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Alzheimer’s Disease (AD) is the most common neurodegenerative disease in elderly

people, and current drugs, unfortunately, do not represent yet a cure but only slow down

its progression. This is explained, at least in part, because the understanding of the

neurodegenerative process is still incomplete, being sometimes mistaken, particularly

at the first steps of the illness, with the natural aging process. A better identification of

how the functional activity deteriorates is thus crucial to develop new and more effective

treatments. Sparse inverse covariance estimates (SICE) have been recently employed

for deriving functional connectivity patterns from Positron Emission Tomography (PET) of

brains affected by Alzheimer’s Disease. SICE, unlike the traditional covariance methods,

allows to analyze the interdependencies between brain regions factoring out the influence

of others. To analyze the effects of the illness, connectivity patterns of brains affected

by AD are compared with those obtained for control groups. These comparisons are,

however, carried out for binary (undirected and unweighted) adjacency matrices with the

same number of arcs. Additionally, the effect of the number of subjects employed or the

validity of the regularization parameter used to compute the SICE have been not hitherto

analyzed. In this paper, we delve into the construction of connectivity patterns from PET

using SICE. In particular, we describe the effect that the number of subjects employed has

on the results and identify, based on the reconstruction error of linear regression systems,

a range of valid values for the regularization parameter. The amount of arcs is also proved

as a discriminant value, and we show that it is possible to pass from unweighted (binary)

to weighted adjacency matrices, where the weight of a connection corresponding to the

existence of a relationship between two brain areas can be correlated to the persistence

of this relationship when computed for different values of the regularization parameter and

sets of subjects. Finally, network measures are computed for the connectivity patterns

confirming that SICE may be particularly apt for assessing the efficiency of drugs, since it

produces reliable brain connectivity models with small sample sizes, and that connectivity

patterns affected by AD seem much less segregated, reducing the small-worldness.
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1. INTRODUCTION

More than 40 million people are currently affected by
Alzheimer’s Disease (AD) in the world, being the most common
neurodegenerative disease in elderly people. Unfortunately, there
is not a cure for it yet, and drugs can only curb its progression.
Moreover, the different neurophysiological changes that take
place during the development of the illness have not been
fully characterized, being these similar, particularly in the first
stages of the illness, to those observed as a consequence of the
natural aging process. As a result, new analytical tools that allow
gaining insight into this neurodegenerative process are extremely
important. The use of functional neuroimaging (Moradi et al.,
2015) and/or structural imaging (Cuingnet et al., 2010; Westman
et al., 2011; Chyzhyk et al., 2012; Liu et al., 2012; Termenon and
Graña, 2012) has become increasingly popular as a non-invasive
system for the analysis and diagnosis of AD. The majority of
existing AD brain connectivity research is based on fMRI data
(Zhang et al., 2015). Our work, however, utilizes Fludeoxyglucose
Positron Emission Tomography (18-FDG-PET). PET images
provide information of biological functions of the brain via
glucose metabolism and have been extensively used for the
study of AD. Single neurons are trying to be individually and
simultaneously recorded with the Human Connectome Project,
but meanwhile multi-scale approaches to the characterization of
brain networks have been advocated (Breakspear and Cornelis,
2005; Honey et al., 2010) as the best alternative to understand
the ecology of large-scale processes that feed back into the
microscopic domain.

Functional connectivity refers to the coherence of the activities
among distinct brain regions (Horwitz, 2003). The method
traditionally used to infer dependencies between regions has been
the covariance between activation levels in different brain areas.
This, however, captures pairwise information and may not be
able to effectively characterize the interaction of two brain regions
working together while factoring out the influence of the rest of
the regions. As a consequence, recent research has explored the
use of partial correlations as mathematical tool applied to the AD
study as a means to reveal conditional independence between
regions given the rest as constant (Pourahmadi, 2013). Partial
correlations are the off-diagonal entries of the inverse covariance
matrix and thus models based on the inverse covariance, or
precision matrix, allow identifying patterns associated to cerebral
neurodegeneration. Taking into account the inherent sparseness
of the brain network (Zalesky et al., 2010), Sparse Inverse
Covariance Estimation (SICE), also known as Graphical Models
or graphical LASSO (Least Absolute Shrinkage and Selection
Operator), further allows controlling the number of zero entries
in the IC matrix (i.e., the sparseness of the inverse covariance
matrix) via a regularization parameter. This regularization
parameter is typical for sparse computation, which is commonly
employed in studies (Hilgetag et al., 2002) in which the number
of analyzed regions is comparable to the number of patients and
therefore the traditional maximum likelihood estimation (MLE)
method cannot be employed.

