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Abstract: A contribution of this article is to introduce new q-rung Orthopair fuzzy (q-ROF) aggrega-
tion operators (AOs) as the consequence of Aczel–Alsina (AA) t-norm (TN) (AATN) and t-conorm
(TCN) (AATCN) and their specific advantages in handling real-world problems. In the beginning,
we introduce a few new q-ROF numbers (q-ROFNs) operations, including sum, product, scalar
product, and power operations based on AATN and AATCN. At that point, we construct a few q-
ROF AOs such as q-ROF Aczel–Alsina weighted averaging (q-ROFAAWA) and q-ROF Aczel–Alsina
weighted geometric (q-ROFAAWG) operators. It is illustrated that suggested AOs have the features
of monotonicity, boundedness, idempotency, and commutativity. Then, to address multi-attribute
decision-making (MADM) challenges, we develop new strategies based on these operators. To
demonstrate the compatibility and performance of our suggested approach, we offer an example of
construction material selection. The outcome demonstrates the new technique’s applicability and
viability. Finally, we comprehensively compare current procedures with the proposed approach.

Keywords: fuzzy sets; t-norm; t-conorm; Aczel–Alsina operations; q-rung Orthopair fuzzy numbers;
aggregation operators; multi-attribute decision making

1. Introduction

Decision making (DM) is a helpful technique for choosing the best option from multiple
lists of options. To acquire the best findings, several researchers gave a variety of concepts.
MADM is an important part of decision sciences that can offer ranking outcomes for limited
options based on the attribute values of various alternatives. In the last few years, the
growth of construction businesses and social DM in all aspects have been linked to the
issue of MADM. Therefore, it has become extensively used on various grounds, such
as the assessment of sustainable housing affordability by Mulliner et al. [1] and fuzzy
hybrid techniques for management of construction engineering by Fayek [2]. An important
difficulty in the real-world DM process is expressing attribute value more accurately and
efficiently. Zadeh [3] presented the fuzzy set (FS) notion to fill this gap. It was a significant
accomplishment with several applications in various ambiguous environments. FS is
essentially composed of just membership degree (MD) that fall into the [0, 1] range. FS is a
helpful tool for analyzing uncertain ambiguous data.

Researchers have been paying increasing attention to these approaches in recent
decades and have effectively used them in the DM process in several situations. The
concept of FS was further developed by Atanassov [3], intuitionist fuzzy set (IFS). It
consists of MD ′α′ and non-membership degree (NMD) ′β′ such that 0 ≤ α + β ≤ 1. When
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the value of MD is 0.3 and NMD is 0.8, then IFS cannot clearly define how to handle such a
circumstance. Then, Yager [4] developed the concept of the Pythagorean fuzzy set (PyFS)
to address these issues by providing the condition for MD ′α′ and NMD ′β′ such that
0 ≤ α2 + β2 ≤ 1. In addition, Yager [5], the q-ROF set (q-ROFS) can be used to generalize
IFS and PyFS. The q-ROFS gives greater freedom for expressing their opinions and gives
the conditions on MD ′α′ and NMD ′β′ such that 0 ≤ αq + βq ≤ 1. The q-ROFS structure
has the ability to deal with the sum of qth power of MD and NMD, and it always gives the
answer within the range of [0, 1]. The results of this fuzzy structure are more accurate than
previous fuzzy structures. Due to this important factor, we select this structure for the data
aggregation.

In MADM, a hot debate is generated when trying to select the best option from
ambiguous data or information. For MADM issues, the aggregation of data is the primary
technique. A variety of AOs is based on different TCN and TN. The debate on arithmetic
AOs has a long history among these AOs; many AOs have been examined in numerous
contexts. For example, various authors have investigated Einstein AOs based on Einstein
TNs, such as Munir et al. [6], who studied Einstein’s interactive AOs of a t-Spherical
fuzzy set (TSFS), and Wang and Liu [7], who investigated Einstein geometric AOs of IFS.
Intuitionistic fuzzy (IF) hybrid arithmetic AOs are proposed by Ye et al. [8], and Ullah [9]
proposed picture fuzzy Maclaurin symmetric AOs. Mahmood [10] studied the applications
of bipolar soft sets in MADM, and Wei [11] proposed IF trapezoidal fuzzy arithmetic AOs.
The concept of Hamacher TNs, which led to the invention of Hamacher AOs and their use
in MADM issues, has also been researched by several researchers in fuzzy mathematics.
Hamacher AOs for IFSs based on Entropy are developed by Garg [12], while Ullah et al. [13]
analyze the t-spherical fuzzy (TSF), Hamacher AOs for analyzing the performance of rescue
robots. Various other TNs and TCNs, such as Dombi TNs and Dombi TCNs by Dombi [14],
have been extensively investigated and led to the invention of Dombi AOs. Seikh and
Mandal [15] and Jana et al. [16] developed the concepts of Dombi AOs in the context of
IFSs and Dombi AOs in the Pythagorean fuzzy (PyF) system, respectively. Jana et al. [17]
also investigated difficulties caused by Dombi AOs in q-ROFS. In this research article, we
developed a few latest AOs for q-ROFS and examined the MADM issue.

