverse organisms from bacteria to human [20–22], and experi-

mentally verified to perform distinct functions like pulse generator

and response accelerator [23]. Even though numerous efforts have

been placed on the network analysis of biological regulation, most of

the earlier studies focused on the transcriptional level. More

recently, several system-wide studies have attempted to integrate

regulation by TFs at the transcriptional level and that by miRNAs at

the post-transcriptional level [24–26]. Despite the new insights they

provided, the datasets were limited by their coverage and were

mostly based merely on computational predictions, which have high

false positive rate and were potentially biased.

To overcome the limitations of previous studies, we have used the

genome-wide experimental datasets for TF binding created by the

model organism encyclopedia of DNA elements (modENCODE)

project. The modENCODE project, launched in 2007, aims to

generate a comprehensive annotation of functional elements in the

C. elegans and D. melanogaster genomes [27–29]. Using recently

developed techniques such as ChIP-Seq [30] and RNA-Seq [31], a

large amount of data, including the genomic binding data for more

than 20 TFs, expression profiles of all protein-coding genes and

miRNAs across the developmental time course, as well as refined

annotation of 39UTRs and their regulatory elements in C. elegans [32]

have been generated. Apart from C. elegans andD. melanogaster, similar

genome-wide datasets in other higher eukaryotes such as human and

mouse are emerging. Together with existing information such as

protein-protein interactions and miRNAs target prediction in all

these organisms, there is an unprecedented opportunity to examine

various levels of eukaryotic regulation. Toward this goal, the proper

integration of various datasets plays an essential role.

In this study, we propose an integrated network framework for

analyzing multi-level regulation in higher eukaryotes, namely the

integrated regulatory network. To our knowledge, this is the first

attempt to construct system-wide network using experimentally

identified TF target genes and miRNAs. More specifically, we

identified the target genes and target miRNAs for a set of TFs based

on the ChIP-Seq binding profiles. The interactions were then

integrated with predicted targets of miRNAs, which are based on

annotated 39UTRs (the 39UTRome) and conservation information.

Making use of the system-wide RNA-Seq profiles, we classified the

transcription factors into positive and negative regulators and thus

assigned a sign for each regulatory interaction. Protein-protein

interactions and a novel intra-regulation between miRNAs using

the embedding of miRNAs in their host genes were further

incorporated. Leveraging the rich data generated by the mod-

ENCODE project, we use C. elegans as a primary model to illustrate

our formalism and further confirmed our results in human and

mouse. As more and more genome-wide ChIP-Seq and RNA-Seq

data are generated via the modENCODE and ENCODE project

[33] in the near future, the methods of data integration proposed in

this work have various potential applications.

Results

A general network framework of data integration
At the heart of our study is the construction of an integrated

regulatory network. The integrated network consists of three major

network components: TF-Gene regulatory network, TF-miRNA

regulatory network and miRNA-Gene regulatory network. The TF-

Gene and TF-miRNA interactions are extracted from ChIP-Seq

binding profiles. Predicted targets of miRNAs are identified by the

PicTar and TargetScan algorithm [9] using the 39UTRome, and

the predictions are further refined by conservation information.

With the basic network in hand, we color the edges in terms of their

signs of regulation via expression data, and incorporate extra edges

by protein-protein interactions (see Figure 1 for a summary and the

Materials and Methods for details).

TF-Gene and TF-miRNA regulatory networks. In C.

elegans, the modENCODE consortium has carried out ChIP-seq

experiments for 22 TFs under one or more developmental stages

from Early Embryo (EE), Late Embryo (LE), Larva 1 (L1), Larva 2

(L2), Larva 3 (L3), Larva 4 (L4) to Young Adult (YA). Making use

of these system-wide binding profiles and the latest annotation, we

explored the distribution of TF binding signals around the

transcription start sites (TSS) of C. elegans genes and found that

binding sites of all TFs are enriched close to the TSS (Figure S1).

Essentially, a gene is identified as the target of a TF if at least one

binding peak of the TF falls within the TSS proximal region (from

1 kb upstream to 500 bp downstream) of the gene. Previous

studies have shown that miRNA expression is regulated in a

similar manner as protein-coding genes [26,34,35]. For example,

Martinez et al. have shown that the vast majority of miRNA

promoters drive expression with similar activities to that of

protein-coding gene promoters. It has also been demonstrated that

DNA fragments upstream of the pre-miRNAs are sufficient to

initiate their transcription [36–39]. Though the TSS of the

majority of C. elegans miRNAs has not been determined, the

starting positions of their corresponding pre-miRNAs are available

from the miRBase database [40]. Like protein-coding genes, we

observed enriched TF binding signals around these pre-miRNA

start positions (Figure S1). We therefore identified the target

miRNAs of the 22 TFs in the same way as for protein-coding

genes. A miRNA is regarded as the target of a TF if at least one

binding peak of the TF falls within 1 kb upstream and 500 bp

Author Summary

The precise control of gene expression lies at the heart of
many biological processes. In eukaryotes, the regulation is
performed at multiple levels, mediated by different
regulators such as transcription factors and miRNAs, each
distinguished by different spatial and temporal character-
istics. These regulators are further integrated to form a
complex regulatory network responsible for the orches-
tration. The construction and analysis of such networks is
essential for understanding the general design principles.
Recent advances in high-throughput techniques like ChIP-
Seq and RNA-Seq provide an opportunity by offering a
huge amount of binding and expression data. We present
a general framework to combine these types of data into
an integrated network and perform various topological
analyses, including its hierarchical organization and motif
enrichment. We find that the integrated network possess-
es an intrinsic hierarchical organization and is enriched in
several network motifs that include both transcription
factors and miRNAs. We further demonstrate that the
framework can be easily applied to other species like
human and mouse. As more and more genome-wide ChIP-
Seq and RNA-Seq data are going to be generated in the
near future, our methods of data integration have various
potential applications.

