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Abstract

Hysteresis and constitutive nonlinearities are inherent properties of ferroelectric transducer ma-
terials due to the noncentrosymmetric nature of the compounds. In certain regimes, these effects
can be mitigated through restricted input fields, charge- or current-controlled amplifiers, or feed-
back designs. For general operating conditions, however, these properties must be accommodated
in models, transducer designs, and model-based control algorithms to achieve the novel capabilities
provided by the compounds. In this paper, we illustrate the construction of inverse filters, based on
homogenized energy models, which can be used to approximately linearize the piezoceramic trans-
ducer behavior for linear design and control implementation. Attributes of the inverse filters are
illustrated through numerical examples and experimental open loop control implementation for an
atomic force microscope stage.
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1 Introduction

Ferroelectric materials, including the compound lead zirconate titanate (PZT), exhibit novel actuator
and sensor capabilities due to the unique electromechanical coupling which they exhibit. This pro-
vides them with the capability for providing broadband transduction and nanometer-level set point
accuracy. Furthermore, piezoelectric transducers are moderately inexpensive and can be designed to
minimally affect the passive dynamics of underlying structures. However, the noncentrosymmetric
ion structure that imbues the materials with unique actuator and sensor properties also produces
hysteresis and constitutive nonlinearities at all drive levels.

To illustrate, consider the prototypical atomic force microscope (AFM) stage depicted in Fig-
ure 1(a) which employs stacked piezoceramic actuators to position the sample in the x and y di-
rections. An additional PZT mechanism provides transverse positioning capabilities. Nested minor
loops collected at 0.1 Hz are plotted in Figure 1(b) and data collected at frequencies ranging from
0.279 Hz to 27.9 Hz is plotted in Figure 2 to illustrate the frequency-dependent nature of the hys-
teresis inherent to field-displacement data.

At low frequencies, the inherent hysteresis can be accommodated through proportional-integral-
derivative (PID) or robust control designs [5, 6, 15, 19]. However, at the higher frequencies required
for applications ranging from real-time monitoring of biological processes — e.g., protein unfolding
— to comprehensive product diagnostics, increasing noise-to-data ratios and diminishing high-pass
characteristics of control filters preclude a sole reliance on feedback laws to eliminate hysteresis.

Alternatively, it is illustrated in [12, 13], that use of charge- or current-controlled amplifiers can
essentially eliminate hysteresis. However, this mode of operation can be prohibitively expensive when
compared with the more commonly employed voltage-controlled amplifiers, and current control is
ineffective if maintaining DC offsets as is the case when the x-stage of an AFM is held in a fixed
position while a sweep is performed with the y-stage.

This motivates the development of models and model-based control designs which incorporate
and accommodate the hysteresis and constitutive nonlinearities. Numerous approaches have been
employed to characterize these nonlinear effects including Preisach models [7,18], domain wall mod-
els [25, 26], micromechanical models [4, 10, 11], mesoscopic energy relations [3, 9] and homogenized
energy models [23, 30]. We employ the homogenized energy framework due to its energy basis, its
capability to quantify a wide range of physical phenomena and operating regimes, its unified nature
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Figure 1: (a) PZT-based AFM stage, and (b) nested minor loops in data collected at 0.1 Hz.
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Figure 2: Frequency-dependent field-displacement behavior of a stacked PZT stage: sample rates of
(a) 0.279 Hz, (b) 5.58 Hz, and (c) 27.9 Hz.

for characterizing hysteresis in ferroelectric, ferromagnetic and ferroelastic compounds [28, 29], and
the potential it provides for real-time implementation. Details regarding the development of this
modeling framework and its relation to other characterization techniques can be found in [21,30].

Model-based control design for piezoceramic transducers operating in highly hysteretic and non-
linear regimes can be roughly segregated into two categories: (i) nonlinear control designs, and (ii)
linear control designs employing nonlinear inverse filters. Examples of the first technique in the
context of optimal control design for smart material transducers are provided in [20,32]. The second
technique is based on the concept of employing either an exact or approximate inverse model to lin-
earize the transducer behavior in the manner depicted in Figure 3. This approach has been employed
with a variety of models and control designs — e.g., see [31] for details regarding the development
of adaptive control designs utilizing piecewise linear Preisach models and their inverses — and is the
technique which we focus on in this paper.

