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Figure 1: Optimal and sub-optimal solutions for walking a given distance (left) and for picking up an object (right).

Abstract

Many compelling applications would become feasible if novice
users had the ability to synthesize high quality human motion based
only on a simple sketch and a few easily specified constraints. We
approach this problem by representing the desired motion as an in-
terpolation of two time-scaled paths through a motion graph. The
graph is constructed to support interpolation and pruned for effi-
cient search. We use an anytime version of A∗ search to find a glob-
ally optimal solution in this graph that satisfies the user’s specifica-
tion. Our approach retains the natural transitions of motion graphs
and the ability to synthesize physically realistic variations provided
by interpolation. We demonstrate the power of this approach by
synthesizing optimal or near optimal motions that include a variety
of behaviors in a single motion.

CR Categories: I.3.6, I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation;

Keywords: motion capture, motion graph, motion planning, hu-
man animation, motion interpolation

1 Introduction

The ability to construct animations of human characters easily and
without significant training would enable many novel and com-
pelling applications. Children could animate stories, novice users
could author effective training scenarios, and game players could
create a rich set of character motions. With these applications in
mind, we have focused on techniques that require users to provide
only a small amount of information about a desired motion. The
user provides an approximate sketch of the path of the character
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Figure 2: (Top) Rough sketch of the desired path and a user con-
straint requiring the character to sit on the chair at the end of the
path. (Bottom) Synthesized motion.

on the ground plane and a set of constraints (Figure 2). Given this
simple description of the desired motion, our discrete optimization
approach can quickly create a natural-looking motion that matches
the user’s specification.

The key insight behind our approach is that we represent the motion
as an interpolation of two time-scaled paths through a motion graph.
The strength of this representation is that it allows the adaptation of
existing motions through interpolation while also retaining the nat-
ural transitions present in a motion graph. We allow interpolation
only of segments with matching contact patterns and therefore the
resulting motion is often close to physically correct [Safonova and
Hodgins 2005]. This representation creates a search space that is
far smaller than the full space created by the 50 degrees of freedom
of a human character because it contains only natural poses and ve-
locities from the original motions and the interpolation of segments
with matching contact patterns.

We can search our representation for optimal or near-optimal so-
lutions using an anytime version of A∗ [Likhachev et al. 2003].
To make a globally optimal search possible, we developed two
techniques that significantly decrease the number of states that the
search will have to visit. The first technique compresses the mo-
tion graph into a practically equivalent but much smaller graph by
removing states and transitions that would not be part of an opti-



mal solution or are redundant. The second technique computes an
informative heuristic function that guides the search toward states
that are more likely to appear in an optimal solution. The combi-
nation of these two techniques makes it possible to find optimal or
close-to-optimal solutions for 15 second motion with a few minutes
of computation.

The user can specify motion by sketching the path of the character
through the environment and by specifying constraints. The system
can only support user constraints at the transition between contact
phases (for example, the transition from standing to standing while
holding a cup). This restriction is less of a problem than it might
appear because animated characters tend to act on their environ-
ment, and user constraints, therefore, often create contact changes
(footsteps, picking up an object, sitting on a chair, for example).

We demonstrate the power of this approach with a number of exam-
ples generated from a database of 6-7 minutes of motion. The ex-
amples are lengthy and include such behaviors as walking, ducking,
walking along a beam, jumping, picking up an object, and sitting
down. These examples demonstrate that we have retained the key
advantages of motion graphs: long motions, a variety of behaviors,
and natural transitions. We demonstrate the value of interpolation
through a set of examples that satisfy constraints that could not be
met with the original motion graph. The value of an optimal solu-
tion is shown through examples such as those in Figure 1 where the
greedy solution is less natural than the optimal solution. The opti-
mality of our solution avoids the dithering or unnatural motions that
are sometimes found when motion graphs are searched with greedy
or locally optimal algorithms.

In the next section we review related work. We then define the op-
timization problem and explain how the graph is constructed, com-
pressed, and searched efficiently. We conclude with experimental
results in Section 7 and a discussion of the advantages and limita-
tions of our approach in Section 8.

2 Background

Continuous optimization, introduced to the graphics community by
Witkin and Kass [1988], is a common technique for finding a mo-
tion when only a rough sketch is provided. These techniques rely on
physical laws to constrain the search and produce natural-looking
motion. Continuous optimization has been shown to work well
when a good initial guess is provided and for synthesizing rela-
tively short, single behavior motions, such as jumps and runs (see
for example [Fang and Pollard 2003; Safonova et al. 2004; Sulej-
manpašić and Popović 2005]). In contrast to continuous optimiza-
tion, the discrete optimization approach explored in this paper can
handle longer motions that consist of multiple behaviors and does
not require an initial guess. However, it is restricted to resequenc-
ing and interpolation of prerecorded motions and cannot generate
entirely novel motions as continuous optimization can.

Interpolation is a simple, yet powerful technique for generating mo-
tions that are variations of motions in a database [Perlin 1995;
Guo and Roberge 1996; Wiley and Hahn 1997]. Rose and his
colleagues [1998] implemented a system that allowed interactive
control of a character driven by interpolated motion. Kovar and
Gleicher [2003; 2004] created a technique for identifying motions
that could be interpolated and for automatically registering those
motions. Abe and his colleagues [2004] used optimization to syn-
thesize a family of highly dynamic motions from a motion cap-
ture sequence and then interpolated those motions to create others.
Safonova and Hodgins [2005] analyzed interpolated motions for
physical correctness and showed that interpolation produces mo-
tions that are close to physically correct in many cases. Our dis-
crete optimization approach also relies on interpolation to synthe-

size variations of existing motions, but does not require that the
example motions be aligned in advance. Instead, the subsequences
that are interpolated are selected automatically during the optimiza-
tion process.

