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Abstract

Background: Parkinson’s Disease (PD) is one of the most prevailing neurodegenerative diseases. Improving diagnoses and
treatments of this disease is essential, as currently there exists no cure for this disease. Microarray and proteomics data have
revealed abnormal expression of several genes and proteins responsible for PD. Nevertheless, few studies have been
reported involving PD-specific protein-protein interactions.

Results: Microarray based gene expression data and protein-protein interaction (PPI) databases were combined to construct
the PPI networks of differentially expressed (DE) genes in post mortem brain tissue samples of patients with Parkinson’s
disease. Samples were collected from the substantia nigra and the frontal cerebral cortex. From the microarray data, two
sets of DE genes were selected by 2-tailed t-tests and Significance Analysis of Microarrays (SAM), run separately to construct
two Query-Query PPI (QQPPI) networks. Several topological properties of these networks were studied. Nodes with High
Connectivity (hubs) and High Betweenness Low Connectivity (bottlenecks) were identified to be the most significant nodes
of the networks. Three and four-cliques were identified in the QQPPI networks. These cliques contain most of the
topologically significant nodes of the networks which form core functional modules consisting of tightly knitted sub-
networks. Hitherto unreported 37 PD disease markers were identified based on their topological significance in the
networks. Of these 37 markers, eight were significantly involved in the core functional modules and showed significant
change in co-expression levels. Four (ARRB2, STX1A, TFRC and MARCKS) out of the 37 markers were found to be associated
with several neurotransmitters including dopamine.

Conclusion: This study represents a novel investigation of the PPI networks for PD, a complex disease. 37 proteins identified
in our study can be considered as PD network biomarkers. These network biomarkers may provide as potential therapeutic
targets for PD applications development.
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Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder of the

central nervous system. It is the second most common degener-

ative disorder after Alzheimer’s disease, affecting more than 1% of

those over the age of 55 years and more than 3% of those over the

age of 75 years [1]. PD is characterized by tremor, muscle rigidity,

and slowed movement (bradykinesia). The motor symptoms of PD

result from the death of dopamine generating cells in the

substantia nigra, a region of the mid brain. Improving diagnoses

and treatment of this disease is essential, as currently there exists

no cure for PD.

For a long time, PD has been considered to be a non-genetic

disorder; however around 15% of patients with PD are known to

have a first-degree relative who is also affected by this disease [2].

Mutations in several specific genes have been conclusively shown

to be associated with PD. These genes code for alpha-synuclein

(SNCA), parkin (PRKN), leucine-rich repeat kinase 2 (LRRK2 or

dardarin), PTEN-induced putative kinase 1 (PINK1), DJ-1 and

ATP13A2 [3,4]. The most extensively studied PD-related genes

are SNCA and LRRK2 [1]. Mutations in SNCA, LRRK2 and

glucocerebrosidase (GBA) are associated with most of the PD

related cases [1]. Nevertheless, very less amount of work has been

done related to protein interactions specific to the disease state.

Network science is gradually altering our view of cell biology by

offering unforeseen possibilities to understand the internal

organization of a cell [5]. The developments of high-throughput

data-collection techniques have brought insights to our under-

standing of diseases. Sincere amount of time and effort has to be

devoted in order to analyse this vast amount of data if we want to
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understand the interrelationships among disease-related genes and

proteins [5]. In 2009, Taylor et al. [6] studied gene expression

based weighted Protein-Protein Interaction (PPI) networks for

breast cancer. They found that loss of gene co-expression of

proteins interacting within the BRCA1-associated genome sur-

veillance complex (BASC) is associated with poor outcomes of the

disease. In 2011, Lee et al. [7] constructed protein-protein

interaction (PPI) networks of abnormally expressed genes for

schizophrenia, bipolar disease and major depression, and identi-

fied several disease markers like SBNO2 for schizophrenia,

SEC24C for bipolar disorder, and SRRT for major depression.

Recently, in April 2013, Ran et al. [8] constructed and analysed

PPI networks for Essential Hypertension (EH), and suggested that

blood pressure variation related to EH is orchestrated by an

integrated PPI network with the protein encoded by NOS3 gene

as its backbone.

In this study, PPI networks were constructed for PD using

proteins which code for differentially expressed genes only in

substantia nigra and frontal cerebral cortex. The PPI networks

were constructed based on the following assumptions [7]

1. Expression level of most of the proteins and mRNAs in the

brain are positively correlated.

2. Proteins with similar expression patterns are more likely to

interact with each other.

3. Abundant proteins participate more in biological processes.

Topological analyses were performed to find out the significant

network biomarkers. The association of these biomarkers with PD-

related genes and neurotransmitters were studied. Several

complexes were also studied in the networks. Changes of co-

expression level of genes associated with the complexes from

control to disease state were also studied. 37 unreported disease

marker genes were identified of which eight were significantly

involved in the core functional modules and four showed strong

association with several neurotransmitters, including dopamine.

Thus our study may provide insights into the potential targets for

developing new treatments for PD.

Methods

Sources of microarray data
Figure 1 gives the flowchart of research methodology applied

in this study. The raw data (CEL files) of microarray data series

GSE8397 were downloaded from Gene Expression Omnibus

(GEO) (http://www.ncbi.nlm.nih.gov/geo/) and normalized by

gcRMA [9]. GSE8397 was published by Moran et al. in 2006

[10]. It contains 47 individual localized brain tissue samples of the

substantia nigra (SN) (split into medial and lateral portions) and

frontal cerebral cortex (FCC) associated with PD as well as control

cases, using A (HG_U133A) and B (HG_U133B) Gene Chip per

sample. 15 samples of medial parkinsonian SN (MSN), 9 samples

of lateral parkinsonian SN (LSN) and 5 samples of parkinsonian

FCC were taken. 8 MSN samples, 7 LSN samples and 3 FCC

control samples were considered.

Our protein-interaction networks were built based on differen-

tially expressed genes of MSN and LSN only. Initially we started a

region wise study of three parts of the brain viz., MSN, LSN and

FCC. When we performed 2-tailed t-test and SAM, we did not get

any differentially expressed genes for FCC. MSN and LSN

Figure 1. Research methodology.
doi:10.1371/journal.pone.0103047.g001
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separately yielded less number of differentially expressed genes.

However, when we combined both MSN and LSN, it yielded

significant number of differentially expressed genes. Therefore the

data presented in our manuscript is the collection of genes present

in combined MSN and LSN.

Selection of differentially expressed genes, annotation &
gene ontology (GO) analysis
Both 2-tailed t-test [7] and SAM [11] were used separately to

obtain all possible differentially expressed genes from the

microarray data. Expression Analysis Systematic Explorer (EASE)

[12] was used to convert the Affymetrix probe IDs into gene

symbols. A particular module in Babelomics 4.3.0 [13], FatiGO

(http://www.fatigo.org/) [14], was used to extract relevant GO

terms for a group of genes with respect to rest of the genes. FatiGO

was used to find the over-representative biological processes,

molecular functions, cellular components and KEGG pathways

[15] involving the DE genes (p-value,0.05) (Table 1). Among the

GO terms, DE genes were most abundant in the over-

representative biological processes. These DE genes were consid-

ered as the most significant genes in the dataset, and therefore

subjected for network construction.