In Section 2 we summarize constitutive relations developed in [21, 30] for ferroelectric materi-
als and provide a highly efficient algorithm for implementing the model when thermal relaxation
is negligible. A corresponding inverse polarization-field algorithm is summarized in Section 3 and
illustrated through a numerical example. The constitutive model is subsequently employed in Sec-
tion 4 to develop a lumped model for the stacked actuator employed in the AFM stage shown in
Figure 1(a) to illustrate the construction of a macroscopic transducer model. The accuracy of the
transducer model is illustrated through a comparison with the frequency-dependent data plotted
in Figure 2. In Section 5, an algorithm for the inverse displacement-field relation to linearize the
transducer response is developed and, in Section 6, the algorithm is experimentally implemented
as an inverse filter for the open loop tracking of a triangular input signal. It is demonstrated that
this model-based filter design effectively linearizes the nonlinear and hysteretic transducer dynamics
and provides an approximately tenfold increase in accuracy at higher frequencies as compared with

uvud
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Figure 3: Use of an inverse filter to linearize the response u of a hysteretic actuator to achieve a
desired output ud.
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the unfiltered case. This significantly improves the accuracy of the transducer and diminishes the
sole reliance on feedback laws whose authority decrease as tracking speeds and noise-to-data ratios
increase.

2 Constitutive Relations

Constitutive relations quantifying the electromechanical behavior of piezoceramic materials are con-
structed in two steps. In the first, Helmholtz and Gibbs energy relations at the lattice level are used
to characterize the local field-polarization and field-strain behavior of ferroelectric compounds for
thermally inactive and active operating regimes. In the second step of the development, material
nonhomogeneities and variable effective field effects are incorporated through the assumption that
certain material properties are manifestations of underlying distributions rather than constants. This
yields low-order macroscopic constitutive relations which are efficient to implement.

2.1 Local Constitutive Relations

Let E, P, ε and σ respectively denote the electric field, polarization, strain and stress. It is illustrated
in [30] that an appropriate formulation of the Helmholtz energy for fixed temperatures in the absence
of stresses is

ψP (P ) =


1
2η(P + PR)2 , P ≤ −PI

1
2η(P − PR)2 , P ≥ PI

1
2η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI .

As shown in Figure 4, PI is the positive inflection point which delineates the transition between
stable and unstable regions, P0 denotes the unstable equilibrium, and PR is the value of P at which
the positive local minimum of ψ occurs. The parameter η is the reciprocal of the slope of the E-P
relation after switching occurs. This fact can be used to establish an initial parameter value for η
when modeling a specific data set.
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Figure 4: (a) Helmholtz energy ψ and Gibbs energy G for σ = 0 and increasing fields E. (b) Switch
in the local polarization P that occurs as E is increased beyond the local coercive field Ec given by
(5) in the absence of thermal activation.
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The corresponding Gibbs energy relation

GP (E, P ) = ψP (P )− EP (1)

incorporates the electrostatic energy due to the applied field E when σ = 0.
Elastic effects and electromechanical coupling are incorporated in the Helmholtz energy relation

ψ(P, ε) = ψP (P ) +
1
2
Y ε2 − a1εP − a2εP

2.

The Gibbs energy is then given by

G(E, σ, P, ε) = ψP (P ) +
1
2
Y ε2 − a1εP − a2εP

2 − EP − σε (2)

where σε incorporates the elastic energy. Note that Y denotes the Young’s modulus and a1, a2 are
ferroelastic coupling coefficients associated with linear piezoelectric and quadratic electrostrictive
effects.

Polarization Kernel — Negligible Thermal Activation

In the case of negligible thermal activation, the local average polarization kernel P is determined
from the necessary conditions

∂G

∂P
= 0 ,

∂2G

∂P 2
> 0.

Applying these conditions to (1) yields the piecewise linear E-P relation

P (E) =
1
η
E + PRδ (3)

where δ = −1 for negatively oriented dipoles and δ = 1 for those with positive orientation. To specify
δ, and hence P , more specifically in terms of the initial dipole orientations and previous switches,
we employ Preisach notation and take

[P (E; Ec, ξ)](t) =


[P (E; Ec, ξ)](0) , τ(t) = ∅
E
η − PR , τ(t) 6= ∅ and E(max τ(t)) = −Ec

E
η + PR , τ(t) 6= ∅ and E(max τ(t)) = Ec.

(4)

Here

[P (E; Ec, ξ)](0) =


E
η − PR , E(0) ≤ −Ec

ξ , −Ec < E(0) < Ec

E
η + PR , E(0) ≥ Ec

defines initial kernel values in terms of the parameter ξ = E0
η ± PR, ∅ designates the empty set, and

the set of switching times is given by

τ(t) = {ts ∈ (0, t] |E(ts) = −Ec or E(ts) = Ec}.