Integrated Regulatory Network Analysis
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downstream of the pre-miRNA. Apart from C. elegans, we applied

the same scheme to identify TF-Gene and TF-miRNA interactions

for human and mouse based on ChIP-Seq data for 13 TFs in

human K562 cell line, and 12 TFs in mouse embryonic stem cells

[41] (see Materials and Methods).

miRNA-Gene regulatory network. Predicted targets of

miRNAs are identified by PicTar or TargetScan algorithm. In

C. elegans, we further refined the predictions by taking into account

the conservation of miRNA seed sites in three (C. elegans, C. briggsae,

C. remanei) or five (C. brenneri, C. japonica additionally) species. A

more detailed description can be found in [42]. Briefly, we

identified a total of 20,427 predicted conserved target sites within

4,866 39UTRs for 2,244 genes. This set of predicted miRNA-

mRNA binding sites constitutes a framework for potential

interactions underlying miRNA post-transcriptional regulatory

networks in C. elegans. In human and mouse, miRNA targets are

downloaded from [43,44] and predicted by TargetScan algorithm,

which also take into account the conservation of miRNA binding

site across multiple mammalian species.

Basic topology of the C. elegans integrated regulatory
network
The basic integrated regulatory network of C. elegans consists of

three types of nodes: 393 TFs (among which 22 have target

protein-coding genes and target miRNAs available), 5,574 non-TF

protein-coding genes and 160 miRNAs. There are 22,096 TF-

gene (including TF-TF) interactions, 452 TF-miRNA interactions,

and 10,069 miRNA-gene interactions (Figure 2). The number of

targets varies dramatically among the 22 TFs, e.g. the number of

miRNA targets range from 2 to 73 with a median of 17. Although

the difference in target numbers may arise due to experimental

parameters such as the sequencing depth and the data quality, it

also reflects the biological functions of transcription factors. For

the 22 TFs, the number of target protein coding genes and the

number of target miRNAs are positively correlated (r = 0.9,

P,1028). We compared the number of regulatory miRNAs for

TFs with that of non-TFs and found that non-TF mRNAs were on

average regulated by 4.6 miRNAs, whereas TF mRNAs were

regulated by 6.3 miRNAs. This suggests that miRNAs are more

likely to regulate TFs than non-TFs (P= 1.2E-6, Wilcoxon Rank

Sum test), which is consistent with previous reports [25].

To have a systematic overview of the integrated network, we

examine the degree distribution of the network. As a result of

different types of nodes and edges, there are several kinds of degree

distributions (Figure 3). We examined the number of regulatory

TFs for miRNAs as well as for protein-coding genes, and found

that both are best fitted by an exponential distribution (R2=0.86,

0.84), implying that a single target gene or miRNA is less likely to

be regulated by many TFs simultaneously (Figure 3, top left and

right). The number of target genes, and target miRNAs for the 22

TFs, on the other hand, are shown in Table S4. While it is hard to

Figure 1. Schematic diagram of the construction and analysis of the integrative regulatory network. ChIP-seq data were used to
determine target genes and miRNAs of transcription factors. miRNA target genes were predicted using PicTar or TargetScan algorithms together with
conservation information. The three types of regulations form the basic network. The sign of each regulatory interaction was determined based on
the correlation between TF binding and gene expression, Extra edges of protein-protein or TF-TF combinatorial interactions were incorporated. We
studied the topological structure of the integrated network, including hierarchical organization and motif enrichment.
doi:10.1371/journal.pcbi.1002190.g001

Integrated Regulatory Network Analysis
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infer the underlying distribution, the number of target genes varies

quite a lot. Of particular interest in the integrated network are the

miRNA nodes, as they possess both in-degree (the number of

regulatory TFs) and out-degree (the number of their target genes).

Our analysis indicates that both in-degrees and out-degrees of

miRNAs are best fitted by an exponential distribution (R2=0.95,

0.81) (Figure 3, bottom left and right), which is distinct from the

power law distribution exhibited by many other biological

networks. However, the maximum in- and out-degrees of miRNAs

are 20 and 200 respectively, and are still much larger than

expected by chance [25]. We calculated the correlation between

in- and out-degrees for miRNAs and found a weak positive

correlation (r = 0.2, P,0.01). This is a mathematical indication of

loopy structures in the network.

Combinatorial regulation in the C. elegans integrated
regulatory network
It has been suggested that combinatorial regulation, the

tendency of two or more regulators controlling the same target,

plays an important role in transcriptional regulation [45–49].

Apart from the case of two TFs, the combinatorial effects of a TF-

miRNA pair have recently been addressed [24,50,51]. To explore

this combinatorial regulation via the integrated network in C.

elegans, we examined the tendency of sharing common protein-

coding targets between 22 TFs and 160 miRNAs. Many TF-

miRNA pairs show significant target overlap in a hypergeometric

test, which are presumably responsible for the same function

(Figure S2). Similarly, we quantified for each possible pair of TFs,

the tendency of sharing common protein-coding targets (Figure

S3) and common miRNAs (Figure S4), and found many significant

pairs.

Hierarchical analysis of the C. elegans integrated
regulatory network
To better visualize the regulatory interactions in an integrated

regulatory network, we built an intuitive hierarchy comprising of

TFs and miRNA that would allow a clear mining of underlying

regulatory association between various regulators. A conventional

hierarchy requires all regulatory interactions to point down in the

hierarchical structure; no regulators regulate those above them.

This requirement might pose problems in the presence of cycles in

the network, which is the case when miRNA are included in the

integrated network. To overcome this problem, we used only the

transcriptional regulatory interactions to first build a core

hierarchy strictly following ‘‘chain of command’’ pointing down

as used in previous studies (see Materials and Methods) [17]. In C.

elegans, this approach results in 3 layers of TFs with 9 at the top, 11

in the middle and 2 TFs in the bottom layer, respectively

(Figure 4A). The interactions involving the miRNAs were then

added to this core hierarchy to build the integrated hierarchy.