For the sake of clarity, we have denoted the set of significant DE

genes extracted from GeneChip A using 2-tailed t-test, by the

symbol DA
2ttt, the set of significant DE genes extracted from

GeneChip A using SAM, by the symbol DA
SAM , and the set of

significant DE genes extracted from GeneChip B using 2-tailed t-

test, by the symbol DB
2ttt. These sets of significant DE genes (DA

2ttt,

DA
SAM & DB

2ttt) were subjected for construction of protein-protein

interaction (PPI) networks.

Construction of the QQPPI networks
Two separate approaches were taken to construct the PPI

networks. First, Genes2FANs (http://actin.pharm.mssm.edu/

genes2FANs/) [16] was used to construct a Query-Query PPI

(QQPPI) network, i.e., a network of protein-protein interactions

consisting of query nodes only. Secondly, brain tissue specific and

experimentally verified data was taken from POINeT (http://

poinet.bioinformatics.tw/) [17] to create another QQPPI network.

The two networks constructed by Genes2FANs and POINeT were

separately viewed using the open source network visualization

software Cytoscape 2.8.0 (http://www.cytoscape.org/) [18]. The

two networks (developed by Genes2FANs and POINeT) were then

merged to construct the final QQPPI network, which includes all

the interactions present in both the individual networks. This final

network was formatted and visualized using the graph editing

software yEd (http://www.yworks.com/) [19]. The same proce-

dure was repeated for the datasets DA
2ttt, D

A
SAM and DB

2ttt. For the

sake of clarity, we denote the merged QQPPI network formed by

DA
2ttt as N

A
2ttt, the merged QQPPI network formed by DA

SAM as

NA
SAM , and the merged QQPPI network formed by DB

2ttt as N
B
2ttt

(Figure 2, 3, S1). Here this must be remembered that the

algorithm for QQPPI network is built in such a way that a protein

occurs only once in each of the networks.

Topological parameters of QQPPI networks
We analysed topological properties of these networks using the

tYNA (http://tyna.gersteinlab.org/) [20] web interface. Global

properties of the networks are given in Table 2. The topologically
significant nodes were extracted from the networks in two steps:

(1) In the networks, nodes with degree greater than or equal to

the sum of mean and twice the standard deviation (S.D.), i.e.,
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mean +2*S.D. of the degree distribution, were taken as hubs,

i.e., High Connectivity (HC) nodes [21]. (Table 3)

(2) In the second step Betweenness centrality was taken as

parameter to extract significant nodes. Betweenness centrality

of the nodes in the QQPPI networks (Figure 2,3, S1)

showed a varied distribution. Only a handful of nodes had

betweenness score greater than 1000. However, almost 40–

45% of nodes had zero betweenness. The node betweenness

distribution was sorted in descending order and nodes with

betweenness score lying in the top 50% of the distribution

were selected. Among these sorted nodes, the nodes identified

with degree less than the cut-off degree for HC nodes and

directly connected to at least 2 HC nodes were selected as

bottlenecks, i.e., High Betweenness but Low Connectivity

(HBLC) nodes.

Identification of cliques
In this study, cliques with 3 nodes and 4 nodes (3-clique, 4-

clique) were identified in NA
2ttt, N

A
SAM and NB

2ttt. The cliques were

identified with the help of a self developed algorithm (File S1). To
validate the authenticity and correctness of the algorithm, it was

simulated for the network obtained from POINeT and the output

of the program was compared with the list of cliques given in

POINeT for that network, the results exactly matched. The

development of the in house algorithm was necessary to find the

cliques (three and more) in the merged networks (obtained from

Figure 2. QQPPI network built from the dataset obtained using t-tailed t-test (P,0.001) (GeneChip A). Orange coloured square nodes
represent hubs (HC nodes). Yellow coloured triangular nodes represent bottlenecks (bottlenecks). The core functional module containing 3,4-cliques
are represented using blue coloured edges. Non-hub non-bottleneck nodes are coloured green if they are directly connected to a hub or a
bottleneck, and grey otherwise. Inset: Subset of the QQPPI network containing hubs and bottlenecks only.
doi:10.1371/journal.pone.0103047.g002
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POINeT and Genes2FANs). Only 3-Cliques and 4-Cliques were

obtained, and higher order cliques were absent in the network.

Identification of complexes containing clique forming
proteins
A protein complex is a complex containing multiple proteins

that interact with each other. They are in the form of quaternary

structure, and the proteins in the complex are linked by non-

covalent protein-protein interactions. The complexes in the PPI

networks were identified with the help of the database CORUM

[22]. The clique forming proteins were given as query in the

CORUM database to find out the complexes containing this

proteins. Furthermore, with the help of an in house algorithm

(File S2) all the proteins associated with a specific complex were

identified. A cut-off for the number of query proteins in a complex

is assigned. For NA
2ttt, comlexes containing 5 or more query

proteins were listed. Similarly for NA
SAM , complexes containing 4

or more query proteins were listed. In NB
2ttt, since only 2 proteins

are involved in a particular complex, we did not consider this

QQPPI network for complex detection. The programs to find

Figure 3. QQPPI network built from the dataset obtained using SAM (FDR 0.19%) (GeneChip A). Orange coloured square nodes
represent hubs (HC nodes). Yellow coloured triangular nodes represent bottlenecks (bottlenecks). The core functional module containing 3,4-cliques
are represented using blue coloured edges. Non-hub non-bottleneck nodes are coloured green if they are directly connected to a hub or a
bottleneck, and grey otherwise. Inset: Subset of the QQPPI network containing hubs and bottlenecks only.
doi:10.1371/journal.pone.0103047.g003

Table 2. Global properties of the networks.

GeneChip A (HG_133A)

Network source Number of nodes Number of edges Average degree Highest degree

Average

betweenness

Highest

betweenness

NA
2ttt

406 690 3.4 47 583.42 21,286.48

NA
SAM

121 172 2.8 21 115.23 1888.753876

GeneChip B (HG_133B)

NB
2ttt

73 85 2.33 11 81.62 855.18

doi:10.1371/journal.pone.0103047.t002
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cliques and complex have been implemented using C language,

compiled and tested on Windows 7 Professional edition.

File S3 lists the plots of connectivity distribution and

betweenness distribution of the three QQPPI networks (NA
2ttt,

NA
SAM , NB

2ttt).

Gene level co-expression analysis of interacting proteins
Pearson correlation coefficient was used to find out the gene

level co-expression of interacting proteins in the QQPPI networks

(NA
2ttt, N

A
SAM and NB

2ttt). In the QQPPI networks, gene level co-

expression of each pair of interacting proteins was used to assign

weight to the edges of the network. Percentage change in co-

expression of interacting proteins was also calculated.