Motion graphs and related approaches can be categorized into on-
line approaches where the motion is generated in response to user
input (from a joystick, for example) [Lee et al. 2002] and off-line
approaches where the full motion specification is known in ad-
vance [Arikan and Forsyth 2002; Kovar et al. 2002]. On-line ap-
proaches can perform only local search because new input is con-
tinuously arriving. Off-line approaches, on the other hand, can find
a high quality solution that minimizes an objective function such as
energy. Our work falls into the category of off-line techniques.

A number of algorithms have been developed to search a motion
graph in an off-line fashion [Arikan and Forsyth 2002; Kovar et al.
2002; Pullen and Bregler 2002; Arikan et al. 2003; Choi et al. 2003;
Sung et al. 2005; Li et al. 2002; Srinivasan et al. 2005]. These tech-
niques either use a global but sub-optimal search or concatenate a
series of short motion segments each found by a separate search. To
find an optimal solution efficiently, Lau and Kuffner [2005] manu-
ally created a behavior-based motion graph with a very small num-
ber of nodes. In later work, they precomputed search trees from the
graph and used them for faster but not globally optimal search [Lau
and Kuffner 2006]. Lee and Lee [2004] precomputed policies that
indicate how the avatar should move for each possible control in-
put and avatar state. Their approach allows interactive control with
minimal run-time cost for a restricted set of control inputs.

A number of on-line approaches have been created in the past few
years that combine motion graphs and interpolation techniques.
Park and his colleagues [2002; 2004] manually preprocess motion
into short segments. Segments with similar structure are then ar-
ranged into nodes in a graph and blended so that local search can
be used to generate locomotion in real-time. The graph construc-
tion was later automated for locomotion by Kwon and Shin [2005].
Shin and Oh [2006] extended these techniques to include additional
behaviors. They use a method similar to the one proposed by Gle-
icher and his colleagues [2003] to semiautomatically build a fat
graph in which the incoming and outgoing edges of a node rep-
resent motion segments starting from and ending at similar poses.
Heck and Gleicher [2007] create parametric spaces from similar
motion segments and use sampling methods to identify and repre-
sent good transitions between these spaces. Our approach is similar
in that we also combine motion graphs and interpolation but we do
so for off-line, globally optimal search rather than local search.

Unlike all previous motion graph approaches with the exception
of Lau and Kuffner [2005], we find a globally optimal or a close-
to-optimal solution with an upper bound on the sub-optimality. In
Section 7, we show a number of comparisons to demonstrate that
globally optimal solutions avoid the inefficient patterns of motion
that are often seen with local or sub-optimal search techniques.

3 Overview

We represent the motion, M′(t), that we are trying to synthesize as
an interpolation of two time-scaled paths through a motion graph:

M′(t) = w(t)M1(t)+(1−w(t))M2(t). (1)

where M1(t) and M2(t) are the paths and w(t) is an interpolation
weight. The two paths independently transition between poses in
the database (Figure 3). We allow paths to be scaled in time to syn-
chronize the motions for interpolation. The weight, w(t), can also
change with time. Equation 1 is very similar to the standard equa-
tion for motion interpolation, where M1(t) and M2(t) are two short



Figure 3: For this example, the database consists of four motions:
two walks and two jumps. The resulting motion is an interpolation
of two paths through the motion graph, M1(t) (orange) and M2(t)
(purple). M1(t) and M2(t) can transition independently between
motions in the database.

Figure 4: Two example problem specifications. (Left) The user
provided the sketch of the path of the character and specified three
constraints: start at A, pick an object from a table at B, and arrive
at D. An environmental constraint, C, for jumping over the river
is added automatically by the system. (Right) The user specified
only the start and goal positions. The system automatically cre-
ates a sketch of the 2D path while avoiding obstacles and adds an
environmental constraint for jumping over the river.

motion segments of similar structure (two jumps, for example). In
our representation M1(t) and M2(t) are two long paths through the
motion graph which we find using discrete optimization.

We construct a graph that supports interpolation of paths through
the original motion graph and use an anytime version of A∗ search
to find an optimal path that satisfies the constraints specified by the
user. We next define the unknowns, constraints, objective function,
and search method for our discrete optimization problem.

Unknowns: The unknowns of the optimization problem are the
variables from Equation 1: M1(t), M2(t), and w(t). The weight,
w(t) is discretized (eleven values in the range from zero to one).

Constraints: Either the user provides a rough sketch of the 2D path
on the ground plane that the character should follow or the 2D path
is computed automatically from the start and end points (Figure 4).
The root of the character is constrained to stay inside a 2D corridor
around the path (0.25−1.0m wide in the examples reported here).
The user also can optionally specify a set of constraints (such as
sitting on a chair or picking up an object). These user constraints
should coincide with contact changes in the motion and will be met
within a small tolerance. If the user sketch passes across obstacles
(such as a river) the system also automatically adds environmental
constraints. Finally, obstacle avoidance constraints are automati-
cally included.

Objective function: The objective function is a weighted average
of two terms: the sum of the squared torques computed via inverse
dynamics and the sum of the costs of the transitions associated with

the traversed edges in the motion graph. The first term is an ap-
proximation of the energy needed to perform the motion. This term
picks paths through the motion graph whose interpolation will re-
sult in efficient motion patterns. The second term is a measure of
the smoothness of the motion.

The user-specified constraints are treated as constraints for the opti-
mization problem rather than including them as part of the objective
function. This decision makes the objective function independent of
the particular constraints chosen by the user at runtime and allows
us to compress the motion graph as a preprocessing step (Section 5).