The local coercive field
Ec = η(PR − PI) (5)

quantifies the field at which the negative well ceases to exist and hence a dipole switch occurs. To
illustrate, the condition τ 6= ∅ and E(max τ(t)) = Ec designates that switching has occurred and the
last switch was at Ec; hence the local polarization is [P (E; Ec, ξ)](t) = E(t)

η + PR

4



Polarization Kernel — Thermal Activation

If thermal activation is significant, dipoles can achieve the thermal energy required to switch in
advance of the minimum Gibbs energy so the relative thermal energy kT/V and Gibbs energy G
must be balanced through Boltzmann principles. The probability density for achieving an energy
level G is given by

µ(G) = Ce−GV/kT (6)

where k is Boltzmann’s constant, V is a reference volume and C is a constant that is selected so that
when µ(G) is integrated over all possible dipole orientations, a probability of unity is achieved. If we
let 2ε be the separation between possible polarization states around P0, the probabilities of reaching
a polarization state having sufficient energy to switch orientations are given by

r+− =

∫ P0+ε
P0−ε e−G(E,P )V/kT dP∫∞
P0−ε e−G(E,P )V/kT dP

, r−+ =

∫ P0+ε
P0−ε e−G(E,P )V/kT dP∫ P0+ε
−∞ e−G(E,P )V/kT dP

. (7)

The likelihoods of reaching the required energy and thus of the dipoles switching from a positive to
a negative orientation and conversely are then

p+− =
r+−
T (T )

, p−+ =
r−+

T (T )
(8)

where T (T ) is the relaxation time at temperature T . The fractions of dipoles in each orientation
evolve according to the ordinary differential equations

dx+

dt
= −p+−x+ + p−+x−

dx−
dt

= −p−+x− + p+−x+.

The expected polarizations due to positively and negatively oriented dipoles are

〈P+〉 =
∫ ∞

P0+ε
Pµ(G)dP , 〈P+〉 =

∫ P0−ε

−∞
Pµ(G)dP

so that evaluation of C yields

〈P+〉 =

∫∞
P0+ε Pe−G(E,P,T )V/kT dP∫∞
P0+ε e−G(E,P,T )V/kT dP

, 〈P−〉 =

∫ P0−ε
−∞ Pe−G(E,P,T )V/kT dP∫ P0−ε
−∞ e−G(E,P,T )V/kT dP

. (9)

The local average polarization is subsequently

P = x+〈P+〉+ x−〈P−〉. (10)

In the manner detailed in [30], the evaluation of the integrals in (7) and (9) can be simplified through
approximations employing the inflection points ±PI rather than the unstable equilibrium P0.

2.2 Global Constitutive Relations

For homogeneous compounds with uniform effective fields Ee, the local lattice relations (3), (4)
or (10) can be extrapolated throughout the material to provide global constitutive relations. This
yields the nearly instantaneous transitions at coercivity that are associated with certain single crystal
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compounds — e.g., the hysteresis kernels depicted in Figure 4 provide a reasonable characterization of
the single crystal BaTiO3 behavior shown on pages 72-76 of [14] — but provide a poor characterization
of the mollified transition behavior of general ferroelectric compounds. To incorporate the effects of
material nonhomogeneities, polycrystallinity, and variable effective fields Ee = E + EI , we assume
that the interaction field EI , due to neighboring dipoles and certain electromechanical interactions [1],
and local coercive field Ec given by (5) are manifestations of underlying distributions rather than
constants. If we designate the associated densities by ν1 and ν2, the macroscopic field-polarization
behavior is quantified by the relation

[P (E)](t) =
∫ ∞

0

∫ ∞

−∞
[P (E + EI ; Ec, ξ)](t)ν1(Ec)ν2(EI)dEIdEc (11)

where the kernel P is given by (3), (4) or (10).
As detailed in [23], the densities ν1 and ν2 are assumed to satisfy the physical criteria

(i) ν1(x) defined for x > 0,

(ii) ν2(−x) = ν2(x),

(iii) |ν1(x)| ≤ c1e
−a1x,

|ν2(x)| ≤ c2e
−a2|x|

(12)

for positive c1, a1, c2, a2. The restricted domain in (i) reflects the fact that the coercive field Ec is
positive whereas the symmetry enforced in the interaction field through (ii) yields the symmetry
observed in low-field Rayleigh loops. Hypothesis (iii) incorporates the physical observation that the
coercive and interaction fields decay as a function of distance and guarantees that integration against
the piecewise linear kernel yields finite polarization values.

