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ABSTRACT In this article, first we deliberate the theory of the Gaussian field and extension field of the 

Gaussian field. However, in the second phase, we provide a comprehensive construction scheme for BCH 

codes over the Gaussian field.  The decoding of newly designed BCH codes is handled through a slightly 

amended modified Berlekamp-Massey algorithm. The coding gain is obtained by BCH codes over the 

Gaussian field. Accordingly, a better code rate and the number of code words are obtained as compared to 

the BCH codes over finite fields. Thus, this makes them a promising candidate for use in communication 

systems. 

INDEX TERMS Gaussian integers, Gaussian field, BCH codes, and Berlekamp-Massey algorithm.

I. INTRODUCTION 

T Regardless of the Field-linear coding theory, the Ring-linear 

coding theory is a discipline of algebraic coding theory where 

the primary alphabet transport the structure of a finite ring or, 

more generally, of a module. Such a setup was given much 

firmer than usually assumed: Assmus and Mattson (1963) [1] 

first reference the elements of rings as possible alphabets for 

linear codes in their contribution ‘Error-Correcting Codes: An 

Axiomatic Approach’.  It took substantial time for ring-linear 

coding theory to cultivate from these origins to the 

contemporary.  For an introduction to linear and cyclic codes 

over fields, see Augot et al. (2009) [2].  In the seventies of the 

20th century, Blake (1972, 1975) [3,4] offered linear codes 

first over semi-simple, and later over primary integer residue 

rings. Analogs of Hamming, Reed–Solomon, and BCH Codes 

were also introduced. Spiegel (1977, 1978) [5, 6] pursued a 

group-algebraic approach to linear codes over ℤ𝑛. Blake used 

the Chinese Remainder Theorem to examine BCH Codes over 

these rings. While the notion of BCH codes over Galois fields 

was established in 1958. Shah et al. constructed codes by the 

semigroup ring 𝐵 [𝑋; 1/22ℤ0] and encoding in [7]. The 

authors [8-10] presented cyclic codes over 
𝐹2[𝑢]

𝑢4−1
 and their 

applications to DNA codes. Kim et al. [11] constructed 

another infinite family of Griesmer quasi-cyclic self-

orthogonal codes in this continuation. In the recent, Zullo [12] 

constructed multi-orbit cyclic subspace codes and linear sets. 

The authors have constructed codes and used these in 

cryptography by vectorial algebra [13-15]. Lei et al. [16] 

presented the results on hulls of some primitive binary and 

ternary BCH codes. Furthermore, Liu et al. [17] constructed 

binary BCH codes with length 𝑛 =  2𝑚 + 1. 
Gaussian integers are a generalization of the usual concept of 

rational integers to the complex plane. They are defined as 

numbers of the form 𝑎 +  𝑏𝑖, where 𝑎 and 𝑏 are integers and 𝑖 
is the imaginary unit, which satisfies the equation 𝑖2 = −1. 

These numbers can be added, subtracted, multiplied, and 

divided, like rational integers. The study of Gaussian integers 

falls in algebraic number theory, a branch of number theory. 

Error-correcting codes are essential in modern communication 

systems and allow for detecting and correcting errors that 

occur during data transmission. One class of error-correcting 

codes that has been widely studied and used in practice is BCH 

codes, a class of cyclic codes. These BCH codes are 

parameterized randomly error-correcting codes, making them 

suitable for use in noisy communication channels [18]. 

Usually, BCH codes have been studied and built over finite 

Galois fields [18]. Huber [19] defined a two-dimensional 

modular distance and proposed codes for it. Simple 

constructions of such codes are classified as consta-cyclic 

codes. Icyclic codes, as a special case, include perfect 

Mannheim error-correcting codes. While Gaussian fields 

generalize the notion of finite Galois fields and have a 

complex structure. The Gaussian fields have been used in 
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various bids such as coding theory, cryptography, and wireless 

communications [20]. 

BCH codes are a wonderful tool to protect information.  The 

main concepts for decoding are the error location, the error 

evaluation polynomials, and the so-called key equation they 

satisfy. There are many methods to solve the key equation. 

Any method for solving the key equation amounts to a 

decoding algorithm. The most effective algorithms are the 

Euclidean algorithm, the Berlekamp-Massey algorithm 

(1967), and, Sugiyama’s algorithm (1975). Here we will use 

the modified Berlekamp-Massey algorithm for the error 

correction of BCH codes. The reason for the study of BCH 

codes over Gaussian fields is their better performance. 

The aim of this correspondence is twofold. Initially, we 

present the notion of the Gaussian field and the extension of 

the Gaussian field. Then, we provide a complete construction 

method of BCH codes having symbols from the Gaussian 

field. Furthermore, design the decoding of BCH codes over 

the Gaussian field through a slightly amended modified 

Berlekamp-Massey algorithm. Finally, compare the results of 

the BCH codes over the Gaussian field with BCH codes over 

the finite field. 

II. GAUSSIAN FIELD 

Let ℤ[𝑖] = {𝑎 + 𝑏𝑖: 𝑎, 𝑏 ∈ ℤ} be the Euclidean domain of 

Gaussian integers. Accordingly ℤ𝑝[𝑖] = {𝑎 + 𝑏𝑖: 𝑎, 𝑏 ∈ ℤ𝑝} 

is a commutative ring with identity. The ring ℤ𝑝[𝑖] is the 

Gaussian field if 𝑝 ≡ 3(𝑚𝑜𝑑 4). 

A. ILLUSTRATION 1 

Let ℤ3[𝑖] = {0,1,2, 𝑖, 1 + 𝑖, 1 + 2𝑖, 2𝑖, 1 + 2𝑖, 2 + 2𝑖} is a 

Gaussian field. The cardinality of ℤ3[𝑖] is 32 = 9. 

B. ILLUSTRATION 2 

Let ℤ7[𝑖] = {0,1,2,3,4,5,6, 𝑖, 1 + 𝑖, 2 + 𝑖, 3 + 𝑖, 4 + 𝑖, 5 +
𝑖, 6 + 𝑖, 2𝑖, 1 + 2𝑖, 2 + 2𝑖, 3 + 2𝑖, 4 + 2𝑖, 5 + 2𝑖, 6 +
2𝑖, 3𝑖, 1 + 3𝑖, 2 + 3𝑖, 3 + 3𝑖, 4 + 3𝑖, 5 + 3𝑖, 6 + 3𝑖, 4𝑖, 1 +
4𝑖, 2 + 4𝑖, 3 + 4𝑖, ,4 + 4𝑖, 5 + 4𝑖, 6 + 4𝑖, 5𝑖, 1 + 5𝑖, 2 +
5𝑖, 3 + 5𝑖, 4 + 5𝑖, 5 + 5𝑖, 6 + 5𝑖, 6𝑖, 1 + 6𝑖, 2 + 6𝑖, 3 +
6𝑖, 4 + 6𝑖, 5 + 6𝑖, 6 + 6𝑖} is a Gaussian field. The 

cardinality of ℤ7[𝑖] is 72 = 49. 

REMARK 1 

The cardinality of ℤ𝑝[𝑖] if 𝑝 ≡ 3(𝑚𝑜𝑑 4) is 𝑝2. 

