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Weighted correlation network analysis (WGCNA) is a statistical method that has been widely

used in recent years to explore gene co-expression modules. Competing endogenous

RNA (ceRNA) is commonly involved in the cancer gene expression regulation mechanism.

Some ceRNA networks are recognized in gastric cancer; however, the prognosis-

associated ceRNA network has not been fully identified using WGCNA. We performed

WGCNA using datasets from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue

Expression (GTEx) to identify cancer-associated modules. The criteria of differentially

expressed RNAs between normal stomach samples and gastric cancer samples were

set at the false discovery rate (FDR) < 0.01 and |fold change (FC)| > 1.3. The ceRNA

relationships obtained from the RNAinter database were examined by both the Pearson

correlation test and hypergeometric test to confirm the mRNA–lncRNA regulation.

Overlapped genes were recognized at the intersections of genes predicted by ceRNA

relationships, differentially expressed genes, and genes in cancer-specific modules. These

were then used for univariate and multivariate Cox analyses to construct a risk score model.

The ceRNA network was constructed based on the genes in this model. WGCNA-

uncovered genes in the green and turquoise modules are those most associated with

gastric cancer. Eighty differentially expressed genes were observed to have potential

prognostic value, which led to the identification of 12 prognosis-related mRNAs (KIF15,

FEN1, ZFP69B, SP6, SPARC, TTF2, MSI2, KYNU, ACLY, KIF21B, SLC12A7, and ZNF823)

to construct a risk score model. The risk genes were validated using the GSE62254 and

GSE84433 datasets, with 0.82 as the universal cutoff value. 12 genes, 12 lncRNAs, and 35

miRNAs were used to build a ceRNA network with 86 dysregulated lncRNA–mRNA ceRNA

pairs. Finally, we developed a 12-gene signature from both prognosis-related and tumor-

specific genes, and then constructed a ceRNA network in gastric cancer. Our findings may

provide novel insights into the treatment of gastric cancer.
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INTRODUCTION

Gastric cancer is a major cause of cancer-related mortality
worldwide (Van Cutsem et al., 2016). It is a serious form of
cancer characterized by limited chemotherapy regimens and
complex patterns of tumorigenesis and progression in different
subtypes (Erdem et al., 2018; Kubota et al., 2020). There have
been exceptional advancements in the interpretation of the
molecular pattern of gastric cancer through research projects
including the Cancer Genome Atlas (TCGA) (Cancer Genome
Atlas Research N, 2014) and the Asian Cancer Research Group
(ACRG) (Cristescu et al., 2015) in recent years; however, current
classifications are not sufficient to describe the vast differences in
prognoses and summarize overall genomic characteristics, even
for patients who are recognized as belonging to the same
molecular subtypes.

Integrated analysis of transcriptomes is believed to provide
peculiar insights into diseases; in this respect, weighted gene co-
expression network analysis (WGCNA) may be the most popular
approach for detecting co-expressed RNAs from RNA-seq data
to microarray data (van Dam et al., 2018; Kakati et al., 2019).
WGCNA can identify select groups of significant genes with
similar biological functions and with strong correlations to
specific traits. Many recent surveys have used WGCNA for
both non-neoplastic and neoplastic diseases, including
gastric cancer.

Salmena et al. (2011) speculated that the expression of many
RNA transcripts is regulated by competing endogenous RNAs
(ceRNAs) competing for the same sequences in miRNAs. They
established the groundwork for a significant discovery of a
communication network between coding and non-coding
RNAs. Their theory has been supported by studies on the
pathological processes of many malignancies, including breast,
colon, and gastric cancers (Qi et al., 2015; Shuwen et al., 2018;
Abdollahzadeh et al., 2019).

Thus, finding key genes that will serve as drug targets is
crucial to the treatment of gastric cancer. In this study, we used
WGCNA to construct a solid cancer-associated ceRNA network
in gastric cancer for the first time. We hypothesized that
identifying gene co-expression patterns would provide
additional insight into disease-associated biological pathways.
Finally, we explored a lncRNA–miRNA–mRNA network based
on the survival-related hallmark genes of gastric cancer,
providing candidate targets for its management and surveillance.

MATERIALS AND METHODS

RNA-Sequencing and Microarray Data
Collection
RNA-seq data were obtained from TCGA repository (https://
portal.gdc.cancer.gov/) and the Genotype-Tissue Expression
(GTEx) portal (https://www.gtexportal.org/) and sequenced on
the Illumina HiSeq 2000 RNA Sequencing platform. TCGA
offers a comprehensive database of cancer genomic profiles of

specific cancer types. GTEx is another project that recruits
postmortem donors without diseases, which has made genetic
traits of healthy people open to the public. We performed a
combined analysis of the stomach data from these two projects in
the present study. The transcript per million (TPM) expression
values for 625 stomach samples and the RNA-seq by Expectation
Maximization (RSEM) expected counts for 624 stomach samples
were preserved for further analysis (raw counts data of a patient
did not exist).