Comparison with the study of Moran et al. [10]
Different analytic approaches can be taken to analyse the same

microarray data with different set of goals [7]. The original

contributors of the microarray data series GSE8397 were Moran

et al. who focused on establishing the transcriptomic expression

profile of the medial & lateral substantia nigra and the superior

frontal cortex. The differentially regulated genes identified in their

study were compared to the results of our study.

Results & Discussion

Study of Differential Expression (DE) of genes
Involvement of substantia nigra (SN) in PD is well known

[23,24,25]. PD related motor symptoms mainly occur due to the

depletion of up to 60% of dopaminergic neurons and aggregation

of round, hyaline neuronal cytoplasmic inclusions called Lewy

Bodies (LBs) in SN [24,25]. Significant involvement of frontal

cortex in PD has also been reported [10,25,26]. The dataset

(GSE8397) provided by Moran et al. [10] is the only available

dataset till date which covers the tissue samples both from

substantia nigra and frontal cerebral cortex. Therefore we have

considered these datasets for our study.

Initially the microarrays in GSE8397 were analyzed using 2-

tailed t-test. Each disease sample group was paired with the control

sample group in the t-tests. 2-tailed t-test is a measure of the

statistical significance of the dataset, in terms of a test statistic t,
which is given by:

t~
�xx{�yy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2x
n
z

s2y

m

s ð1Þ

where �xx and �yy are the sample means, Sx and Sy are the sample

standard deviations, n and m are the sample sizes for two samples,

x and y. Under the null hypothesis, this test returns the probability

(P value) of observing a value as extreme or more extreme of the

test statistic. Probes corresponding to a portion of the genes

showed significant changes in signal intensities in disease sample

groups, as compared to the control. These genes were selected as

Differentially Expressed (DE) genes.

Previously, 2-tailed t-test has been successfully used to select

differentially expressed data from microarray datasets [7].

However, 2-tailed t-test does not give any up-regulated or down-

regulated gene information. Therefore, Significance Analysis of

Microarrays (SAM) was used to identify up-regulated (UR) or

down-regulated (DR) DE genes in the disease state. SAM

calculates a test statistic for relative difference in gene expression

based on permutation analysis of expression data, and False

Discovery Rate [27] which is given by:

FDR~
Median (90th percentile) of #of falsely called genes

Number of significant genes
ð2Þ

In SAM, Fold changes are also specified to guarantee that

significant genes change at least at a pre-specified amount. This

means that the absolute value of the average expression levels of a

gene under each of two conditions must be greater than the fold

change to be called positive and less than the inverse of the fold

change to be called negative. This way, SAM gives better result in

Table 3. Cut-off determination for hubs (HC nodes).

GeneChip A (HG_133A)

Mean (M)

Standard

Deviation (S) Cut-off (M+2*S)

NA
2ttt

3.4 4.2 11.8<12

NA
SAM

2.8 2.9 8.6<9

GeneChip B (HG_133B)

NB
2ttt

2.33 2.29 6.9<7

doi:10.1371/journal.pone.0103047.t003

Table 4. Number of obtained hubs (HC nodes) & bottlenecks
(HBLC nodes).

GeneChip A (HG_133A)

Number of hubs (HC

nodes)

Number of bottlenecks

(HBLC nodes)

NA
2ttt

19 41

NA
SAM

5 14

GeneChip B (HG_133B)

NB
2ttt

5 7

doi:10.1371/journal.pone.0103047.t004

Table 5. Hubs & bottlenecks in NA
2ttt.

Hubs YWHAZ, ACTB, ACTG1, YWHAB, YWHAE, MAPK1, MAP3K14, DISC1, APP, VCL, VIM, FTSJ1, HSPA1A, IKBKB, YWHAQ, ARRB2, EEF1A1, SNCA,
SQSTM1

Bottlenecks HDAC4, TGFB1, STUB1, ANXA2, KPNB1, SET, STX1A, SPTBN1, AXIN1, IQGAP1, RAD23A, RPS3, CHUK, MCL1, DAPK1, PARD3, TJP2, ACTN2,
TAF9, IGF1R, CDC25B, IARS, CTNNA1, PTPN3, IRAK1, TFRC, VASP, MAP3K7IP2, ADAM17, CYCS, MAP2K4, WEE1, SF3B1, DSTN, SRRM2, BAG2,
C1QBP, PHB, YWHAH, GSN, MARCKS

doi:10.1371/journal.pone.0103047.t005
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terms of differential expression than 2-tailed t-test as the latter does
not take into account fold changes to determine significance of

average gene expression levels.

1443 and 1518 DE genes were reported using 2-tailed t-test (P
values,0.001) and SAM (FDR 0.19%) respectively from Gene-

Chip A (HG_U133A). Out of the 1518 SAM reported DE genes,

293 genes were up-regulated (UR) and 1225 were down-regulated

(DR).

Similar methodology (2-tailed t-test at P values,0.001 and

SAM at FDR 0.19%) was followed to analyse GeneChip B

(HG_U133B), but no significant DE gene was found. However

when we increased the P value (P,0.05) of 2-tailed t-test, 1606
genes were found to be DE.

These DE genes were selected for subsequent ontological

analyses followed by network analyses as their abnormal gene

expression profiles in disease state indicated probable involvement

in disease pathology.

Functional analysis of DE genes
The DE genes were subjected to FatiGO [14] for functional

analysis. The over-representative GO terms (P value,0.05) were

considered. Among these GO terms, the over-representative

biological processes showed large number of DE genes as

compared to other GO terms and KEGG pathways (Table 1).

Therefore, the DE genes involved in the biological processes were

selected in our study for subsequent network generation based on a

similar approach presented in a previous study [28]. For the

dataset obtained from GeneChip A (HG_U133A) using 2-tailed t-
test (P,0.001), 779 genes (distributed among 792 biological

processes) were chosen as significant DE genes (DA
2ttt). Similarly,

for the dataset obtained from GeneChip A (HG_U133A) using

SAM, 207 genes (distributed among 381 biological processes) were

chosen as significant DE genes (DA
SAM ). For the dataset obtained

from GeneChip B (HG_U133B) using 2-tailed t-test (P,0.05), 221

Table 6. Hubs & bottlenecks in NA
SAM .

Hubs YWHAZ, YWHAB, CSNK2A1, CLTC, CDC42

Bottlenecks PRKCZ, APC, SNCA, NFKBIA, IQGAP1, TSC2, IGF1R, HSPA1A, OCRL, PARD3, CLTB, TH, ATP5A1, TUBB

doi:10.1371/journal.pone.0103047.t006

Table 7. Hubs & bottlenecks in NB
2ttt.

Hubs MAPK1, YWHAG, MAPK8, ACTB, PAK1

Bottlenecks CDC42, MAP3K2, MAP1B, MBP, NDE1, DUSP1, AKT2

doi:10.1371/journal.pone.0103047.t007

Figure 4. Graphical structure of a simple PPI network. High Connectivity (HC) nodes or hubs: A & C. High Betweenness but Low Connectivity
(HBLC) nodes or bottlenecks: B.
doi:10.1371/journal.pone.0103047.g004
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genes (distributed among 61 biological processes) were chosen as

the significant DE genes (DB
2ttt).