The exploratory use of partial correlations for the AD
study was already initiated by Huang et al. (2010). Undirected

graphs were obtained in order to derive functional connectivity
patterns. Dependencies are displayed as graphs with vertices
corresponding to the regions and edges between two vertices
indicating that these are not conditionally independent; i.e., an
edge that connects two vertices or regions is present if and
only if the activation levels of the regions are not conditionally
independent. Ortiz et al. (2015) proved the use of this model
in a discriminative way to classify between classes. Despite their
relevance, these works fall short of analyzing the minimum
number of subjects that are required to have significant results
or providing valid ranges for the regularization parameter.
Additionally, these works carry out comparisons for the same
number of edges, making it not possible to compare the amount
of connections across groups. This paper seeks to extend these
studies analyzing the results for different sample sizes and values
of the regularization parameters and showing evidences that
comparisons between connectivity models are more meaningful
when conducted for a fixed value of the regularization parameter
while the amount of connections is used as a discriminant
parameter across groups. Furthermore, we also prove in this
paper that values estimated by SICE, when computed within
the valid range of the regularization parameter, can be used to
compute linear regression models and related to the strength
of the connections, which shows a way to move from binary
to weighted graphs. From a clinical perspective, we study the
effectiveness of SICE with small sample sizes and analyze the
changes in the connectivity patterns caused by AD: amount and
distribution of connections, cluster-efficiency, characteristic path
length and small-worldness.

With these aims, the rest of the paper is organized as follows.
Section 2 provides details of the material and methods employed
for the development of this paper; that is, the database used
and the employed image pre-processing are described and some
background on SICE is provided. Then, Section 3 analyzes and
discusses the dependency of the estimated connectivity models
with the number of patients used to compute SICE, determines
the range of values for which the estimates of the SICE methods
can be used to compute regression models and justifies the
interpretation of these estimates in terms of persistence. Several
characterization measurements are also provided to analyze the
differences between the connectivity matrices across groups.
Section 4 discusses the results, and finally, Section 5 concludes
the paper.

2. MATERIALS AND METHODS

This section describes the database used in this work and the
methods followed for the exploratory analysis with SICE.

2.1. Database
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies
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and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost
of clinical trials. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and University
of California - San Francisco. ADNI is the result of the efforts
of many co-investigators from a broad range of academic
institutions and private corporations, and subjects recruited from
over 50 sites across the U.S. and Canada. The initial goal of ADNI
was to recruit 800 subjects but ADNI has been followed byADNI-
GO and ADNI-2. These three protocols have recruited so far
over 1,500 adults, with ages between 55 and 90, to participate in
the research, consisting of cognitively normal older individuals,
people with early or late MCI and people with early AD. The
follow up duration of each group is specified in the protocols for
ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited
for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, we refer the reader to
www.adni-info.org.

Experiments conducted in this work use a subset of FDG-PET
and T1-weighted MRI images for 241 subjects, consisting of 68
cognitively normal (CN) subjects, 103 MCI and 70 AD from the
ADNI database (Alzheimer’s Disease Neuroimaging Initiative,
2014). Demographic data (gender and age) of patients in the
database and Mini Mental State Examination scores (MMSE) are
summarized in Table 1. Additionally, MCI subject are further
divided into 39 MCI converters (MCIc) and 64 stable MCI
(MCIs); MCI converters are patients who were diagnosed as MCI
but finally converted to AD in the term of 2 years, while stable
MCI are those who remain MCI after this period.

2.2. Image Preprocessing
Voxel values in PET images represent activation or uptake levels.
These images were first spatially normalized according to a PET
template using SPM (Ashburner and Group, 2011), ensuring that
each image voxel corresponds to the same anatomical position.
Then, images were normalized in intensity in order to be able
to compare them. This has been done as indicated in Illán
et al. (2011), where the mean value of the 0.1% voxels with
the highest intensity levels is selected as normalization value.
Moreover, voxels whose activation or uptake is below 10% have

TABLE 1 | Demographic data of patients in the database.

Diagnosis Number Age Gender (M/F) MMSE

Normal (control) 68 75.81± 4.93 43/25 29.06± 1.08

MCI 103 76.39± 6.96 76/35 26.68± 2.16

AD 70 75.33± 7.17 46/24 22.84± 2.91

been removed and considered as background, as these do not
provide relevant information for classification but cause noise
and computational overhead.