The microarray data were downloaded from the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/).
The datasets were obtained from human gene expression
microarray profiles of gastric cancer using fresh-frozen
specimens. Finally, we included GSE62254 and GSE84433 for
further analysis, which are the two largest datasets of microarray-
based gene expression profiling. GSE62254 was profiled on the
Affymetrix Human Genome U133 Plus 2.0 Array platform
(Affymetrix, Inc., Santa Clara, CA, USA), including 300 gastric
cancer tumor samples and 100 normal samples, which is the
largest number of normal gastric samples among datasets
(Cristescu et al., 2015).

We downloaded raw data (CEL files) generated by the
Affymetrix platform. The R package oligo was utilized for
format conversion, missing data filling, background correction,
and data normalization (Parrish and Spencer , 2004). GSE84433
was profiled on the Illumina HumanHT-12 V3.0 Expression
Beadchip (Illumina, Inc., San Diego, CA, USA); it includes 357
gastric cancer samples, and thus has the highest number of gastric
cancer patients with survival information (Cheong et al., 2018).
We downloaded data in the format of raw counts, performed
quantile normalization, followed by log transformation.

Annotation of the above datasets was performed according to
the different platforms using the official R package downloaded
from Bioconductor (http://www.bioconductor.org/packages/).
When the same RNA name appeared, the probe with the
highest signal value was stored. To facilitate the analysis, only
the overlapped RNAs qualified for survival-related ceRNA
network construction. To keep the data updated, clinical and
survival information of patients were obtained from the websites
on March 5th, 2020. All original data were retrieved from the
open database; thus, the documents of medical ethics were
exempted as all had been approved when first published.

Differentially Expressed RNAs
The Limma package was used for screening differentially
expressed RNAs (Ritchie et al., 2015). The RSEM expected
counts retrieved from the GTEx database and TCGA database
were utilized to discern differentially expressed RNAs between
gastric cancer and control groups, which comprised normal
stomach tissue both from dead non-cancerous subjects and
adjacent stomach tissue in gastric cancer patients. For
microarray-based profiling, expression values retrieved from
GSE62254 were utilized to distinguish differentially expressed
RNAs between 300 gastric cancer samples and 100 normal tissue
samples. The R package Limma was used to process the data with

Zheng et al. WGCNA for GC ceRNA Network

Frontiers in Pharmacology | www.frontiersin.org July 2020 | Volume 11 | Article 11122

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.gtexportal.org/
http://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/packages/
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


the standard of false discovery rate (FDR) < 0.01, and |fold
change (FC)| > 1.3. After filtering out RNAs with low expression
values, the overlapping, differentially expressed RNAs were
considered suitable for further analysis.

WGCNA
WGCNA is a bioinformatics method for dealing with high-
throughput gene expression data, which can be used for the
construction of a co-expression network (Langfelder and
Horvath, 2008). The expression values of genes were
preprocessed in the form of log2 (TPM + 0.001). The genes
were then chosen in order of descending variance of their
expression in the datasets. Finally, 13000 genes were put
through WGCNA. Pairwise Pearson coefficients were used to
assess the weighted co-expression relationships between all genes
to produce an adjacency matrix. The least value for which the
scale-free topology fit R^2 index > 0.75 was chosen as the soft-
threshold power. Pearson coefficients were produced for all
paired genes; thus, the co-expression matrix was rendered into
an adjacency matrix using soft-threshold power. The soft-
threshold power was selected according to the standard scale-
free distribution. Scale-free co-expression networks were created
with 30 RNAs as the minimal module size and 0.25 as the
dendrogram cut height for module merging. The soft threshold
was used to ensure a scale-free network. Genes with high
correlations were clustered into the same module after forming
a co-expression network.

Gene Function Analysis
Upregulated and downregulated differentially expressed genes
were put into Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG), respectively. For the gene set
enrichment analysis (GSEA) and KEGG–GSEA, all genes were
incorporated into the analysis. A pathway (term) with an adjusted
p-value < 0.05 was considered a functional enriched pathway
(term) using the R package ClusterProfiler (Yu et al., 2012).

ceRNA Network
RNAinter was employed to observe the relationships among
mRNA, lncRNA, and miRNA. RNAinter contains 24 databases
demonstrated by experiment and 14 databases forecasted by
calculation, including miRTarBase and starBase. We used
lncRNA–miRNA relationships and mRNA–miRNA relationships
with the least confidence score limit of 0.5 for further analysis (Lin
et al., 2020). To ensure mRNA–lncRNA competing relationship
pairs that have the shared miRNAs in gastric cancer, the Pearson
correlation test and the hypergeometric test were utilized using the
expression profiles. Quantile normalization and correction of
batch effects between TCGA dataset and the GTEx dataset
were performed for the expression profiles before further
analysis (Leek et al., 2012). If the P-values of both tests were
less than 0.05, the mRNA–lncRNA competing interaction
pairs were saved to create the ceRNA network (Paci et al., 2014).
The co-expression networkwith the overlapped lncRNA–miRNA–
mRNA relationship was visualized with Cytoscape software (Su
et al., 2014).