Search Method: We use A∗ search [Pearl 1984], and in partic-
ular its anytime extension ARA∗ [Likhachev et al. 2003], to find
the paths through the motion graph and interpolation weights so
that the interpolated path will satisfy the constraints and provide
the optimal solution. The algorithm takes as input a graph where
each edge has a strictly positive cost, a start state, sstart, and a goal
state, sgoal. It then searches the graph for a path that minimizes the
cumulative cost of the transitions in the path. A∗ uses a problem-
specific heuristic function to focus its search on the states that are
more likely to appear on the optimal path because they have low
estimated cost. For each state s in the graph, the heuristic function
must return a non-negative value, h(s), that estimates the cost of a
path from s to sgoal. To guarantee the optimality of the solution and
to ensure that each state is expanded only once, the heuristic func-
tion must satisfy the triangle inequality: for any pair of states s,s′

such that s′ is a successor of s, h(s) ≤ c(s,s′)+h(s′), where c(s,s′)
is the cost of a transition between states s and s′. For s = sgoal,
h(s) = 0. In most cases, if the heuristic function is admissible (i.e.,
does not overestimate the minimum distance to the goal), the trian-
gle inequality holds. For a given graph and heuristic function, A∗

searches the minimum number of states required to guarantee the
optimality of a solution [Russell and Norvig 2003].

The anytime extension of A∗, ARA∗ search [Likhachev et al. 2003],
trades off the quality of the solution for search time by using an in-
flated heuristic (h-values multiplied by ε > 1). The inflated heuris-
tic often results in a speedup of several orders of magnitude. The
solution is no longer optimal, but its cost is bounded from above by
ε times the cost of an optimal solution. ARA∗ starts by finding a
suboptimal solution quickly using a large ε and then gradually de-
creases ε (reusing previous search results) until it runs out of time
or finds a provably optimal solution.

4 Graph Construction

We assume that we have a database of motions sampled as an or-
dered sequence of poses. We use a right-handed coordinate system
XY Z with the X and Z axes spanning the ground plane and the Y
axis pointing up. Each pose is represented by (1) Q, the joint angles
relative to the inboard link and the orientation of the root around
the X and Z axes, (2) Py, the position of the root along the vertical
axis, (3) ∆Px and ∆Pz, the relative position of the root on the ground
plane (computed with respect to the previous pose in this motion
sequence) and (4) ∆Qyaw, the relative rotation of the root around
the vertical axis (computed similarly).

We first construct a standard motion graph, MG, from the database
using techniques similar to those in the literature [Li et al. 2002;
Kovar et al. 2002; Arikan and Forsyth 2002; Lee et al. 2002]. We
construct graph MG as a preprocessing step. We then general-
ize MG to create a motion graph that supports interpolation. We
call this graph IMG (interpolated motion graph). Graph IMG can
also be constructed as a preprocessing step because it does not re-
quire significant space (for our examples IMG requires less than
5MB). A full search graph, ISG, could be constructed by unrolling
graph IMG into the environment and augmenting each state with



the global position and orientation of the root. This step is required
to search for motions that satisfy user-specified global position con-
straints and avoid obstacles. Unrolling would cause the size of the
graph to grow by the number of possible positions and orientations
of the character in the environment because each pose now appears
many times in the graph, once for each reachable position and ori-
entation. This graph, therefore, is constructed at runtime as needed.

Graph MG: Each state in graph MG is defined as S = (I), where
I is the index of the pose in the motion capture database. Tran-
sitions are constructed by identifying similar poses with the same
contact and connecting them with edges as was done by Lee and his
colleagues [2002]. However, they only allowed transitions when
the character’s contact with the environment changed. We instead
allow transitions inside of contact phases but prune redundant or
non-optimal transitions as a preprocessing step.

Graph IMG: Each state in graph IMG is defined as S = (I1, I2,w),
where I1 and I2 are the indices of the two poses to be interpolated
and w is the interpolation weight. Constructing graph IMG is like
taking the “product” of two identical motion graphs. Thus, the max-
imum number of states in graph IMG is N2W , where N is the num-
ber of poses in the motion capture database and W is the number of
possible weight values. In practice, however, the number of states
is much smaller because we interpolate only poses with matching
contact states (left foot on the ground, for example). Given state
A defined by (IA

1 , IA
2 ,wA

1 ), we need to compute the set of successor
states—the states that can be reached from state A via a transition
in the graph IMG. State B is a successor of state A if and only if IB

1

is a successor of IA
1 , and IB

2 is a successor of IA
2 in the motion graph

MG.

Graph ISG: Graph ISG is computed by unrolling graph IMG into
the environment. Therefore, each state in graph ISG is a state in
graph IMG with additional variables representing the global posi-
tion and orientation of the character: S = (I,Px,Pz,Qyaw), where
Px and Pz are the global position of the character on the ground
plane and Qyaw is the global orientation of the character about the
vertical axis. Because we are doing a global search, we need to
discretize positions, and orientation into a finite set of values. We
discretized positions Px and Pz, into 0.05 by 0.05 meter cells and
orientation Qyaw, into 1.5 degree intervals. The global variables are
computed by interpolating and integrating the relative terms stored
in the states of graph IMG. In ISG, each transition is associated
with a cost computed from the objective function.

To ensure that all constraints are satisfied, we add a counter to
each state. If a state satisfies the next constraint during a search,
its counter is set to that of its predecessor plus one. Because con-
straints are positioned along the user sketch, the counter also allows
states to be pruned from the search if they pass a constraint without
satisfying it.