III. THE EXTENSIONS OF THE GAUSSIAN FIELD 

A. THE GAUSSIAN FIELD EXTENSION ℤ𝟑[𝒊]𝟐 

Let ℤ3[𝑖] be a Gaussian field. While ℤ3[𝑖][𝑋] is a Euclidian 

Domain. For the extension of Gaussian field ℤ3[𝑖]2, the 

quotient ring  ℤ3[𝑖][𝑋]/< 𝑓(𝑋) >≡ 𝐺𝐹(34), where the 

maximal ideal < 𝑓(𝑋) > is generated by 𝑓(𝑋) an irreducible 

polynomial of degree 2 in ℤ3[𝑖][𝑋]. If we write 𝛼 to denote 

the coset 𝑋 + (𝑓(𝑋)), then 𝑓(𝛼)  =  0 and  

ℤ3[𝑖]2 = {𝑎0 + 𝑎1𝛼: ∀ 𝑎0, 𝑎1 ∈ ℤ3[𝑖]} 

The field ℤ3[𝑖]2 is a two-degree extension field of the 

Gaussian field ℤ3[𝑖]. And ℤ3
∗ [𝑖]2 = ℤ3[𝑖]2\{0}, be a 

multiplicative cyclic group of order 34 − 1 = 80. 

B. ILLUSTRATION 1 

Let ℤ3[𝑖] be a Gaussian field. While ℤ3[𝑖][𝑋] is a Euclidian 

Domain. The ideal generated by the polynomial 𝑋2 + 𝑋 +
(2 + 𝑖) over ℤ3[𝑖][𝑋] is 

ℤ3[𝑖][𝑋] ≮ 𝑋2 + 𝑋 + (2 + 𝑖) > 

= {𝑎0 + 𝑎1𝑋:  𝑎0, 𝑎1 ∈ ℤ3[𝑖]} 

The polynomial 𝑓(𝑋) = 𝑋2 + 𝑋 + (2 + 𝑖) is a primitive 

irreducible polynomial over ℤ3[𝑖], and 𝛼 be the root of 𝑓(𝑋) 

in ℤ3[𝑖][𝑋], then 𝑓(𝛼) = 0 as 𝛼2 + 𝛼 + 2 + 𝑖 = 0.  
Thus, 𝛼2 = 2𝛼 + 1 + 2𝑖. And ℤ3

∗ [𝑖]2 = ℤ3[𝑖]2\{0} is a 

multiplicative cyclic group of order 32(2) − 1 = 80 given in 

Table 1. 
TABLE 1 

ELEMENTS OF THE MULTIPLICATIVE CYCLIC GROUP ℤ3
∗ [I]2 

𝛼𝑗  VALUES     𝛼𝑗                VALUES 

1 𝛼 41                           2𝛼 

2 2 𝛼 + 1 + 2𝑖 42                       𝛼 + 2 + 𝑖 

3  2𝛼 + 2 + 𝑖 + 2𝑖𝛼 43               𝛼 + 1 + 2𝑖 + 𝑖𝛼 

4 2𝑖𝛼 + 1 44                          𝑖𝛼 + 2 

5 𝑖𝛼 + 2𝑖 + 2 + 𝛼 45             2𝛼 + 1 + 𝑖 + 2𝑖𝛼 

6 𝑖𝛼 + 𝛼 + 2 46                   2𝛼 + 1 + 2𝑖𝛼 

7 2𝑖𝛼 + 𝛼 + 2 47                     2𝛼 + 1 + 𝑖𝛼 

8 𝑖𝛼 + 𝛼 + 𝑖 48                 2𝛼 + 2𝑖𝛼 + 2𝑖 

9 2𝛼 + 2 49                           𝛼 + 1 

10 2 + 𝑖 50                           1 + 2𝑖 

11 2𝛼 + 𝑖𝛼 51                          𝛼 + 2𝑖𝛼 

12 𝛼 + 2𝑖 + 2𝑖𝛼 52                      2𝛼 + 𝑖 + 𝑖𝛼 

13 2𝛼 + 𝑖 53                           𝛼 + 2𝑖 

14 𝛼 + 2 + 𝑖 + 𝑖𝛼 54           2𝛼 + 1 + 2𝑖 + 2𝑖𝛼 
15 𝛼 + 2 55                           2𝛼 + 1 
16 𝛼 + 1 + 2𝑖 56                       2𝛼 + 2 + 𝑖 
17 2𝑖𝛼 + 1 + 2𝑖 57                         𝑖𝛼 + 𝑖 + 2 
18 𝛼 + 2 + 2𝑖 58                        2𝛼 + 𝑖 + 1 
19 𝛼 + 2𝑖𝛼 + 1 + 2𝑖 59               2𝛼 + 2 + 𝑖 + 𝑖𝛼 
20 𝑖 60                           2𝑖 
21 𝑖𝛼 61                           2𝑖𝛼 
22 2𝑖𝛼 + 𝑖 + 1 62                      𝑖𝛼 + 2𝑖 + 2 
23 𝛼 + 2 + 2𝑖 + 2𝑖𝛼 63               2𝛼 + 1 + 𝑖 + 𝑖𝛼 
24 𝛼 + 𝑖 64                           2𝛼 + 2𝑖 
25 2𝛼 + 𝑖𝛼 + 1 + 2𝑖 65               𝛼 + 2 + 𝑖 + 2𝑖𝛼 
26 2𝛼 + 𝑖𝛼 + 2𝑖 66                      𝛼 + 𝑖 + 2𝑖𝛼 
27 𝛼 + 𝑖𝛼 + 2𝑖 67                    2𝛼 + 𝑖 + 2𝑖𝛼 
28 2𝛼 + 𝑖𝛼 + 2 68                     𝛼 + 1 + 2𝑖𝛼 
29 2𝑖𝛼 + 2𝑖 69                           𝑖𝛼 + 𝑖 
30 2𝑖 + 2 70                           1 + 𝑖 
31 2𝑖𝛼 + 2𝛼 71                           𝛼 + 𝑖𝛼 
32 𝛼 + 1 + 𝑖𝛼 72                   2𝛼 + 2 + 2𝑖𝛼 
33 2𝑖𝛼 + 2 73                           𝑖𝛼 + 1 
34 2𝛼 + 2 + 2𝑖 + 𝑖𝛼 74              𝛼 + 1 + 𝑖 + 2𝑖𝛼 
35 𝑖𝛼 + 2𝑖 75                           2𝑖𝛼 + 𝑖 
36 𝑖𝛼 + 𝑖 + 1 76                    2𝑖𝛼 + 2𝑖 + 2 
37 𝛼 + 1 + 𝑖 77                    2𝛼 + 2 + 2𝑖 
38 𝑖𝛼 + 1 + 2𝑖 78                      2𝑖𝛼 + 2 + 𝑖 
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39 𝛼 + 𝑖 + 1 + 𝑖𝛼 79           2𝛼 + 2 + 2𝑖 + 2𝑖𝛼 

40 2 80                           1 

C. THE GAUSSIAN FIELD EXTENSION ℤ𝟑[𝒊]𝟑 
Let ℤ3[𝑖] be a Gaussian field. While ℤ3[𝑖][𝑋] is a Euclidian 

Domain. For the extension of the Gaussian field ℤ3[𝑖]3, the 

quotient ring  ℤ3[𝑖][𝑋]/< 𝑓(𝑋) >≡ 𝐺𝐹(36), where the 

maximal ideal < 𝑓(𝑋) > is generated by 𝑓(𝑋) an irreducible 

polynomial of degree 3 in ℤ3[𝑖][𝑋]. If we write 𝛼 to denote 

the coset 𝑋 + (𝑓(𝑋)), then 𝑓(𝛼)  =  0 and  

ℤ3[𝑖]3 = {𝑎0 + 𝑎1𝛼 + 𝑎2𝛼2: ∀ 𝑎0, 𝑎1, 𝑎2 ∈ ℤ3[𝑖]} 

The field ℤ3[𝑖]3 is a three-degree extension field of the 

Gaussian field ℤ3[𝑖]. And ℤ3
∗ [𝑖]3 = ℤ3[𝑖]3\{0}, be a 

multiplicative cyclic group of order 36 − 1 = 728. 
Similarly, the field ℤ3[𝑖]𝑚 is 𝑚 degree extension field of the 

Gaussian field ℤ3[𝑖] is given below. 