By employing numerical integration routines tailored to the infinite domains or truncated intervals
resulting from the decay criteria (12), the integrals in (11) can be approximated to obtain the
discretized model

[P (E)](t) =
Ni∑
i=1

Nj∑
j=1

[P (E + EIj ; Eci , ξj)]ν1(Eci)ν2(EIj )viwj . (13)

Specific choices for the weights vi, wj and abscissas Eej , Eci are detailed in [21,30].
Techniques for identifying the densities ν1 and ν2 are illustrated in [23]. For certain applications,

reasonable accuracy is provided by a priori functions satisfying the physical criteria (12) and having
a small number of parameters to be estimated through least squares fits to data — e.g., variances
and means in normal and lognormal relations. For more general applications requiring high accuracy
for a wide range of operating conditions, the Ni + Nj discretized density values ν1(Eci) and ν2(EIj )
can be estimated through least squares techniques.

To obtain an elastic constitutive relation, the equilibrium condition

∂G

∂ε
= 0

is invoked to obtain
σ = Y ε− a1P − a2P

2. (14)

When P = 0, (14) reduces to Hooke’s law. To incorporate internal damping, we posit that when
P = 0, stress is proportional to a linear combination of strain and strain rate (Kelvin–Voigt damping
hypothesis). This yields the constitutive relation

σ = Y ε− cDε̇− a1P − a2P
2 (15)
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where cD is the Kelvin–Voigt damping parameter. The combination of the field-polarization model
(11) or (13) and the electromechanical relation (15) are employed in Section 4 to construct a lumped
model for a stacked PZT actuator operating in hysteretic and nonlinear regimes.

2.3 Implementation Algorithm

The efficiency of inverse algorithms used to construct inverse filters is dependent on the efficiency of
forward algorithms used to implement the discretized polarization model (13). In this section, we
summarize a highly efficient algorithm to evaluate (13) when the kernel P is given by (3) or (4) for
regimes in which relaxation processes are negligible. Analogous algorithms for the thermally active
kernel (10) are reported in [2].

From (4), it is observed that for each field value EIj , it is necessary to determine whether a
transition has occurred relative to the coercive value Eci . This yields Ni × Nj conditions to be
checked for each input value. While this can be easily accomplished using an if-then construct,
implementation in this manner diminishes significantly the efficiency of the algorithm. This motivates
consideration of an algebraic technique for evaluating the conditional statements.

To retain the history of whether or not effective field values Eej = E + EIj have switched due to
encounters with coercive field values Eci , we employ (3) to motivate the matrix formulation

P =
E

η
+ PR∆(E; Ec, EI)

where ∆ = 1 if evaluating on the upper branch of the hysteron (hystersis kernel) and ∆ = −1 if on
the lower branch. For the evaluation of (13), ∆ is an Ni×Nj matrix whose ijth component specifies
whether EIj has reached the coercive value Eci . To specify ∆, we define the matrices

∆init =

 −1 · · · −1 1 · · · 1
...

...
...

...
−1 · · · −1 1 · · · 1


Ni×Nj

, Ec =

 Ec1 · · · Ec1
...

...
EcNi

· · · EcNi


Ni×Nj

Ek =

 Ek + EI1 · · · Ek + EINj

...
...

Ek + EI1 · · · Ek + EINj


Ni×Nj

and weight vectors
V T =

[
v1ν1(Ec1), · · · , vNiν1(EcNi

)
]
1×Ni

W T =
[
w1ν2(EI1), · · · , wNjν2(EINj

)
]
1×Nj

where Ek = E(tk) is the kth value of the input field. The points Eci and EIj in the definitions are
determined by the quadrature rule being employed on intervals [0, Ecmax ] and [EImin , EImax ] chosen
according to the physical decay conditions (12) — i.e., the densities ν1 and ν2 are negligible outside
these regions.

The polarization Pk ≈ P (Ek) is specified by Algorithm 1. In this algorithm, .∗ indicates compo-
nentwise matrix multiplication and sgn denotes the signum function. The first step in the for-loop
updates ∆ by incorporating the status of the previous coercive field switch.

