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1. Introduction. In mathematical biology, reaction-diffusion equations have been 
of great interest as a model describing spatial pattern formations. One of the most 

powerful approaches to the existence of spatially inhomogeneous solutions is a singular 
perturbation method. In fact, this method enables us to construct solutions with sharp 
spatial transition layers [5], [6], [12], [13]. It is the purpose of this paper to present a 
method to construct solutions with internal transition layers in the context of singular 

perturbation problems. We also emphasize the stability analysis of the solutions so 
obtained as above. Our method is slightly different from those in [5], [6], [12], [13] in 
that existence and stability analysis are carried out simultaneously .

For •¬, positive parameters, consider the following pair of reaction-diffusion 

equations.

•¬ nder the homogeneous Neumann boundary conditions

•¬

The problem (PDE)+(BC) has been studied rather extensively for the case in which 
both diffusion coefficients d1, d2 are very large by, among others, Conway , Hoff and 
Smoller [3], Hale [9] and Hale and Rocha [10]. Roughly speaking, the asymptotic 
dynamics of (PDE)+(BC) is qualitatively the same as that of

•¬

when min (d1, d2) is sufficiently large.
On the other hand, there has been a series of works by Nishiura , Mimura, et al. 

[6], [7], [8], [12], [13], [14], [15] on (PDE)+(BC) from a viewpoint of pattern formation 
when d1>0 is very small with d2 remaining large. These authors have established the 
existence of equilibrium solutions with interior transition layers [13] as well as their
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stability when the nonlinearity (f, g) satisfies such conditions as stated below. The latter 

result seems to be the first satisfactory one on the stability of large amplitude equilibrium 

states of a system of nonlinear parabolic equations, and is based on the so called 

"SLEP -Method" due to Fujii and Nishiura [8].

In order to show the existence of interior transition layers, Mimura, et al. [13] used 

the earlier work of Fife [5] (see also Ito [12]) on Dirichlet boundary layers. They first 

split the interval [0, 1] into two subintervals [0, x*] and [x*, 1], construct, on each 

subinterval, a solution with a Dirichlet boundary layer at x* so that the boundary 

values of each solution coincide at x=x*, and then adjust x* so that the resulting 

solution be of class C2 on [0, 1]. The stablity analysis of the transition layer solution 

requires subtle estimates on small eigenvalues which go to zero when the first diffusion 

coefficient d1 tends to zero. Fujii and Nishiura [8] succeeded in reducing the original 

eigenvalue problem to a second order differential equation involving Dirac's ƒÂ42-001-42_01.etp-functions 

and determine the behavior of the small (or, critical) eigenvalues.

In this paper, we will present an alternative approach to the construction and the 

stability analysis of transition layer solutions of the following problem:

•¬

in whichƒÃ and ƒÐ are positive constants and f and g satisfy the conditions (A.0)-(A.5) 

below (see Figure 1).

FIGURE 1.
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(A.0) The functions f and g are C3-functions defined on some open set •¬.

(A.1) The nullcline •¬ of f contains at least two curves 

•¬ where •¬ is a C3-function defined on a closed interval 

•¬, +, and satisfies

•¬ for •¬.

(A.2) If J(v) is defined by •¬, then there exists •¬ 

such that •¬ and

•¬

•¬ where •¬ are defined by

•¬

(A.4) The following inequalities hold true: •¬.

(A.5) The following inequality holds true: •¬.

Under these conditions, the following is the main theorem to be proved in this paper.

THEOREM A. (i) If the conditions (A.1) through (A.4) are satisfied, then there 

exist •¬ C1-function •¬, and a family of equilibrium solutions •¬, 

•¬ of (1.1) for •¬ such that

•¬ uniformly on every compact subinterval of •¬ 

and

•¬ uniformly on every compact subinterval of •¬

, while •¬ converges to a C1-function •¬, which is monotone increasing 

in x (see Theorem 2.1), •¬ in C1[0, 1]-norm.

Moreover, for each •¬ the set

•¬is an open interval around a uniquely determined (see Theorem 2.1) point •¬ 

with width of •¬.