Construction and Validation of the
Survival Model
Training datasets for the prognostic score system were performed
according to the sequencing data from TCGA. Validation of the
prognostic score system was performed on the two microarray
datasets (GSE62254 and GSE84433). Patients who died within 30
postoperative days and without 30-day follow-up were excluded.
Expression profiles of eligible gastric cancer patients were
normalized and non-overlapping genes were removed from the
analysis. Before survival analysis, the gene expression values in the
datasets were processed with a standardization with 0 mean value
and standard deviation of 1. Based on the mRNAs obtained in the
clinical cancer-associated modules, univariate Cox regression
analysis was performed to identify prognosis-related mRNAs;
then, all the survival-related genes were used to perform
multivariate Cox regression. The backward selection method
was used to select the most suitable survival gene group to
construct a risk score system (Donithan et al., 1992). The
samples in the datasets were divided into high-risk and low-risk
groups according to the universal cutoff value of their risk scores.
Kaplan–Meier survival curves were used to evaluate correlations
between the overall survival of the two groups in datasets using the
survival package (Therneau, 2020).

RESULTS

Differential Gene Expression Analysis
Sequencing data (TCGA + GTEx) and microarray data
(GSE62254) were downloaded and processed as previously
described. A total of 13007 genes and 292 lncRNAs were
identified after screening out less-expressed ones. Thirty
pathways were generated after the genes were applied to the
KEGG–GSEA (Figure 1A). A total of 3895 differentially
expressed genes and 79 lncRNAs were determined by
comparing each gastric cancer group to both control groups.
In total, 2347 upregulated and 1548 downregulated genes were
subjected to GO term and KEGG pathway enrichment analyses.
In the GO analysis for upregulated genes, neutrophil activation,
neutrophil mediated immunity, and T cell activation were
rendered as the top three terms of biological processes (BP);
the chromosomal region, condensed chromosome, and
centromeric region on chromosome were rendered as the top
three terms of cellular components (CC); cell adhesion molecule
binding, cadherin binding, and DNA helicase activity were
rendered as the top three terms of molecular functions (MF)
(Figure 1B). In the GO analysis for downregulated genes,
regulation of neuron projection development, axonogenesis,
and regulation of cell morphogenesis were rendered as the top
three terms of the BP; the collagen-containing extracellular
matrix, nuclear speck, and axon part were rendered as the top
three terms of CC; actin binding, coenzyme binding, and
extracellular matrix structural constituent were rendered as the
top three terms of the MF (Figure 1C). In the KEGG analysis,
human papillomavirus infection, human T−cell leukemia virus 1
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infection, and Epstein−Barr virus infection were rendered as the
top three enriched pathways for upregulated genes (Figure 1D);
herpes simplex virus 1 infection, MAPK signaling, and oxytocin
signaling were rendered as the top three pathways enriched for
downregulated genes (Figure 1E).

WGCNA
WGCNA was performed to ascertain the most strongly cancer-
associated genes. When the soft-power b was set to 4, the scale-
free topology fit index was over 0.75 (Figure 2A). The created
network included nine modules (Figure 2B). Figure 2C shows
that the green module was recognized as the most specific
module with a coefficient of correlation of 0.89 (p = 2 ×
10−217); the turquoise module came in second with a coefficient
of correlation of 0.61 (p = 8 × 10−65). Genes in both modules
showed a high correlation with each other according to the
heatmap of the topological overlap plot (Figure 2D).

Functional Analysis of the Green and
Turquoise Modules
A total of 805 genes in the green module and 5213 genes in the
turquoise module were subjected to KEGG–GSEA, generating

12 pathways (Figure 3A). The GO and KEGG enrichment
results of 3312 upregulated differentially expressed genes in
both modules are plotted in Figures 3B, C, in which
enrichment results of the downregulated differentially
expressed genes were not found. In total, 817 upregulated
and eight downregulated differentially expressed genes were
found to be qualified, with appropriate ceRNA relationships in
the stomach, and appeared in the two cancer-associated
modules (Figure 3D).

Survival Model Construction and Validation
The clinical and pathological data from the construction and
validation cohorts are shown in Table 1. We used Cox univariate
regression analysis for the 825 genes for identifying survival-related
genes in 332 TCGA gastric cancer samples. The univariate analysis
screened 83 predictors based on prognosis. Because three genes did
not appear in GSE84433, 80 genes were included in the multivariate
analysis, which further led to the identification of 12 upregulated
mRNAs for constructing a risk score model, containing KIF15,
FEN1, ZFP69B, SP6, SPARC, TTF2, MSI2, KYNU, ACLY, KIF21B,

SLC12A7, and ZNF823 (Table 2). The risk scores for individual
samples was calculated using the formula:

A B

D E

C

FIGURE 1 | Enrichment analysis of KEGG–GSEA, GO, and KEGG. (A) KEGG–GSEA after filtering out low-expressed genes. (B) GO terms enriched from

upregulated genes. (C) GO terms enriched from downregulated genes. (D) KEGG pathways enriched from upregulated genes. (E) KEGG pathways enriched from

downregulated genes.