The importance of hierarchical analysis is signified by the fact

that TFs at different levels are found to have different character-

Figure 2. Topology of the integrated regulatory network in C. elegans. The network contains 393 TFs (red circles), 160 miRNAs (cyan circles)
and 5574 non-TF protein-coding genes (green circles). For 22 of these TFs, we determined the target genes and miRNAs. Topological features of the
three node types were shown in the lower table.
doi:10.1371/journal.pcbi.1002190.g002

Integrated Regulatory Network Analysis
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istics. We correlated the hierarchical levels of the 22 TFs with

various functional genomics data (see Table S1), and observed

several features that are significantly different between TFs from

different levels. First of all, we found that TFs downstream of the

hierarchy are more likely to be essential, whereas those at the top

are likely to be non-essential (statistically, this result is not significant

due to small sample size). More specifically, while 5 out of the 22

TFs are experimentally verified to be essential for the survival of the

C. elegans according to RNAi screening [52], four of them are in the

middle or the bottom layers, and only one is in the top layer.

Secondly, we found that the TFs in different layers possess different

topological properties in the C.elegans protein-protein interaction

network. In particular, the average numbers of interaction partners

for TFs in the top, middle and bottom layers are 6, 26 and 95

respectively (Figure 4B). Thirdly, we calculated and compared the

tissue specificity of TF at the three layers in 8 different tissues (see

Materials and Methods) and found that those lower layer TFs are

more uniformly expressed in these tissues (Figure 4C). Finally, of

particular interest is the number of miRNA regulations targeting the

three layers. We found that of the three layers, TFs in the middle

layer are more likely to be regulated by miRNAs (Figure 4D). The

hierarchical network is constructed to make TFs at higher layers

regulating those at lower layers, thus higher layer TFs might also

have more target genes and miRNAs.

We examined the correlation between other properties of TFs

and their corresponding levels, including their expression, conser-

vation information, stage specificities (see Materials and Methods)

and their target miRNAs across the worm developmental time

course. In our analysis, these properties did not show significant

differences between the three layers. However, some of them were

reported to be significant in the hierarchical network in yeast [53].

Positive and negative regulators in the C. elegans

integrated regulatory network
While the integrated network we constructed describes the

target genes and miRNAs of TFs, the kind of the regulatory

interactions are not known. To provide further insights, we

examined for each TF, the correlation between the binding signals

around the TSS and the corresponding target gene expression (see

Materials and Methods for details). As shown in Figure 5, in C.

Figure 3. Distributions of the topological features of each node type in C. elegans integrated regulatory network. (A) The number of
regulatory TFs for miRNAs; (B) the number of regulatory TFs for protein-coding genes; (C) the number of regulatory miRNAs for protein-coding genes;
(D) the number of target genes of miRNAs. Each is best fitted to an exponential distribution as shown by the corresponding inset.
doi:10.1371/journal.pcbi.1002190.g003

Integrated Regulatory Network Analysis

PLoS Computational Biology | www.ploscompbiol.org 5 November 2011 | Volume 7 | Issue 11 | e1002190



elegans, many TFs show either a consistent positive or negative

correlation from 22 kb to +2 kb of the TSS. We therefore

classified the 22 TFs into two classes: positive regulators (e.g. ALR-

1, CEH-14) and negative regulators (e.g. EGL-5 and EOR-1).

With the assignment of positive and negative regulators, an edge in

the network pointing from one of the 22 TFs is regarded either as a

positive edge or a negative edge, depending on the class of the TF.

In addition, we regarded regulatory interactions by miRNAs as

negative, due to the very nature of miRNAs [54]. As a result, all of

the 32,617 regulatory interactions in the integrated regulatory

network of C. elegans were assigned with signs.

Network motifs in the C. elegans integrated regulatory
network
Previous studies suggest that network motifs, a set of recurring

patterns originally defined in transcription regulatory networks,

are responsible for carrying out specific information-processing

functions. Moreover, studies on network motifs have found that

motifs with the same geometrical structure but different signs of

regulation could have profound differences in terms of functions

[23]. Here we categorized several motifs in the C. elegans integrated

regulatory network (Figure 6).

A transcriptional auto-regulatory feedback loop is the simplest

network motif built out of a transcription factor regulating its own

transcription (Figure 6B, (i) and (ii)). Among the 22 TFs, we

identified 6 auto-regulated factors: ELT-3, PHA-4, UNC-130,

EGL-5, LIN-15B and MAB-5. However, there is no evidence to

show that auto-regulation is over-represented in our data set

(P.0.1, permutation test), probably due to the small number of

TFs. We further divide the auto-regulators into negative auto-

regulation (EGL-5, LIN-15B and MAB-5) if the TF is a repressor

and positive auto-regulation (ELT-3, PHA-4 and UNC-130) if it is

Figure 4. Hierarchical illustration of the integrated regulatory network. (A) The C. elegans integrated gene regulatory network exhibits a 7-
layer structure with 3 layers of TFs (red circles) and 4 layers of miRNAs (cyan circles). TF-TF and TF-miRNA regulatory interactions were shown as dark
and light arrows respectively. Essential transcription factors are labeled by a blue circle. (B) TFs in the three layers show significant difference in their
average number of regulatory miRNAs (left), average degree in protein-protein interaction network (middle) and tissue specificity (right).
doi:10.1371/journal.pcbi.1002190.g004

Integrated Regulatory Network Analysis
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Figure 5. Correlation of gene expression with TF binding signals in DNA regions around transcription start site (22 kb,2 kb). Based
on their correlation patterns, TFs were divided into positive (red) and negative (blue) regulators.
doi:10.1371/journal.pcbi.1002190.g005

Figure 6. Representative network motifs in integrated gene regulatory network for C. elegans. (A) motifs in the unsigned network. (B)
motifs in the signed network. (C) a composite motif in which a miRNA represses two physically interacting genes. P-values are calculated by
comparing the number of occurrences of each motif in the real network with those in random networks.
doi:10.1371/journal.pcbi.1002190.g006

Integrated Regulatory Network Analysis

PLoS Computational Biology | www.ploscompbiol.org 7 November 2011 | Volume 7 | Issue 11 | e1002190



an activator [23]. In general, positive regulators (PAR) reinforce a

signal while negative auto-regulators (NAR) stabilize a system.