(ii) If the condition (A.5) is satisfied in addition to (A.0)-(A.4), then there is a 

positive constant •¬* such that the eigenvalue problem:

•¬

has a unique, simple, real eigenvalue •¬ in the region •¬ for 

•¬, where •¬ is the linearization, under the homogeneous Neumann 

boundary conditions, of the right hand side of (1.1) around the equilibrium solution
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•¬. Moreover, the eigenvalue •¬ is a continuous function of •¬ 

and satisfies •¬ and •¬, where •¬ is a continuous 

function with •¬ and •¬ (see Figure 2).

FIGURE 2.

COROLLARY. If •¬ in (A.2) then the equilibrium solution in Theorem 

A is stable (resp. unstable) relative to the parabolic equations (1.1).

Our strategy for the proof of Theorem A is as follows. We start with a family of 

smooth (i.e. C2) approximate solutions which is constructed in Section 2, and reduce 

the problem to finding a fixed point of an operator equation on appropriate function 

spaces. It should be noted that an idea in Ito [12] plays an important role to obtain a 

variational equation suitable for the subsequent analysis of the operator equation. In 

Section 3, we examine some spectral properties of the linear differential operator. The 

method of Liapunov-Schmidt applied to the linear differential operator singles out the 

unique small eigenvalue which goes to zero as e tends to zero. It turns out that a scaled
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version of the small eigenvalue is a solution of a Singular Limit Eigenvalue Problem 
due to Fujii and Nishiura [8]. Theorem A is proved in Section 4. Section 5 is devoted 
to the stability analysis of multiple transition layer solutions.

The method employed in this paper seems to have several advantages. In terms of 
constructing approximate solutions, our approach is more natural than the matching 
method employed in [5], [13]. It enables us to make the accuracy of the approximation 
of internal transition layers as high as we wish under generic conditions. It also clarifies 
the obstruction of constructing approximations of higher accuracy (see [17] in this 
regard). Another advantage of smooth approximations is that we have the approximate 
solutions residing in the same space as the true solutions. This fact renders us a dynamic 
approach to the parabolic equations (1.1). The way in which we construct approximate 
solution also simplifies the stability analysis considerably. The method of 
Liapunov-Schmidt reveals in a natural way the equations which determine the small 
eigenvalues, as well as the order of magnitude of these eigenvalues.

Throughout this paper, the following function spaces are frequently referred to.

H2(0, 1): the usual Sobolev space on [0, 1].•¬

•¬•¬

: the usual Sobolev H2-norm.•¬

: the usual C2-norm.

•¬ with the weighted norm •¬.•¬ 

with the weighted norm •¬.

Throughout this paper, prime "•L" is used to indicate differentiation with respect 

to the spatial variable x as well as derivatives of a function of a single variable.

ACKNOWLEDGEMENT. The author is very grateful to Professor Jack K. Hale for 

his continuous encouragement and his inspiring conversation throughout the course of 

this work. Many thanks also go to Professor Y. Nishiura for stimulation through a 

series of publications as well as personal communication. Finally, but not least, the 

author would like to give utmost appreciation to the referee who carefully read the 

manuscript and pointed out many mistakes, typographical and otherwise.

2. Construction of approximate solutions. In this section, we construct a family 

of smooth approximate solutions of the problem:

•¬
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The accuracy of approximations is measured relative to the magnitude of the small 

parameter •¬.

2.1 Outer approximations. If one puts •¬ in (2.1), then there results the following 

reduced problem:

•¬

The first equation •¬ has a continuum of solutions. Not all of them are of interest 

to us here, namely, not all of them can be extended to •¬ small. For each •¬, the 

condition (A.1) gives •¬ as a solution of •¬. For •¬, they are stable 

equilibria of the kinetic equation •¬. According to the condition (A.2), wechoose

•¬

as a solution of •¬. We would like to substitute this function into the second of 

•¬ and to solve the resulting equation. For this purpose, define G(v) for •¬, by

•¬

where •¬ for •¬. The problem •¬ now reduces to•¬

By a solution •¬ of •¬, we mean a function •¬ belonging to •¬ 

and satisfying the relations in •¬. It should be noted that the determination 

of the "transition point" •¬ is a part of the problem. We have the following theorem 

available.