Aczel–Alsina TN and TCN were presented by Aczel and Alsina [18] in 1982. The
AATN and AATCN give more reliable and accurate results than other existing TN and TCN
in fuzzy environments. They have good applicability in MADM under FS construction
due to the high focus on parameter changeability. Menger [19] first proposed the concept
of triangular norms in his theory of probabilistic fuzzy metric spaces. For FS, it has been
discovered that TNs and their corresponding TCNs are significant operations, such as
Archimedean TCNs and TNs [20], Frank TCNs and TNs [21], Dombi TCN and TN [22],
Einstein TCN and TN [14], and Hamacher TCN and TN [23].

MADM algorithms are also used extensively in dealing with construction engineering
problems, such as the modeling risk evaluation in construction management by Nasirzadeh
et al. [24]. Wen et al. [25] discussed the applications of MADM algorithms in civil engi-
neering. Dend and Zhang [26] used clustering algorithms based on fuzzy information to
design and analyze construction engineering. The performance evaluation of construction
companies by using VIKOR modeling was discussed by Lam et al. [27]. Chen et al. [28]
presented the method of selecting sustainable materials for construction. Mohamed and
Tran gave the idea of an inspection of concrete pavement for construction [29]. Demir [30]
gave the model in the fuzzy environment for the financial comparison of Turkish cement
companies with other companies. The evaluation of risk on small-level construction work
by Topal and Atasoylu [31]. Baghdadi and Rahman [32] studied the stability of dunes
during highway construction. The evaluation of construction material equipment by using
the hybrid fuzzy technique was studied by Ghorabaee et al. [33]. Wudhikarn et al. [34] gave
the idea of the improved construction material service provider strategy. The developed
intellectual capital indicators in financial service companies using the best-worst method
presented by Lu and Wudhikarn [35].
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When we select the building material for the construction, the following features play
a significant role: life of the material, the fineness of the material, the cost of the material,
storage handling of the material, and the effect of climate on the material. Therefore, it is
hard to measure which one is the best company to supply the best material. Because of the
above considerations, we realize that DM problems are getting increasingly complicated
in reality. It is necessary to explain the doubtful data in a far more beneficial approach to
select the best option for the MADM concerns. The main goal of this informative article is
to propose a q-ROFAAWA and q-ROFAAWG operator based on q-ROF information and to
study their application in construction engineering problems.

The article provides the following information: In the next section, we discuss some
basic concepts for Aczel–Alsina (AA) triangular norms and q-ROFSs. The AA operational
laws for the q-ROFNs are intensely discussed in Section 3. Section 4 describes the q-
ROFAAWA operator, q-ROFAAWG operator, q-ROFAAOWA operator, q-ROFAAOWG
operator, q-ROFAAHWA operator, and q-ROFAAHWG operator, as well as a few useful
features. In Section 5, we use the q-ROFAAWA operator to provide an algorithm for dealing
with the MADM problem. Section 6 provides a numerical example for the best alternative
selection by utilizing the proposed technique. Section 7 compares the newly developed
method to existing methods to see whether the developed strategy is adequate. In the end,
some conclusions and future research areas are mentioned in Section 8.

2. Preliminaries

This segment briefly explains some main concepts that help us understand this article.

2.1. q-Rung Orthopair Fuzzy Set

The notion of q-ROFS was proposed by Yager [5], where uncertain information is
expressed in terms of MD and NMD with complete independency and accuracy. This
notion of qROFS can handle information that IFSs and PyFSs cannot handle.

For better understanding, we construct Table 1, which discusses all symbols we used
in the manuscript.