Zheng et al. WGCNA for GC ceRNA Network

Frontiers in Pharmacology | www.frontiersin.org July 2020 | Volume 11 | Article 11124

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Risk score = (0.56321) × Expression Value (KIF15) +
(−0.24228) × Expression Value (FEN1) + (−0.25944) ×
Expression Value (ZFP69B) + (−0.23267) × Expression Value
(SP6) + (0.18278) × Expression Value (SPARC) + (−0.3753) ×
Expression Value (TTF2) + (−0.29728) × Expression Value
(MSI2) + (0.29177) × Expression Value (KYNU) + (0.45439) ×
Expression Value (ACLY) + (−0.30168) × Expression Value
(KIF21B) + (−0.23641) × Expression Value (SLC12A7) +
(−0.22233) × Expression Value (ZNF823).

The forest plot of hazard ratios (HRs) is shown in Figure 4

using TCGA datasets. The HRs of KIF15 (HR = 1.756), SPARC
(HR = 1.201), KYNU (HR = 1.339), and ACLY (HR = 1.575) were
greater than 1; however, the HRs of FEN1 (HR=0.784), ZFP69B
(HR = 0.772), SP6 (HR = 0.792), TTF2 (HR = 0.687), MSI2

(HR = 0.743), KIF21B (HR = 0.740), SLC12A7 (HR = 0.790), and
ZNF82 (HR = 0.801) were less than 1. We further discovered that
the best cutoff risk score to differentiate low-risk from high-risk

groups was 0.82. The risk score for each individual were
calculated and was categorized into two groups according to
the cutoff value. Kaplan-Meier analysis showed that there was a
significant difference between high-risk (n=51) and low-risk
patients (n=281) in the training dataset (log-rank test, p <
0.0001, Figure 5A). Risk stratification, survival information,
and expression values of 12 genes of 332 patients were shown
in the risk score panel. We observed that both the survival
information and the 12-gene expression of patients in the high-
risk group varied from those in the low-risk group (Figure 5D).
Using GSE62254 and GSE84433 as validation datasets, the
survival curves (Figures 5B, C) and the risk score panels
(Figures 5E, F) between the high-risk groups and the low-risk
groups were distinctively different. The results in the validation
datasets were similar to those in the training dataset, therefore
robustness of the 12-gene signature risk score system in
predicting sample risk was supported.

A B

DC

FIGURE 2 | WGCNA identification of cancer-associated RNA modules. (A) Graphs of soft-threshold power versus scale-free topology model Fit index and mean

connectivity. Four was chosen as the appropriate soft-power. (B) Cluster dendrogram of the co-expression network modules created according to the dissimilarity of

the topological overlap in the selected mRNAs. (C) Analysis of relationships between genes in modules between gastric cancer and normal samples. The green and

turquoise modules were the most tumor-specific modules. (D) Heatmap plot of topological overlap in the mRNA network. Selected genes in the green and turquoise

modules showed higher topological overlap. The gene dendrogram and the corresponding module are shown along the left and top.
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Cerna Network Construction
We narrowed interesting lncRNAs to an intersection of lncRNAs
predicted by the 12-mRNA model and differentially expressed
lncRNAs, with eight upregulated lncRNAs (OIP5-AS1, MCF2L-
AS1, TMPO-AS1, HCP5, DLEU1, PPP1R26-AS1, DLEU2, and

ZFAS1) and four downregulated lncRNAs (SH3BP5-AS1,
CCDC18-AS1, TTC28-AS1, and TRG-AS1) identified. In total, 35
miRNAs and 12 mRNAs in the risk score system, and 12 differently
expressed lncRNAs were identified to create the ceRNA network.
The correlation of 12 mRNAs and 12 lncRNAs was confirmed by

A B

DC

FIGURE 3 | Functional analysis of genes in green and turquoise modules. (A) KEGG–GSEA for genes in the green and turquoise modules for signaling pathway analysis. (B)

GO terms enriched from upregulated genes in the green and turquoise modules. (C) KEGG pathways enriched from upregulated genes in the green and turquoise modules.

(D) 825 mRNAs recognized at the intersection of genes predicted, differentially expressed genes, and genes in the green and turquoise modules.

TABLE 1 | The baseline characteristics of the construction and validation cohorts.

Variables TCGA GSE622554 GSE84433

Alive Dead N (%) Alive Dead N (%) Alive Dead N (%)

Age

>=60 122 (64.6) 104 (74.3) 226 (68.7) 91 (61.5) 103 (67.8) 194 (64.7) 85 (46.4) 114 (66.3) 199 (56.1)

<60 67 (35.4) 36 (25.7) 103 (31.3) 57 (38.5) 49 (32.2) 106 (35.3) 98 (53.6) 58 (33.7) 156 (43.9)

Gender

male 117 (60.9) 97 (69.3) 214 (64.5) 99 (66.9) 100 (65.8) 199 (66.3) 117 (63.9) 123 (71.5) 240 (67.6)

female 75 (39.1) 43 (30.7) 118 (35.5) 49 (33.1) 52 (34.2) 101 (33.7) 66 (36.1) 49 (28.5) 115 (32.4)

pT

T4 49 (25.5) 38 (27.9) 87 (26.5) 5 (3.4) 16 (10.5) 21 (7.0) 107 (58.5) 135 (78.5) 242 (68.2)