THEOREM 2.1. ([13, Theorem 1], [8, Lemma A.1]) Under the conditions (A.0), (A.1),

 and (A.4), there exist a uniquely determined constant •¬ and a C1-function •¬ such 

that for •¬ the problem •¬ has a unique solution •¬, which is C1 in  •¬

. Moreover, •¬ is continuous in •¬ with respect to

 C1[0, 1]-topology and •¬.

By using the functions •¬ and •¬, our outer approximation is given by the 

pair •¬ where •¬ is defined by

•¬

2.2 Inner approximation. The functions •¬ and •¬ have a jump 

discontinuity at the transition point •¬. This can be smoothed out by adding inner
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approximations in a neighborhood of •¬.

For this purpose, we first review the procedure of obtaining inner approximations 

for the following scalar problem:

•¬

where the function •¬ satisfies:

(a.l) •¬ is of C2-class, and there are two functions •¬ of C2-class 

such that

•¬

(a.2) •¬ for some constant •¬.

(a.3) If we define •¬, then there exists a point •¬ such that 

•¬, and

•¬

Transition layer phenomena for (IP) under the conditions (a.1)-(a .3) are studied 

rather extensively by [1], [4], [11]. Here, we follow the method in [11].

Let us introduce the fast variable ƒÅ around x* by •¬ and the transformation 

•¬ in (IP), where •¬. The equation for z reads:

(2.2) •¬

where all the functions are evaluated at •¬, and the dot designates the 

differentiation with respect to the fast variable ƒÅ, while the prime stands for differentiation 

with respect to x. Formally substituting the expression •¬ in (2.2) 

and equating the coefficient of each power of ƒÃ separately to zero, the relation (2.2) 

gives rise to the equations for z0 and z1:

(2.3)•¬

(2.4)•¬

where •¬ and •¬ are evaluated at •¬. For each 

constant •¬, the equation (2.3) has a unique solution •¬ such that •¬ 

and •¬, •¬ exponentially. Moreover max •¬

, as •¬. Once •¬ is specified as above, the equation (2.4) takes the 

following form•¬

, with •¬

By using theorems based on exponential dichotomies and Fredholm alternatives
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(see Chow and Hale [2]), it is easy to see that (2.4) has a solution bounded on R if and 
only if the condition (2.5) below is satisfied.

(2.5)•¬

Following the procedure in [11], one can verify that there exists a unique •¬ for 

which (2.5) is fulfilled. For such a choice of ƒÁ, the equation (2.4) has a unique family 

of bounded solutions (which decay exponentially as •¬, where •¬

, •¬. We choose the coefficient c of z0 so that

•¬

is satisfied. This condition can be written as •¬. It turns out that I2=0, •¬

. Therefore, we can determine the coefficient c such that the condition 

above is satisfied. This choice of c is best possible in the sense that only for this choice 

of c can we determine the second order approximation. See [11] for more detail.

We shall apply the procedure described above to the problem:

•¬

In order to do so, we simply set •¬, •¬, and •¬. 

Although the functions •¬ and •¬ are not twice continuously 

differentiable in x at •¬, the procedure above still works, since the equations 

(2.3) and (2.4) involves at most the first x-derivatives of the functions •¬, •¬ and •¬

. It is easy to verify that the condition (a.3) is satisfied with •¬ (see 

the condition (A.2)).

Now let •¬ be constructed from (IP)•B through the procedure 

described for (IP) above. Let •¬ be such that

•¬ for •¬ for •¬

and •¬ for •¬ and •¬ for •¬,•¬ 

and •¬. Now our tentative approximation for the 

u-component is given by

(2.6)•¬ 

where •¬ is the stretched variable. The function •¬ is a C1-function 

of x, but its second derivative has a jump discontinuity at •¬. In order to smooth 

this out, let us first observe the influence of substituting •¬ in (RP)•B instead of(U, V)

, namely the difference

•¬.
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Although the difference goes to zero as fast as ƒÃ2 uniformly outside a fixed neighborhood 

of •¬, it remains "large", i.e., of the order of one in the fixed neighborhood of 

the same point. This could be overcome by adding an "inner correction" to V, which 

simultaneously balances the jump discontinuity of •¬. In order to do so , 

let us put •¬ into (RP), to obtain

•¬The difference •¬ on the left side is of order •¬ provided 

sups •¬.