2.3. Background on SICE and Sparse
Linear Regression
Interactions between brain regions can be computed by
correlation analysis but this does not factor out the contribution
to the pairwise correlation due to global or third-party effects,
and partial correlations should be adopted instead. Partial
correlations are thus computed using the Maximum Likelihood
Estimation (MLE) of the inverse covariance matrix since they
correspond to the off-diagonal entries of the inverse covariance
matrix. MLE, however, is not recommended when the sample
size is not considerably higher than the number of variables;
e.g., the number of patients is not higher than the number
of regions of interest. If this is the case, sparse computation
must be employed. SICE, also known as known as Gaussian
graphical model or graphical LASSO (Pourahmadi, 2013) uses
a regularization parameter that controls the number of zero
entries.

Let xi denote a p-dimension vector and x1, x2, ..., xn ∼

N (µ,6) be n samples measured at p selected ROIs which follow
a multivariate Gaussian distribution where µ ∈ R

p is the mean
and 6 ∈ R

p×p is the covariance. Then, 2 = 6−1 is the inverse
covariance (or precision) matrix, and the empirical covariance is:

S =
1

n

n∑

i=1

(xi − µ)(xi − µ)T . (1)

It can be derived that the maximum log likelihood estimation
of 2 under a multivariate Gaussian model can be obtained as
follows:

2̂ = argmax
2≻0

(log(det2)− tr(S2)), (2)

where tr(S2) is the trace of (S2). If S is not singular, deriving with
regards to 2 and setting it to zero, we would get, as expected,
that the Maximum Likelihood Estimate (MLE) of the inverse
covariance is 2̂ = S−1. However, because p > n the empirical
estimate of S becomes singular and a regularization must be
applied so that a shrunken estimate of2 can be obtained through
a maximization of the penalized log likelihood function. In
particular, the “entrywise" l1-norm regularization used in Huang
et al. (2009) is also applied here so that the SICE method finds an
estimate for the inverse covariance matrix 2̂̂2̂2 of the brain regions
by solving the following optimization:

2̂̂2̂2 = argmax
2≻0

(log(det2)− tr(S2)− λ||2||1), (3)

where ||·||1 denotes the sum of absolute values of all the entries in
a matrix, and λ > 0 is the pre-selected regularization parameter.
The larger the value of λ the more sparse are the estimates for 2

provided by SICE. Conversely, when λ is small the constraint has
little effect and SICE becomes the conventional MLE.

Conditional independence between two variables (given the
other variables in the multivariate Gaussian distribution) is
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reported by SICE, which can be used, as previously mentioned,
to develop connectivity models. Two brain regions are connected
if and only if they are not conditionally independent. Thus,
connectivity models can be computed and analyzed for different
values of sparseness and subject groups.

The coefficient βij measures the relationship between the i-th
and the j-th features,

βij = −
2ij

2ii
, (4)

and given x = {f1, f2, ..., fp} measured at the p selected ROIs, the
i-th feature can be estimated as follows:

fi =
∑

j 6=i

βijfj + ǫi, for i = 1, ..., p (5)

where ǫi is uncorrelated with all variables except fi, var(ǫi) =
1/2ii and cov(ǫi, ǫj) = 2ij/(2ii2jj). In this paper the validity of
these regression models when computed from the estimated 2̂̂2̂2

rather than the real2 is analyzed for the different subject groups.

2.4. The Relevance of Connectivity Models.
Small-Worldness
The characterization of networks of brain regions connected
by anatomical or functional associations across groups can
be used to reveal connectivity abnormalities. Anatomical
connections typically correspond to white matter tracts between
pairs of brain regions. Although the presence of anatomical
connections suggests the potential for functional connections,
such connections, may occur between pairs of anatomically
unconnected regions. For the sake of clarity, in this paper we will
keep (inherited from Huang et al., 2009) the term “functional"
to refer to brain connectivity networks extracted from PET
data. Note, however, that strictly speaking, such connectivity
networks do not correspond to correlation in activity but

measure covariation in glucose uptake between different regions,
which can be further related to metabolic covariations.