D. THE GAUSSIAN FIELD EXTENSION ℤ𝟑[𝒊]𝒎 

Let ℤ3[𝑖] be a Gaussian field. While ℤ3[𝑖][𝑋] is a Euclidian 

Domain. For the extension of Gaussian field ℤ3[𝑖]𝑚, the 

quotient ring  ℤ3[𝑖][𝑋]/< 𝑓(𝑋) >≡ 𝐺𝐹(32𝑚), where the 

maximal ideal < 𝑓(𝑋) > is generated by 𝑓(𝑋) an irreducible 

polynomial of degree 𝑚 in ℤ3[𝑖][𝑋]. If we write 𝛼 to denote 

the coset 𝑋 + (𝑓(𝑋)), then 𝑓(𝛼)  =  0 and  

ℤ3[𝑖]𝑚 = {𝑎0 + 𝑎1𝛼 + 𝑎2𝛼2 + ⋯ + 𝑎𝑚−1𝛼𝑚−1: ∀ 𝑎𝑖 ,
∈ ℤ3[𝑖], 𝑖 = 0,1, … , 𝑚 − 1} 

The field ℤ3[𝑖]𝑚 is 𝑚 degree extension field of the Gaussian 

field ℤ3[𝑖]. And ℤ3
∗ [𝑖]𝑚 = ℤ3[𝑖]𝑚\{0}, be a multiplicative 

cyclic group of order 32𝑚 − 1. 

E. THE GAUSSIAN FIELD EXTENSION ℤ𝟕[𝒊]𝟐 

Let ℤ7[𝑖] be a Gaussian field. While ℤ7[𝑖][𝑋] is a Euclidian 

Domain. For the extension of Gaussian field ℤ7[𝑖]2, the 

quotient ring  ℤ7[𝑖][𝑋]/< 𝑓(𝑋) >≡ 𝐺𝐹(74), where the 

maximal ideal < 𝑓(𝑋) > is generated by 𝑓(𝑋) an irreducible 

polynomial of degree 2 in ℤ7[𝑖][𝑋]. If we write 𝛼 to denote 

the coset 𝑋 + (𝑓(𝑋)), then 𝑓(𝛼)  =  0 and  

ℤ7[𝑖]2 = {𝑎0 + 𝑎1𝛼: ∀ 𝑎0, 𝑎1 ∈ ℤ7[𝑖]} 

The field ℤ7[𝑖]2 is a two-degree extension field of the 

Gaussian field ℤ7[𝑖]. And ℤ7
∗ [𝑖]2 = ℤ7[𝑖]2\{0}, be a 

multiplicative cyclic group of order 74 − 1 = 2400. 

F. THE GAUSSIAN FIELD EXTENSION ℤ𝟕[𝒊]𝟑 

Let ℤ7[𝑖] be a Gaussian field. While ℤ7[𝑖][𝑋] is a Euclidian 

Domain. For the extension of Gaussian field ℤ7[𝑖]3, the 

quotient ring  ℤ7[𝑖][𝑋]/< 𝑓(𝑋) >≡ 𝐺𝐹(76), where the 

maximal ideal < 𝑓(𝑋) > is generated by 𝑓(𝑋) an irreducible 

polynomial of degree 3 in ℤ7[𝑖][𝑋]. If we write 𝛼 to denote 

the coset 𝑋 + (𝑓(𝑋)), then 𝑓(𝛼)  =  0 and  

ℤ7[𝑖]3 = {𝑎0 + 𝑎1𝛼 + 𝑎2𝛼2: ∀ 𝑎0, 𝑎1, 𝑎2 ∈ ℤ7[𝑖]} 

The field ℤ7[𝑖]3 is 𝑚 degree extension field of the Gaussian 

field ℤ7[𝑖]. And ℤ7
∗ [𝑖]3 = ℤ7[𝑖]2\{0}, be a multiplicative 

cyclic group of order 76 − 1 = 117648. 
Similarly, the field ℤ7[𝑖]𝑚 is 𝑚 degree extension field of the 

Gaussian field ℤ7[𝑖] is given below. 

G. THE GAUSSIAN FIELD EXTENSION ℤ𝟕[𝒊]𝒎 

Let ℤ7[𝑖] be a Gaussian field. While ℤ7[𝑖][𝑋] is a Euclidian 

Domain. For the extension of Gaussian field ℤ7[𝑖]𝑚, the 

quotient ring  ℤ7[𝑖][𝑋]/< 𝑓(𝑋) >≡ 𝐺𝐹(72𝑚), where the 

maximal ideal < 𝑓(𝑋) > is generated by 𝑓(𝑋) an irreducible 

polynomial of degree 𝑚 in ℤ7[𝑖][𝑋]. If we write 𝛼 to denote 

the coset 𝑋 + (𝑓(𝑋)), then 𝑓(𝛼)  =  0 and  

ℤ7[𝑖]𝑚 = {𝑎0 + 𝑎1𝛼 + 𝑎2𝛼2 + ⋯ + 𝑎𝑚−1𝛼𝑚−1: ∀ 𝑎𝑖

∈ ℤ7[𝑖], 𝑖 = 0,1, … , 𝑚 − 1} 

The field ℤ7[𝑖]𝑚 is the 𝑚 −degree extension field of the 

Gaussian field ℤ7[𝑖]. And ℤ7
∗ [𝑖]𝑚 = ℤ7[𝑖]𝑚\{0}, be a 

multiplicative cyclic group of order 72𝑚 − 1. 

H. The GAUSSIAN FIELD EXTENSION ℤ𝒑[𝒊]𝟐 𝑰𝑭 𝒑 ≡

𝟑(𝒎𝒐𝒅 𝟒) 

Let ℤ𝑝[𝑖] be a Gaussian field if 𝑝 ≡ 3(𝑚𝑜𝑑 4). While 

ℤ𝑝[𝑖][𝑋] is a Euclidian Domain. For the extension of 

Gaussian field ℤ𝑝[𝑖]2, the quotient ring  ℤ𝑝[𝑖][𝑋]/< 𝑓(𝑋) >

≡ 𝐺𝐹(𝑞2), where the maximal ideal < 𝑓(𝑋) > is generated 

by 𝑓(𝑋) an irreducible polynomial of degree 2 in ℤ𝑝[𝑖][𝑋] 

and 𝑞 = 𝑝2. If we write 𝛼 to denote the coset 𝑋 + (𝑓(𝑋)), 

then 𝑓(𝛼)  =  0 and  

ℤ𝑝[𝑖]2 = {𝑎0 + 𝑎1𝛼: ∀ 𝑎0, 𝑎1 ∈ ℤ𝑝[𝑖]} 

The field ℤ𝑝[𝑖]2 is a two-degree extension field of the 

Gaussian field ℤ𝑝[𝑖]. And ℤ𝑝
∗ [𝑖]2 = ℤ𝑝[𝑖]2\{0}, be a 

multiplicative cyclic group of order 𝑞2 − 1. 

I. The GAUSSIAN FIELD EXTENSION ℤ𝒑[𝒊]𝟑 𝑰𝑭 𝒑 ≡

𝟑(𝒎𝒐𝒅 𝟒) 

Let ℤ𝑝[𝑖] be a Gaussian field if 𝑝 ≡ 3(𝑚𝑜𝑑 4). While 

ℤ𝑝[𝑖][𝑋] is a Euclidian Domain. For the extension of 

Gaussian field ℤ𝑝[𝑖]3, the quotient ring  ℤ𝑝[𝑖][𝑋]/< 𝑓(𝑋) >

≡ 𝐺𝐹(𝑞3), where the maximal ideal < 𝑓(𝑋) > is generated 

by 𝑓(𝑋) an irreducible polynomial of degree 3 in ℤ𝑝[𝑖][𝑋] 

and 𝑞 = 𝑝2. If we write 𝛼 to denote the coset 𝑋 + (𝑓(𝑋)), 

then 𝑓(𝛼)  =  0 and  

ℤ𝑝[𝑖]3 = {𝑎0 + 𝑎1𝛼 + 𝑎2𝛼2: ∀ 𝑎0, 𝑎1, 𝑎2 ∈ ℤ𝑝[𝑖]} 

The field ℤ𝑝[𝑖]3 is a three-degree extension field of the 

Gaussian field ℤ𝑝[𝑖]. And ℤ𝑝
∗ [𝑖]3 = ℤ𝑝[𝑖]3\{0}, be a 

multiplicative cyclic group of order 𝑞3 − 1. 
Similarly, the field ℤ𝑝[𝑖]𝑚 is 𝑚 degree extension field of the 

Gaussian field ℤ𝑝[𝑖] if 𝑝 ≡ 3(𝑚𝑜𝑑 4) is given below. 