Reducing Graph ISG: The complexity of the A∗ algorithm is
O(E + SlogS), where S is the number of states and E is the num-
ber of edges in the graph. If a motion graph, MG contains 10,000
states, the unrolled graph MG (without interpolation) will contain
S = 1012 if we discretize Px and Pz into 1000 by 1000 values and
Qyaw into 100 values. A graph of this size cannot be searched
quickly for an optimal solution. As a result, all existing approaches
in the literature either find a solution using a global but sub-optimal
approach with no guarantee on sub-optimality or search a manually
constructed graph with a small number of states. The unrolled, in-
terpolated motion graph, ISG, is even more challenging to search
because it has a larger number of states (S = 1017 assuming we dis-
cretize w into 10 values). Constraining the character to stay inside
the corridor around the user-specified path would reduce the num-
ber of states to S = 1015 if 1% of the position values fall within

the corridor. This reduction is not enough to make optimal search
possible.

To address this problem, we developed two techniques that signif-
icantly decrease the number of states that the search will need to
visit. The first technique compresses the motion graph into a prac-
tically equivalent but much smaller graph. The second technique
computes an informative heuristic function that guides the search
toward states that are more likely to appear in an optimal solution.
In Section 7, we show that the combination of these techniques
makes it possible to find an optimal or a close-to-optimal solution
for a database of a reasonable size with a few minutes of computa-
tion. The next two sections give the details of both techniques.

5 Graph compression

We compress the motion graph in two steps. First, we cull states
and transitions that are sub-optimal. These states will not appear
in any optimal solution because the graph contains a lower cost
alternative. Second, we cull states and transitions that are redundant
because they are similar to other states and transitions in the motion
graph. These steps result in a compressed version of graph MG and
the graph IMG is derived from that graph as described in Section 4.

Culling sub-optimal states and transitions: To cull transitions,
we first identify a specific class of states: those in which a contact
change occurs (from double support to right leg contact, for exam-
ple, or from no object in hand to object in hand). More formally,
state S in motion M is defined as a contact change state if the state
that directly precedes state S in motion M has a different set of con-
tacts with the environment. To determine the contact change states,
we separate motions into phases based on contact with the envi-
ronment. We use the technique of Lee and his colleagues [2002]
to identify the contacts and then verify them by a visual inspection
(only a very small percentage of the contacts need to be adjusted by
hand for locomotion and other simple behaviors). Contact informa-
tion could also be computed using one of the other published tech-
niques [Ikemoto et al. 2006; Callennec and Boulic 2006]. These al-
gorithms identify contacts as not moving with respect to the ground
plane or contact object and we rely on that property in our graph
compression algorithms.

We can then compute paths that connect pairs of contact change
states without passing through another contact change state. All
states in each such path will have the same contacts except for the
terminal state where the contact changes. We call these paths single
contact paths.

We can remove a large number of single contact paths from the
graph MG. The key insight behind our algorithm is that although
there are likely to be many single contact paths that connect two
contact change states (thousands in our experiment), they all end
with the character in exactly the same pose and with the same root
position and orientation (Figure 5). Only one of these paths is op-
timal with respect to our optimization function. Therefore we can
cull all other paths before unrolling the graph into the environment
without reducing the functionality of the graph. Figure 6 illustrates
this process.

This culling step does not affect the functionality of the graph un-
less the constraints provided by the user require controlling the de-
tails of the motion during a period of time when the contacts are
not changing. For example, the user could no longer ask for wav-
ing while standing in place. Because animated characters tend to act
on their environment, user constraints often create contact changes
we have not found this restriction to be a serious problem. We can
revert to searching an uncompressed motion graph if a constraint
falls in the middle of the contact phase.



Figure 5: (a) For direct paths between a pair of contact change states
S1 and S2, the global position and orientation of the root of the
character at state S2 is uniquely determined by the contact position
and orientation at state S1 and the values of the joint angles at state
S2. (b) The position of the center of mass at landing (state S2) is
uniquely defined by the intersection of the flight trajectory and the
center of mass of the character at state S2. The trajectory of the
center of mass for the root of the character is defined by the lift-off
velocity from state S1.

The optimal path might also violate environmental constraints if the
swept volume for the character from one contact change state to the
next intersects an obstacle. If the original graph contains a different
path that would not have violated the constraints, then the culled
graph will have lost functionality. This situation is uncommon be-
cause neither endpoint intersects the obstacle (or the search would
not have explored the state) and only limited movement is possible
with one contact change.

The optimization function we use allows us to compute optimal
paths as a precomputation step because it is independent of the par-
ticular constraints the user specifies. Many common optimization
functions are similarly independent of the problem specification:
minimizing energy, minimizing sum of squared accelerations, max-
imizing smoothness, minimizing the distance traversed, minimizing
the total time of the motion, and satisfying specified annotations
(for example behaviors or styles as in [Arikan et al. 2003]). We
can also support objective functions that depend on the user speci-
fication at contact change states. These functions can often be used
to approximate other functions. For example, instead of minimiz-
ing the distance between every frame of the motion and the user-
specified sketch, we can minimize the distance between the contact
change states and the sketch.

Culling transitions in this way is different from retaining only the
transitions between contact change states, as others have done [Lee
et al. 2002]. With that approach no path would be found between
states A and D in Figure 6(a) even though one exists in the original
motion graph. The preprocessing presented here retains many more
unique transitions, a property that is important for finding transi-
tions between different behaviors such as a walk and a jump.