Depending on the methods used for programming, the use of Algorithm 1 rather than utilizing
conditional if-then constructs can reduce runtimes by factors in excess of 100 so that full multiloop
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model simulations run in the order of seconds on a workstation. This level of efficiency is necessary to
achieve real-time implementation of control algorithms utilizing the model. Finally, we note that the
algorithms reported in [2] for the kernel (10) which incorporates thermal activation are on the order of
2-3 times slower than Algorithm 1. While this produces analogous reductions in the speed of inverse
algorithms, the resulting model is still sufficiently efficient to facilitate real-time implementation.

Algorithm 1.
∆prev = ∆init

for k = 1 : Nk

∆ = sgn(Ek + Ec. ∗∆prev)
P = 1

ηEk + PR∆

Pk = V T PW

∆prev = ∆
end

3 Inverse Relation Between Polarization and Field

The model (11) and discretized model (13) quantify the relation between input fields and the polar-
ization generated in ferroelectric materials. To construct an inverse filter of the type illustrated in
Figure 3, it is necessary to quantify the inverse P -E relation. We summarize here an algorithm which
accomplishes this when the E-P relation is assumed monotone and illustrate the filtering process
depicted in Figure 3 through a numerical example. Extension of the algorithm to accommodate the
non-monotone field-displacement behavior shown in Figure 2 is addressed in Section 5.

The first step in the construction of an inverse filter involves the determination of an initial
(E0, P0) value. This is typically done with E0 = 0 so that P0 = ±PR is the positive or negative
remanence value or P0 = 0 for depoled materials. The values of ±PR can be computed using the
forward model (11) or (13) by taking one step to ±Emax chosen sufficiently large that all dipoles
have switched and then stepping back to E = 0. For a specified value of P , monotonicity in
the E-P relation is exploited and the forward model is subsequently advanced until the prescribed
polarization is crossed. Interpolation is then used to specify a final field value corresponding to the
prescribed polarization. This process is outlined in Algorithm 2 where specified polarization values
are designated by {P ∗

k } and computed values by {Pk} for k = 1, · · ·Nk.

Algorithm 2.
for k = 2 : Nk

Specify Estep > 0 as fixed or adaptive
dP = P ∗

k − P ∗
k−1

∆E = dP · Estep

Etmp = Ek−1 , Ptmp = Pk−1

while sgn(dP ) · (P ∗
k − Ptmp) >= 0

Etmp = Etmp + ∆E

Ptmp given by (13)— e.g., as implemented in Algorithm 1
end

Ek given by linear interpolation
end

8



The flexibility and robustness provided by the inverse Algorithm 2 are illustrated in Figure 5.
The polarization plotted in Figure 5(c) is employed as input to Algorithm 2 to yield the P -E relation
plotted in Figure 5(a). At each time step, the resulting field value is then employed as input to the
forward Algorithm 1 to yield the E-P curve shown in Figure 5(b). These output polarization values
Pout are compared with inputs Pin in Figure 5(c) and the absolute errors |Pin − Pout| are plotted in
Figure 5(d).

From these results, a number of conclusions can be drawn. (i) We first note that the model
and its inverse provide the capability for characterizing a wide range of symmetric and biased minor
loop behavior — e.g., see [21, 23, 30]. (ii) The composition of the inverse and model in the manner
depicted in Figure 3 can effectively linearize the nonlinear transducer behavior with the numerical
accuracy |Pin−Pout| limited only by the stepsize dP . Whereas the accuracy in a physical system will
be diminished due to modeling error, linearization in this manner can significantly improve control
authority since less control effort is focused on unmodeled or nonlinear dynamics. This forms the
crux of various linear control designs [15,16]. (iii) Although faster implementation algorithms can be
constructed for the inversion process [8], the algorithm described here is highly robust and avoids the
potential for losing track of the memory incorporated in the model. Furthermore, the use of adaptive
stepsizes ∆E ensures that Algorithm 2 is approximately a factor of two slower than the forward
algorithm which is reasonable for physical implementation. (iv) Whereas Algorithm 2 employs the
limiting piecewise linear kernel P given by (4), analogous algorithms have been developed for the
more general kernel (10) which incorporate thermal relaxation and additional dynamic effects [8].
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Figure 5: (a) Inverse relation Pin-Eout given by Algorithm 2. (b) Forward relation Eout-Pout from
Algorithm 1. (c) Comparison between Pin and Pout. (d) Absolute error |Pin − Pout| for complete
inversion process depicted in Figure 3.
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4 Lumped Model for the Stacked Actuator

The constitutive relation (15) quantifies the electromechanical behavior of piezoceramic materials
operating below the coercive stress σc where ferroelastic switching commences. In this section we
use this relation to construct a macroscopic model for the stacked PZT rod employed as an AFM
stage in the manner depicted in Figure 1(a). While this illustrates macroscopic model development
for a specific application, similar principles hold for other transducer designs — e.g., see [21].