T3 84 (43.8) 70 (51.5) 154 (47.0) 30 (20.3) 61 (40.1) 91 (30.3) 39 (21.3) 28 (16.3) 67 (18.9)

T2 47 (24.5) 27 (19.9) 74 (22.6) 113 (76.4) 75 (49.3) 188 (62.7) 28 (15.3) 7 (4.1) 35 (9.9)

T1 12 (6.3) 1 (0.7) 13 (4.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

pN

N3 28 (15.1) 40 (29.6) 68 (21.2) 10 (6.8) 41 (27.0) 51 (17.0) 10 (5.5) 21 (12.2) 31 (8.7)

N2 39 (21.0) 27 (20.0) 66 (20.6) 30 (20.3) 50 (32.9) 80 (26.7) 35 (19.1) 64 (37.2) 99 (27.9)

N1 49 (26.3) 40 (29.6) 89 (27.7) 79 (53.4) 52 (34.2) 131 (43.7) 89 (48.6) 65 (37.8) 154 (43.4)

N0 70 (37.6) 28 (20.7) 98 (30.5) 29 (19.6) 9 (5.9) 38 (12.7) 49 (26.8) 22 (12.8) 71 (20.0)
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TABLE 2 | Univariate and multivariate Cox analyses of survival-related genes in the training group.