Culling redundant states and transitions: After we cull the sub-
optimal states and transitions, we cull redundant ones. Motion
graphs often include redundant data because of the need to capture
natural transitions between behaviors. For example, motion cap-
ture data for walking and jumping transitions includes many similar
walking steps as part of the lead-in to the jump. As a result, many
states in the motion graph will be similar. Removing this redun-
dancy significantly reduces the size of the graph. We begin with the
output of the previous compression step, a graph that contains only
contact change states and transitions that are optimal sequences of
poses between contact change states.

We merge all similar states in the order of their similarity. For
example, state A in Figure 7 has three successors, S1, S2 and S3,

Figure 6: (a) States A, B, C and D (shown in red) are contact change
states. If the character enters state A (and initiates a right leg support
phase), it can exit only through state B or D. (b) A representation
with only the contact change states shows that there are many paths
between each state. (c) The graph after transitions are culled to
include only optimal paths between contact states.

that are very similar to each other. Because the states have a com-
mon predecessor and similar poses, the transitions leading to these
states will end at approximately the same position in the environ-
ment when the graph is unrolled. Therefore, these transitions are
redundant.

When two or more states are merged to form a new state, the suc-
cessors of that state are the union of the successors of the merged
states. Similarly, the predecessors are the union of the predeces-
sors of the merged states. Therefore after merging, we will have
multiple transitions connecting a single pair of states. If we use a
low threshold for merging, then all these transitions will end in ap-
proximately the same place in the environment when the graph is
unrolled and we can just keep one, lowest cost transition without
affecting optimality (Figure 7). However, we can get better com-
pression of the graph if we choose a higher threshold for merging
states and allow larger changes in pose between the merged states.
The consequence of this more aggressive merging threshold is that
the transitions no longer necessarily place the character in the same
position in the environment when the graph is unrolled. We there-
fore delete only transitions which result in very similar positions
to retain the flexibility of the original graph. Because each transi-
tion in the compressed graph is a sequence of poses representing
one contact phase of the motion, we can process each transition to
remove foot-sliding as a preprocessing step.

Constructing IMG from the compressed MG: After graph MG
is compressed, graph IMG is constructed from it as described in
Section 4. In the compressed graph MG, however, each transi-
tion is a sequence of poses in between two contact change states.
Consequently, a transition from state A = (IA

1 , IA
2 ,wA

1 ) to state B =

(IB
1 , IB

2 ,wB
1 ) in graph IMG is now a sequence of poses where each

pose is an interpolation of corresponding poses in the transitions
from IA

1 to IB
1 and from IA

2 to IB
2 in the compressed MG (Figure 8).



Figure 7: (Left) States S1, S2 and S3 are similar to each other. As a
result, transitions t1, t2 and t3 all end with the character at approx-
imately the same position. (Right) We merge states S1, S2 and S3

into one state S′ and keep only the lowest cost transition.

Figure 8: (a) Two identical versions of the compressed graph MG.
(b) IMG. The transition between states S1 and S2 in graph IMG is
an interpolation of a path from A to B and a path from B to D in the
compressed graph MG. These two paths are shown by thick arrows
in (a). (c) Shows these two paths in more detail with circles repre-
senting the frames. Because the paths can be of different length, we
uniformly scale them in time.

The interpolation weight w is constant throughout the transition.
We use the interpolation scheme described in Safonova and Hod-
gins [2005]. In particular, (1) during flight we interpolate the cen-
ter of mass position (instead of the root position) and all the joint
angles; (2) during ground contact we interpolate the positions of the
feet, the center of mass position, and all nonredundant degrees of
freedom to prevent the feet from sliding on the ground. When the
durations of the transitions from IA

1 to IB
1 and from IA

2 to IB
2 differ,

we assume a uniform time scaling with the time of the interpolated
segment computed according to the following equation:

T =
√

T 2
1 w+T 2

2 (1−w) (2)

where T1 and T2 are the time durations of the first and second seg-
ments being interpolated.

Safonova and Hodgins [2005] showed that this interpolation
scheme ensures that the majority of the interpolated transitions in
graph IMG are close to physically correct. We can also check these
interpolated transitions for physical correctness using inverse dy-
namics when graph IMG is constructed.

Figure 9: Hpos(S,G) is the shortest path from the position of the
character at state S to the goal. The shortest path is constrained to
stay inside the corridor.

6 Informative heuristic function

We use an anytime version of the A∗ search algorithm to find an
optimal path in the unrolled graph, ISG. The number of states
that the A∗ search explores depends on the quality of the heuris-
tic function—the lower bounds on cost-to-goal values. Informa-
tive lower bounds can significantly reduce the amount of the search
space that is explored. In this section, we present a method for
computing such bounds. In Section 7, we show that this heuristic
function usually speeds up the search by several orders of magni-
tude and is often the determining factor in whether a solution can
be found.

The heuristic function must estimate the cost of getting to the goal
while satisfying user and environmental constraints for each state
S in the graph ISG. We compute two heuristic functions: Hpos and
Himg. The first heuristic function, Hpos, ignores the dynamics of the
motion of the character and estimates the cost of getting to the goal
based only on the current position of the character, sketch of the
user path, and obstacles in the environment. The second heuristic
function, Himg, takes into account the capabilities of the character
that are encoded in the motion graph but ignores its position in the
environment. The combination of the two heuristics creates an in-
formative measure of the cost of solving the problem specification.
We now describe how to compute Hpos and Himg and how to com-
bine them.

Heuristic function based on the character location (Hpos):
Hpos(S,G) is the shortest path on the ground plane from the position
of state S to the position of the goal state G. The path must avoid ob-
stacles and remain inside the corridor around the user-specified path
(Figure 9). Because the computation of the heuristic Hpos(S,G) de-
pends on the user’s sketch, it must be computed at runtime.