Topological analyses of QQPPI networks
A PPI network is commonly represented as an undirected (edges

have no direction) graph, G~(V ,E), where V is the set of nodes

(proteins) and E~f(u,v)Du,v[Vg is the set of edges (protein

interactions). Thus the networks we studied are undirected and

unweighted protein-protein interaction networks based on DE

genes of PD microarray data.

QQPPI networks can be characterized by several topological

parameters. Out of these, one of the most basic yet essential

parameter is node degree, or connectivity. It signifies the number

of edges incident on particular node. For a node v(V , the set of

edges incident on v is denoted as Nv, where

Nv~f(uDu(V ,(u,v)(E)g. The cardinality of Nv, i.e., DNvD is v’s

connectivity, or degree in G, also known as deg(v). High

connectivity (HC) of a node indicates that the node (protein) has

direct interaction (physical interaction and/or complex formation)

with many other distinct nodes (proteins). Proteins with high

connectivity are considered to be essential hubs of the network,

whose removal would result in an overall collapse of the global

structure of the network [6]. We have extracted hubs from the

QQPPI networks using the criterion described in section 2.4.

Table 4 gives the number of hubs obtained from the QQPPI

networks. Hub genes identified in the QQPPI networks are listed

in Table 5, 6 and 7. Betweenness centrality of a node v is given

by the expression:

g(v)~
X

s=v=t

sst(v)

sst

ð3Þ

where sst is the total number of shortest paths from node s to node

t, and sst(v) is the total number of shortest paths that pass through

v. Betweenness centrality quantifies the flow of information

Table 8. Numbers of 3 and 4-cliques in the QQPPI networks.

GeneChip A (HG_133A)

3-cliques 4-cliques

NA
2ttt

126 12

NA
SAM

29 2

GeneChip B (HG_133B)

NB
2ttt

7 0

doi:10.1371/journal.pone.0103047.t008

Table 9. List of complexes for the network NA
2ttt and NA

SAM .

Gene names Complex*

NA
2ttt

CD2BP2, DDX17, NF2, PRPF8, SF3A2, SF3B1, SRRM2, WBP11 Spliceosome (ID: 351)

ACTB, ACTG1, NF2, SMARCA4, SMARCC1, SMARCC2 Polybromo and BAF containing complex(ID: 149, 189)

MAP2K1, MAPK1, YWHAB, YWHAE, YWHAH, YWHAZ Ksr1 complex (ID: 5909, 5937)

ACTB, NF2, SMARCA4, SMARCC1, SMARCC2 Nucleosomal methylation activator complex (ID: 86), BAF complex(ID: 566), LARC complex (ID:
778)

ACTB, NF2, SMARCC1, SMARCC2, VDR Emerin complex 32(ID: 5614)

APC, APP, PSMC4, PSMD1, PSMD4 Proteasome (ID: 181, 193)

EEF1A1, MYB, RPLP0, RPLP1, RPS3 Nop56p-associated pre-rRNA complex(ID: 3055)

MAP2K1, YWHAB, YWHAE, YWHAH, YWHAZ Ksr1 complex(ID: 5886, 5936)

NF2, SMARCA4, SMARCC1, SMARCC2, VDR WINAC complex(ID: 1230)

PNN, PRPF8, SF3A2, SF3B1, SRRM2 C complex spliceosome (ID: 1181)

NA
SAM

AMPH, AP2A2, AP2M1, EPS15, TH Epsin-clathrin complex (ID: 1228)

AMPH, CLTC, DNM1, EPS15, SYNJ1 Endocytic coat complex (ID: 5344)

AMPH, CLTC, DNM1, SYNJ1, TH Endocytic coat complex (ID: 5345)

APC, PSMA1, PSMB2, PSMB7, TH Proteasome complex(ID: 181, 191, 192, 193, 194)

APC, CDC42, IQGAP1, TH APC-IQGAP1-Rac1 complex (ID: 3011), APC-IQGAP1-Cdc42 complex (ID: 3012)

CDC42, PARD3, PRKCZ, TH CDC42-Par6c-Par3-Prkcz complex (ID: 804) Tiam1-Par-3-aPKC-zeta complex (ID: 1023)

CSNK2A1, TH, YWHAB, YWHAZ Ksr1-CK2-MEK-14-3-3 complex, PDGF treated (ID: 5936)

* The complexes are given along with their CORUM IDs.
doi:10.1371/journal.pone.0103047.t009
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through a node in the network. In case of a PPI network, it

specifies how a node influences the communication among other

nodes. Therefore, in a QQPPI network, betweenness centrality

helps to locate important but not very highly connected nodes.

Current studies [29–32] have shown that node connectivity

might not be the only influential parameter to characterize

biological networks. Goñi et al. [33] described that in case of

neurodegenerative diseases, less extensively connected proteins are

much more appropriate therapeutic targets than highly connected

ones, as the critical role of highly connected nodes (hubs) in the

network modules prevent them from substantial fluctuation.

Recently, it was shown that betweenness centrality can also be

an important parameter for finding lowly connected (non-hub) but

important nodes [34,35].

Proteins with low connectivity but high betweenness may play a

key role in the modular structure in the yeast interactome. Gursoy

et al. [36] studied the properties of High Betweenness but Low

Connectivity (HBLC) nodes, and their importance in the context

of biological networks. The Highly betweened but lowly connected

nodes are also considered as bottlenecks [35]. Yu et al. [35]

Suggested that HBLC nodes are more essential, and betweenness

is found to be a more significant indicator of essentiality than

degree. Table 4 gives the number of bottlenecks obtained from

the QQPPI networks. Table 5, 6 and 7 gives the bottlenecks of

our QQPPI networks. Figure 4 represents the graphical structure

of a simple PPI network containing hubs and bottlenecks. Table

S1, S2 and S3 lists all the nodes, hubs and bottlenecks in NA
2ttt,

NA
SAM and NB

2ttt along with their topological parameters as

obtained from tYNA.

Identification of cliques & complexes
A clique Q(V is a subset of the vertices of G (refer to section

3.3) such that Vi,j[Q : fi,jg[E. In a PPI network, a clique signifies

that every pair of proteins physically interacts with each other.

Cliques have been used to identify functional units [37] and

physical complexes [38] in PPI networks. Several three and four

cliques were identified in the QQPPI networks using a self-

developed algorithm (refer to section 2.5). Most of these cliques are

overlapping. Table 8 shows the number of cliques identified in

the QQPPI networks (NA
2ttt, N

A
SAM and NB

2ttt). Table 9 shows the

complexes formed by individual and overlapping cliques in NA
2ttt

and NA
SAM .