Let us solve:

•¬

or equivalently

•¬

in terms of the fast variable •¬, where the tilde "~" indicates that the fast 

variable ƒÅ is considered as an independent variable. This equation is easily solved on 

each one of the half intervals •¬ and •¬ in the following manner .

•¬, for •¬•¬

, for •¬.

Now let us define •¬ by:

•¬ for •¬,

•¬, for •¬.

LEMMA 2.2. The function f is of C1 on •¬ and has a finite 

C3-uniform norm on •¬, which is bounded uniformly with 

respect to •¬, where •¬ is any fixed positive number .

The proof of this lemma follows immediately from the construction .

Now define •¬ by

•¬

LEMMA 2.3. The function •¬ belongs to •¬ for •¬, 

and •¬ is bounded uniformly in •¬.

PROOF. We only show that •¬ is continuous at •¬. The remaining 

part of the lemma follows immediately from the construction.

Let us define
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•¬T hen, from the construction we have

•¬

hence •¬, proving the continuity of •¬ at •¬. q.e.d

We are now in a position to define a C2 approximation of the u-component by

(2.7)•¬

Compare this with the one in (2.6). The pair •¬ is the family of 

approximate solutions to •¬ from which we will find a family of genuine solutions 

as a perturbation.

2.3. Perturbation from the curve •¬. We look for a family of solutions 

of (2.1), in the following type of perturbation from the approximate solutions •¬

(2.8)•¬

rather than the usual type of perturbation

(2.9)•¬

where r, s will belong to •¬ with small norms. The transformation (2.8) means that we 

are looking for a solution (u, v) whose graph is a perturbation from the curve •¬ .

The Taylor expansion in (r, s) of the right hand side of the first equation in (2 .8) read

•¬ as •¬

where •¬. It turns out that the linear transformation •¬

, •¬ is as effective as the nonlinear one (2.8) for our purpose. We 

therefore transform the problem •¬ in terms of the following change of variables

(2.10)•¬

into the equations for the new functions (u, v)
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(2.11)•¬ where •¬ are given by

•¬ and

•¬

It is easy to verify the following (see [11, Lemma 2.1]):LEMMA 2.4. For each •¬•¬ 

as •¬ uniformly in •¬,

•¬ as •¬ uniformly in •¬.

REMARK 2.5. It was Ito [12] who first pointed out the superiority of the 

transformation (2.8) over (2.9) in the context of boundary layer phenomena .

3. Spectral analysis of linear operator. In the last section, the problem •¬ 

was reduced to the operator equation (2.11) on appropriate function spaces. The main 

subject of this section is the eigenvalue problem of the linear operator 

•¬,•¬

where the operator •¬ is defined as the linearization of left side of •¬ around 

the approximate solution •¬ constructed in the previous section .

THEOREM B. There exist a constant •¬ and a unique, real , simple eigenvalue 

•¬ of the problem •¬ for •¬ in the region •¬

. Moreover, •¬ is a continuous function of •¬
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•¬ and

•¬

In order to prove Theorem B we first analyse the operators •¬ separately.

3.1. The operator •¬. Let us denote by •¬ a 

complete orthonormal system of eigenfunctions and eigenvalues of •¬ arranged so 

that •¬.

LEMMA 3.1. (i) There exists a constant •¬ such that •¬ for 

•¬.

(ii) •¬ uniformly in •¬.

(iii) There are constants •¬ such that

•¬

(iv) •¬ uniformly in •¬, where 

the constant K is given by

•¬

(v) The following limit exists

•¬

•¬ where •¬.

PROOF. For the detail of proof, refer to [11, Theorem 3.1, Lemma 3.4]. We only 

exhibit a computation which leads us to the formula in (v).