Table 1. Explanation of symbols.

Symbols Explanation Symbols Explanation

X Universal set x Element of universal set

τ q-ROF Set β
Non-membership degree of

q-ROF Set

α
Membership degree of

q-ROF set P(x) Hesitancy degree

q q ∈ Z+, q ≥ 1 S score function (SF)

λ Any scalar number ζi Weight vector

W(τ)
Accuracy function (AF) of

q-ROF Set

Definition 1. [5], Let X be a universal set, then q-ROFS in the form of
τ = {x(α, β) : 0 ≤ sum (αq(x), βq(x)) ≤ 1, q ∈ Z+}. The hesitancy degree for the pair (α, β), x ∈
X of q-ROFN is given by

P(x) = q
√

1− sum(αq(x), βq(x))

Here, τ represents q-ROFS and (α, β) denote a q-ROFN.

Definition 2. The q-ROFNs’ sum, product, scalar multiplication, and power operations are defined
as: [5], let τ1 = (α1, β1) and τ2 = (α2, β2) be the two q-ROFNs, here κ be any scalar number
with a condition such as κ > 0. Then
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1. τ1 ⊕ τ2 =

(
q
√

α
q
1 + α

q
2 − α

q
1.αq

2, β1.β2

)
2. τ1 ⊗ τ2 =

(
α1.α2, q

√
β

q
1 + β

q
2 − β

q
1.βq

2

)
3. κ.τ =

(
q
√

1− (1− αq)κ , βκ

)
4. τκ =

(
ακ , q
√

1− (1− βq)κ
)

Definition 3. [36], Let (αi, βi) where i = 1, 2, . . . , n be the q-ROFNs. Then score function (SF)
denoted by S is given by:

S(τ) = α
q
i − β

q
i , Sco(τ) ∈ [−1, 1] (1)

and an accuracy function (AF) W is

W(τ) = α
q
i + β

q
i , Acc(τ) ∈ [0, 1] (2)

Let τ1 = (α1, β1) and τ2 = (α2, β2) be the two q-ROFNs and S(τ) is the SF of τi andW(τ) is
the AF of τi then τ1 > τ2 where the symbol “ > ” means “preferred to” if either S(τ1) > S(τ2) or
S(τ1) = S(τ2) andW(τ1) >W(τ2) holds.

2.2. Aczel–Alsina t-Norm & t-Conorm

Definition 4. [19], A function Z : [0, 1]2 → [0, 1] is called TN if for r, s, p ε [0, 1], Z satisfy the
following properties of Symmetry Z(r, s) = T(s, r); Monotonicity Z(r, s) ≤ Z(s, p) if s ≤ p;
Associativity Z(r, Z(s, p)) = Z(Z(r, s), p); and one identity Z(r, 1) = r.

Examples 1. A few examples of TN, such as Product of TN, is ZP(r, s) = r.s; Minimum TN
is ZM(r, s) = min(r.s); Lukasiewicz TN is ZL(r, s) − min(r + s− 1, 0); and Drastic TN is
given by:

ZD = (r, s) =


r i f s = 1
s i f r = 1
0 otherwise

∀ r, s ∈ [0, 1].

Definition 5. [37] A function H : [0, 1]2 → [0, 1] is called TCN if ∀ r, s, p ε [0, 1], H satisfy
the following properties of Symmetry H(r, s) = H(s, r); Monotonicity H(r, s) ≤ H(s, p) if
s ≤ p; Associativity H(r, H(s, p)) = H(H(r, s), p); and null identity H(r, 0) = r.

Examples 2. Few examples of TN, such as a probable sum of TCN HP(r, s) = r + s− r.s; Max-
imum TCN HM(r, s) = max(r.s); Lukasiewicz TCN HL(r, s)− min(r + s− 1); and Drastic
TCN is given by:

HD = (r, s) =


r i f s = 0
s i f r = 0
1 otherwise

∀ r, s ∈ [0, 1].

Ref. [37], When H is TCN and T is TN then H(r, s) ≥ max(r, s) and H(r, s) ≥
min(r, s)∀ r, s ∈ [0, 1], respectively.

Definition 6. Aczel et al. [18,38] proposed these TNs and TCNs classes for functional equations in
the early 1980s.