For each QQPPI network (NA
2ttt, N

A
SAM and NB

2ttt), 3-cliques and

4-cliques were combined to detect tightly knitted sub-networks,

which are the core functional modules in the QQPPI networks [7]

(Figure 2, 3, S1). Table S4 lists the nodes in the functional

modules, along with their connectivity, betweenness, and their

numbers of occurrences in 3- and 4-cliques. For each QQPPI

network, it can be observed that most of the hubs and bottlenecks

belonged to the core functional modules. Several cliques in the

sub-networks belonging to NA
2ttt and NA

SAM were found to be

involved in already known protein complexes (Table 9).

Table 10. Co-expression analysis of proteins interacting within a complex (NA
2ttt).

Node 1 Node 2 Control (C) Disease (D) Change (C–D) Complex

CD2BP2 PRPF8 0.182452 0.377959 20.195506 Spliceosome (ID: 351)

CD2BP2 SF3A2 20.49456 0.300699 20.795258

CD2BP2 WBP11 0.064197 20.18898 0.253176

PRPF8 SF3A2 20.09299 20.01542 20.07757

SF3A2 SF3B1 0.236131 20.15777 0.393901

SF3A2 SRRM2 0.210102 0.531593 20.321490

SF3A2 WBP11 20.10021 20.16228 0.062070

ACTB ACTG1 0.344993 0.571264 20.226271 Polybromo and BAF containing
complex(ID: 149, 189)

ACTB SMARCA4 0.272319 0.085326 0.186992

ACTG1 NF2 20.2271 0.0839 20.311

SMARCA4 SMARCC1 20.32228 20.2122 20.110080

SMARCC1 SMARCC2 0.197918 0.250794 20.052876

MAP2K1 MAPK1 0.705468 0.59637 0.109098 Ksr1 complex (ID: 5909, 5937)

YWHAE YWHAH 20.30185 20.16978 20.132070

YWHAE YWHAZ 20.24657 20.06473 20.18184

PSMC4 PSMD1 0.305936 0.155939 0.149996 Proteasome (ID: 181, 193)

PSMC4 PSMD4 0.030223 0.49093 20.460706

PSMD1 PSMD4 0.129277 0.429546 20.300269

EEF1A1 RPLP1 20.62308 20.37849 20.244589 Nop56p-associated pre-rRNA
complex(ID: 3055)

PRPF8 SF3A2 20.09299 20.01542 20.07757 C complex spliceosome (ID:
1181)

SF3A2 SF3B1 0.236131 20.15777 0.393901

SF3A2 SRRM2 0.210102 0.531593 20.321490

doi:10.1371/journal.pone.0103047.t010
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Gene level co-expression analysis of proteins interacting
within a complex
The Pearson correlation coefficient (r) is a measure of the linear

dependence between two variables giving a value between +1 and

21 inclusive. It is used as a measure of the strength of linear

dependence between two variables. It is defined as the covariance

of the two variables divided by the product of their standard

deviations.

Table 10 and Table 11 lists the values of Pearson correlation

coefficient (r) of two interacting complex forming nodes and their

change in both control and disease states (in NA
2ttt and NA

SAM

respectively). Table S5, S6 and S7 shows the Pearson correlation

coefficient (r) of proteins interacting within cliques, along with net

difference of r between control and disease samples and their

percentage of maximum possible change, in the core functional

modules detected in NA
2ttt, N

A
SAM and NB

2ttt respectively.

Spliceosome complex (ID: 351) has been found to be the most

significant in terms of change in co-expression in NA
2ttt (Table 10).

Moreover, Ksr1-CK2-MEK-14-3-3 complex, PDGF treated (ID:

5936) shows significant difference in co-expression value in NA
SAM

(Table 11).

Association of disease markers with cliques and
neurotransmitters
Having identified the topologically significant (HC and HBLC)

nodes, we then set out to study their association with PD. We used

Genotator meta-database [39] and the text mining engine

PubMed (http://www.ncbi.nlm.nih.gov/pubmed) for this pur-

pose. 13 hubs and 15 bottlenecks in NA
2ttt and 3 hubs and 9

Table 11. Co-expression analysis of proteins interacting within a complex (NA
SAM ).

Node 1 Node 2 Control (C) Disease (D) Change (C–D) Complex

AMPH AP2A2 0.895323 0.711618 0.183705 Epsin-clathrin complex (ID: 1228)

AP2A2 AP2M1 0.896811 0.71299 0.183821

AP2A2 EPS15 0.680562 0.130673 0.549888

AMPH CLTC 0.835258 0.766836 0.068421 Endocytic coat complex (ID: 5344)

AMPH DNM1 0.859907 0.771107 0.088799

CLTC EPS15 0.594193 0.346006 0.248186

CLTC SYNJ1 0.645271 0.769517 20.124245

DNM1 EPS15 0.752444 0.283483 0.468961

EPS15 SYNJ1 0.694805 0.449957 0.244848

PSMA1 PSMB2 0.389236 0.512285 20.123048 Proteasome complex(ID: 181, 191, 192,
193, 194)

PSMA1 PSMB7 0.515788 0.620496 20.104708

PSMB2 PSMB7 0.102045 0.310781 20.208735

APC IQGAP1 20.61332 20.33299 20.280329 APC-IQGAP1-Rac1 complex (ID: 3011),
APC-IQGAP1-Cdc42 complex (ID: 3012)

CDC42 IQGAP1 20.18484 20.2834 0.098559

CDC42 PARD3 20.13129 20.35908 0.227790 CDC42-Par6c-Par3-Prkcz complex (ID:
804), Tiam1-Par-3-aPKC-zeta complex
(ID: 1023)

CDC42 PRKCZ 0.762057 0.706097 0.055960

PARD3 PRKCZ 20.13645 20.44763 0.311180

CSNK2A1 YWHAB 0.253246 0.672328 20.419082 Ksr1-CK2-MEK-14-3-3 complex, PDGF
treated (ID: 5936)

TH YWHAB 20.47327 0.157579 20.630848

TH YWHAZ 20.36101 20.1174 20.243609

doi:10.1371/journal.pone.0103047.t011

Table 12. Previously reported PD-associated disease markers in NA
2ttt and NA

SAM .

NA
2ttt

Hubs YWHAZ, YWHAB, YWHAE, MAPK1, DISC1, APP, VCL, VIM, HSPA1A, IKBKB, YWHAQ, SNCA, SQSTM1

Bottlenecks HDAC4, TGFB1, SET, SPTBN1, RAD23A, RPS3, CHUK, DAPK1, IGF1R, IRAK1, CYCS, MAP2K4, SRRM2, PHB, YWHAH

NA
SAM

Hubs YWHAZ, YWHAB, CDC42

Bottlenecks PRKCZ, APC, SNCA, NFKBIA, TSC2, IGF1R, HSPA1A, TH, ATP5A1

doi:10.1371/journal.pone.0103047.t012
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Table 13. Previously unreported disease markers in NA
2ttt.