Anatomical and functional connections, to be meaningful,
must be defined on the same map of brain regions (Alemán-
Gómez et al., 2006). We use here the 116-regions Automated
Anatomical Labeling Atlas (AAL) to extract the features, and in
particular, we focus on only 42 of these regions, distributed in
the frontal, parietal, occipital and temporal lobes. Such regions
have been selected for being considered potentially related to
AD (Huang et al., 2009). Table 2 lists the names of the used
regions and includes a number that will be used to index the node
in the connectivity models. These regions will be the nodes or
vertices of our brain networks while edges or arcs will be used
to denote the presence or absence of the connections between
nodes as an interpretation of the sparse inverse covariance. A
non-zero partial correlation between two regions indicates that
these are directly connected and it is represented by an arc. When
this arc does not exist but there is a path between two regions,
then these regions are indirectly connected. These connectivity
graphs are also represented as adjacency matrices, with 42 rows
and columns corresponding to the regions of interest and filled
cells indicating the presence of arcs between the corresponding
regions of those rows and columns. Since the connectivity
graphs are undirected, the matrices are symmetric and the total
number of filled cells is equal to twice the total number of arcs.
Thus, to compute the number of arcs or connections from the
connectivity matrix, we will not count for diagonal cells and
reciprocity; i.e., element ii does not count and elements ij and
ji count as just one.

The degree of an individual node is equal to the number
of links connected to that node, and therefore it reflects the
importance of that node. Hub nodes are defined as those with the
highest degrees; i.e., with the highest number of edges. A cluster
is a group of nodes interconnected among them but isolated from
the rest. Clustering coefficient of the network is indicative of

TABLE 2 | Names and the corresponding indexes of the regions for connectivity modeling.

Frontal lobe Parietal lobe Occipital lobe Temporal lobe

1 Frontal_Sup_L 13 Parietal_Sup_L 21 Occipital_Sup_L 27 Temporal_Sup_L

2 Frontal_Sup_R 14 Parietal_Sup_R 22 Occipital_Sup_R 28 Temporal_Sup_R

3 Frontal_Med_L 15 Parietal_Inf_L 23 Occipital_Mid_L 29 Temporal_Pole_Sup_L

4 Frontal_Med_R 16 Parietal_Inf_R 24 Occipital_Mid_R 30 Temporal_Pole_Sup_R

5 Frontal_Sup_Medial_L 17 Precuneus_L 25 Occipital_Inf_L 31 Temporal_Mid_L

6 Frontal_Sup_Medial_R 18 Precuneus_R 26 Occipital_Inf_R 32 Temporal_Mid_R

7 Frontal_Mid_Orb_L 19 Cingulum_Post_L 33 Temporal_Pole_Mid_L

8 Frontal_Mid_Orb_R 20 Cingulum_Post_R 34 Temporal_Pole_Mid_R

9 Rectus_L 35 Temporal_Inf_L 8301

10 Rectus_R 36 Temporal_Inf_R 8302

11 Cingulum_Ant_L 37 Fusiform_L

12 Cingulum_Ant_R 38 Fusiform_R

39 Hippocampus_L

40 Hippocampus_R

41 ParaHippocampal_L

42 ParaHippocampal_R
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segregation. “Functional segregation is the ability for specialized
processing to occur within densely interconnected groups of brain
regions” (Rubinov and Sporns, 2010). Conversely, functional
integration is the ability to combine specialized information from
distributed brain regions. Shorter paths imply stronger potential
for integration, while large average path lengths correlate with
low efficiencies for information transmission in the network. A
well-designed network should combine an optimal balance of
functional integration and segregation, that is, the presence of
segregated modules connected (integrated) through links. The
term small-worldness in the brain study field is thought to
simultaneously reconcile the opposing demands of functional
integration and segregation (Rubinov and Sporns, 2010).

3. RESULTS

Throughout this section we will show that connectivity patterns
computed from SICE vary depending on a number of parameters
such as the number of subjects or the value of the regularization
parameter. Such dependencies, however, as far as we know, had
not been hitherto characterized. Thus, previous studies set a
fixed value for the number of connections or arcs and carry
out comparison between connectivity patterns with exactly this
amount of arcs. Optimum values for the number of arcs were not
provided either, implicitly assuming that they were equally valid
and leaving usually the decision to use one or another value on
the basis of the facility to carry out comparison; 60, 120, and 180
arcs are used in Huang et al. (2010), while 25, 50, 75, and 100
are employed in Ortiz et al. (2015). This section extends previous
works on determining connectivity patterns with SICE (Huang
et al., 2010; Ortiz et al., 2015) by:

i. proving the discriminant power of the amount of arcs and
thus the convenience that comparisons across groups are
carried out for a fixed value of the regularization parameter
λ rather than a fixed number of arcs,

ii. providing a range of regularization parameter values for valid
regression models,

iii. analyzing the minimum number of subjects required to
compute reliable connectivity models, and

iv. establishing a relationship between the absolute value of SICE
and the persistence of the connections.