To compute Hpos(S,G), we discretize the environment into 0.2 by
0.2 meter cells and compute the shortest path from the center of
each cell to the goal. A single Dijkstra’s search on a 2D grid can
be used to compute all such paths with only a few milliseconds
of computation. Because our cost function minimizes a weighted
average of torque and smoothness terms, we need to multiply the
shortest distance (in meters) by an estimate of the minimum ob-
jective function value required to traverse one meter. We compute
this minimum value from the motion graph data using inverse dy-
namics for the torques and the transition cost for smoothness. We
use a coarse discretization to compute the heuristic function, but a
much finer discretization when computing the unrolled graph ISG
to avoid discontinuities in the final motion (0.2m vs. 0.05m).

Heuristic function based on motion graph state (Himg):
Hpos(S,G) provides a reasonable estimate of the cost to the goal for
motions that simply require the character to travel from one location



in the environment to another. But if user or environmental con-
straints are present then Hpos(S,G) will underestimate the cost to
the goal because satisfying constraints usually requires much more
effort than the minimum torque estimate assumed by Hpos. The
motion graph also restricts what the character can do from a partic-
ular state, perhaps making a state that satisfies the constraint hard
to reach. For example, if it is difficult to reach a jumping motion
from state S, then the cost-to-goal at state S should be high when
there is a jumping constraint. Hpos will underestimate this cost and,
consequently, the A∗ search will needlessly explore this part of the
space. The second heuristic function, Himg, addresses this problem
by taking into account the capabilities of the character that are en-
coded in the motion graph. It estimates the cost of satisfying each
type of constraint for each state in the interpolated motion graph.

We support five types of constraints: picking, jumping, stepping
onto an obstacle (a beam for example), ducking, and sitting. For
each type of constraint, Himg(S,C) is computed as the minimum
cost of getting to any pose in the interpolated motion graph that sat-
isfies constraint C from state S. To avoid double counting the “dis-
tance traveled” cost already estimated by Hpos, we compute Himg

after first subtracting from each transition in graph IMG the mini-
mum cost required to traverse the planar distance covered by that
transition.

The computation of the Himg heuristic does not depend on the par-
ticular constraint specified by the user and therefore can be pre-
computed. The computation is automatic if the contact information
for all motions in the motion capture database is available. We use
the constraint of picking up an object to explain the computation of
Himg. The same method is used for all constraints supported by our
system and should generalize to other types of constraints such as
kicking, stepping over obstacles, or standing on one leg.

Each “picking” pose can be defined by two parameters: height and
reach (Figure 10(a)). Height is the height of the object with respect
to the ground. Reach is how far the character must reach out to pick
up the object (distance between the root and the hand projected onto
the ground). Based on the contact information, we automatically
identify each state in the graph IMG that represents picking up an
object p = (I1, I2,w), where both poses, I1 and I2, are states where
an object was picked up. At this state, the character assumes a pick-
ing pose with height and reach values based on the interpolation of
poses I1 and I2 with weight w. For each state in graph IMG, we
then compute Himg(S,C) as a table (Figure 10(b)) where each cell
represents a range of height and reach values, and the value is the
minimal cost of getting from the given state to a state with height
and reach values in this range. For the database of 6-7 minutes of
motion, the precomputation of the Himg heuristic for all constraints
took less than an hour.

Combining the two heuristics: We combine Hpos(S,G) and
Himg(S,C) into a single heuristic function by summing them to-
gether. If at state S there are n constraints left to be satisfied, we
fetch the Himg term for each of these constraints, and then add all
of them to the Hpos(S,G) term to obtain a heuristic value for state
S:

H(S) = Hpos(S,G)+ ∑
i=1...n

Himg(S,Ci) (3)

7 Experimental results

To illustrate the effectiveness of our approach, we generated a va-
riety of examples. For each experiment, the user specified a 2D
path in the environment that the character should follow and the
width of the corridor around that path. In some experiments, the

Figure 10: (a) We identify states where objects are picked up in
the motion graph. Each such pose is parameterized by two param-
eters: height and reach. (b) For each state in the motion graph we
precompute a table with the minimal cost of getting to a “picking”
state with the specified height and reach parameters.

Figure 11: Synthesized motions

user also specified constraints such as picking up an object or sit-
ting on a chair. Based on the sketch and the current environment,
the system automatically computed environmental constraints such
as stepping onto an obstacle, ducking, and jumping. The motions
for all the experiments are shown in the accompanying video.

Figure 2 shows the motion of a character traversing an obstacle
course. The character walks over the beam, jumps over holes, ducks
under a bar, and finally sits on a chair. This example illustrates that
our algorithm can synthesize motions that are 15 seconds long and
consist of several different behaviors. Besides the obstacle course
examples, we have also synthesized many other examples, includ-
ing walking along paths of varying curvature, picking and placing
an object in various locations, jumping over stones with variable
spacing, jumping with different amounts of rotation and distance,
and forward walks of different step lengths. Figure 11 shows im-
ages for some of the results. For shorter, single behavior examples,
such as jumps and short walks, only a few milliseconds to a few
seconds were required to compute an optimal solution. For longer,
multi-behavior examples, a few minutes were required to compute
a close-to-optimal solution. In general, the time depends on the
size of the database, the length of the generated motion, and the
complexity of the constraints. We next describe a number of exper-
iments designed to assess the performance of our algorithm.