Multiply the relation •¬ by the function •¬ and 

integrate the result by parts over the interval •¬ to obtain

•¬ where •¬ and

•¬ as •¬•¬

with •¬.
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It follows from (iii) of Lemma 3.1 and the estimate on •¬ that

•¬Therefore, by Lebesgue's dominated convergence theorem, one obtains

(3.1)•¬

•¬ where •¬ and •¬ are evaluated at •¬. By using integration 

by parts as well as •¬, one continues (3.1) as follows:

•¬

The quantity {---} in the first term under integral sign is identically equal to zero, in 
view of the relation (2.4), while the integral in the second term reduces to

•¬

Therefore the relation (3.1) gives

•¬

The second and the third expressions in (v) can be obtained from

•¬ q.e.d.

COROLLARY 3.2. (i) The statements (i), (ii), (iii) and (iv) in Lemma 3.1 are 

still valid when the potential function •¬ is perturbed to •¬

, where •¬ as •¬. On the other hand, 

the formula in (v) remains the same as long as the potential function is perturbed to •¬

, •¬, where •¬ is a continuous function 

such that •¬ as •¬ in •¬ and •¬ as •¬.

(ii) Let •¬: •¬ be the orthogonal projection onto the span •¬.

Then•¬
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is bounded uniformly in •¬.

3.2. The operator •¬. Let us denote by •¬, 

a complete orthonormal system of eigenfunctions and eigenvalues of •¬ arranged so 

that: •¬.

LEMMA 3.3. (i) There exists a constant •¬ such that

•¬(ii) •¬ is finite.

PROOF. Let us define the limiting operator •¬ by•¬

where •¬ and

•¬ for •¬ for •¬. 

Since •¬, the conditions (A.3) and (A.4) imply the existence 

of a constant •¬ such that sup•¬.

Therefore, •¬ exists and is bounded uniformly for •¬. 

By a standard bootstrap argument, •¬ is also bounded uniformly 

for •¬. On the other hand, one has

•¬ as •¬

and hence

•¬is invertible uniformly with respect to ƒÊ, •¬ for some 

small •¬. This in particular implies that •¬.

(ii) This is a well-known result from the Sturm-Liouville theory.

REMARK 3.4. Asymptotic behaviors of eigenvalues •¬ are given by

•¬for any •¬. Recall here that:•¬, and •¬ .

3.3. Combined operators. In order to analyze the eigenvalue problem for •¬ , 

it is necessary to consider combined operators of •¬.

LEMMA 3.5. (i) •¬ as •¬ uniformly in •¬ 

and •¬.

(ii) •¬ uniformly in •¬ and •¬,
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where •¬.

(iii) •¬ as •¬ uniformly in •¬ and •¬.

(iv) •¬ as •¬ uniformly in •¬ and 

•¬, where •¬is the adjoint operator of •¬.

PROOF. (i) By a direct computation, one has

•¬

where •¬ and •¬.It then follows from this that•¬

•¬

By using the integration in terms of the fast variable •¬ and the fact that 

•¬, one can easily show that •¬ 

as •¬. This proves the statement (i).

(ii) By using the eigenfunction expansion

•¬

and Lemma 3.3 (ii), one obtains

•¬

where the constant •¬ does not depend on •¬ and ƒÊ. On the other hand, one has•¬

which completes the proof of (ii).

(iii) This follows from the proofs of part (i) and part (ii) above.

(iv) From the expression

•¬, it follows that
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•¬since •¬ as •¬. A similar computation also shows that

•¬

. q.e.d.

3.4. The proof of Theorem B. We consider the eigenvalue problem •¬ for 

 where •¬. The problem  is written as

(3.3.a) •¬

(3.3.b) •¬

In view of Lemma 3.3 (i), (3.3.b) can be solved in z as •¬ 

where •¬ with •¬. Substituting 

this into (3.3.a) and using the decomposition •¬ one obtains 

(3.4.a) •¬

where •¬ the orthogonal 

projection, and integration by parts is used for the second and the third terms of (3.4.a). 

Because of Lemma 3.1 (i) and Lemma 3.5 (i), (3.4.b) can be solved in w yielding

(3.5) •¬

where

(3.6) •¬•¬

COROLLARY 3.6. (i) The operator •¬, : •¬
, •¬ is bounded 

uniformly in •¬ and •¬.