J. The GAUSSIAN FIELD EXTENSION ℤ𝒑[𝒊]𝒎 𝑰𝑭 𝒑 ≡

𝟑(𝒎𝒐𝒅 𝟒) 

Let ℤ𝑝[𝑖] be a Gaussian field if 𝑝 ≡ 3(𝑚𝑜𝑑 4). While 

ℤ𝑝[𝑖][𝑋] is a Euclidian Domain. For the extension of 

Gaussian field ℤ𝑝[𝑖]𝑚, the quotient ring  ℤ𝑝[𝑖][𝑋]/<

𝑓(𝑋) >≡ 𝐺𝐹(𝑞𝑚), where the maximal ideal < 𝑓(𝑋) > is 

generated by 𝑓(𝑋) an irreducible polynomial of degree 𝑚 

in ℤ𝑝[𝑖][𝑋] and 𝑞 = 𝑝2. If we write 𝛼 to denote the 

coset 𝑋 + (𝑓(𝑋)), then 𝑓(𝛼)  =  0 and  

ℤ𝑝[𝑖]𝑚 = {𝑎0 + 𝑎1𝛼 + 𝑎2𝛼2 + ⋯ + 𝑎𝑚−1𝛼𝑚−1: ∀ 𝑎𝑖

∈ ℤ𝑝[𝑖], 𝑖 = 0,1,2, … , 𝑚 − 1} 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3293007

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

8 VOLUME XX, 2017 

The field ℤ𝑝[𝑖]𝑚 is 𝑚 degree extension field of the Gaussian 

field ℤ𝑝[𝑖]. 

REMARK 1 

The order of ℤ𝑝[𝑖]𝑚 𝑖𝑠 𝑞𝑚. 

REMARK 2 

ℤ𝑝
∗ [𝑖]𝑚 = ℤ𝑝[𝑖]𝑚\{0} is a multiplicative cyclic group of 

order 𝑞𝑚 − 1. 

The following theorem is just a restatement of [15, Theorem 

4.4.2]. 

THEOREM 1 

Let 𝛼 ∈ ℤ𝑝[𝑖]𝑚 if 𝑝 ≡ 3(𝑚𝑜𝑑 4)is an extension field of 

Gaussian field ℤ𝑝[𝑖]. Then 𝛼, 𝛼𝑞, 𝛼𝑞2, …, have the same 

minimal polynomial over ℤ𝑝[𝑖]. 

IV. ENCODING OF BCH CODES OVER GAUSSIAN FIELD  

A. CONSTRUCTION OF BCH CODES  

Let 𝑐, 𝑑, 𝑞, 𝑛 be positive integers such that 2 ≤ 𝑑 ≤ 𝑛 − 1, 𝑞 

is a prime power, and 𝑛 is relatively prime to 𝑞. Let 𝑚 be the 

least positive integer such that 𝑞𝑚 ≡ 1(𝑚𝑜𝑑 𝑛) [By Euler's 

theorem, 𝑞𝜑(𝑛) ≡ 1(𝑚𝑜𝑑 𝑛), so 𝑚 divides 𝜑(𝑛)]. Thus 𝑛 

divides 𝑞𝑚 − 1. Let 𝛼  be a primitive 𝑛𝑡ℎ root of unity in 

ℤ𝑝[𝑖]𝑚 . 

Assume 𝑚𝑗(𝑋) ∈ ℤ𝑝[𝑖][𝑋] denote the minimal polynomial 

of 𝛼𝑗. And 𝑔(𝑋) be the product of distinct polynomials 

among 𝑚𝑗(𝑋), 𝑗 = 𝑐, 𝑐 + 1, . . . , 𝑐 + 𝑑 − 2; that is, 

𝑔(𝑋) = 𝑙𝑐𝑚{𝑚𝑗(𝑋)|𝑗 = 𝑐, 𝑐 + 1, … , 𝑐 + 𝑑 − 2}. 

Since 𝑚𝑗(𝑋) divides 𝑋𝑛 −  1 for each 𝑗, it follows that 𝑔 (𝑋) 

divides 𝑋𝑛  −  1. Let 𝐶 be the cyclic code with generator 

polynomial 𝑔(𝑋) in the ring ℤ𝑝[𝑖][𝑋]𝑛. Then 𝐶 is called a 

BCH code of length 𝑛 over ℤ𝑝[𝑖] with designed distance 𝑑. If 

𝑛 = 𝑞𝑚 − 1 in the foregoing definition, then the BCH code 𝐶 

is called primitive. If 𝑐 =  1, then 𝐶 is called a narrow sense 

BCH code. 

REMARK 1 

The number of code words in BCH-code 𝐶 over the Gaussian 

field is 𝑞𝑘. 

B. BCH CODES OF LENGTH 80 WITH A DESIGNED 

DISTANCE OF 3 OVER THE GAUSSIAN FIELD ℤ𝟑[𝒊] 

Let 𝑗 = 𝑐, 𝑐 + 1, 𝑐 + 2, … , 𝑐 + 𝑑 − 2 = 1,2. Apply the 

above encoding procedure of BCH codes over the Gaussian 

field ℤ3[𝑖]. 
Let 𝑚1(𝑋) be the first minimal polynomial for 𝑗 = 1. 

𝑚1(𝑋) = (𝑋 − 𝛼)(𝑋 − 𝛼9) = 𝑋2 − (𝛼 + 𝛼9)𝑋 + 𝛼10 

= 𝑋2 + 𝑋 + (2 + 𝑖). 
Similarly, another minimal polynomial 𝑚2(𝑋) for 𝑗 = 2. 
𝑚2(𝑋) = (𝑋 − 𝛼2)(𝑋 − 𝛼18) = 𝑋2 − (𝛼2 + 𝛼18)𝑋 + 𝛼20 

= 𝑋2 + 2𝑖𝑋 + 𝑖. 
The LCM of both minimal polynomials is known as 

generator polynomial 𝑔(𝑋) as: 

𝑔(𝑋) = (𝑋2 + 𝑋 + (2 + 𝑖))(𝑋2 + 2𝑖𝑋 + 𝑖) 

𝑔(𝑋) = 𝑋4 + (1 + 2𝑖)𝑋3 + (2 + 𝑖)𝑋2 + (1 + 2𝑖)𝑋 + (2
+ 2𝑖) 

Degree (𝑔(𝑋)) = 4, Dimension= 𝑘 = 80 − 4 = 76. 

Hence, [80, 76, 3] narrow sense BCH code over the 

Gaussian field ℤ3[𝑖]. 

C. BCH CODES OF LENGTH 80 WITH A DESIGNED 

DISTANCE OF 5 OVER THE GAUSSIAN FIELD ℤ𝟑[𝒊] 

Let 𝑗 = 𝑐, 𝑐 + 1, 𝑐 + 2, … , 𝑐 + 𝑑 − 2 = 1,2,3,4. Apply the 

above encoding procedure of BCH codes over the Gaussian 

field ℤ3[𝑖]. 
Let 𝑚1(𝑋) be the first minimal polynomial for 𝑗 = 1. 