Both of the NAR and PAR have been frequently reported in

previous studies [55–58]. Particularly, the NAR motif occurs in

about half of the repressors in E. coli [59], and in many eukaryotic

repressors [11].

In the integrated regulatory network, there are 452

TFRmiRNA regulatory relationships and 81 miRNARTF

regultory relationships. It has been shown that the TFumiRNA

composite feedback loops (a TF that regulates a miRNA is itself

regulated by that same miRNA) occur more frequently than

expected by chance in C. elegans (Figure 6A, (i)). Without taking

signs into account, we identified 15 TFumiRNA miRNA

composite feedback loops (see Table S2) from our integrated

network, which is moderately over-represented (P= 0.07, permu-

tation test).

We extensively constructed all 3-node sub-graphs (see Figure S5

and S6) in the integrated regulatory network, and compared their

occurrence with what would be expected in an ensemble of

random integrated networks. The counting of different sub-graphs

and network randomization were performed by a sampling tool

called FANMOD [60,61] (see Materials and Methods for details).

Without considering the signs of interactions, we found a set of 5

over-represented 3-node motifs in the integrated network

(Figure 6A). Motif A (iii) is the traditional transcription factors

mediated feed-forward loop (FFL), which is known to be enriched

in the transcriptional regulatory networks of organisms like yeast

and E. coli [62–64]. Motif A (ii) is similar to motif A (iii) except the

target gene is replaced by a miRNA. Motifs A (v) and A (vi) are

novel, and they share a common construction feature in which a

miRNA regulates a TF as well as its downstream target. We then

repeated the procedures with signs taken into account. Figure 6B

demonstrates a list of enriched motifs in the integrated network

with the signs taken into consideration. Motif B (iv) is the well

known coherent type 1 FFL [20]. B (iii), B (v) and B (vii) share a

common design structure: a TF as well as its downstream target

(gene, TF or miRNA) are simultaneously repressed by a common

TF. Interestingly, these motifs are all coherent in the sense the

indirect path has the same sign as the direct path. B (vi) is a

composite motif that consists of a toggle switch formed by a pair of

mutually repressing TFs, and both TFs repress a common

miRNA. In principle, both enriched and depleted motifs are

worth studying, however, no significantly depleted motif was found

in our network.

Other levels of microRNA-coordinated regulation
The integrated regulatory network we constructed has demon-

strated how miRNAs coordinate the transcriptional activities. To

systematically explore the coordination of cellular activities by

miRNAs, we extended our study to two other levels of miRNA-

mediated regulations.

First, miRNAs regulate protein complexes by regulating their

individual components. Systematically, these could be examined

using various genome-wide protein-protein interaction (PPI)

networks. We studied the regulation in C.elegans using a PPI

network downloaded from Worm Interactome Database [65] (see

Materials and Methods for details). The network contains 6,125

nodes and 177,267 edges. From the level of individual proteins, we

correlated the degree in the PPI network with the number of

regulatory miRNAs. The results indicate that miRNAs tend to

regulate hub genes in the PPI network, agreeing with previous

observation by Liang et al [66]. In addition, the same pattern is

observed in the transcriptional regulation of hub genes. For

instance, the genes with degree .20 are on average regulated by

1.32 miRNAs, significantly greater than genes with degree #20,

which on average have 0.95 regulatory miRNAs (P = 0.004,

Wilcoxon Rank Sum test). On the other hand, the same set of PPI

hubs are regulated by 3.40 TFs, significantly higher than the rest,

which are regulated by 2.03 TFs (P= 2E-6, Wilcoxon Rank Sum

test). Apart from the level of individual proteins, we studied how

interacting proteins are collectively regulated by a miRNA by

introducing an additional type of edge (protein-protein interaction)

to the integrated gene regulatory network. We found that,

compared to a randomized network with the same degree

distribution, interacting proteins in the PPI network are more

likely to be regulated by the same miRNAs (P = 1027). In other

words, we observed another interesting motif with a pair of

interacting proteins being regulated by a common miRNA

(Figure 6C) [67].

Secondly, the embedment of miRNAs in their host genes hinges

at a novel intra-regulation between miRNAs. In C. elegans, 60

miRNAs are embedded within the intron of a protein-coding gene

(see Table S3), of which 39 are in the sense orientation (P= 0.007).

These miRNAs are likely to be co-transcribed with their host gene

[6,68]. We examined the regulatory relationship between the

miRNAs and their host gene. The regulatory relationships among

the 39 miRNA/host-gene pairs form a small miRNA-host network

consisting of 5 interactions (Figure 7). In the network, a directional

edge indicates a regulatory relationship from a miRNA to the host

gene of another miRNA (possibly itself). As shown in Figure 7,

mir-2 represses the host genes of three other miRNA including

mir-233; and the host gene of mir-233, W03G11.4, is subject to

repression by mir-233 itself, mir-2 and mir-87.