(ii) •¬ uniformly in 

•¬. This corollary follows immediately from Lemmas 3.1, 3.3, and 3.5. From (3.4) and 

(3.5), we obtain:
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LEMMA 3.7. Any eigenvalue •¬ of •¬ with •¬ has to satisfy the 

following equation

(3.7) •¬

or equivalently written in terms of real and imaginary parts

(3.7)R (3.7)I 

•¬ where •¬•¬, with •¬

, being real operators .

From the estimates in Lemma 3.5 and Corollary 3.6, the relations in (3.7)R and 
(3.7), read:

•¬

This immediately implies •¬ for small •¬, say •¬
, and

•¬

where •¬. Since •¬ and •¬
, the eigen

value •¬ has to be of •¬, which in turn enables us to set •¬ . The relation (3.7) is 

therefore equivalent to

(3.8) •¬

where •¬. Recall from Lemma 3.1 that •¬ is a continuous function 

defined on •¬ and the limit •¬ exists. By using Lemma 3 .1 and 

the eigenfunction expansion for •¬, we obtain•¬
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Let •¬ be the function defined by the left side of (3.8), which is a continuous 

function of •¬ on •¬ and analytic in •¬ for a fixed •¬. Note that 

the function •¬ can be extended continuously to •¬ because of 

Lemma 3.1 (ii) and Remark 3.4. Applying the implicit function theorem to •¬ 

around •¬, one obtains a unique solution •¬ of (3.8) 

with •¬, which is continuous in •¬. Therefore the problem (EP)•¬ 

has a unique real eigenvalue •¬ in the region •¬.

LEMMA 3.8. •¬.

PROOF. Let us notice that

•¬

where •¬ is the Dirac point mass at •¬, and •¬ is the duality 

paring between •¬ and •¬ (notice that •¬. In order to 

evaluate •¬, let us put •¬. Then •¬. The function 

z* is the solution of the following

(3.9)•¬

where •¬ evaluated at •¬. The function 

•¬satisfies

(3.10)•¬

in the classical sense. Substitute •¬ in (3.9) and use (3.10) to obtain

•¬

By integration by parts, this gives rise to•¬

where •¬

Therefore, recalling •¬ from Lemma 3.1, one obtains 

•¬ where •¬. We shall show 

that •¬. To do so, notice that z* satisfies •¬, on 

•¬ in the classical sence, and that •¬ and •¬ 

from Lemma 3.3 (i). Therefore, z* has to be concave 

as long as z*<0. On account of the boundary conditions •¬, we obtain
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that •¬ and •¬, see Figure 3. Therefore •¬ follows
, 

concluding the proof.

FIGURE 3.

In order to complete the proof of Theorem B, it remains to show the simplicity 

of the eigenvalue •¬. It suffices to show an eigenfunction •¬ of •¬ 

corresponding to •¬ does not belong to the range of •¬. Now, one can 

show that the adjoint operator •¬ has a unique real eigenvalue 

•¬ (the same value as the unique real eigenvalue of •¬ above) in the 

region •¬ by the same line of argument for •¬ and integration by 

parts (here we use Lemma 3.5 (iv)). Let •¬ be eigenfunctions of •¬ 

and •¬ corresponding to •¬. More specifically,

•¬ where •¬ is the counterpart of •¬ for •¬. By using the estimates •¬

, one obtains•¬

This implies •¬ does not belong to the range of •¬ because the range 

of •¬ is characterized as the orthogonal complement of •¬.