The AATN is given by
(
Zλ

A
)
=


ZD(r, s) i f λ = 0

min(r, s) i f λ = ∞

e−((− ln (r))λ+(− ln (s))λ)
1/λ

otherwise
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The AATCN is given by
(

Hλ
A
)
=


HD(r, s) i f λ = 0

max(r, s) i f λ = ∞

e−((− ln (1−r))λ+(− ln (1−s))λ)
1/λ

otherwise
Cases: Z0

A = ZD, Z1
A = ZP, Z∞

A = min, H0
A = HD, H1

A = HP, H∞
A = max ∀ λ ∈ [0, 1],

the TN Zλ
A and TCN Hλ

A are twice each other. The number of AATNs is steadily increasing,
while the number of AATCNs is steadily decreasing.

3. Aczel–Alsina Operational Laws for q-ROFN

We demonstrate the AA operations on q-ROFN and discuss some fundamental prop-
erties of these operations.

Definition 7. Let τ1 = (ατ1 , βτ1) and τ2 = (ατ2 , βτ2) be two q-ROFNs and let Z and H denote
the AATN and AATCN. Then, the generalized union and intersection P and Q are defined as:

τ1 ⊗ τ2 = ( ZA{ατ1 , ατ2}, HA{βτ1 , βτ2})

τ1 ⊕ τ2 = ( HA{βτ1 , βτ2}, ZA{ατ1 , ατ2})

Definition 8. Let τ = (ατ , βτ), τ1 = (ατ1 , βτ1), andτ2 = (ατ2 , βτ2) be three q-ROFNs,N ≥ 1
and λ ≥ 0 (N and λ are any scalar number). Then, the AATN and AATCN are defined as:

1. ατ1 ⊕ βτ2 =

 q

√
1− e−((− ln (1−(ατ1 )

q))
N
+(− ln (1−(ατ2 )

q))
N

)
1
N

, e−((− ln (βτ1 ))
N+(− ln (βτ2 ))

N )
1
N


2. ατ1 ⊗ βτ2 =

e−((− ln (ατ1 ))
N+(− ln (ατ2 ))

N )
1
N

,
q

√
1− e−((− ln (1−(βτ1 )

q))
N
+(− ln (1−(βτ2 )

q))
N

)
1
N


3. λτ =

(
q
√

1− e−(λ(− ln (1−(ατ)
q))
N

)
1
N , e−(λ(− ln (βτ))

N )
1
N

)

4. τλ =

(
e−(λ(− ln (ατ))

N )
1
N ,

q
√

1− e−(λ(−ln (1−(βτ)
q))
N

)
1
N

)

Examples 3. Let τ = (0.83, 0.62), τ1 = (0.77, 0.66), andτ2 = (0.67, 0.85) be three q-ROFNs
subjects to q = 3 and let N = 3, λ = 2. Then AATN and AATCN are defined as:

ατ1 ⊕ βτ2 =

 3

√
1− e−((− ln (1−(0.77)3))

3
+(− ln (1−(0.67)3))

3
)

1
3

, e−((− ln (0.66))3+(− ln (0.85))3 )
1
3


= (0.15903, 0.65465)

ατ1 ⊗ βτ2 =

e−((− ln (0.77))3+(− ln (0.67))3 )
1
N ,

3

√
1− e−((− ln (1−(0.66)3))

3
+(− ln (1−(0.85)3))

3
)

1
3


= (0.64752, 0.20251)

2τ =

 3

√
1− e−(2(− ln (1−(0.83)3))

3
)

1
3

, e−(2(− ln (0.62))3 )
1
3


= (0.21883, 0.54755)

τ2 =

e−(2(− ln (0.83))3 )
1
3 ,

3

√
1− e−(2(− ln (1−(0.62)3))

3
)

1
3


= (0.79076, 0.09678)
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Theorem 1. Let τ = (ατ ⊕ βτ), τ1 = (ατ1 , βτ1), and τ2 = (ατ2 , βτ2) be three q-ROFNs where
λ, λ1, λ2 > 0. Then

1. τ1 ⊕ τ2 = τ2 ⊕ τ1
2. τ1 ⊗ τ2 = τ2 ⊗ τ1
3. λ(τ1 ⊕ τ2) = λτ1 ⊕ λτ2
4. (λ1 + λ2)τ = τλ1 ⊕ τλ2

5. (τ1 ⊗ τ2)
λ = τλ

1 ⊗ τλ
2

6. τλ1
1 ⊗ τλ2

2 = τ(λ1+λ2)