Integrated regulatory network in human and mouse
So far we have focused on C.elegans using the data from the

modENCODE project. As similar data of other species is

accumulating, it is worthwhile to apply our data integration

approach to various systems like human and mouse. Toward this

end, we have gathered system-wide ChIP-Seq profiles of 12 mouse

TFs and 13 human TFs, and compiled the integrated regulatory

networks for both mouse and human (see Materials and Methods

for details). Figure 8A shows the details of these networks. Similar

to C. elegans, the transcription factors in human and mouse can be

Figure 7. Intra-regulation among miRNA/host-gene pairs in C.
elegans. The regulatory relationships among the 39 miRNA/host-gene
pairs (the miRNAs are embedded within the intron of the host in the
same sense orientation) form a small miRNA-host network consisting of
5 interactions. The auto-regulated mir-233/w03g11.4 was highlighted in
yellow color, for which mir-233 is predicted to repress the expression of
its host-gene, w03g11.4.
doi:10.1371/journal.pcbi.1002190.g007

Integrated Regulatory Network Analysis

PLoS Computational Biology | www.ploscompbiol.org 8 November 2011 | Volume 7 | Issue 11 | e1002190



Figure 8. Integrated regulatory networks in human and mouse. (A) Basic statistics. (B) Hierarchical organization of TFs in human and mouse.
(C) the miRNA-host network in human. There are 1,426 interactions with 8 auto-regulated miRNA/host-gene pairs (yellow).
doi:10.1371/journal.pcbi.1002190.g008
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arranged in a hierarchical fashion (Figure 8B). As the number of

TFs sampled is too small, it is however not practical to perform

correlation analysis similar to ones in C. elegans.

To explore the novel intra-regulation between miRNAs, we

constructed a miRNA-host network for human miRNAs. Out of

the 939 human miRNAs, 588 overlap with a protein-coding gene.

Among them, the majority (482, P= 2610258) is located in the

sense strand of the host gene, resulting in 482 miRNA/host-gene

pairs. As we did in C. elegans, we identified 1,426 regulatory

relationships among these miRNA/host-gene pairs, including 8

auto-regulated pairs (Figure 8C).

We performed the same motif analysis on the human and

mouse integrated regulatory networks (Figure 9). In fact, the

integrated regulatory networks of human and mouse share

common motifs with C. elegans. For instance, Motifs 9A (ii) and

(v) are equivalent to Motifs 6A (vi) and (iv) in C. elegans. In addition,

we found another interesting miRNA mediated feed-forward loop

in the human integrated regulatory network (Figure 9A(i)), which

has already been reported in literature [69]. As the number of TFs

sampled in these systems is far from complete, one should not

expect that the results are entirely representative.

Using the recently published human transcription factor

physical interaction network and the mouse transcription factor

physical interaction network [48], we found that a single miRNA

tends to co-regulate a pair of interacting TFs more frequently than

by random (P= 4610220 for human and P= 1023 for mouse).

This motif (Figure 9B) is shared in C. elegans (Figure 6C). This

indicates that miRNAs prefer to coordinately repress physically

interacted transcription factors, which might be involved in

combinatorial regulation of gene transcription.

Sensitivity to selection of various parameters
At the heart of our study is the determination of TF-gene and

TF-miRNA interactions from ChIP-Seq profiles. The number of

interactions obviously depends on the choice of promoter regions,

and the inclusion/exclusion of the so called HOT regions [42] (see

Materials and Methods for details). While the results presented are

based on the exclusion of HOT regions, and a choice of promoter

region defined as 1 kb upstream to 500 bp downstream of the TSS

for protein-coding genes or of the start position for the pre-

miRNAs, one could include the HOT regions to increase statistical

power or shorten the definition of promoter region (500 bp

upstream to 300 bp downstream) for higher specificity. Moreover,

the number of false positives in the miRNA target prediction can

be reduced by increasing the conservation of miRNA binding sites

from 3 species (C. elegans, C. briggsae, and C. remanei) to 5 species

(including also C. brenneri, C. japonica). To test the robustness of our

network motif analysis, we explored the influence of these choices

and their combinations. We tested all the possibilities, resulting in

a total of 8 integrated networks. Our analysis indicates that these

integrated networks are similar in their topology and in presence of

over-represented network motifs in spite of the difference in the

number of interactions (Table S4).

The fact that the number of regulatory interactions depends on

the choice of parameters might lead to a possible drawback,

namely the assignment change of hierarchical levels in our

Figure 9. Representative network motifs in the integrated regulatory network for human and mouse. (A) Significant motifs in the
regulatory networks. (B) A significant motif enriched in the networks with further incorporation of TF-TF physical interactions. The significances of
each motif in human and mouse were shown.
doi:10.1371/journal.pcbi.1002190.g009
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hierarchy analysis. Even though the precise assignment of layers

indeed changes, the signifying characteristics of different layers

remain robust. For example, based on 18 larva TFs (with other 4

embryonic TFs excluded), we have constructed another hierarchy

using more stringent parameters: promoter regions defined from

500 bp upstream to 300 bp downstream, excluding TF binding

peaks overlapped with HOT regions, and using 5-way conserva-

tion for miRNA target prediction [42]. In addition, we further

filtered the regulatory interactions whose correlation between the

TF and the target gene are weak across different developmental

stages. The resultant hierarchy consisted of 9 TFs in the top layer,

4 TFs in the bottom layer and 5 TFs in the bottom layer. Although

these numbers differed from those in Figure 4, the overall

statistical properties of the two hierarchies are highly consistent.

For instance, in the network three essential TFs are in the bottom

layer, one in the middle layer, and none in the top layer.

Moreover, the TFs in the middle and bottom layers have

significantly more physical interactions than those in the top layer

(P = 0.002).