Hubs Degree Number of occurrence in 3-cliques Number of occurrence in 4-cliques

*ACTB 29 17 6

*ACTG1 23 22 5

MAP3K14 18 14 5

FTSJ1 13 1 0

#ARRB2 12 8 2

EEF1A1 12 5 1

Bottlenecks Betweenness Number of occurrence in 3-cliques Number of occurrence in 4-cliques

STUB1 2669.638323 4 1

ANXA2 2425.615147 4 1

KPNB1 2313.064649 4 0

#STX1A 1758.534123 1 0

AXIN1 1649.015233 0 0

IQGAP1 1591.554704 5 0

MCL1 1149.028538 0 0

PARD3 1031.756667 0 0

TJP2 995.5834285 4 1

ACTN2 989.1836942 2 0

TAF9 973.4038033 0 0

CDC25B 876.2708288 3 0

IARS 773.0306479 1 0

*CTNNA1 695.7911325 8 2

PTPN3 666.0363488 0 0

#TFRC 522.4965384 1 0

VASP 500.2301461 3 1

MAP3K7IP2 484.3384659 1 0

ADAM17 464.6173296 0 0

WEE1 392.7818697 0 0

SF3B1 375.7263891 2 0

DSTN 342.8748485 1 0

BAG2 253.0975395 4 1

C1QBP 236.1694422 2 0

*GSN 110.0727932 6 2

#MARCKS 98.75040177 0 0

*Topologically significant disease markers.
#disease markers associated with dopamine and other neurotransmitters.
doi:10.1371/journal.pone.0103047.t013

Table 14. Previously unreported disease markers in NA
SAM .

Hubs Degree Number of occurrence in 3-cliques Number of occurrence in 4-cliques

*CSNK2A1 12 3 0

*CLTC 11 7 1

Bottlenecks Betweenness Number of occurrence in 3-cliques Number of occurrence in 4-cliques

*IQGAP1 284.1779164 2 0

OCRL 97.31967486 0 0

*PARD3 79.45372874 3 0

CLTB 77.62499748 0 0

TUBB 23.27462677 0 0

*Topologically significant disease markers.
doi:10.1371/journal.pone.0103047.t014
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Table 15. Brief description of previously unreported disease markers in NA
2ttt.

Hubs (Official symbol) Full name Brief description

*ACTB actin, beta This gene encodes one of six different highly conserved actin proteins. which are
involved in cell motility, structure, and integrity.

*ACTG1 actin, gamma 1 Actins are highly conserved proteins that are involved in various types of cell
motility, and maintenance of the cytoskeleton.

MAP3K14 mitogen-activated protein kinase kinase
kinase 14

It is a serine/threonine protein-kinase which binds to TRAF2 and stimulates NF-
kappaB activity.

FTSJ1 FtsJ RNA methyltransferase homolog 1 (E. coli) It encodes a member of the methyltransferase superfamily which localizes to the
nucleolus, binds to S-adenosylmethionine, and may be involved in the
processing and modification of ribosomal RNA.

#ARRB2 arrestin, beta 2 This protein exhibits sensitized dopamine release in mice.

EEF1A1 eukaryotic translation elongation factor 1 alpha 1 This gene encodes an isoform of the alpha subunit of the elongation factor-1
complex, which is responsible for the enzymatic delivery of aminoacyl tRNAs to
the ribosome.

Bottlenecks (Official symbol)

STUB1 STIP1 homology and U-box containing
protein 1, E3 ubiquitin protein ligase

It is a ubiquitin ligase/cochaperone that participates in protein quality control by
targeting a broad range of chaperone protein substrates for degradation.

ANXA2 annexin A2 This gene encodes a member of the calcium-dependent phospholipid-binding
protein family and plays a role in the regulation of cellular growth and in signal
transduction pathways.

KPNB1 karyopherin (importin) beta 1 The protein encoded by this gene is a member of the importin beta family which
interacts with the FG repeats of nucleoporins for translocation through the pore
complex.

#STX1A syntaxin 1A (brain) Syntaxin 1A regulates dopamine transporter activity, phosphorylation and
surface expression.

AXIN1 axin 1 This gene encodes a cytoplasmic protein which contains a regulation of G-
protein signaling (RGS) domain and a dishevelled and axin (DIX) domain.

MCL1 myeloid cell leukemia sequence 1 (BCL2-related) This gene encodes an anti-apoptotic protein, which is a member of the Bcl-2
family.

TJP2 tight junction protein 2 This gene encodes a zonula occluden that is a member of the membrane-
associated guanylate kinase homolog family which functions as a component of
the tight junction barrier in epithelial and endothelial cells.

ACTN2 actinin, alpha 2 Alpha actinins belong to the spectrin gene superfamily which represents a
diverse group of cytoskeletal proteins, including the alpha and beta spectrins
and dystrophins.

TAF9 TAF9 RNA polymerase II, TATA box binding
protein (TBP)-associated factor, 32 kDa

Protein encoded by this gene participates in basal transcription, serve as
coactivators, function in promoter recognition or modify general transcription
factors (GTFs) to facilitate complex assembly and transcription initiation.

CDC25B cell division cycle 25B CDC25B is a member of the CDC25 family of phosphatases which activates the
cyclin dependent kinase CDC2 by removing two phosphate groups and it is
required for entry into mitosis.

IARS isoleucyl-tRNA synthetase It catalyzes the aminoacylation of tRNA by their cognate amino acid. It is
thought to be among the first proteins that appeared in evolution.

*CTNNA1 catenin (cadherin-associated protein), alpha 1,
102 kDa

Protein encoded by this gene associates with the cytoplasmic domain of a
variety of cadherins.

PTPN3 protein tyrosine phosphatase, non-receptor
type 3

The protein encoded by this gene is a member of the protein tyrosine
phosphatase (PTP) family which are signaling molecules that regulate a variety
of cellular processes including cell growth, differentiation, mitotic cycle, and
oncogenic transformation.

#TFRC transferrin receptor It is necessary for development of erythrocytes and the nervous system.

VASP vasodilator-stimulated phosphoprotein It is a member of the Ena-VASP protein family. It contains an EHV1 N-terminal
domain that binds proteins containing E/DFPPPPXD/E motifs and targets Ena-
VASP proteins to focal adhesions.

MAP3K7IP2 MAP3K7 binding protein 2 The protein encoded by this gene is an activator of MAP3K7/TAK1, which is
required for for the IL-1 induced activation of nuclear factor kappaB and MAPK8/
JNK.

ADAM17 ADAM metallopeptidase domain 17 This gene encodes a member of the ADAM (a disintegrin and metalloprotease
domain) family which has been implicated in a variety of biologic processes like
fertilization, muscle development, and neurogenesis.

WEE1 WEE1 homolog (S. pombe) This gene encodes a nuclear protein, which is a tyrosine kinase belonging to the
Ser/Thr family of protein kinases.

SF3B1 splicing factor 3b, subunit 1, 155 kDa This gene encodes subunit 1 of the splicing factor 3b protein complex.
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bottlenecks in NA
SAM were found to be associated with PD

(Table 12). However, 6 hubs, 26 bottlenecks in NA
2ttt and 2 hubs,

5 bottlenecks in NA
SAM were unreported for PD (Table 13, 14).