𝑚1(𝑋) = (𝑋 − 𝛼)(𝑋 − 𝛼9) = 𝑋2 − (𝛼 + 𝛼9)𝑋 + 𝛼10 

= 𝑋2 + 𝑋 + (2 + 𝑖). 
Similarly, the minimal polynomials for 𝑗 = 2,3,4 are given 

as 

𝑚2(𝑋) = (𝑋 − 𝛼2)(𝑋 − 𝛼18) = 𝑋2 − (𝛼2 + 𝛼18)𝑋 + 𝛼20 

= 𝑋2 + 2𝑖𝑋 + 𝑖. 
𝑚3(𝑋) = (𝑋 − 𝛼3)(𝑋 − 𝛼27) = 𝑋2 − (𝛼3 + 𝛼27)𝑋 + 𝛼30 

= 𝑋2 + 𝑋 + (2 + 𝑖). 
𝑚4(𝑋) = (𝑋 − 𝛼4)(𝑋 − 𝛼36) = 𝑋2 − (𝛼4 + 𝛼36)𝑋 + 𝛼40 

= 𝑋2 + (1 + 2𝑖)𝑋 + 2. 
The LCM of all minimal polynomials is known as generator 

polynomial 𝑔(𝑋) as: 

𝑔(𝑋) = (𝑋2 + 𝑋 + (2 + 𝑖))(𝑋2 + 2𝑖𝑋 + 𝑖)(𝑋2 + 𝑋 + (2

+ 𝑖))(𝑋2 + (1 + 2𝑖)𝑋 + 2) 

𝑔(𝑋) = 𝑋8 + 𝑖𝑋7 + (2 + 𝑖)𝑋6 + (1 + 2𝑖)𝑋5 + (1 + 𝑖)𝑋3

+ 2𝑋2 + 1 

Degree (𝑔(𝑋)) = 8, Dimension= 𝑘 = 80 − 8 = 72. Hence, 

[80, 72, 5] narrow sense BCH code over the Gaussian 

field ℤ3[𝑖]. 

D. BCH CODES OF LENGTH 80 WITH A DESIGNED 

DISTANCE OF 7 OVER THE GAUSSIAN FIELD ℤ𝟑[𝒊] 

Let 𝑗 = 𝑐, 𝑐 + 1, 𝑐 + 2, … , 𝑐 + 𝑑 − 2 = 1,2,3,4,5,6 then 

apply the encoding procedure of BCH codes over the 

Gaussian field ℤ3[𝑖]. 
Let 𝑚1(𝑋) be the first minimal polynomial for 𝑗 = 1. 

𝑚1(𝑋) = (𝑋 − 𝛼)(𝑋 − 𝛼9) = 𝑋2 − (𝛼 + 𝛼9)𝑋 + 𝛼10 

= 𝑋2 + 𝑋 + (2 + 𝑖). 
Similarly, the minimal polynomials for 𝑗 = 2,3,4,5,6 are 

given as 

𝑚2(𝑋) = (𝑋 − 𝛼2)(𝑋 − 𝛼18) = 𝑋2 − (𝛼2 + 𝛼18)𝑋 + 𝛼20 

= 𝑋2 + 2𝑖𝑋 + 𝑖. 
𝑚3(𝑋) = (𝑋 − 𝛼3)(𝑋 − 𝛼27) = 𝑋2 − (𝛼3 + 𝛼27)𝑋 + 𝛼30 

= 𝑋2 + 𝑋 + (2 + 𝑖). 
𝑚4(𝑋) = (𝑋 − 𝛼4)(𝑋 − 𝛼36) = 𝑋2 − (𝛼4 + 𝛼36)𝑋 + 𝛼40 

= 𝑋2 + (1 + 2𝑖)𝑋 + 2. 
𝑚5(𝑋) = (𝑋 − 𝛼5)(𝑋 − 𝛼45) = 𝑋2 − (𝛼5 + 𝛼45)𝑋 + 𝛼50 

= 𝑋2 + (1 + 2𝑖). 
𝑚6(𝑋) = (𝑋 − 𝛼6)(𝑋 − 𝛼54) = 𝑋2 − (𝛼54 + 𝛼6)𝑋 + 𝛼60 

= 𝑋2 + 𝑖𝑋 + 2𝑖 
The LCM of all minimal polynomials is known as generator 

polynomial 𝑔(𝑋) as: 
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𝑔(𝑋) = (𝑋2 + 𝑋 + (2 + 𝑖))(𝑋2 + 2𝑖𝑋 + 𝑖)(𝑋2 + 𝑋 + (2

+ 𝑖))(𝑋2 + (1 + 2𝑖)𝑋 + 2)(𝑋2 + 1
+ 2𝑖)(𝑋2 + 𝑖𝑋 + 2𝑖) 

𝑔(𝑋) = 𝑋12 + 2𝑖𝑋11 + (2 + 2𝑖)𝑋10 + 𝑖𝑋8 + 2𝑋7

+ (2 + 𝑖)𝑋6 + (1 + 𝑖)𝑋5 + 𝑖𝑋4

+ (2 + 𝑖)𝑋3 + (2 + 2𝑖)𝑋2 + 1 

Degree (𝑔(𝑋)) = 12, Dimension= 𝑘 = 80 − 12 = 68. 
Hence, [80, 68, 7] narrow sense BCH code over the Gaussian 

field ℤ3[𝑖]. 

E. BCH CODES OF LENGTH 80 WITH A DESIGNED 

DISTANCE OF 9 OVER THE GAUSSIAN FIELD ℤ𝟑[𝒊] 

Let 𝑗 = 𝑐, 𝑐 + 1, 𝑐 + 2, … , 𝑐 + 𝑑 − 2 = 1,2,3,4,5,6,7,8 then 

apply the encoding procedure of BCH codes over the 

Gaussian field ℤ3[𝑖]. 
Let 𝑚1(𝑋) be the first minimal polynomial for 𝑗 = 1. 

𝑚1(𝑋) = (𝑋 − 𝛼)(𝑋 − 𝛼9) = 𝑋2 − (𝛼 + 𝛼9)𝑋 + 𝛼10

= 𝑋2 + 𝑋 + (2 + 𝑖). 
Similarly, the minimal polynomials for 𝑗 = 2,3,4,5,6,7,8 are 

given as 

𝑚2(𝑋) = (𝑋 − 𝛼2)(𝑋 − 𝛼18) = 𝑋2 − (𝛼2 + 𝛼18)𝑋 + 𝛼20

= 𝑋2 + 2𝑖𝑋 + 𝑖. 
𝑚3(𝑋) = (𝑋 − 𝛼3)(𝑋 − 𝛼27) = 𝑋2 − (𝛼3 + 𝛼27)𝑋 + 𝛼30

= 𝑋2 + 𝑋 + (2 + 𝑖). 
𝑚4(𝑋) = (𝑋 − 𝛼4)(𝑋 − 𝛼36) = 𝑋2 − (𝛼4 + 𝛼36)𝑋 + 𝛼40

= 𝑋2 + (1 + 2𝑖)𝑋 + 2. 
𝑚5(𝑋) = (𝑋 − 𝛼5)(𝑋 − 𝛼45) = 𝑋2 − (𝛼5 + 𝛼45)𝑋 + 𝛼50

= 𝑋2 + (1 + 2𝑖). 
𝑚6(𝑋) = (𝑋 − 𝛼6)(𝑋 − 𝛼54) = 𝑋2 − (𝛼54 + 𝛼6)𝑋 + 𝛼60

= 𝑋2 + 𝑖𝑋 + 2𝑖 
𝑚7(𝑋) = (𝑋 − 𝛼7)(𝑋 − 𝛼63) = 𝑋2 − (𝛼7 + 𝛼63)𝑋 + 𝛼70

= 𝑋2 + 2𝑖𝑋 + (1 + 𝑖) 