We assume that the stacked actuator or rod has length `, cross-sectional area A, density ρ,
Young’s modulus Y , and Kelvin–Voigt damping parameter cD. We also assume that the end at
x = 0 is fixed whereas the end at x = ` is subjected to inertial, elastic and damping forces associated
with the stage mechanisms. Because material properties and forces along the length of the rod are
uniform, we consider a lumped model quantifying the displacement u(t) at x = `. The validity
of the lumped ODE model as compared with a distributed PDE model is established in [24]. The
geometry, mass m`, stiffness k`, and damping mechanisms c` associated with the end-forces at x = `
are depicted in Figure 6.

From the assumption of uniform stresses and strains through the length of the rod, it follows that

ε(t) =
u(t)
`

in the stress relation (15). Balancing the forces σA for the rod with those of the stage mechanisms
yields the lumped model

ρA
d2u

dt2
(t) +

cDA

`

du

dt
(t) +

Y A

`
u(t)−Aa1P (E(t))−Aa2P

2(E(t)) = −m`
d2u

dt2
(t)− c`

du

dt
(t)− ku(t)

or, equivalently,

m
d2u

dt2
(t) + c

du

dt
(t) + ku(t) = ã1P (E(t)) + ã2P

2(E(t)) (16)

where

m = ρA + m` , c =
cDA

`
+ c` , k =

Y A

`
+ k` , ã1 = Aa1 , ã2 = Aa2

and the initial conditions are u(0) = u0 and du
dt (0) = u1. The polarization P is specified by the model

(11) or discretized model (13).
The model can also be written as the first-order system

~̇u(t) = A~u(t) + ~P(E(t))

~u(0) = ~u0

(17)

x= 0

l

l

l

x= l

u(t) k
m

c

Figure 6: Rod geometry used when modeling the stacked PZT actuator employed in the AFM stage
depicted in Figure 1(a).
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where ~u(t) = [u(t), u̇(t)]T , ~u(0) = [u0, u1]T and

A =

[
0 1

−k/m −c/m

]
, ~P(E(t)) =

1
m

[
ã1P (E(t)) + ã2P

2(E(t))
] [

0
1

]
.

This formulation proves advantageous in the next section when establishing notation used in the
construction of the inverse algorithm.

The accuracy of the framework is illustrated in Figure 7 where the lumped model (16) with
P specified by (13) is used to characterize the frequency-dependent dynamics of the PZT stacked
actuator employed in the AFM stage depicted in Figure 1(a). When constructing the polarization
model, the general densities ν1 and ν2 were identified using the least squares techniques detailed
in [23]. It is noted that the combined model quantifies both the hysteresis and dynamic effects
observed as frequencies are increased. Additional details regarding the construction and validation
of the stacked actuator model for the AFM stage are provided in [8,24] whereas additional examples
demonstrating properties of the model for characterizing hysteresis in various PZT compounds can
be found in [21–23,30].
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Figure 7: Characterization of AFM field-displacement behavior with sample rates of (a) 0.279 Hz,
(b) 5.58 Hz and (c) 27.9 Hz.

5 Inverse Relation Between Displacements and Fields

The inversion algorithm summarized in Section 3 relies on the monotonicity of the E-P relation. As
illustrated in Figure 2, this property is not shared by the E-u relation as frequencies are increased
so we develop here an extended inversion algorithm which incorporates this non-monotone behavior.
The crux of the modification focuses on the accommodation of dynamic effects in the E-u behavior.

To establish notation used when quantifying dynamic effects, we employ modified semigroup
notation to define solution values

uk+1 = u(tk+1, tk, E, ~uk) = CeA(tk+1−tk)~uk + C

∫ tk+1

tk

eA(tk+1−s) ~P(E(s))ds

ũk+1 = u(tk+1, tk, Ek, ~uk) = CeA(tk+1−tk)~uk + C

∫ tk+1

tk

eA(tk+1−s) ~P(Ek)ds

(18)

where C = [1, 0] and Ek = E(tk). Hence uk+1 is the solution to (16) or (17) with the electromagnetic
force applied throughout the time interval [tk, tk+1] whereas ũk+1 denotes the displacement of the
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rod at x = ` with the force maintained constant at the kth value throughout the interval [tk, tk+1] as
depicted in Figure 8. The definition of uk is similar to that of uk+1.