4. Proof of Theorem A.

4.1. Existence via the Method of Liapunov-Schmidt. We will show the solvability 
of (2.11) or equivalently
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(4.1) •¬

where •¬, and •¬, •¬

. Let •¬ be the eigenfunction of •¬ 

corresponding to •¬, given by

(4.2.a) •¬

(4.2.b) •¬

One should notice that

•¬

with •¬ being bounded uniformly in •¬ . We designate 

by •¬ the orthogonal projection onto the span of •¬ in L2 x L2. The equation

(4.1) is rewritten as

(4.3.a) •¬

(4.3.b) •¬

where •¬ is •¬ restricted to •¬ and •¬ with •¬
, •¬. By 

virtue of Lemma 2.4 and Lemma 3.1 (i), the second equation in (4 .3) gives, via the 

implicit function theorem, •¬ with •¬ . Then 

the first equation in (4.3) yields the bifurcation equation

(4.4) •¬

where

•¬

as •¬ uniformly in •¬. (These order estimates will be proved below .) Therefore 

(4.4) can be solved, via the implicit function theorem again, in a as •¬ 

as •¬. Let us denote by •¬ the solution 

of (4.1), which satisfies the following:

•¬(4.5) •¬ as •¬ in •¬•¬ 

as •¬.

The desired family of solutions of our original problem (1 .1) is given by

(4.6.a) •¬

(4.6.b) •¬

From the construction of the functions U
, U1, and V, Theorem A (i) follows immediately.
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The order estimates on •¬, are proved as follows: •¬ 

follows from Lemma 2.4, •¬

. Since •¬ we immediately obtain

•¬

As for B2, notice that

•¬ Since •¬ and •¬ can be expressed as

•¬By using Lemma 3.1 (iii), (iv), the integral on the right side converges to •¬

. Integration by parts yields

•¬

4.2. Stability. On account of the change of variables (2.10), we have to analyze 

the eigenvalue problem

(4.7) •¬

in order to determine stability of the solution •¬, where

•¬In order to indicate the linearization around the true solution •¬, we 

use in this section the same notation •¬, etc. as those around the approximate 

solution •¬. No confusion should arise in this regard.

The equation (4.7) now reads
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(4.8) •¬, •¬.

From (4.5) and Corollary 3.2, it follows that Lemma 3.1 remains true for •¬ above 

and that Lemmas 3.3, 3.5 and 3.6 are valid for •¬ and •¬. Following the same line 

of analysis as that applied to •¬, we obtain

(4.9.a) •¬

(4.9.b) •¬, 

where •¬. By virtue of Lemma 3.5 (i), there exists a constant 

•¬, which is independent of •¬, such that for •¬, the operator 

on the left of (4.9.b) is invertible uniformly in •¬. Therefore, 

the statement in Theorem B is valid for (4.7) in the region •¬

.

4.3. Eigenvalues in •¬. We first cite the following 

theorem.

THEOREM 4.1 ([8, Lemma 2.2]). For •¬, any C2-

function •¬ and •¬, we have the following convergence•¬

in the L2-sense, where •¬ and •¬.

Fujii and Nishiura [8] proved this theorem for •¬, but their proof works 

for our situation (even simpler).

The first equation of (4.8) gives

•¬Then the second of (4.8) yields

•¬Multiply this equation by the complex conjugate z of z, and integrate the result over 

[0, 1] to obtain

(4.10) •¬

Let us split this into real and imaginary parts by setting •¬

, where •¬, •¬ and ZR, zI are real-valued functions.(4.10)R•¬
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•¬(4.10)I•¬

We normalize z so that •¬. Since •¬ and •¬ 

as •¬ inside the region •¬, the relations (4.10)R and 

(4.10)I, imply the existence of a constant •¬ such that•¬

where the constant mo is independent of •¬. These relations also 

imply that there is a constant m1>0 which is independent of •¬, such that•¬

Let s tend to zero in (4.10)R and (4. 10), By using Theorem 4.1, we obtain

(4.11)R•¬

(4.11)I•¬

where •¬. are evaluated at •¬. When •¬, (4.11)R gives

(4.12)•¬

One should notice that •¬, •¬ from the conditions (A.3), (A.4) 

and (A.5). It is therefore easy to find a constant •¬ such that the integrand of the 

second term in (4.12) is strictly negative for •¬. This means that real eigenvalues 

in the region •¬ have to satisfy •¬.

When •¬, the relation (4.11), gives

•¬ which together with (4.11)R gives rise to
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(4.13)•¬

where •¬. Since •¬ and •¬ on account of the 

conditions (A.3), (A.4) and (A.5), the relation (4.13) gives a constant •¬ independent 

of a such that •¬. We complete the proof of Theorem A (ii) by taking •¬

.5.Stability analysis for multiple transition layers. Once we know the existence 

of single transition layer solutions of the problem•¬

then the folding-up principle gives families of solutions with multiple transition layers. 