𝑚8(𝑋) = (𝑋 − 𝛼8)(𝑋 − 𝛼72) = 𝑋2 − (𝛼8 + 𝛼72)𝑋 + 𝛼80

= 𝑋2 + (1 + 2𝑖)𝑋 + 1 
The LCM of all minimal polynomials is known as generator 

polynomial 𝑔(𝑋) as: 

𝑔(𝑋) = (𝑋2 + 𝑋 + (2 + 𝑖))(𝑋2 + 2𝑖𝑋 + 𝑖)(𝑋2 + 𝑋 + (2

+ 𝑖))(𝑋2 + (1 + 2𝑖)𝑋 + 2)(𝑋2 + 1
+ 2𝑖)(𝑋2 + 𝑖𝑋 + 2𝑖)(𝑋2 + 2𝑖𝑋 + (1
+ 𝑖))(𝑋2 + (1 + 2𝑖)𝑋 + 1) 

𝑔(𝑋) = 𝑋16 + 𝑋15 + (1 + 𝑖)𝑋14 + (2 + 2𝑖)𝑋13

+ (2 + 2𝑖)𝑋12 + (2 + 2𝑖)𝑋11

+ (1 + 2𝑖)𝑋10 + 2𝑋9 + 2𝑋8 + 2𝑖𝑋7

+ (1 + 𝑖)𝑋6 + 𝑋4 + 2𝑋3 + (1 + 𝑖)𝑋2

+ (2 + 2𝑖)𝑋 + 1 + 𝑖 
Degree (𝑔(𝑋)) = 16, Dimension= 𝑘 = 80 − 16 = 64. 
Hence, [80, 64, 9] narrow sense BCH code over the Gaussian 

field ℤ3[𝑖]. 

V. DECODIN PROCEDURE OF GAUSSIAN FIELD-BASED 
BCH CODES 

The main purpose of this section is to decode the BCH codes 

over the Gaussian field of length 𝑛 by the modified 

Berlekamp-Massey algorithm.  

The following theorem is just a restatement of [7, Theorem 

4.4.3]. 

THEOREM 1 

Let C be a BCH code of length 𝑛 over Gaussian field 

ℤ𝑝[𝑖] if (𝑝 ≡ 3)(𝑚𝑜𝑑 4) with designed distance𝑑. Then 

BCH code 𝐶 = {𝑐(𝑥)  ∈ ℤ𝑝[𝑖][𝑥]𝑛| 𝑐(𝛼𝑖) = 0 for all 𝑖 =

𝑐, 𝑐 + 1, . . . , 𝑐 + 𝑑 − 2}. Equivalently, the code 𝐶 is the null 

space of the matrix 

𝐻 = (
1 𝛼1             𝛼2          ⋯ 𝛼𝑛−1

⋮                                   ⋱ ⋮
1 𝛼𝑐+𝑑−2  𝛼2(𝑐+𝑑−2)   ⋯ 𝛼(𝑐+𝑑−2)(𝑛−1)

) … (1) 

Proof: Let 𝑐(𝑥) ∈ 𝐶. Then, 𝑐(𝑥) = 𝑞(𝑥)𝑔(𝑥) for some 𝑞(𝑥), 

where 𝑔(𝑥) is the generator polynomial of 𝐶. Hence 𝑐(𝛼𝑖) =
0 for all 𝑖 = 𝑐, 𝑐 + 1, . . . , 𝑐 + 𝑑 − 2. Conversely, let 𝑐(𝑥) ∈
ℤ𝑝[𝑖][𝑥]𝑛such that 𝑐(𝑆𝑖) = 0 for all 𝑖 = 𝑐, 𝑐 +  1, . . . , 𝑐 +
 𝑑 −  2. Then 𝑚(𝑥) divides 𝑐(𝑥) for all 𝑖 = 𝑐, 𝑐 + 1, . . . , 𝑐 +
𝑑 − 2. Hence 𝑔(𝑥) divides 𝑐(𝑥), so 𝑐(𝑥) ∈ 𝐶. 

A. DECODING PROCEDURE 

Let 𝑐 = (𝑐0 𝑐1 𝑐2. . . 𝑐𝑛−1 ) be a BCH code of length 𝑛, 

received vector 𝑟, and designed distance 𝑑. There are the 

following steps. 

1. Find syndromes 𝑆 with the help of parity check matrix 𝐻 

and the transpose of the received vector 𝑟. 

𝑆 = 𝐻𝑟𝑇(mod 𝑝) 

If all syndromes are zeros then no error occurs in the received 

vector 𝑟, hence 𝑟 = 𝑐. The error will occur if at least one 

syndrome is non-zero, then go to the next step. 

2. Use the Modified Berlekamp-Massey algorithm to find 

𝛿𝑛 (𝑧). 

TABLE 2 

ELEMENTS OF THE MULTIPLICATIVE CYCLIC GROUP ℤ3
∗ [I]2 

Iteration Δ
𝒏(𝐳)           𝑑𝑛 𝑙𝑛           𝑛 − 𝑙𝑛 

-1   

0   

1   

.   

.   

.   

2t   

Let 𝑑𝑛  be the discrepancy; 𝑙𝑛  be the degree of δ𝑛(z). 

Suppose initial conditions: δ−1(z) = 1; 𝑑−1 = 1; 𝑙−1 =
0; δ0(z) = 1; 𝑙0 = 0 and 𝑑0 = first non-zero syndrome. 

If 𝑑𝑛 = 0, then δ𝑛+1(z) = δ𝑛(z) and 𝑙𝑛+1 = 𝑙𝑛 . 
If 𝑑𝑛 ≠ 0, then for 𝑚 ≤ 𝑛 − 1 and 𝑛 − 𝑙𝑚  has the largest 

value in the last column. So, from 𝑑𝑛 − 𝑦𝑑𝑚 = 0 and got 𝑦. 

Thus, 𝛿𝑛+1(𝑧) = 𝛿𝑛(𝑧) − 𝑦𝑧𝑛−𝑚 𝛿𝑚(𝑧) and d𝑛+1 =
S𝑛+2 + δ1

(𝑛+1)
(z) S𝑛+1 +

δ2
(𝑛+1)

(z) S𝑛+. . . + δ𝑙𝑛+1

(𝑛+1)
(z) S𝑛+2−𝑙𝑛+1  and δ𝑛 (z) by the 

last row of TABLE 2. 
3. The reciprocal function of δ𝑛(z) = 𝑔(z) and find the roots 

of 𝑔(z) in the form of z𝑖. 

4. Let 𝑥𝑖  be the correct location of errors. Select those 𝑥𝑖 ’s 
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such that (𝑥𝑖 − 𝑧𝑖)are zeros, where 1 ≤ 𝑖 ≤ 𝑛 − 1and 

𝑥𝑖 = 𝜌𝑖 are error locations. 

5. The main purpose of the elementary symmetric function 

is how many possible errors occur in the received 

vector. It depends on the value of 𝑣. (𝑧 − 𝑥1)(𝑧 −
𝑥2). . . (𝑧 − 𝑥𝑣) = 𝛿0 𝑧

𝑣 + 𝛿1𝑧𝑣−1 + ⋯ + 𝛿𝑣, Where 

𝑥1, . . . , 𝑥𝑣 represents the error locations. 

6. By using Forney’s procedure in [9], calculate the 

magnitude of errors as follows. 