The upper and lower hysteresis curves are denoted by

cL =
{

(E, u) | dE

dt
≥ 0

}
cU =

{
(E, u) | dE

dt
≤ 0

}
.

Due to dynamic (inertial) effects, it is observed that

ũk+1 ≤ uk+1 on cL

ũk+1 ≥ uk+1 on cU

(19)

as depicted in Figure 8(b) and (c). To motivate the relation on cL, we note that (18) yields

uk+1 − ũk+1 = C

∫ tk+1

tk

eA(tk+1−s)
[
~P(E(s))− ~P(Ek)

]
ds. (20)

We now establish that the right hand side of (20) is nonnegative given that the monotonicity
of the E-P relation implies that ~P(E(s)) − ~P(Ek) ≥ 0 for s ≥ tk. We first note that the Cayley–
Hamilton theorem dictates that eA(tk+1−s) = α0I +α1A. Furthermore, it follows from the definitions
of C and ~P(E(t)) that only the (1, 2) entry of eA(tk+1−s) contributes to the right hand side of (20).
Moreover, it follows from the definition of A that the (1, 2) entry of eA(tk+1−s) is simply α1.

To determine α1, we note that there are two possibilities for the eigenvalues of A: (i) both are
real, distinct, and negative, and (ii) they are a conjugate pair with negative real part. We consider
the first case where the eigenvalues satisfy λ2 < λ1 < 0. It follows from the Cayley–Hamilton theorem
that

eλ1(tk+1−s) = α0 + α1λ1

eλ2(tk+1−s) = α0 + α1λ2

cL

cU

Ek Ek+1

uk

uk+1
cL

kt k+1t

Ek

cU uk

uk+1

EkEk+1

uk+1
~

Ek

k+1t kt

u

E(a)

(b)

uk+1
~

E(t) E(t)

(c)

Figure 8: Non-monotone behavior of the field-displacement relation measured at 27.9 Hz as shown
in Figure 2(c). Solution values ũk+1 and uk+1 respectively due to field inputs Ek and E(t) on the
(b) lower loop cL, and (c) upper loop cU of the curve.
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so that

α1 =
eλ1(tk+1−s) − eλ2(tk+1−s)

λ1 − λ2
> 0.

Similar analysis holds for the second case. Thus the integrand CeA(tk+1−s)[~P(E(s))− ~P(Ek)] of (20)
is nonnegative and consequently so is the integral. As a result, uk+1 − ũk+1 ≥ 0 or equivalently
ũk+1 ≤ uk+1. The argument for cU is analogous.

In the inverse algorithm used to specify the u-E relation given data values {u∗k}, k = 1, · · · , Nk,
the inequalities (19) are applied to either the exact or discretized solution of (16) to determine the
appropriate sign of ∆E when implementing the polarization component (13) of the model. The
notation utmp and ũtmp designate either the exact or approximate solutions to (13) having the
interpretation specified in (18). The resulting inversion process is outlined in Algorithm 3. Attributes
of the algorithm are illustrated in the next section in the context of experimental open loop control
implementation.

Algorithm 3.
for k = 2 : Nk

Specify Estep > 0 as fixed or adaptive
Specify ∆t

∆E = sgn(u∗k+1 − ũk+1) · Estep

Etmp = Ek−1 , Ptmp = Pk−1 , ttmp = tk−1

while sgn(u∗k+1 − ũk+1) ·∆E >= 0
ttmp = ttmp + ∆t

compute utmp as true or approximate solution to (16)
Etmp = Etmp + ∆E

Ptmp given by (13)— e.g., as implemented in Algorithm 1
end

Ek given by linear interpolation
end

6 Open Loop Control Implementation

To illustrate the effect of filters employing the inverse model developed in Section 5 on open loop
tracking performance, we summarize experiments conducted at 0.279 Hz and 27.9 Hz. The trajectory
to be tracked consisted of triangle waves having amplitudes of 40.56 µm and 27.04 µm as shown in
Figures 9–11.