3.1. Discriminant Power of the Amount of
Arcs
To check the discriminant power of the amount of arcs
an experiment is conducted where CN and AD 68-subject
connectivity models are compared in terms of λ for two different
cases: (i) for regions 1–42 in Table 2, which are known to be
affected by AD, and (ii) for cerebellum+vermis regions, which
are often used for normalization purposes since they are not
or slightly affected by AD. Figure 1 shows the results of this
study. The number of connections for regions not affected by
the illness present similar values for both groups (Figure 1B),
while it changes for areas known to be affected (Figure 1B).
This result suggests that the number of connections is also
a feature that can be used to characterize the effects of AD
and therefore model comparisons across groups should take it
into account. Naturally, when comparing models for a fixed
number of arcs this information is lost. In particular, we note
that the amount of connections is, in those areas affected by
the illness, higher for AD patients than for CN subjects. Despite
AD is usually described as a disconnection syndrome, this result
is consistent with the literature, where this characterization is
refined by the observation that direct links are replaced by a
proliferation of alternative, indirect pathways in an attempt to
maintain information transfer (Suckling et al., 2015).

This analysis also helps us to determine a coarse range, which
will be fine-tuned in the next section, for the values of the
regularization parameter: 4 · 10−5 < λ < 10−1.

3.2. Range of λ

The validity of a specific value of λ can be defined in terms of
the validity of the connectivity pattern computed for such value
of λ. The validity of a connectivity pattern is further defined here
on the basis of the reconstruction capabilities of the regression

FIGURE 1 | Number of arcs for CN and AD connectivity matrices in terms of the regularization parameter for brain areas typically affected by the

illness (A) and not so affected (cerebellum+vermis) (B).
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model constructed from this connectivity pattern. Thus, in this
section, we first show that values estimated with SICE, when
computed within a certain range of the regularization parameter,
can be used in the computation of regression models, and then,
once this is proved, we determine this range of λ.

Following the process described in Section 2.3, a regression
model has been derived by using the values of SICE computed
with CN subjects at λ = 10−2. Figure 2 shows the measured and
the estimated values, for a CN (Figure 2A) subject (who has not
been used for computing SICE and the corresponding regression
model) and an AD subject (Figure 2B). It can be observed that
the regression model fits reasonably well the measured values
and that, as expected, does better with the CN than with the AD
subject.

For computing the range, we now repeat this process for
different values of λ and plot in Figure 3, for the different groups,
the reconstruction error ǫT defined as:

ǫT =

√
42∑
i=1

ǫ2i

√
42∑
i=1

P2i

(6)

where ǫ2i is the mean square error computed for each region i and
group of subjects:

ǫ2i =

ng∑

j=1

1

ng
(fi(j)− Pi(j))

2 (7)

with ng denoting the number of subject of the group (ng = 68,
ng = 64, ng = 39 and ng = 70 for CN, MCIs, MCIc and AD
respectively), fi(j) and Pi(j) the regression estimate and the actual
activation level for the region i of the subject j, and P2i the mean

square value of region i. This latter is further defined as follows:

P2i =

ng∑

j=1

1

ng
Pi(j)

2. (8)

These values of ǫT are assessed by k-fold (k = 10) and leave-
one-out cross validation so that the approximation errors are
computed for subject which are not employed to derive the
regression model; i.e., CN subjects used to compute the model
are not employed to test such model. As a result, we note that for
values outside the range, 2· 10−4 < λ < 2 · 10−2, errors increase
dramatically. Additionally, it can also be noted that the accuracy
of the regression models seems to increase with the number of
subjects used to compute the SICE, since reconstruction errors
with k-fold cross validation are slightly higher than with leave-
one-out cross validation, and that the lowest reconstruction
errors are obtained for CN subjects, then MCIs, MCIc and finally
AD patients, which is totally consistent with the evolution of the
illness in the corresponding subject groups. The inset in Figure 3

shows the box-plot of the reconstruction errors at λ = 10−2,
which gives an idea about the classification capabilities of the
computed errors. In particular, they can be used to leverage the
classification outcomes of the activation levels. The value λ =

10−2 is the highest value of the regularization parameter within
the valid range so that the connectivity models computed at this
value are the sparsest (simplest) ones within this range.

3.3. Sample Size Dependency
Although SICE is known to produce reliable models with small
sample sizes, the accuracy of this claim has not been assessed
in previous works for this particular case. Thus, based again
on the accuracy of the regression models, we characterize
next the validity of these brain connectivity models. Figure 4A
plots the errors for CN subjects (represented with red circles)
at λ = 2 · 10−3 when sets (randomly selected from the
sample) of different numbers of (CN) subjects are used to

FIGURE 2 | Examples of measured and estimated values for a CN subject (A) and AD patient (B).
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FIGURE 3 | Reconstruction errors for the regression model computed from the estimated values of SICE for the CN subjects.