𝑦𝑗 =
∑ 𝛿𝑗,𝑖  𝑆𝑣−𝑙

𝑣−1
𝑙=0

∑  𝛿𝑗,𝑖𝑥𝑗
𝑣−𝑙𝑣−1

𝑙=0

 

Start with 𝛿0 = 𝛿𝑗,0 = 1. Where 𝛿𝑗,𝑖 = 𝛿𝑖 + 𝑥𝑗 . 𝛿𝑗,𝑖−1;  𝑖 =
1, 2, 3, . . . , 𝑣 − 1 and 𝑗 = 1, 2, . . . , 𝑣. 
Error vector= 𝑒 = (𝑒0 𝑒1  𝑒2. . . 𝑒𝑛−1). 

7. The corrected code word of code 𝐶 is 𝑐 with the help of 

the received vector 𝑟 and error vector 𝑒 as 

𝑐 = 𝑟 − 𝑒 

8. For the verification of the code word 𝑐 of the BCH code 

by using Theorem 2. 

𝐻𝑐𝑇 = [𝑂]. 

B. ILLUSTRATION 1 

Suppose the [80, 76, 3] BCH codes of Illustration 4 over the 

Gaussian field ℤ3[𝑖] and the vector 𝑟 = (0, 𝑖, 0,0, … ,0)1×80 

is the received vector. Find the error vector and correct code 

word of the BCH code.  

𝑆 = 𝐻𝑟𝑇 = ( 1 𝛼  𝛼2  ⋯ 𝛼11 
 1 𝛼2 𝛼4  ⋯ 𝛼22 

) (0 𝑖 0 … 0)𝑇 

= (
𝑖𝛼

𝑖𝛼2) = (𝛼21

𝛼22) 

Where syndromes are 𝑆1 = 𝛼21; 𝑆2 = 𝛼22. Find 𝛿𝑛(𝑥) by 

using the modified Berlekamp massay algorithm. 
TABLE 3 

ELEMENTS OF THE MULTIPLICATIVE CYCLIC GROUP ℤ3
∗ [I]2 

Iteration Δ𝒏(𝐳)                𝑑𝑛 𝑙𝑛      𝑛 − 𝑙𝑛 

-1 1                    1  0            -1 

0 1                α21 = iα   0                    0 

1 1 + 𝛼61𝑥   2𝛼 + 2 + 2𝑖𝛼  1             0 

2 1 + α41x           

Thus, it follows that 𝛿2(𝑥) = 1 + 𝛼41𝑥, and its reciprocal 

function is 𝑔(𝑥) = 𝛼41 + 𝑥. Hence 𝛼 is the root of 𝑔(𝑥). 
Now select those of 𝑥𝑖 ’𝑠 such that (𝑥𝑖 − 𝑧𝑖) are zeros in 

ℤ3
∗ [i]2 , 1 ≤ 𝑖 ≤ 80. Hence 𝑧1 = 𝛼. So the error appeared at 

position 2 in the received vector 𝑟.  δ0z𝑣 + δ1 = z − 𝛼 is a 

symmetric function. The error magnitude is 𝑦1 =
𝛿1,0𝑆1

𝛿1,0𝑥1
=

𝑆1

𝑥1
=

𝛼21

𝛼
= 𝛼20 = 𝑖, where δ0 = 1, δ1 = −α = 2𝛼, 𝑣 = 1. 

Error vector= 𝑒 = (0 i 0 …  0)1×80. 

Corrected code word= 𝑐 = 𝑟 − 𝑒 = (0, 0, 0, … , 0)1×80. 

For verification 𝐻𝑐𝑇 = [𝑂]. 

Hence 𝑐 is the corrected codeword of BCH code 𝐶. 

C. ILLUSTRATION 2 

Suppose the [80, 76, 3] BCH code of Illustration 4 over the 

Gaussian field ℤ3[𝑖] and the vector 𝑟 = (2 + 𝑖, 1 + 2𝑖, 2 +
𝑖, 0,1, … ,0)1×80 is the received vector. Find the error vector 

and correct codeword.  

Let  𝑆 = 𝐻𝑟𝑇 = ( 1 𝛼  𝛼2  ⋯ 𝛼79 
 1 𝛼2 𝛼4  ⋯ 𝛼78 

) (2 + 𝑖 1 + 2𝑖 2 +

𝑖 0 0 … 0)𝑇 = (
2𝛼

1 + 𝑖 + 𝛼
) = (𝛼41

𝛼37) 

Where syndromes are 𝑆1 = 𝛼41; 𝑆2 = 𝛼37. Find 𝛿𝑛(𝑥) by 

using the modified Berlekamp massay algorithm. 
 

TABLE 4 

ELEMENTS OF THE MULTIPLICATIVE CYCLIC GROUP ℤ3
∗ [I]2 

Iteration Δ𝒏(𝐳)                𝑑𝑛 𝑙𝑛      𝑛 − 𝑙𝑛 

-1 1                    1  0            -1 

0 1                α41 = 2α   0                    0 

1 1 + 𝛼𝑥       2𝛼 + 2i  1             0 

2 1 + α36x           

Thus, it follows that 𝛿2(𝑥) = 1 + 𝛼36𝑥, and its reciprocal 

function is 𝑔(𝑥) = 𝛼36 + 𝑥. Hence 2 + 2𝑖 + 2𝑖𝛼 = 𝛼76 is 

the root of 𝑔(𝑥). Now select those of 𝑥𝑖 ’𝑠 such that (𝑥𝑖 − 𝑧𝑖) 

are zeros in ℤ3
∗ [i]2 , 1 ≤ 𝑖 ≤ 80. Hence 𝑧1 = 𝛼76. So the 

error appeared at position 77 in the received vector 

𝑟.  δ0z𝑣 + δ1 = z − 𝛼76 is a symmetric function. The error 

magnitude is 𝑦1 =
𝛿1,0𝑆1

𝛿1,0𝑥1
=

𝑆1

𝑥1
=

𝛼41

𝛼76 = 𝛼45 = 1 + 𝑖 + 2𝛼 +

2𝑖𝛼, where δ0 = 1, δ1 = −𝛼76, 𝑣 = 1. 

𝑒 = (0, 0, 0, … , 0, 2 + 2𝛼 + 2𝑖𝛼, 0 …   0)1×80 

𝑐 = 𝑟 − 𝑒 = (2 + 𝑖, 1 + 2𝑖, 2 + 𝑖, 0,1, … ,0, 2 + 2𝑖 + 𝛼
+ 𝑖𝛼, … , 0)1×80 

For verification 𝐻𝑐𝑇 = [𝑂]. 

Hence 𝑐 is the corrected codeword of BCH code 𝐶. 

D. ILLUSTRATION 3 

Suppose the [80, 72, 5] BCH code 𝐶 of Illustration 5 over the 

Gaussian field ℤ3[𝑖] and the vector 𝑟 = (1, 0,0,1 + 𝑖, 0, 1 +
2𝑖, 2 + 𝑖, 0, 1, 0,0, … ,0)1×80 is the received vector. Find the 

error vector and correct codeword. Also, verify the corrected 

codeword 𝑐. 