As done in other studies based on miRNA target prediction, one

should take into account the effects of the choice of different

prediction methods. While the target genes of miRNAs shown

were mainly identified by using the PicTar algorithm [9], we have

also employed the TargetScan algorithm [70]. A comparison of

the results between the two algorithms revealed that PicTar

identified 99% of seed sites predicted by TargetScan, and

conversely, TargetScan identified 89% of seed sites predicted by

PicTar, when only the conserved seed sites were considered. It has

been demonstrated previously that TargetScan and PicTar are

most popular performers for target prediction of miRNAs and

generally produce the highest overlap with experimentally

determined sites [71,72]. Thus, the results based on PicTar

algorithm were finally used for determining miRNA target genes.

We next examined the sensitivity of the network motif analysis

to removal of regulatory interactions. Specifically, we randomly

removed 1, 5, 10, 20, 30% of edges (TFRgene, TFRmiRNA or

miRNARgene interactions) from the integrated network, and re-

performed the network motif analysis. We obtained similar results

with the original integrated network. We also examined the effect

of excluding one or more of the 22 TFs, namely, removing all the

genes and miRNAs targeted by a selected TF. In this case, some of

the motifs were not significant, particularly when a TF with large

number of target genes/miRNAs was excluded. For these network

motifs, a regulatory network containing target information for

more TFs would be helpful to gain further confidence on their

significance in transcriptional regulation.

Discussion

In this study, we have presented an integrated network

framework for analyzing multi-level regulation in higher eukary-

otes, and applied the methods using high-throughput data from C.

elegans, human and mouse. Our framework makes use of the ChIP-

Seq binding profiles of TFs, RNA-Seq expression profiles,

39UTRome and protein-protein interactions. Several recent

genome-scale studies that have attempted to integrate regulation

by TF and miRNAs are limited in terms of their datasets. For

instance, the work by Yu et al. [24] on human were mostly based

on computational predictions, and while Martinez et al. provided

experimental TFRmiRNA interactions in C.elegans based on Y1H

assays [26], the regulatory interactions between TF and genes

were not incorporated. Neither of these studies considered the

signs of the regulatory interactions. Though the number of TFs we

used is still relatively small, we believe that our study serves as a

first attempt for a comprehensive analysis of multi-levels gene

regulation. As more and more data of these types emerge, the

methods of integration will play an essential role to decipher the

complexity of regulatory network. Our framework can potentially

be improved by including reported regulatory interactions from

database and literature, by filtering out low confidence interac-

tions, and by including computationally identified regulatory

interactions. For example, the existence of TF binding motifs in

ChIP-Seq peaks has been examined for improving TF target

identification [73]. With the accumulation of the relevant

information in C. elegans, we would expect a more comprehensive

integrated regulatory network in the future.

An interesting observation from our hierarchical analysis in C.

elegans network is the fact that TFs at lower levels are more likely to

be essential and have more interaction partners in the protein-

protein interaction network. This observation is consistent with the

work by Yu et al. in yeast [53]. Yu et al. suggested that the middle

or bottom layer TFs play the role of ‘‘mediators’’ or ‘‘effectors’’,

and thus require more intensive information exchange with other

proteins. These TFs are more likely to be in charge of the

fundamental cellular processes, and therefore certain pathways

will cease operating upon their deletion, causing a lethal effect.

The top layer TFs, on the other hand, act more like ‘‘modulators’’

which coordinating gene expression across different pathways.

Even though the inhibition of these TFs affects the precise

expression among pathways, most of the pathways remain

functional and therefore the organism can survive. Of particular

significance is the degree of validity of the design principle in yeast

for multi-cellular organisms such as C. elegans. Interestingly

enough, TFs at the bottom have lower tissue specificity, i.e. they

are expressed in many tissues. This observation is consistent with

the fact that the bottom TFs are in charge of the fundamental

cellular processes. Our analysis hinges at a close similarity in the

hierarchical organization of transcriptional regulatory network in

yeast and higher eukaryotes such as C. elegans.

The hierarchical layout as shown in Figure 4 suggests another

design principle in multi-level genetic regulation, namely miRNAs

tend to regulate TFs in the middle of the hierarchy. As observed

separately based on transcriptional regulatory networks, protein

modification networks and phosphorylation network in Ref. [17],

regulators at the middle level are responsible for the proper

organizational effectiveness, and thus they have the highest

collaborative propensity and co-regulator partnerships. Our result

suggests that, the same principle is also true for different types of

regulations in an integrative picture.

We have identified several over-represented network motifs in

the integrated regulatory network, including the well known

transcription factors mediated feed-forward loops. The coherent

FFLs share a common design structure, suggesting that both

protein-coding genes and miRNAs are regulated by a pair of

transcription factors in a similar fashion. Of particular interest are

the miRNA-mediated motifs in which miRNA regulatory

interactions are employed. For instance, we found 15 composite

TFumiRNA feedback loops. The same motif was reported to be

more frequent than expected by chance in [26]. While feedback

loops are rare in pure transcriptional regulatory networks [19,20],

the enrichment of composite feedback loops suggests that

feedbacks are more likely to involve multiple levels. It has been

discussed in Ref. [26] that, in a composite feedback loop, the sign

of the transcriptional regulation determines the function of the

loop. A loop with a transcriptional repressor works as a bi-stable

switch and a loop with a transcriptional activator can function as a

steady state or an oscillatory system. Interestingly, among the 15

composite feedback loops we observed, there are 6 transcription
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factors involved and all of them are activators. It is therefore more

reasonable that the composite feedback loops we observed are

responsible for ensuring robustness during development [51] or

playing a role in periodic processes such as molting in different

larval stages.

Previous studies [25] and ours have reported that miRNAs tend

to regulate transcription factors. As shown in our motifs analysis,

instead of targeting individual transcription factors, miRNAs tend

to regulate transcription factors as well as their downstream

targets. By shutting down a gene together with its transcriptional

activator, the motifs could be viewed as an effective strategy to shut

down the target gene in a longer time period. A similar motif is

observed in the protein-protein interaction network, in which a

miRNA tends to target a pair of interacting proteins, presumably

comprise a molecular machine. From one point of view, the motif

is an effective way to shut down a function. The production of

certain useless components is considered wasteful, and they would

lead to various promiscuous interactions in the cell. On the other

hand, the removal of the unwanted components might increase

the response time of the cell when the machine is in need.