FIGURE 4 | Reconstruction errors for CN subject as a function of the number of subjects (A), and the regularization parameter for different sample sizes (B).

Number of arcs of the connectivity models as a function of the number of subjects used for the computation (C).

compute the regression model. This seems to confirm that
the accuracy improves with larger sample sizes but also that
SICE is able to produce reliable models with small sample sizes
since the error only increases significantly when the number
of subjects falls below 20. The range of valid values for the
regularization parameter also remains between 2 · 10−4 <

λ < 2 · 10−2 for sample sizes equal or larger than 20
(see Figure 4B). However, this increase in the accuracy has a
cost in terms of complexity. There is, as shown in Figure 4C,
a monotonically increasing relationship between the number
of arcs in the adjacency matrices (of CN and AD) and the
number of subjects (from 10 to 68) employed to compute the
SICE. It must be noted, therefore, that comparisons between
connectivity models for a specific value of the regularization
parameter require that these are computed for the same number
of subjects.

3.4. Weighted Connectivity Models
In previous works, because of the “shrinking” effect that may
make that the values are not well estimated, the magnitude of

the non-zero entries was disregarded and adjacency matrices
were obtained by directly binarizing the IC matrix. Thus, these
matrices did not provide directly any individualized information
about the strength of the connections. It was defined, however,
in Huang et al. (2010), an indirect quasi-measure on the
basis of the monotone property, which relates the strength
of a connection with the bigger value of the regularization
parameter (λ) at which the connection drops. Strength was
thus defined in terms of the resistance of a connection to
disappear when the sparseness increases. Later, Ortiz et al.
(2015) proved that the magnitude of the non-zero entries could
also be directly related to this resistance of the connections
to disappear when sparseness increases. Next, we check the
latter and extend it to prove that the magnitudes of a SICE
can also be correlated with the occurrence probabilities of their
connections when computed for different sets of subjects and
sample sizes.

Figure 5A plots the number of connections whose occurrence
probability is equal or higher than a certain value when computed
for 40 different random sets of 55 subjects (λ = 10−2),
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and Figure 5B represents the average magnitude value of such
connections. It is clear that the latter shows a direct relationship
between the average magnitude value and the occurrence
probability. This probability also becomes thus a method to
measure the strength of a connection. Error bars in Figure 5

indicates the standard deviation of the results of the experiment
when this is repeated 20 times.

Finally, Figure 6 shows the weighted adjacency matrices
computed using bootstraping as the mean of 40 different
computations of SICE using groups of 20, 40, and 60 CN
subjects. It serves to confirm that strength also correlates with
the resistance of the connections to disappear when SICE is
computed for reduced sample sizes.

3.5. Connectome Comparisons
Once a deep insight into the use of the tool has been given,
this section analyses some of its potentialities in the study of
the alterations in the connectome caused by AD. In contrast
to previous studies (Huang et al., 2010; Ortiz et al., 2015),
the amount of connections and the strength, or occurrence
probability, of these connections are included as discriminant
elements.

Figure 7 compares the average strength value (bootstrap
for 40 different computation of SICE using groups of 55
subjects) of the connections for CN adjacency matrices and their
AD counterparts. Different observations can be made: firstly,
between-lobe (inter-lobe) connections are weaker than within-
lobe (intra-lobe) connections. Then, the strongest connections
for CN are those between the left and the right hemisphere
of “Cingulum_Ant” and “Cingulum_Post.” When comparing it
with the AD matrix, it is interesting to note that the strength of
“Cingulum_Post” is reduced significantly, which is in accordance
with the literature, which states that this area is seriously affected
by AD (Grady et al., 2001;Wang et al., 2007; Supekar et al., 2008).
Through the computing of the strength of the connections, we
can even estimate that this strength reduction is about 27%.

To validate these results, Figure 8 compares again CN and AD
connectomes but including only the connections that repeat in
all out of 40 computations (≥ 97.5% of occurrence probability)
with random groups of 55 subjects (bootstrap). Human brain
tends to have a higher amount of intra-lobe than inter-lobe
connections, which is clearly confirmed in the figure; the filled
cells are concentrated in the diagonal of the adjacencymatrix. It is
also interesting to note that more than 93% of the shared links (in

FIGURE 5 | Number of connections with equal or higher occurrence probability (A) and mean of the magnitude value of these connections (B).