Gene univariate multivariate

coef HR lower95 upper95 p-value coef HR lower95 upper95 p-value

CKAP2 -0.20 0.82 0.69 0.97 2.11E-02

F2R 0.22 1.24 1.05 1.47 1.16E-02

ZNF367 -0.20 0.82 0.70 0.96 1.61E-02

ASF1B -0.14 0.87 0.76 1.00 4.71E-02

UHRF1 -0.18 0.84 0.72 0.98 2.31E-02

BRIP1 -0.18 0.83 0.71 0.97 1.98E-02

NDC1 -0.19 0.83 0.71 0.97 2.10E-02

KIF15 -0.15 0.86 0.74 1.00 4.96E-02 0.56 1.76 1.29 2.39 3.13E-04

DCLRE1B -0.21 0.81 0.69 0.96 1.53E-02

TFDP1 -0.19 0.83 0.70 0.98 2.61E-02

DCK -0.19 0.83 0.70 0.98 3.31E-02

RAD54L -0.15 0.86 0.75 1.00 4.93E-02

CTHRC1 0.25 1.28 1.08 1.52 4.82E-03

FEN1 -0.20 0.82 0.70 0.96 1.30E-02 -0.24 0.78 0.62 1.00 4.77E-02

BCL11B -0.21 0.81 0.69 0.96 1.28E-02

LMNB2 -0.24 0.79 0.67 0.92 3.53E-03

TBC1D31 -0.18 0.83 0.70 0.98 2.96E-02

BORA -0.18 0.83 0.71 0.97 2.06E-02

COL10A1 0.19 1.21 1.01 1.44 3.66E-02

GMCL1 -0.22 0.80 0.67 0.95 1.12E-02

FGD6 0.19 1.21 1.03 1.43 2.29E-02

ZFP69B -0.18 0.83 0.71 0.98 2.58E-02 -0.26 0.77 0.62 0.95 1.62E-02

VCAN 0.28 1.32 1.11 1.57 1.97E-03

E2F2 -0.19 0.83 0.72 0.96 1.22E-02

SSX2IP -0.22 0.80 0.67 0.96 1.44E-02

RBBP8 -0.19 0.83 0.70 0.98 2.41E-02

MASTL -0.19 0.83 0.70 0.97 2.27E-02

THY1 0.20 1.22 1.03 1.44 2.18E-02

TIMM8A -0.19 0.83 0.70 0.98 2.72E-02

TMEM201 -0.17 0.84 0.71 1.00 4.86E-02

RMI1 -0.23 0.80 0.68 0.94 6.33E-03

LRFN4 -0.16 0.85 0.73 1.00 4.98E-02

SLC7A1 -0.22 0.80 0.67 0.95 1.11E-02

SLC52A3 -0.25 0.78 0.67 0.90 9.97E-04

COA7 -0.27 0.76 0.64 0.91 1.96E-03

COL3A1 0.19 1.21 1.02 1.43 2.83E-02

SKIL 0.18 1.19 1.00 1.41 4.47E-02

STRIP2 -0.26 0.77 0.65 0.92 3.64E-03

TCF3 -0.19 0.82 0.70 0.97 2.00E-02

PAQR4 -0.16 0.85 0.73 0.99 4.20E-02

SP6 -0.24 0.79 0.67 0.93 4.16E-03 -0.23 0.79 0.65 0.96 1.92E-02

DPP3 -0.16 0.86 0.74 0.99 4.16E-02

SPARC 0.26 1.30 1.09 1.54 3.21E-03 0.18 1.20 1.00 1.44 4.69E-02

ANOS1 0.18 1.20 1.01 1.43 4.24E-02

TTF2 -0.28 0.76 0.64 0.90 1.21E-03 -0.38 0.69 0.53 0.89 3.67E-03

CCDC18 -0.22 0.80 0.68 0.95 9.92E-03

SMC1A -0.26 0.77 0.64 0.92 4.51E-03

TMC6 -0.17 0.84 0.72 0.99 3.92E-02

PAXIP1 -0.19 0.83 0.70 0.98 3.22E-02

MFAP2 0.24 1.27 1.07 1.50 6.88E-03

MSI2 -0.27 0.77 0.65 0.91 2.64E-03 -0.30 0.74 0.61 0.90 2.24E-03

KYNU 0.20 1.22 1.03 1.46 2.35E-02 0.29 1.34 1.11 1.62 2.60E-03

POP1 -0.21 0.81 0.69 0.96 1.53E-02

WDR4 -0.20 0.82 0.69 0.98 2.44E-02

ZNF200 -0.18 0.84 0.70 1.00 4.63E-02

SUSD1 0.17 1.19 1.00 1.41 4.68E-02

SAC3D1 -0.19 0.83 0.70 0.98 2.64E-02

MTPAP -0.19 0.83 0.71 0.98 2.35E-02

ZMYM1 -0.18 0.83 0.70 0.98 3.04E-02

CXorf38 -0.19 0.83 0.70 0.99 3.75E-02

PSMD12 -0.18 0.84 0.71 0.99 4.00E-02
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both the Pearson correlation test and the hypergeometric test
(Table 3). A ceRNA network was constructed using 86
dysregulated lncRNA–mRNA–ceRNA pairs (Figure 6).

DISCUSSION

Currently, although there have been some investigations
concentrating on non-coding RNA-involving gene expression
regulation networks in gastric cancer, our research is the first to
employ WGCNA to produce a co-expression network of
lncRNAs–miRNAs–mRNAs in gastric cancer. Compared with
the previous risk score-based system in gastric cancer (Cho et al.,

2011; Cheong et al., 2018; Duan et al., 2019; Hu et al., 2019), the
advantages of our ceRNA network are that it provided 12 both
cancer-associated and prognosis-related genes and was
constructed using rigorous calculation of the ceRNA
regulation relationships.

KIF15 is a gene involved in immune diseases and cancer
progression. Whether it is mutated is related to the sensitivity of
immune checkpoint inhibitors. Győrffy et al. reported that in
both wild-type PIK3CA patient groups, individuals with KIF15

mutations displayed substantially increased expression of PD-L1,
whereas those without mutations displayed decreased expression
(Menyhart et al., 2018). Zhang et al. found that knockdown of
KIF15 resulted in mitochondrial damage and ROS-JNK-p53 axis

TABLE 2 | Continued

Gene univariate multivariate

coef HR lower95 upper95 p-value coef HR lower95 upper95 p-value

ACLY 0.17 1.19 1.03 1.38 2.06E-02 0.45 1.58 1.34 1.86 7.02E-08

NSD2 -0.19 0.82 0.69 0.98 3.10E-02

SLC1A5 -0.18 0.84 0.71 0.98 2.75E-02

KIF21B -0.24 0.79 0.66 0.94 9.64E-03 -0.30 0.74 0.62 0.89 1.19E-03

ZNF121 -0.22 0.80 0.69 0.94 7.89E-03

GPX8 0.24 1.27 1.08 1.49 4.29E-03

REPIN1 -0.26 0.77 0.65 0.91 2.30E-03

PRR5 -0.18 0.84 0.72 0.98 2.24E-02

ZNF557 -0.27 0.76 0.64 0.90 1.67E-03

VSNL1 -0.17 0.84 0.72 0.99 3.37E-02

ZNF786 -0.23 0.80 0.68 0.94 6.90E-03

PLA2G15 0.19 1.21 1.02 1.43 2.50E-02

ZNF440 -0.19 0.83 0.70 0.98 2.76E-02

SLC12A7 -0.23 0.80 0.68 0.94 8.33E-03 -0.24 0.79 0.65 0.96 1.64E-02

ZNF823 -0.27 0.76 0.64 0.90 1.40E-03 -0.22 0.80 0.66 0.98 2.88E-02

THOP1 -0.22 0.80 0.67 0.95 1.01E-02

TNFAIP2 -0.20 0.82 0.70 0.97 1.83E-02

PLAGL1 0.16 1.18 1.01 1.38 4.19E-02

ZNF331 0.22 1.25 1.05 1.49 1.06E-02

FIGURE 4 | Forest plot of hazard ratios for overall survival of gastric cancer (C-index = 0.7).
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activation, thus promoting apoptosis and inhibiting cell
proliferation in gastric cancer cells (Tao et al., 2020). The DNA
replication and repair pathway is an important mechanism in
gastric cancer. FEN1 plays an important role in apoptotic
fragmentation of DNA, maintenance of telomere stability, and
rescue of stalled replication forks (Shen et al., 2005; Zheng
et al., 2011). Unsurprisingly, genetic variants and changes in
the expression of FEN1 will alter patients’ sensitivity to
chemotherapy and prognosis (Liu et al., 2012; Wang et al.,