Therefore, the usage of such motif depends on the production rate

of the components. For instance, if a component of the machine

requires a longer time to produce than the others, the shut down of

every component at the same time might not be very effective.

Nevertheless, the two miRNA-mediated motifs described are also

found in mouse and human.

We have explored a novel mechanism in which miRNAs might

regulate one other via their host genes, involving 5 miRNAs and

5 interactions. Though this is a relatively small number compared

to the total number of miRNAs in the genome, it is intriguing

that the 5 interactions are not separated but connected to form a

small network, suggesting that the interactions may have real

biological significance. Among the 39 miRNAs that are

embedded in the same sense within the intron of a host gene,

we found only one case in which the miRNA (mir-233) is being

regulated by itself, i.e. mir-233 has a conserved binding site in the

39UTR of its host gene (W03G11.4). This suggests that the

repression of a miRNA on its host is not desirable and thus tends

to be eliminated from the genome. A similar but more

comprehensive analysis performed using human data points to

the same conclusions. It is worthwhile to point out that in this

mechanism, the target miRNA might not always be down

regulated since miRNAs typically function by degrading the

target mRNAs or by inhibiting their translation [6].

Materials and Methods

Datasets and gene annotation
The binding sites of ,30 C. elegans TFs were determined using

ChIP-Seq experiments. The data sets were examined manually to

remove experiments with low read mapping rate, small number of

calling peaks, or low reproducibility between replicates. After

removing these low quality experiments, we finally obtained the

binding data sets for 22 TFs. The binding signals for all TFs were

normalized against background signals measured using the

corresponding input DNA samples. The binding peaks were

identified using the PeakSeq method [74]. More detail information

about the ChIP-seq assay and data pre-processing has been

previously described in [75]. The list of the 22 TFs and their

features can be found in Table S1. Expression levels for all

annotated worm transcripts at different developmental stages were

quantified using RNA-seq [76]. MicroRNA expression levels at

different developmental stages of C.elegans were obtained from

small RNA-seq measurements performed by Kato et al. [77]. All

these data are available from the modENCODE website at http://

www.modencode.org.

The C. elegans protein-protein interaction data were downloaded

from the Worm Interactome Database [65]. The data contain

178,152 interactions that are determined by yeast-two-hybrid

experiments, literature curated or by computational analysis.

Annotation of worm transcripts was downloaded from WormBase

at [78] or from the Ensembl database at http://uswest.ensembl.

org/index.html. Annotation of nematode microRNAs was down-

loaded from the microRNA database miRBASE at http://www.

mirbase.org [40]. Assembly version WS180 of C.elegans was used

for gene and microRNA annotations as well as for data processing.

The TF-TF interaction data set was downloaded from Ravasi

et al. [48]. The data set contains 762 and 877 interactions in

human and mouse, respectively. Annotation for human and mouse

Refseq genes was downloaded from UCSC Genome Browser at

http://genome.ucsc.edu/. Annotation for human and mouse

miRNAs was based on miRBase [40]. ChIP-Seq experiments for

12 mouse TFs in embryonic stem cells were performed by Chen et

al [41]. These TFs are E2F1, ESRRB, KLF4, NANOG, OCT4,

STAT3, SMAD1, SOX2, TCFCP2L1, ZFX, c-MYC and n-

MYC. ChIP-Seq data for 14 human TFs in K562 cell line, E2F4,

E2F6, FOS, GATA1, GATA2, JUN, JUND, MAX, MYC, NFE2,

STAT1, YY1 and ZNF263, were generated by the ENCODE

project and are available from UCSC Genome Browser.

Identification of target coding and non-coding genes for
TFs
We identified the target protein-coding genes and miRNAs of

the 22 TFs based on the ChIP-Seq binding data sets. DNA regions

with the binding peaks were potential targets of the transcription

factor. We observed that 304 specific DNA regions, about 400 bp

in size, were bound by 15 or more factors; we termed these regions

the Highly Occupied Target (HOT) regions. We found that the

binding motif of each individual TF is not highly enriched in these

HOT regions, suggesting that the TFs are not directly associated

with DNA via specific binding sites. These HOT regions therefore

were not regarded as the targets of transcription factors. To

identify the list of targets, we obtained the annotations of 27,242

worm genes from Ensembl database at http://uswest.ensembl.

org/index.html. A gene was considered as the target gene of a TF

if the center of at least one binding peak of the TF followed into

the promoter region (1000 bp upstream and 500 bp downstream

of the TSS) of the gene. Similarly, a miRNA was referred as the

target of a TF if at least one peak is found around the start position

of the corresponding pre-miRNA (1000 bp upstream and 500 bp

downstream of the TSS). The 1000 bp upstream to 500 bp

downstream criteria were determined according to the binding

signal distribution of TFs around the TSS. We found that .80%

binding signals were restricted to these 1.5 kb-DNA regions for

most TFs. Other criteria can also be used to obtain stricter (500 bp

upstream to 300 bp downstream) or relaxed (2000 bp upstream to

500 bp downstream) target gene sets.

Prediction of miRNA target genes
PicTar algorithm [9] was applied to a well-defined set of

39UTRs [32] to identify miRNA target sites. To reduce false

predictions, we considered only the miRNA target sites that are

conserved across three (C. elegans, C. briggsae, and C. remanei) or five

(C. brenneri, C. japonica additionally) species. The binding sites for all

of the 174 annotated miRNAs in miRBase [40] were identified. A

gene was considered a target of a miRNA if there was at least one

conserved binding site in the 39UTR of at least one transcript of

the gene. More details have been described in [42].
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Construction of integrated gene regulatory network
The experimentally identified TFRgene and TFRmiRNA

interactions were combined with predicted miRNARgene

interactions to form an integrated gene regulatory network. In

the network, we only included the genes for which both the TF

binding data and miRNA target site prediction were available,

namely, the genes used as the input for TF target identification

and miRNA target prediction.