Due to the lack of topologically significant nodes in, NB
2ttt we did

not consider NB
2ttt for further analysis. Thus 39 (6+26+2+5= 39)

nodes were obtained from our QQPPI networks which were not

previously known to be associated with PD. Among these 39

nodes, 2 nodes (IQGAP1 and PARD3) were common for both

NA
2ttt and NA

SAM . Therefore, these 37 (3922=37) topologically

significant nodes (hubs & bottlenecks) were considered as disease

biomarkers in our study. The list of these genes, along with their

symbols, names and brief description of their functions are shown

in Tables 15 and 16.

These 37 unique disease markers (NA
2ttt and NA

SAM ) were then

subjected to detailed analysis about their association in cliques and

neurotransmitters. Interestingly it was found that 8 (CSNK2A1,

CLTC, PARD3, IQGAP1, ACTB, ACTG1, CTNNA1 and GSN)

out of the 37 nodes were strongly associated with cliques that form

the core functional modules of the networks. Furthermore,

significant changes in co-expression levels were observed between

control and disease states in most of these core forming nodes

(Table 17).

PD is characterised by the loss of dopaminergic neurons in the

subsantia nigra pars compacta [40]. Association of PD and loss of

dopamine neurotransmitter has been established [24]. Other than

dopamine, several neurotransmitters viz., choline, serotonin,

noradrenaline, glutamate and GABA are also involved with PD-

specific motor and non-motor symptoms [23]. We studied the

association of the 37 unreported genes with any of these

neurotransmitters. Four (ARRB2, STX1A, TFRC and

MARCKS) out of the 37 markers were found to be associated

with several neurotransmitters including dopamine (Table 18)

[40–52].

These 37 unreported proteins may be considered as important

disease marker genes. However, the 8 clique-forming proteins and

the 4 neurotransmitter (including dopamine) associated proteins

Table 16. Brief description of previously unreported disease markers in NA
SAM .

Hubs (Official symbol) Full name Brief description

*CSNK2A1 casein kinase 2, alpha 1 polypeptide It phosphorylates acidic proteins such as casein.

*CLTC clathrin, heavy chain It is a major protein component of the cytoplasmic face of coated vesicles and coated
pits, which is involved in the intracellular trafficking of receptors and endocytosis of a
variety of macromolecules.

Bottlenecks (Official symbol)

*IQGAP1 IQ motif containing GTPase activating protein 1 This gene encodes a member of the IQGAP family and interacts with components of
the cytoskeleton, with cell adhesion molecules, and with several signalling molecules
to regulate cell morphology and motility.

OCRL oculocerebrorenal syndrome of Lowe This gene encodes a phosphatase enzyme that is involved in actin polymerization
and is found in the trans-Golgi network.

*PARD3 par-3 family cell polarity regulator This gene encodes a member of the PARD protein family which affects asymmetrical
cell division and direct polarized cell growth.

CLTB clathrin, light chain B Clathrin is a large, soluble protein composed of heavy and light chains which
functions as the main structural component of the lattice-type cytoplasmic face of
coated pits and vesicles.

TUBB tubulin, beta class I It is the major constituent of microtubules which binds two moles of GTP, one at an
exchangeable site on the beta chain and one at a non-exchangeable site on the alpha
chain.

*Topologically significant disease markers.
doi:10.1371/journal.pone.0103047.t016

Table 15. Cont.

Hubs (Official symbol) Full name Brief description

DSTN destrin (actin depolymerizing factor) The product of this gene belongs to the actin-binding proteins ADF family which
is responsible for enhancing the turnover rate of actin in vivo.

BAG2 BCL2-associated athanogene 2 BAG proteins compete with Hip for binding to the Hsc70/Hsp70 ATPase domain
and promote substrate release.

C1QBP complement component 1, q subcomponent
binding protein

It associates with C1r and C1s in order to yield the first component of the serum
complement system and is known to bind to the globular heads of C1q
molecules and inhibit C1 activation.

*GSN Gelsolin The protein encoded by this gene binds to the ‘‘plus’’ ends of actin monomers
and filaments to prevent monomer exchange.

#MARCKS myristoylated alanine-rich protein kinase C
substrate

The protein encoded by this gene is a substrate for protein kinase C. It is
localized to the plasma membrane and is an actin filament crosslinking protein.

*Topologically significant disease markers.
#disease markers associated with dopamine.
doi:10.1371/journal.pone.0103047.t015
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showed significant topological and functional importance in the

QQPPI networks. Therefore, these 12 (8+4) proteins may be

considered as key disease markers or biomarkers for PD. These

proteins are called biomarkers due to five different reasons (1)

These were found to be differentially expressed in PD-related

microarray datasets (2) Proteins corresponding to these genes are

the most topologically significant nodes (hubs and bottlenecks) in

the protein-protein interaction networks (3) They showed signif-

icant involvement in the known complexes (4) They showed

involvement with PD-associated neurotransmitters (5) These were

not known previously to be associated with PD.

Comparison with the study of Moran et al.
Moran et al. reported several genes to be confirmed PD-

associated sequences or a first PD expression signature [10]. A

very important finding of this study concerned a series of 25 highly

Table 17. Co-expression level of significant disease markers in core functional modules.

N
A

2ttt
-contained core functional module

Hubs Interacting partners Control* Disease*

ACTB TJP2 0 20.33

VCL 20.2 0.13

RPLP0 20.21 0.18

ANXA2 20.47 0.03

ARPC1B 20.38 0.03

HSPA1B 0.43 20.28

ACTG1 NF2 20.12 0.03

MAP3K7IP2 20.31 0

VCL 20.27 0.2

IQGAP1 0 20.2

VASP 0.03 20.16

SPTBN1 0.24 20.19

TJP2 20.15 0.05

ARPC1B 20.33 0.14

Bottlenecks Interacting partners Control* Disease*

CTNNA1 VCL 0.14 20.06

SPTBN1 20.2 0.03

GSN ACTB 0.16 20.23

VASP 0.41 20.53

N
A

SAM
-contained functional module

Hubs Interacting partners Control* Disease*

CSNK2A1 YWHAB 0.58 0.03

SNCA 0.67 20.1

CLTC No significant co-expression change available

Bottlenecks Interacting partners Control* Disease*

PARD3 No significant co-expression change available

IQGAP1 YWHAZ 20.39 0.25

*Here the co-expression values are rounded up to the second decimal place.
doi:10.1371/journal.pone.0103047.t017

Table 18. Involvement of unreported disease markers (in NA
2ttt) with neurotransmitters.