FIGURE 6 | CN weighted adjacency matrices for sample sizes of 20 (A), 40 (B), and 60 (C).
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FIGURE 7 | Weighted adjacency matrices (55 subjects) for CN (A) and AD (B).

FIGURE 8 | Occurrence probability based connectome for CN and AD.

green in the figure) by AD and CN connectomes correspond to
intra-lobe connections, while the shared inter-lobe connections
represent less than 7% (all of them in the occipital lobe). For
the AD connectome, in comparison with the CN, the inter-lobe
connections between the frontal lobe and other regions increase,
while the intra-lobe connections decrease. This is consistent
with the neurology studies, which confirm that frontal lobe
is typically affected in the course of the disease and explain
the increase of the connectivity with other brain regions as a
compensatory reallocation of recruitment of cognitive resources
that could help to preserve attention ability and memory (Saykin
et al., 2004; Gould et al., 2006; Huang et al., 2010; Stern,
2012).

To complete with this study, we show the evolution of the
computed connectivity pattern when AD subjects are included to
compute it. Thus, Figure 9 displays the evolution of the strongest
connections (those that appear in all of the 40 computations)
when AD subjects are included in SICE computations (for a total
of 40 subjects). It is noted that the pattern for CN is initially
concentrated, with very predominant intra-lobe connectivity,
and gets spread when AD patients are included, as inter-lobe
connectivity increases. The different clusters are plotted in
different colors so that we can observe that the eight clusters
that initially are present when only CN subjects are used become
just 2 when only AD patients are included. At the same time
the shortest path length increases, which logically should affect
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FIGURE 9 | Connectivity matrices with combined group of subjects: 40 CN (A), 33 CN + 7 AD (B), 26 CN + 14 AD (C), 14 CN + 26 AD (D), 7 CN + 33 AD

(E), and 40 AD (F).

the small-worldness of the networks. These CN and AD brain
connectivity network are compared in Figure 10 (using Brainnet
Viewer Xia et al., 2013), where nodes in a cluster are represented
with the same color and their sizes depend on their degrees.

As explained, small-world networks are formally defined as
networks that are significantly more clustered without increasing
significantly the characteristic path length. Figure 11A shows this

evolution of the small-worldness in a more formal way using the
rate (Rubinov and Sporns, 2010):

S =
Clust/Clustrandom

L/Lrandom
(9)
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FIGURE 10 | Connectome (40 subjects) for CN (A) and AD (B).

FIGURE 11 | Evolution of small-worldness (A), cluster coefficient (B) and characteristic path length (C) when AD patients are involved in the computation of the

adjacency matrices.

where Clust and Clustrandom are the clustering coefficient,
and L and Lrandom are the characteristic path lengths of the
respective tested network and a random network. Random
networks are computed having a random topology but sharing
the size, density and binary degree distribution of the original
network (Maslov and Sneppen, 2002). Cluster coefficient
(Kim et al., 2016; Zhang et al., 2016) is a measure of
segregation and is the average value of the cluster coefficients
of each node Ci computed as follows (Rubinov and Sporns,
2010):

Ci =
ti

ki(ki − 1)
(10)

where ki is the degree of the node, and ti is the number of
triangles around the node. Since the (i, j) element in the n’th
power of an adjacencymatrix counts the number of path of length
n starting at i and ending at j, the number of triangles of node i
coincides with the value of the i-th diagonal element of the 3rd
power of the adjacency matrix. Apart from the evolution of the
small-worldness, cluster coefficients and the characteristic path
lengths when AD patients are introduced for the computation

are represented in Figures 11B,C. These show that the brain
network evolves from a more structured small-world for CN
to a less segregated network for AD. For AD, most of the
nodes are connected, the averaged shortest path length is longer
and the clustering coefficient becomes lower (random networks
have long path lengths but also high clustering coefficients).
Small-wordness, as explained, reconcile the opposing demands
of integration and segregation and it is assumed to characterize
brain networks (Supekar et al., 2008; Rubinov and Sporns,
2010). The values computed for stable MCI are also drawn. The
results seem to confirm MCIs as an intermediate stage between
CN and AD.

The results plotted in Figure 11 are the average values for 50
binarized adjacency matrices (bootstrap), each compared with
the average value of 10 randommatrices following the procedure
described above. The threshold used for this binarization has
been 10% of the maximum value (=0.1). Not surprisingly, the
exact shape of these curves is affected by the choice of this
threshold (Drakesmith et al., 2015). Some authors state that
this threshold must be chosen to maximize the small-worldness.
Figure 12 represents the small-worldness against the threshold
for different values of the sample sizes. These suggest that, to
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FIGURE 12 | Small-worldness against the binarization threshold for sample sizes of 30 (A), 40 (B), and 60 (C).

maximize the small-worldness of the CN connectivity patterns,
thresholds should be gradually increased for larger sample sizes.