To be more precise, let us assume •¬ is a solution of •¬ For each positive 

integer n, the pair of functions •¬ defined by

(5.1) •¬

solves the problem •¬, where for •¬•¬

, if i is even , •¬, if i is odd .

Let •¬ be the family of solutions with single transition layer given 

in Theorem A. Then •¬ defined by (5.1) is a family of solutions of 

•¬with n internal transition layers where •¬. It is the main purpose of 

this section to determine the stability property of •¬ as an equilibrium solution of 

the parabolic equation (1.1). We prove the following:

THEOREM C. •¬ is negative (positive), the solution •¬ of 

•¬ is stable (resp. unstable with index n), for •¬, •¬, as an equilibrium 

solution of (1.1), where •¬ is a continuous function such that •¬.

Let •¬ be given by

•¬ where

•¬ We also defined
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•¬ The function •¬ exhibits an internal transition layer at each point •¬,

•¬. LEMMA 5.1. Let •¬ be a complete orthonormal system of 

eigenfunctions and eigenvalues of •¬ such that •¬.

(i) There exists. a constant •¬ such that

•¬(ii) •¬ uniformly in •¬.

(iii) There exist constants •¬ and •¬ such that

•¬for •¬.

(iv) There exist constants •¬, n, such that as •¬•¬ 

in •¬

uniformly in •¬. Moreover, the matrix •¬ is orthogonal.

(v) The following limits exist:•¬

For the proof of this lemma we refer to [11, Lemmas 5.1, 5.2 and 5.3].

LEMMA 5.2. There exists a constant •¬ such that the principal eigen value of 

•¬ satisfies •¬.

The proof of this lemma is nearly identical to that of Lemma 3.3, and hence omitted.

In order to determine the stability property of the solution •¬, we examine the 

eigenvalue problem

(5.2) •¬

which is equivalent to

(5.3) •¬

We are interested in the eigenvalues p of (5.2) in the region •¬ 

with •¬.



42K. SAKAMOTO

For •¬, Lemma 5.2 implies that •¬ is bounded uniformly in •¬

, hence the second of (5.3) gives•¬

where •¬, n, , n. By using decomposition •¬ 

and integration by parts, we obtain from (5.3)

(5.4) •¬

(5.5) •¬

where •¬, •¬, n. Since •¬ 

as •¬ (see Lemma 3.5 (i)), there is a constant •¬ such that for p in 

•¬ the operator on the left of (5.5) is uniformly invertible. For 

eigenvalues •¬ of (5.2) in •¬, we can follow the procedure in section 4.3 to 

show that there is a positive constant po such that Re•¬. We therefore concentrate 

on the eigenvalues in •¬. For such ƒÏ, the equation (5.5) can be solved 

in w as a function of •¬

•¬

which together with (5.4) gives an equation for p to satisfy as an eigenvalue of (5.2):

(5.6) •¬

where •¬ are matrices defined by

•¬It follows from the result in section 3 that •¬. Since •¬

, n, the equation (5.6) shows that •¬. Let us set •¬

, n, which reduces (5.6) to

(5.7) •¬

To obtain an estimate for •¬, we first compute •¬. Notice that •¬, 

n, from Lemma 5.1 (v). A computation similar to that which follows Lemma 

3.7 gives•¬
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where •¬ and •¬ represents the Dirac ƒÂ-function at 

•¬, and •¬, •¬ is the duality pairing in •¬. Therefore •¬ 

satisfies

•¬

where •¬ is a matrix defined by•¬

Since the matrix A is an orthogonal matrix, the equation for •¬ is equivalent to

(5.8) •¬

For the equation (5.8), Fujii and Nishiura [16] gives the following:

LEMMA 5.3. There exist n continuous functions •¬, n, of •¬ 

such that

•¬

and the solution •¬ of (5.8) are given by

•¬ Moreover,

•¬ where

•¬ This completes the proof of Theorem C.
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