Figure 12: The success rate for three test problems for three differ-
ent error tolerances and interpolation/no interpolation. (Top) The
character needs to start at A and pick up an object at B. (Mid-
dle) The character needs to start at A and pick up an object at B but
now we also constrain the root position of the character to C while
picking up the object. (Bottom) The character needs to start at A
and walk to B with one stride. We sampled the locations of con-
straint B (179 samples for first two problems and 10 samples for
the third problem). An experiment is counted as a success if the
search finds a solution within two minutes and within a specified
error tolerance.

7.1 The benefit of interpolation

The first experiment demonstrates that interpolation in conjunction
with a motion graph allows us to satisfy user-specified constraints
with a small error tolerance. We tested on two specifications of
picking up an object and one of walking. With interpolation, the
system consistently finds solutions for small error tolerances but
without interpolation, only much higher error tolerances produced
consistent results (Figure 12). We also computed the average cost
of the successful solutions for the second problem. The average
solution cost is about 1.35 times greater without interpolation, with
higher costs for small tolerances. Without interpolation, the search
has much less freedom to satisfy the constraints and the solution is
more likely to contain dithering and inefficient motion patterns that
result in a higher solution cost (the video shows a few examples).

Simultaneously selecting two paths for interpolation generates a
better result in many situations than the greedy approach of first
finding an approximate solution without interpolation and then
warping this solution to satisfy the user-specified constraints. Fig-
ure 13 shows a situation where a solution that satisfies all user-
specified constraints can be found without interpolation. Without
interpolation, the character jumps between the columns but with in-
terpolation, the character steps between the first two columns and
jumps from the second to the third. Because the optimal strategies
differ, we cannot warp one solution into the other.

Figure 14 shows a situation where, without interpolation, there is
no solution that satisfies all the user-specified constraints. In this
example, the character needs to follow a curve within the user-
specified tolerance (represented as a corridor around the curve).
With interpolation, the character accurately tracks the curve and
takes six steps to reach the goal. Without interpolation, we have to
increase the corridor width to find a solution and the character takes
only five steps. Because the two solutions use a different number
of steps, it would not be possible to warp one into the other. For
some constrained situations, it may not even be possible to increase
the tolerance without violating the problem specification (missing
a stepping stone entirely, for example).

Figure 13: (Left) The optimal solution with interpolation. The char-
acter walks across the first column and jumps across the second
column. (Right) The optimal solution without interpolation. The
character jumps between each pair of columns.

Figure 14: (Left) The user wants the character to walk along the
green curve. The blue curve shows the trajectory of the root for
the best solution without interpolation. (Middle) The solution with
interpolation. The character can track the curve, deviating only
slightly from the prescribed path. (Right) The solution without in-
terpolation. The corridor width had to be increased to find a solution
and the character takes five steps, whereas with interpolation, she
takes six steps.

7.2 The benefit of optimality

In the accompanying movie, we show several examples that illus-
trate that globally near-optimal solutions avoid the dithering and
inefficient patterns of motion that sub-optimal solutions often have.
Figure 15 shows the results for two motions: a walk to a place
where the character needs to pick up an object and a walk from the
start to the goal. As the optimality of the solution increases, the
character finds more efficient motion patterns.

7.3 The benefit of motion graph compression

In this experiment, we evaluate the effect of motion graph compres-
sion. Table 1 shows these statistics for three different databases:
(1) walking, jumping, ducking, sitting and walking along a beam;
(2) walking and picking up an object; (3) just walking motions. For
each database, we computed the number of states and transitions
in the motion graph before compression, after the first compression
step (removing sub-optimal data), and after the second compres-
sion step (removing redundant data). The table also gives the time

Original After removing After removing Compression

motion graph sub-optimal data redundant data time

DB 1 states=6,000 states=350, states=130 30 min

trans=90,000 trans=12,500 trans=700

DB 2 states=12,000 states=700 states=300 60 min

trans=250,000 trans=60,000 trans=5,000

DB 3 states=2,000 states=173 states=50 2 min

trans=25,000 trans=3,700 trans=300

Table 1: Compression for three motion graphs. The first graph is
computed from motions of walking, jumping, ducking, sitting and
walking along the beam. The second graph is computed from mo-
tions of walking and picking up an object and the third one is com-
puted from just walking motions.



Figure 15: (Left): the character walks to a small object; the first solution requires an unnatural posture; the second solution is better but the
character reaches in from the side to contact the object; the optimal solution looks natural. (Right): walk from start to goal; the first solution
is visually very suboptimal—the character takes two awkwardly large steps to reach the goal position; the second solution is better—the
character takes smaller steps but the walk is a bit unnatural because the steps are of different length; the final solution is optimal and looks
natural. The tables show the computation time, solution cost and the sub-optimality bounds for each of the results.

required to compress the graph (a precomputation step performed
only once for each database). Compression techniques reduce the
size of the graph by a factor of 20 to 50.

7.4 The benefit of the heuristic function

We also evaluated the effectiveness of our heuristic function. The
results are shown in Table 2. We compare four heuristics: (1) the
Euclidean distance to the goal; (2) the Hpos component of our ob-
jective function; (3) the Himg component of our objective function;
(4) the combined heuristic function with both Hpos and Himg com-
ponents. The results demonstrate that our heuristic function is es-
sential for making the search efficient and often makes the differ-
ence between finding a good solution and not finding one at all. The
table also shows that both components of the heuristic function are
important, neither component alone is effective.

8 Discussion

In this paper, we described a discrete reduced-space representation
of human motion. This representation can be viewed as a combi-
nation of motion graph and interpolation techniques as it generates
motion that is an interpolation of two time-scaled paths through a
motion graph. Finding a solution in this smaller search space is
much easier than finding a solution in the 50 degree of freedom
search space traditionally used to represent human motion. In ad-
dition, the synthesized motion is likely to contain the natural co-
ordination patterns of the original data. We have shown that opti-
mization in this discrete space allows for the synthesis of long, less
dynamic motions that are composed of different behaviors. It takes
a few minutes to compute a 15 second long motion that is close to
optimal from a database of 6-7 minutes of motion.