Let  𝑆 = 𝐻𝑟𝑇 = (

1 𝛼  𝛼2  ⋯ 𝛼79

1 𝛼2  𝛼4  ⋯ 𝛼78

1 𝛼3  𝛼6  ⋯ 𝛼77 
 1 𝛼4 𝛼8  ⋯ 𝛼76 

) (1, 0,0,1 + 𝑖, 0, 1 +

2𝑖, 2 + 𝑖, 0, 1, 0,0, … ,0)𝑇 
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= (

1 + 𝛼 + 2𝑖𝛼
2 + 𝑖 + 𝛼 + 𝑖𝛼

1 + 𝑖 + 2𝑖𝛼
2𝛼 + 2𝑖 + 2𝑖𝛼

) = (

𝛼68

𝛼14

𝛼22

𝛼48

) = (

𝑆1

𝑆2

𝑆3

𝑆4

) 

Where syndromes are 𝑆1 = 𝛼68, 𝑆2 = 𝛼14, 𝑆3 = 𝛼22, 𝑆4 =
𝛼48 Find 𝛿𝑛(𝑥) by using the modified Berlekamp Massay 

algorithm.  
TABLE 5 

ELEMENTS OF THE MULTIPLICATIVE CYCLIC GROUP ℤ3
∗ [I]2 

Iteration Δ𝒏(𝐳)                   𝑑𝑛 𝑙𝑛      𝑛 − 𝑙𝑛 

-1 1                             1  0            -1 

0 1                                α68   0                    0 

1 1 + 𝛼28𝑥                  𝛼11  1             0 

2 1 + α66x                  𝛼78  1             1      

3 1 + α41x + α55x2   𝛼39             2             1 

4 1 + α74x2           

Consider, 𝛿4(𝑥) = 1 + 𝛼74𝑥2 and the reciprocal function of 

𝛿4(𝑥) is 𝑔(𝑥) = x2 + 𝛼74. Hence 𝛼17 and 𝛼57 are the roots 

of 𝑔(𝑥). Now select those of 𝑥𝑖 ’𝑠 such that (𝑥𝑖 − 𝑧𝑖) 

are zeros in ℤ3
∗ [i]2 , 1 ≤ 𝑖 ≤ 80. Hence 𝑧1 =

𝛼17and 𝑧2 = 𝛼57. So the error appeared at positions 18 

and 58 in the received vector 𝑟. Therefore the symmetric 

function  δ0z𝑣 + δ1zv−1 + δ2 = (z − 𝛼17)(z − 𝛼57) =
𝑧2 + 0𝑧 + 𝛼74 implies δ0 = 1, δ1 = 0, δ2 = 𝛼74 and 𝑣 = 2. 

Hence two errors appeared in the received vector 𝑟. As 

𝛿1,1 = 𝛿1 + 𝛿1,0. 𝑥1 =  𝛼17, therefore 

y1 =
δ1,0. S2 + δ1,1. S1

δ1,0. x1
2 + δ1,1. x1

=  𝛼7 

𝛿2,1 = 𝛿1 + 𝛿2,0. 𝑥2 = 𝛼57 

y2 =
δ2,0. S2 + δ2,1. S1

δ2,0. x2
2 + δ2,1. x2

 = 𝛼66 

Hence y1, and y2 are error magnitudes. So 

𝑒 = (0, 0, 0, … , 0, 2 + 𝛼 + 2𝑖𝛼, 0 … ,0, i + 𝛼
+ 2𝑖𝛼, 0, … , 0)1×80 

𝑐 = 𝑟 − 𝑒 = 𝑟 = (1, 0,0,1 + 𝑖, 0, 1 + 2𝑖, 2
+ 𝑖, 0, 1, 0,0, … ,0,1 + 𝛼 + 𝑖𝛼, 0, … ,0, 2𝑖
+ 2𝛼 + 𝑖𝛼, 0, … ,0)1×80 

Hence 𝑐 is the corrected code word. 

VI. COMPARISON OF THE RESULTS OF FINITE FIELD 
AND GAUSSIAN FIELD 

Here we give a comparison between the narrow sense BCH 

code and their decoding algorithm over a finite field and 

Gaussian field. Length of code is 𝑛 = 𝑝𝑚 − 1, designed 

distance𝑠 𝑑, dimension 𝑘1, code rates 𝑅1 =
𝑘1

𝑛
=

𝑘1

𝑝𝑚−1
, and 

the number of 𝑝𝑘1 code words of the narrow sense BCH-

codes over the finite field 𝐺𝐹(𝑝𝑚) and their decoding 

algorithm are given in [7, Section 4.4]. 

But in this article, the authors constructed BCH codes of 

length 𝑛 = 𝑞𝑚 − 1 = 𝑝2𝑚 − 1, designed distance 𝑑, 

dimension 𝑘2, code rates 𝑅2 =
𝑘2

𝑛
=

𝑘2

𝑝2𝑚−1
, and the number 

of 𝑞𝑘2 = 𝑝2𝑘2  code words over the Gaussian field ℤ𝑝[𝑖] and 

their decoding algorithm.  

Comparison between the narrow sense BCH code over finite 

field and Gaussian field are given in Table 6 and Table 7. From 

[7, Excerises 4.4 (10)], length 𝑛 = 𝑝𝑚 − 1 = 34 − 1 = 80, 

designed distance 𝑑, dimension 𝑘1, code rate 𝑅, and the 

number of  𝑝𝑘1  code words of the narrow sense BCH-codes 

over the finite field 𝐺𝐹(𝑝𝑚) = 𝐺𝐹(32) are given in Table 6. 
TABLE 6 

LENGTH, DESIGNED DISTANCE, DIMENSION, CODE RATE, AND CODE 

WORDS OF THE BCH CODES OVER FINITE FIELD GF(32) 

𝑛 D                   𝑘1            𝑝𝑘1              𝑅1 

80 3                  72          372           0.90 

80 5                  68          368         0.85 

80 7                  64          364         0.80 
80 9                  56          364         0.70 

Similarly, length 𝑛 = 𝑞𝑚 − 1 = (32)2 − 1 = 80, designed 

distance 𝑑, dimension 𝑘2, code rate 𝑅2, and the number of 

𝑞𝑘2 code words of the narrow sense BCH-codes over the 

Gaussian field ℤ𝑝[𝑖] = ℤ3[𝑖] are given in Table 7. 
TABLE 7 

LENGTH, DESIGNED DISTANCE, DIMENSION, CODE RATE, AND CODE 

WORDS OF THE BCH CODES OVER GAUSSIAN FIELD ℤ3[I] 

𝑛 D                   𝑘2            𝑝𝑘2              𝑅2 

80 3                  76          3152           0.95 

80 5                  72          3144         0.90 

80 7                  68          3136         0.85 
80 9                  64          3128         0.80 

… …                …         …         … 

 

The dimension 𝑘1 of BCH codes over codes over a finite field, 

and the dimension 𝑘2 of BCH codes over a Gaussian field with 

designed distance 𝑑 are given in Figure 1. 
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The code rate 𝑅1 of BCH codes over codes over finite field, 

and the code rate 𝑅2 of BCH codes over Gaussian field with 

designed distance 𝑑 are given in Figure 2. 

The following observations are obtained after comparing the 

BCH codes over finite field and their decoding algorithm with 

the BCH codes over Gaussian field and their decoding 

algorithm for the same length and the same designed distance. 

The dimension and code rate of the BCH code over the 

Gaussian field increased as compared to the dimension and 

code rate of the BCH code over the finite field. 

The numbers of code words of the BCH code over the 

Gaussian field are much higher than the number of code words 

of the BCH code over the finite field. 

The decoding algorithm of the BCH code over the finite field 

is a particular algorithm for the correction of errors, but the 

decoding of the BCH code by modified Berlekamp Massey 

algorithm over the Gaussian field is a generalized algorithm 

for the correction of errors. 

VII. Conclusion  

In this article, the Gaussian field and its extension have been 

presented. Further, the construction method for the BCH 

codes using the Gaussian field ℤ𝑝[𝑖] has been provided. 

Also, designed the decoding of BCH codes over the Gaussian 

field through a slightly amended modified Berlekamp-

Massey algorithm. It has been shown that the BCH codes 

over the Gaussian field ℤ𝑝[𝑖] and their decoding algorithm 

have better performance than the BCH codes over the finite 

field 𝐺𝐹(𝑝𝑚) and their decoding algorithm. The 

construction methods of BCH codes over Gaussian field 

ℤ𝑝[𝑖] and their decoding algorithm may extend over the 

Gaussian rings ℤ𝑝𝑘[𝑖], where 𝑝 ≡ 3(𝑚𝑜𝑑 4), which might 

give better performance than BCH codes having symbols 

from the Gaussian field ℤ𝑝[𝑖]. 
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