To specify the model, parameters in the polarization model (13) and lumped rod model (16)
were estimated through a least squares fit to field-displacement data collected at 0.279 Hz, 5.58 Hz
and 27.9 Hz using the techniques detailed in [23]. This yielded model fits similar to those shown
in Figure 7. The model with these parameters was then used to construct an inverse filter using
Algorithm 3 of Section 5. In a series of experiments, the specified trajectories were input to the filter
and the resulting field was applied to the AFM stage. To provide a metric for comparison, a second
input field for each case was determined through a linear scaling of the field-displacement relation.
This linear filter accommodated the scaling difference between inputs and outputs but neglected
inherent hysteresis and constitutive nonlinearities.
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Figure 9: Tracking performance utilizing the model-based inverse filter of Section 5 and a linear
filter at 0.279 Hz and amplitude of 40.56 µm. (a) Specified trajectory and tracking provided by the
inverse and linear filters, and (b) errors obtained with the two filters). (c) Field-displacement data
measured before and after the open loop control experiment.
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Figure 10: Tracking performance utilizing the model-based inverse filter of Section 5 and a linear
filter at 0.279 Hz and amplitude of 27.04 µm. (a) Specified trajectory and tracking provided by the
inverse and linear filters, and (b) errors obtained with the two filters).
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Figure 11: Tracking performance utilizing the model-based inverse filter of Section 5 and a linear
filter at 27.9 Hz and amplitude of 27.04 µm. (a) Specified trajectory and tracking provided by the
inverse and linear filters, and (b) errors obtained with the two filters). (c) Field-displacement data
measured before and after the open loop control experiment.

The specified and achieved trajectories, errors, and selected hysteresis plots for the combinations
(i) 0.279 Hz, 40.56 µm amplitude, (ii) 0.279 Hz, 27.04 µm amplitude, and (iii) 27.9 Hz, 27.04 µm
amplitude are plotted in Figures 9–11. At 0.279 Hz, the filtered design provides only marginally
improved accuracy due to the low degree of hysteresis. For the more hysteretic response at 27.9 Hz,
however, the inverse filter provides a significant increase in accuracy and yields errors that are
approximately a factor of 10 smaller than the linearly scaled case. This illustrates the advantage
of incorporating the frequency-dependent model inverse in the control design. We note that the
same model parameters were employed in each case thus illustrating the capability of the model and
model-based inverse to compensate for the frequency-dependent hysteresis.

The primary source of errors in the filtered design is variability between experiments as illustrated
by the variation in the hysteresis plots measured at the two frequencies before and after the open
loop control experiments. This is hypothesized to be due to variations in the true applied voltage
and illustrates one reason feedback is necessary in final control designs.

7 Concluding Remarks

This paper addresses the development, implementation and experimental validation of a model-based
inverse filter to accommodate hysteresis and constitutive nonlinear inherent to the field-polarization
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and field-displacement behavior of ferroelectric materials. The nonlinear hysteresis effects are quan-
tified using a previously developed framework consisting of energy relations at the lattice level in
combination with stochastic homogenization techniques to provide low-order macroscopic constitu-
tive relations. The development of a lumped transducer model based on these constitutive relations
is illustrated in the context of a PZT stage for an AFM. The inverse displacement-field model exploits
monotonicity in the E-P relation, the efficiency of forward E-P algorithms, and dynamic properties
of the transducer model.

To illustrate attributes of the inverse displacement-field algorithm, it was employed as a filter
in open loop tracking experiments with an AFM stage. These experiments illustrate that at low
frequencies, where hysteresis and constitutive nonlinearities are minimal, incorporation of the in-
verse filter provides only marginal improvement in tracking accuracy as compared with a linear
filter. However, at higher frequencies where hysteresis becomes significant, the inverse filter yields
an approximately tenfold improvement in accuracy compared with the linear filter thus maintaining
tracking accuracy even though the transducer is operating in highly hysteretic and nonlinear regimes.
Linearization of the electromechanical behavior in this manner reduces the degree to which feedback
mechanisms must expend energy linearizing the transducer response and increases control authority
for stabilization or tracking.

We note that a significant advantage of the energy-based model is the fact that it provides a unified
framework for characterizing hysteresis and constitutive nonlinearities in ferroelectric, ferromagnetic
and ferroelastic (e.g., SMA) compounds [28, 29]. One facet of present investigations focuses on
the extension and implementation of the inverse filtering techniques for the latter two classes of
compounds.

Present investigations are also focused on the development of robust feedback control designs
which employ the inverse filters to linearize transducer dynamics. Initial investigations focused on
the numerical implementation of these energy-based inverse filters for magnetic transducers will be
reported in [17] and the experimental implementation of feedback designs exploiting the filters are
under present investigation.
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