4. DISCUSSION

This paper provides new insights into the identification of
functional brain connectivity models from PET data. Using
SICE we have proved that it is possible to pass from binary to
weighted adjacency matrices that incorporate the strength of the
connections. This strength has been also related to two different
concepts from two different perspectives that have appeared to
be related: (i) the probability of occurrence of a connection when
computed for different group and number of subjects, and (ii) the
resistance of this connection to disappear when the sparseness
increases. In general, this work approaches the AD connectome
problem from two different angles: (a) the use of SICE as a tool
to determine functional connectivity patterns, analyzing valid
ranges for input parameters, and (b) the exploratory use of such
patterns in relation to the diagnosis of AD. Thus, our findings
showed that:

SICE analysis should be carried out for specified values of λ.
Previous studies based on SICE compare connectivity matrices
for the same number of connections. This works, however, shows
that while areas not affected by AD show similar number of
connection for the same value of λ when groups of CN and
AD are compared, this amount changes for areas affected by
the illness. Thus, the amount of connections also becomes a
discriminant parameter.

Comparisons of the amount of connections across groups
must be carried out for the same sample sizes. The process
described, based on SICE for constant values of the regularization
parameter, provided us with differences in the number of
connections between the groups. Specifically, AD patients show
a slight reduction in the number of intra-lobe connections for
the frontal and occipital lobes, but a significant increase in the
number of inter-lobe connections, which can be interpreted
as compensatory reallocation or recruitment of cognitive
resources. By contrast, when connections between hemispheres
are studied, we find that inter-hemispheric connections are
slightly reduced by AD while there is an increase in the number

of intra-hemispheric connections in both the right and the left
hemispheres. However, we also proved that the number of arcs
is affected (increased) by the number of subjects used for the
computation. Therefore, comparisons across groups must be
carried out for identical sample sizes, since otherwise, they may
be misleading.

SICE as a tool to compute linear regression models. This
work showed that magnitude values computed with SICE can
be used to compute valid regression models provided that the
regularization parameter is within a specific range; approximately
10−4 < λ < 10−2. We found that reconstruction errors are
low within this range, but they increase dramatically when we
move apart from it. Reconstruction errors also show coherent
values with the expected deteriorations of the brain network with
lowest error for CN subjects, followed by MCIs and MCIc and
AD trailing behind.

AD brain connectivity networks become less segregated. It
is clear from the different experiments that CN connectivity
networks are much more segregated, with hubs around the main
diagonal (intra-lobe connections). AD connectivity matrices
keep approximately the same central structure but with many
more connections scattered throughout the matrix. This visual
impression is confirmed when we compare the small-worldness
characteristic parameters of the networks. The small-world
organization suggests efficient neural processing by ensuring
economical communication costs. The proposed method also
allowed us to visualize the strength of these connections. Again
we found that AD and CN connectivity matrices share a similar
structure along the diagonal (intra-lobe connections) but AD
matrices also have numerous scattered weak connections
(inter-lobe connections). It was also checked that the
connection between the Posterior Cingulums weakens for AD
patients.

SICE can be used in clinical trials and longitudinal studies.
Differences in the connectivity matrices between the groups in
clinical trials can be used to assess the efficiency of a drug. SICE
has been proved to produce reliable brain connectivity models
with small sample sizes. Thus, the proposed method allows
lowering the sample sizes in these clinical trials. Longitudinal
studies with measures of individual subjects at different points
in time can be employed to construct models of the AD
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brain connectivity evolution. The final goal would be then to
find relationships between this brain network evolution and
functional deficits (He et al., 2007) so that the interconnections
between them can be better understood and we could gauge
the possible consequences of brain lesions and even predict the
effects of possible modification (deleting or adding nodes and
connections) of the network.

5. CONCLUSIONS

The functional consequences of network damages are a
central concern in AD diagnosis. Thus, the analysis of brain
networks opens avenues to understanding human brain damage
and disease. SICE has proved to be an efficient tool to
characterize such networks since it allows estimating conditional
independence factoring out the influence of other regions. In
this work we have provided a detailed analysis of the different
parameters that characterize the results of this tool, and have
shown how it can be used to study the main alterations in the
connectome caused by AD.
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