Finding a close-to-optimal solution is often important for obtaining
high quality motion. This property holds not only for interpolated
motion graphs but also for regular motion graphs. Our compression
techniques and informative heuristic should apply equally well to
regular motion graphs.

We allow interpolation of arbitrary poses as long as they have the
same contacts. This restriction, together with the minimization of
squared torques was enough to select motion segments whose inter-
polation resulted in natural looking motion. Perhaps this behavior
is related to the observation that continuous optimization can often
find a natural looking motion by minimizing the sum of squared
torques. For example, two walk segments with both arms at the
character’s side are more likely to be selected for interpolation than

a segment with one arm waving because the latter requires more
energy. For bigger databases, we may need to explicitly restrict
the segments that can be interpolated. For example, we could in-
terpolate only poses with the same behavior label (using a labeling
algorithm from the literature).

Because our method computes a compressed motion graph that con-
tains only optimal paths, variations in the original data are “sub-
optimal” and will be culled. We would like to experiment with
keeping several maximally different paths rather than just one. In
our experience, most of what is culled are redundant trajectories
that are visually indistinguishable but additional experiments would
be required to decide whether important variability is lost.

The quality of the results largely depend on the quality of the mo-
tion database used to construct the motion graph. For example, if
the database contains only a motion of sitting on a tall chair then we
cannot synthesize a motion for sitting on a medium or a low height
chair because there are no two motions whose interpolation would
provide the desired motion.

We also found that the motion graph must have “good” connectiv-
ity. For example, if it is impossible to reach a state where an object
can be picked up from the other states in the motion graph, then we
cannot synthesize motions that satisfy such a constraint. Our exper-
iments show that to obtain good results many states must be able
to quickly connect to the constraint states and vice versa. An auto-
matic technique for evaluating the connectivity of a motion graph
would be very helpful. Reitsma and Pollard [2004] evaluated the
quality of a motion graph for navigational tasks. Extending this
evaluation to our domain would be very useful.

Better automatic methods for constructing motion graphs with
“good” connectivity would also be very helpful [Ikemoto et al.
2007]. We found that a single threshold for picking good transitions
often does not work well. A low threshold results in most transi-
tions occurring within a single behavior (walks for example) and
very few transitions between motions of different behaviors (walks
and jumps, for example). A high threshold, on the other hand, re-
sults in many low quality transitions within a single behavior even
though these transitions are not needed.

Our experimental results show that our approach works well for a
database with 6-7 minutes of motion. This result is comparable to
the databases used in motion graph papers: [Lee et al. 2002] used 5-
1 0minutes, [Arikan et al. 2003] used 7 minutes, [Kovar et al. 2002]
used 3-4 minutes. Scaling our approach to a larger database, how-
ever, will require additional work. We plan to experiment with au-
tomatic clustering of motions into behaviors and interpolating mo-



ε Euclidean distance H2D Hmg Hcombined

time exp solved time exp solved time exp solved time exp solved

10.0 8.0 185,813 100% 8.1 160,718 100% 11.6 72,004 100% 0.8 9,332 100%

3.0 17.1 481,321 100% 16.8 406,149 100% 15.1 103,000 100% 1.6 16,068 100%

1.0 100.2 1,832,347 20% 97.8 1,748,620 20% 48.1 270,812 80% 49.5 275,712 80%

Table 2: Evaluation of the heuristic function for the problem of picking up an object. We sampled the location of the object into 179 samples.
Each column shows the average search time in seconds, the average number of states expanded during the search and the percent of the
experiments that succeeded (found solution within 10 minutes and did not run out of memory). The statistics are reported for the Euclidean
distance to the goal, the H2D component alone, the Hmg component alone, and the combined heuristic function. The first row shows results
for a solution whose cost is at most 10 times the optimal one. The sub-optimality bound for the second row is 3 and the solution in the last
row is optimal.

tions only within the same class to further reduce the size of the
problem and allow the use of larger databases.

In all of our experiments, the interpolation of two paths was suffi-
cient to find a solution that met the user’s constraints and produced
natural-looking motion. Some problems, however, may require the
interpolation of more than two paths in order to satisfy the con-
straints. We would like to scale our approach to the interpolation
of three paths. If this proves to be infeasible, we can also try an
iterative approach: first, compute the best possible solution for the
interpolation of two paths; then compute a second solution for the
interpolation of two paths that when interpolated with the solution
we already have, produces a better result; continue in this manner
until no further improvement is possible. This iterative, greedy, ap-
proach did not work when the first solution did not include interpo-
lation, but if the interpolation of two paths is sufficient to identify
the right sequence of behaviors (strategy), then small refinements
via the greedy approach should work well.

Our approach can currently find a close-to-optimal solution for mo-
tions that are approximately 15 seconds long. As the length of the
motion increases, the complexity of the search increases. We can
decrease the complexity by limiting the number of times interpola-
tion is used in the final solution. Interpolation is most often required
near user-specified constraints (such as the position for picking up
the object or a sharp turn of the user path) and is generally unnec-
essary when the character is moving in free space. We can limit
interpolation by adding another variable to each state in the graph
to count the number of motion segments that have been interpo-
lated so far. We can then limit this variable during the search and
to control the amount of interpolation. We have run preliminary
experiments with this approach and have found that it can greatly
reduce the complexity of the search.
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