2014; Xie et al., 2016). The role of SPARC in gastric cancer has
not been fully elucidated, although its diagnostic and prognostic
value has been confirmed by multiple studies (Zhao et al., 2010;
Liao et al., 2018). SPARC can act as both an inhibitor and
promoter in cancer (Tai and Tang, 2008; Said, 2016; Li et al.,
2019); the real effect of SPARC can be altered by other genes
owing to its epistatic effects (Chen et al., 2018). However, some
oncologists have shown that SPARC is mostly produced by
gastric cancer-associated fibroblasts rather than gastric cancer

A B

D E F

C

FIGURE 5 | Validation of the 12 prognosis-related gene risk score system. (A) Kaplan–Meier survival curves of the training group using 0.82 as the cutoff value. (B)

Kaplan–Meier survival curves of the GSE25544 dataset using 0.82 as the cutoff value. (C) Kaplan–Meier survival curves of the GSE83344 based on the 12

prognosis-related genes using 0.82 as the cutoff value. (D) 12-gene signature risk score panel for the gene signature in the training group. (E) 12-gene signature risk

score panel for the gene signature in GSE25544. (F) 12-gene signature risk score panel for the gene signature in GSE83344.
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TABLE 3 | Pearson correlation tests and hypergeometric tests of the candidate lncRNA-miRNA-mRNA competing endogenous RNA pairs.

Genes lncRNAs miRNAs hyperPValue Correlation corPValue

SPARC OIP5-AS1 hsa-miR-367-3p,

hsa-miR-424-5p,

hsa-miR-143-3p

3.24E-04 1.23E-01 4.58E-03

SLC12A7 MCF2L-AS1 hsa-miR-105-5p 3.85E-02 2.67E-01 4.97E-09

SLC12A7 TMPO-AS1 hsa-let-7c-5p,

hsa-let-7b-5p,

hsa-let-7a-5p,

hsa-let-7f-5p,

hsa-let-7d-5p,

hsa-let-7i-5p,

hsa-let-7e-5p,

hsa-let-7g-5p

3.17E-11 1.07E-01 1.21E-02

KYNU HCP5 hsa-miR-106b-5p,

hsa-miR-106a-5p

2.96E-04 2.33E-01 3.11E-07

TTF2 DLEU1 hsa-miR-106b-5p,

hsa-miR-124-3p,

hsa-miR-1224-5p,

hsa-miR-3934-5p

2.61E-02 4.08E-01 1.31E-19

TTF2 HCP5 hsa-miR-106b-5p,

hsa-miR-1-3p,

hsa-miR-101-3p,

hsa-miR-106a-5p

4.91E-04 1.35E-01 2.18E-03

TTF2 PPP1R26-AS1 hsa-miR-122-5p 3.38E-02 2.94E-01 1.24E-10

TTF2 CCDC18-AS1 hsa-miR-124-3p,

hsa-miR-1-3p

3.32E-03 1.47E-01 9.55E-04

TTF2 MCF2L-AS1 hsa-miR-105-5p 3.38E-02 1.78E-01 7.73E-05

KIF21B TMPO-AS1 hsa-let-7f-5p,

hsa-let-7i-5p

1.44E-03 9.07E-02 2.78E-02

KIF21B TRG-AS1 hsa-let-7f-5p,

hsa-let-7i-5p

1.44E-03 2.88E-01 3.04E-10

ACLY PPP1R26-AS1 hsa-miR-122-5p 1.75E-02 1.79E-01 6.98E-05

ACLY DLEU1 hsa-miR-124-3p,

hsa-miR-1224-5p,

hsa-miR-940

2.05E-02 1.05E-01 1.32E-02

ACLY TMPO-AS1 hsa-let-7c-5p,

hsa-let-7b-5p,

hsa-let-7a-5p,

hsa-let-7f-5p,

hsa-let-7d-5p,

hsa-let-7i-5p,

hsa-let-7e-5p,

hsa-let-7g-5p

4.06E-14 1.47E-01 9.60E-04

MSI2 MCF2L-AS1 hsa-miR-105-5p 1.55E-02 1.77E-01 8.64E-05

MSI2 CCDC18-AS1 hsa-miR-1-3p 4.59E-02 1.32E-01 2.68E-03

MSI2 SH3BP5-AS1 hsa-miR-1193 1.55E-02 8.47E-02 3.70E-02

MSI2 OIP5-AS1 hsa-let-7a-5p,

hsa-miR-105-5p,

hsa-miR-1179,

hsa-miR-1197,

hsa-miR-143-3p

5.14E-07 9.54E-02 2.20E-02

MSI2 TTC28-AS1 hsa-miR-103a-3p,

hsa-miR-106a-5p

1.39E-03 1.11E-01 9.48E-03

MSI2 TMPO-AS1 hsa-let-7c-5p,

hsa-let-7b-5p,

hsa-let-7a-5p,

hsa-let-7f-5p,

hsa-let-7d-5p,

hsa-let-7i-5p,

hsa-let-7e-5p,

hsa-let-7g-5p,

hsa-miR-1179

2.04E-17 1.26E-01 3.86E-03

KIF15 DLEU2 hsa-miR-193b-3p 7.75E-03 6.38E-01 1.08E-52

KIF15 HCP5 hsa-miR-1-3p 1.85E-02 2.13E-01 2.96E-06
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cells (Ma et al., 2018; Ma et al., 2019). Thus, the concrete
mechanism of SPARC in gastric cancer needs further
investigation. MSI2 is an oncogene associated with
differentiation, resulting in the preservation of cancer stem
cells. According to a previous study based on microarray and
RT-PCR, MSI2 expression increased slightly relative to normal
tissue, but it is still used as a biomarker for gastric cancer (Emadi-
Baygi et al., 2013; Yang et al., 2019). SLC12A7 (Solute Carrier
Family 12 Member 7) acts as a potassium/chloride co-
transporter for maintaining a stable osmotic pressure, which