Identification of enriched motifs
Enriched motifs were identified by the software FANMOD

[60]. Instead of counting the occurrence of a certain motif, the

software estimates the occurrence frequency (Nreal) via sampling,

and the number is compared to the frequencies of an ensemble

of 1000 random networks. The set of random networks is

generated by FANMOD (with default parameters), in which the

edges are rewired while keeping its rough topological statistics

constant. Specifically, the null models are generated by a Monte

Carlo type algorithm which rewires the original network while

keeping the same number of coding gene targets and the number

of miRNA targets for a TF node, the number of targets for a

miRNA node, and the number of regulatory TFs and miRNAs

for a gene node [79]. The occurrence frequencies of a motif in

the ensemble follow a Gaussian, and the enrichment of the motif

is quantified by a Z{score~
Nreal{Nrand

sd(Nrand )
. For the signed

integrated regulatory network, the set of random networks is

generated by rewiring such that, apart from the number of each

type of regulatory interactions in each node is preserved, the

number of positive and negative regulations in each node are

separately preserved.

Identification of positive and negative regulators
We therefore divided the DNA region from 2 kb upstream to

2 kb downstream of the TSS of each transcript into 40 small bins,

each of 100 bp in size. For each bin, we calculated the average

signal of each TF binding profile across all transcripts. Specifically,

the number of reads that cover a bin was counted and weighted

according to their overlap with the bin. We then calculated for

each TF in each bin, the Pearson correlation between the average

signal and the expression of the corresponding transcripts. A

consistent positive (negative) correlation across the bins means that

the TF is a positive (negative) regulator.

Construction of hierarchical regulatory network
We first built a core-hierarchy comprising of only the TFs

using a breadth-first search algorithm in a bottom-up fashion in

the following way. First, the TFs that were not regulated by any

other TF were placed in the top layer. Next, the regulators that

were regulated by the top TFs and also regulated other TFs were

assigned to the middle layer. Finally, the regulators that did not

regulate other TFs formed the bottom layer resulting in 3 layers

of TFs. The interactions involving the miRNA were then added

to these three layers. The miRNAs regulating the top TFs were

placed in the top miRNA layer above the top layer TFs. Note

that some of these miRNAs were regulated by lower layer TFs.

Of the remaining miRNAs, the ones regulating the middle layer

TFs were placed in the middle layer (between the top and middle

layer TFs). From the set of remaining miRNAs, the ones that

regulate the bottom layer TFs were placed in the lower layer

(between the middle and bottom layer TFs). Finally, the

remaining miRNAs were placed in the lowest layer; these did

not regulate any regulators and only had incoming regulatory

edges.

Calculation of tissue specificity and stage specificity
Expression levels of all C. elegans genes at 8 different tissues at L2

stage were measured using tiling arrays [42]. The 8 tissues include

poA, bone wall muscle, intestine, glr, GABA neurons, excretory

cell, coelomocytes and panneural. The tissue specificity score

(TSPS) for a gene is defined as
P

i

filog2(fi=pi), where fi is the ratio

of the gene expression level in tissue i to its sum total expression

level across all tissues, and pi =1/8 for all tissues, is the fractional

expression of a gene under a null model assuming uniform

expression across tissues. A greater tissue specificity score suggests

more specific expression in a single or multiple tissues, whereas a

score of zero suggests uniform expression. Apart from tissue

specificity, the stage specificity score of a gene throughout its

developmental time course is defined in a similar fashion.

Supporting Information

Figure S1 Aggregation plots of binding signals for 22 worm

transcription factors around the TSS of protein-coding genes (blue)

and miRNA genes (green). The average binding signal of each TF

across all coding genes andmiRNA genes are shown. The curves for

miRNA are more fluctuated due to the small number of miRNAs.

(PDF)

Figure S2 Overlapping of target coding genes among distinct

transcription factors. The upper-left shows the number of shared

target protein-coding genes between any pair of TFs. The lower

heatmap shows the significance (2log10(P-value)) of overlapping

based on hyper-geometric test.

(PDF)

Figure S3 Overlapping of target miRNAs among distinct

transcription factors. The upper-left shows the number of shared

target miRNAs between any pair of TFs. The lower heatmap

shows the significance (2log10(P-value)) of overlapping based on

hyper-geometric test.

(PDF)

Figure S4 Overlapping of target genes between transcription

factors and miRNAs.

(PDF)

Figure S5 A list of sub-networks with 3 nodes in the integrated

unsigned regulatory network. Only those sub-networks with at least

one TF plus a miRNA or a protein-coding non-TF gene are shown.

(PDF)

Figure S6 A list of sub-networks with 3 nodes in the integrated

signed regulatory network. Only those sub-networks with at least

one TF plus a miRNA or a protein-coding non-TF gene are

shown. The sign of a TF (positive/negative regulator) was inferred

based on the correlation of its binding signal and the expression

levels of down-stream genes.

(PDF)

Table S1 Properties of C. elegans transcription factors. Essen-

tiality of transcription factors was determined by RNAi experi-

ments. Tissue specificity and stage specificity were calculated

based on the expression profiles of genes in 8 tissues at L2 stage

and the developmental stage time course, respectively.

(XLS)

Table S2 A list of TFumiRNA feedback loops in C. elegans.

(XLS)

Table S3 A list of miRNAs located in a host-gene. The data was

compiled based on miRBase database.

(XLS)
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Table S4 Topological features and network motif analysis results

for 8 integrated regulatory networks.

(PDF)
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