Dopaminergic Cholinergic Serotonergic Adrenergic Glutamatergic GABAergic

ARRB2 + [40,41] 2 2 + [42] 2 2

STX1A + [43] 2 + [44,45,46] 2 + [47] + [47]

TFRC + [48] 2 2 2 2 2

MARCKS + [49] 2 + [50] + [50,51] + [52] 2

+ indicates association. 2 indicates no association. Corresponding references for association are shown within third brackets.
doi:10.1371/journal.pone.0103047.t018
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DE sequences which map to known PARK loci. It was proposed in

their study that these 25 sequences represented candidates for as

yet unidentified disease-causing genes. Interestingly, results of our

study had very little overlap with their outcomes. Out of the 25

sequences reported in their study, only 1 was common to the data

points in DA
2ttt (VAV3), 3 were common to the data points in

DA
SAM (MDH1, VAV3, CDC42) and 1 was common to the data

points in DB
2ttt (CDC42). Out of these, CDC42 was the only protein

which acted as a significant node: as a hub inNA
SAM and as a bottleneck

in NB
2ttt. Here it is interesting to note that CDC42 was recently

proposed in a PPI network-based study to play critical roles in PD [53].

However, one should keep in mind that these studies had

different goals. Hence the difference in the final outcomes is quite

obvious. Also, this study takes into account an extensive statistical,

topological and functional analysis to determine significant disease

markers which was not performed in the previous study

Limitations

Genes2FANs combines protein interaction data from DIP [54],

MINT [55], BIND [56], HPRD [57], BioGRID [58], InnateDB

[59], KEGG [60], IntAct [61], PPID [62], Ma’ayan et al. [63],
Stelzl et al. [64], Rual et al. [65] and Yu et al. [66]. Similarly,

POINeT combines protein interaction data from DIP, MINT,

BIND, HPRD, BioGRID, IntAct, MIPS [67], CYGD [68] and

MPact [69]. Hence, by the merger of QQPPI networks formed by

both Genes2FANs and POINeT, it was possible to access PPI data

from all of these 14 databases in this study. Any insufficient and

non-updated information in the databases will have an effect on

our results. To minimize this error, we performed our studies using

the information of the above mentioned databases updated till

May, 2014. However information in most of the databases is

incomplete. Hence, markers whose PPI data were not included in

the databases in the above mentioned open source databases could

not be included in this study.

Furthermore, the incompleteness of the human interactome

could lead to data insufficiency, resulting in biased topological

analyses. In this study, the PPI networks were constructed based

on the assumption that the expression level of most of the proteins

and mRNAs were positively correlated, but this might not be true

for all cases. Furthermore, due to post-transcriptional and

translational regulations, the correspondence between expression

of a gene and its protein is complicated. It was not possible to

incorporate protein expression in our study.

Conclusion

Differentially expressed genes in post-mortem brain samples of

patients with PD have been identified in this study. Gene

expression data and PPI data were used for topological analyses

of protein-protein interactions for PD. Two sets of DE genes were

selected from the microarray data separately using 2-tailed t-tests
and SAM. These two sets of DE genes were run separately to

construct QQPPI networks. Several important topologically

significant nodes e.g., hubs and bottlenecks were identified as

biologically significant nodes in the network, as it has already been

established that hubs and bottlenecks correspond to biologically

significant proteins with respect to the disease. With this approach,

we have identified 37 proteins in our QQPPI networks which were

not previously known to be associated with PD. Three and four-

cliques were identified in the QQPPI networks. These cliques

contain most of the topologically significant nodes of the networks

which form core functional modules consisting of tightly-knitted

sub-networks. Several cliques identified in our study were found to

be involved in already known protein complexes associated with

many biological processes. Out of the 37 markers, eight

(CSNK2A1, CLTC, PARD3, IQGAP1, ACTB, ACTG1,

CTNNA1 and GSN) were significantly involved in the core

functional modules and showed significant change in co-expres-

sion levels between disease and control state. Furthermore,

proteins encoded by 4 genes (ARRB2, STX1A, TFRC,

MARCKS) showed involvement with several neurotransmitters

including dopamine, which plays a significant role in PD. These 12

proteins may be considered as biologically significant with respect

to PD. Our study represents a novel investigation of the PPI

networks for PD. The 37 network biomarkers identified in our

study may provide as potential therapeutic targets for PD

applications developments.

Supporting Information

Figure S1 QQPPI network built from the dataset
obtained using 2-tailed t-test (P,0.05) (GeneChip B).
Orange coloured square nodes represent hubs (HC nodes). Yellow

coloured triangular nodes represent bottlenecks (bottlenecks). The

core functional module containing 3,4-cliques are represented

using blue coloured edges. Non-hub non-bottleneck nodes are

coloured green if they are directly connected to a hub or a

bottleneck, and grey otherwise. Inset: Subset of the QQPPI

network containing hubs and bottlenecks only.

(JPG)

Table S1 Topological properties of NA
2ttt. The table

contains all nodes, hubs and bottlenecks in NA
2ttt along with their

topological properties according to tYNA.

(XLSX)

Table S2 Topological properties of NA
SAM . The table

contains all nodes, hubs and bottlenecks in NA
SAM along with

their topological properties according to tYNA.

(XLSX)

Table S3 Topological properties of NB
2ttt. The table

contains all nodes, hubs and bottlenecks in NB
2ttt along with their

topological properties according to tYNA.
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Table S4 Properties of nodes in core functional mod-
ules. The table contains nodes in the core functional modules

detected inNA
2ttt,N

A
SAM andNB

2ttt along with their degree, betweenness

score and the number of their occurrences in 3- and 4-cliques.

(XLSX)

Table S5 Co-expression table for proteins interacting

within the core functional module in NA
2ttt. This table

contains the interactions within the core functional module in the

network NA
2ttt, along with their Pearson correlation coefficients (r)

in control (C) and disease (D) samples, net difference of r in

control and disease samples (C–D) and their percentage of

maximum possible change from control to disease, expressed as

[{(C–D)/max(C–D)} * 100]. Here, max (C–D) is 2 as r lies within

the closed interval [21, 1].

(XLSX)

Table S6 Co-expression table for proteins interacting

within the core functional module in NA
SAM . This table

contains the interactions within the core functional module in the

network NA
SAM , along with their Pearson correlation coefficients

(r) in control (C) and disease (D) samples, net difference of r in

control and disease samples (C–D) and their percentage of

maximum possible change from control to disease, expressed as
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[{(C–D)/max(C–D)} * 100]. Here, max (C–D) is 2 as r lies within

the closed interval [21, 1].

(XLSX)

Table S7 Co-expression table for proteins interacting

within the core functional module in NB
2ttt. This table

contains the interactions within the core functional module in the

network NB
2ttt, along with their Pearson correlation coefficients (r)

in control (C) and disease (D) samples, net difference of r in

control and disease samples (C–D) and their percentage of

maximum possible change from control to disease, expressed as

[{(C–D)/max(C–D)} * 100]. Here, max (C–D) is 2 as r lies within

the closed interval [21, 1].

(XLSX)

File S1 Clique finding procedure. The file contains the

complete procedure, including the algorithm developed by us, which

we have used to detect 3- and 4-cliques in the QQPPI networks.

(DOCX)

File S2 Complex finding procedure. The file contains the

complete procedure, including the algorithm developed by us,

which we used to detect complexes in the QQPPI networks.
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