can be activated by insulin-like growth factor (IGF) resulting in
cell invasion and progression in breast cancer, adrenocortical
cancer, cervical cancer, and ovarian cancer (Shen et al., 2004;
Hsu et al., 2007; Chen et al., 2009; Brown et al., 2019). It has been
reported that amplification of SLC12A7 is mainly within HER2−

patient samples in gastric cancer, while the precise mechanism of
SLC12A7 is still unknown (Zhou et al., 2018). ACLY is the
integral enzyme responsible for the formation of cytosolic acetyl-
CoA, and high expression of ACLY was shown to be associated
with a poor prognosis (Qian et al., 2015). Citrate and inhibitors

TABLE 3 | Continued

Genes lncRNAs miRNAs hyperPValue Correlation corPValue

FEN1 TMPO-AS1 hsa-let-7b-5p 3.45E-02 6.20E-01 4.29E-49

ZFP69B DLEU1 hsa-miR-3714,

hsa-miR-125a-3p,

hsa-miR-124-3p,

hsa-miR-506-3p,

hsa-miR-764,

hsa-miR-3934-5p,

hsa-miR-6893-5p,

hsa-miR-3910,

hsa-miR-940,

hsa-miR-6808-5p

3.02E-08 2.33E-01 3.19E-07

SP6 HCP5 hsa-miR-20b-5p,

hsa-miR-17-5p

1.51E-03 1.02E-01 1.58E-02

ZNF823 TMPO-AS1 hsa-let-7c-5p,

hsa-let-7b-5p,

hsa-let-7a-5p,

hsa-let-7f-5p,

hsa-let-7d-5p,

hsa-let-7i-5p,

hsa-let-7e-5p,

hsa-let-7g-5p

1.45E-14 3.04E-01 2.57E-11

ZNF823 ZFAS1 hsa-miR-106a-5p,

hsa-miR-143-3p

7.92E-03 2.01E-01 9.84E-06

FIGURE 6 | A lncRNA–miRNA–mRNA ceRNA network constructed from 12 prognosis-related genes.
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of ACLY can reduce its expression, thus protecting against
gastric cancer cell progression (Guo et al., 2016; Icard et al.,
2020). In addition, ACLY can be downregulated by miR-133b via
PPARg (Cheng et al., 2017) and lncRNA FLJ22763 (Zhang et al.,
2019) in gastric cancer.

The functions of ZNF823, ZFP69B, SP6, KYNU, KIF21B, and
TTF2 have not been reported in gastric cancer. KYNU is a
pyridoxal-5´-phosphate dependent enzyme that catalyzes the
cleavage of kynurenine into anthranilic acid (AA) and the
c l eavage o f 3 -hydroxykynuren ine (3 -HK) in to 3-
hydroxyanthranilic acids (3-HAA) (Badawy, 2017). Drugs have
been developed to regulate the expression of KYNU to suppress
tumor growth through the Kynurenine pathways, such as in breast
cancer (Liu et al., 2019; Liu et al., 2020) and melanoma (Rad et al.,
2019). It has beendemonstrated thatTTF2 is able to terminateRNA
polymerase II transcription, which has an important function in
promoting chromosome segregation and altering protein-DNA
interactions (Jiang and Price, 2004; Jiang et al., 2004; Cheng et al.,
2012). KIF21B is an ATP-dependent microtubule-based motor
protein that participates in the intracellular transfer of
membranous organelles. KIF21B is a potential oncogene that
resists the induction of apoptosis and facilitates malignant
tumorigenesis, tumor development, intrusion, and metastasis.
Patients with high expression of KIF21B have been demonstrated
to have a poorer prognosis in hepatocellular carcinoma (Zhao et al.,
2020) and non-small cell lung cancer (Sun et al., 2020). SP6 is an
important gene that regulates odontogenesis, belonging to a family
of transcription factors that contain 3 classical zinc finger DNA-
binding domains(Aurrekoetxea et al., 2016; Smith et al., 2020;
Nakamura et al., 2020).

In summary, we identified a survival-related gene-based
ceRNA network using the WGCNA algorithm, and the
constructed lncRNA–miRNA–mRNA ceRNA interactive

network will probably provide a basis for additional inspection
of the regulatory mechanisms of gastric cancer. Gastric cancer
has high heterogeneity among its different histological and
molecular subtypes. Thus, while we have selected the
expression profiles with the largest sample size that we could
obtain currently, we must admit that further experimental works
and large cohorts are needed to verify our results and elucidate
the prognostic value of ceRNA networks in gastric cancer.
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