Proof. Take three q-ROFNs τ, τ1, τ2 and λ, λ1, λ2. Then

τ1 ⊕ τ2 =

 q

√
1− e−((− ln (1−(ατ1 )

q))
N
+(− ln (1−(ατ2 )

q))
N
)

1
N

,e−((− ln (βτ1 ))
N+(− ln (βτ2 ))

N )
1
N


=

 q

√
1− e−((− ln (1−(ατ2 )

q))
N
+(− ln (1−(ατ1 )

q))
N
)

1
N

,e−((− ln (βτ2 ))
N+(− ln (βτ1 ))

N )
1
N


= τ2 ⊕ τ1

Similar to part 1.

λ(τ1 ⊕ τ2) = λ

 q

√
1− e−((− ln (1−(ατ1 )

q))
N
+(− ln (1−(ατ2 )

q))
N
)

1
N

,e−((− ln (βτ1 ))
N+(− ln (βτ2 ))

N )
1
N


=

 q

√
1− e−(λ((− ln (1−(ατ1 )

q))
N
+(− ln (1−(ατ2 )

q))
N
))

1
N

,e−(λ((− ln (βτ1 ))
N+(− ln (βτ2 ))

N ))
1
N



=



 q

√
1− e−(λ(− ln (1−(ατ1 )

q))
N
)

1
N

,e−(λ(− ln (βτ1 ))
N )

1
N


⊕

 q

√
1− e−(λ(− ln (1−(ατ2 )

q))
N
)

1
N

,e−(λ(− ln (βτ2 ))
N )

1
N




= λτ1 ⊕ λτ2

λ1τ ⊕ λ2τ =



 q

√
1− e−(λ1(− ln (1−(ατ)

q))
N
)

1
N ,e−(λ1(− ln (βτ))

N )
1
N


⊕

 q

√
1− e−(λ2(− ln (1−(ατ)

q))
N
)

1
N ,e−(λ2(− ln (βτ))

N )
1
N




=

 q

√
1− e−((λ2+λ2)(− ln (1−(ατ)

q))
N
)

1
N ,e−((λ2+λ2)(− ln (βτ))

N )
1
N


= (λ2 + λ2)τ
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(τ1 ⊗ τ2)
λ =

 q

√
e−((− ln (1−(ατ1 )

q))
N
+(− ln (1−(ατ2 )

q))
N
)

1
N

,1− e−((− ln (βτ1 ))
N+(− ln (βτ2 ))

N )
1
N

λ

=

 q

√
1− e−(λ((− ln (ατ1 )

q)
N
+(− ln (ατ2 )

q)
N
))

1
N

,e−(λ((− ln (1−βτ1 ))
N+(− ln (1−βτ2 ))

N ))
1
N



=



 q

√
e−(λ1(− ln (ατ1 )

q)
N
)

1
N

,1− e−(λ1(− ln (1−βτ1 ))
N )

1
N


⊗

 q

√
e−(λ2(− ln (ατ2 )

q)
N
)

1
N

,1− e−(λ2(− ln (1−βτ2 ))
N )

1
N




= τλ

1 ⊗ τλ
2

τλ1
1 ⊗ τλ2

2 =



 q

√
e−(λ1(− ln (ατ)

q)
N
)

1
N ,1− e−(λ1(− ln (1−βτ))

N )
1
N


⊗

 q

√
e−(λ2(− ln (ατ)

q)
N
)

1
N ,1− e−(λ2(− ln (1−βτ))

N )
1
N




=

 q

√
e−((λ2+λ2)(− ln (ατ)

q)
N
)

1
N ,1− e−((λ2+λ2)(− ln (1−βτ))

N )
1
N


�

4. q-ROF Aczel–Alsina Aggregation Operators

This portion elaborates on some q-ROF average AOs utilizing AA operations. We
discuss q-ROFAAWA, q-ROFAAWG, q-ROFAAOWA, q-ROFAAOWG, q-ROFAAHA, and
q-ROFAAHG operators in detail.

Definition 9. Let τi = (αi, βi) be some q-ROFNs and ζi = (ζ1, ζ2, . . . , ζn)
T be the weight

vector (WV) of τi, having condition ζi ≥ 0 and
n
∑

i=1
ζi = 1. Then, the q-ROFAAWA operator is the

function: M∗n → M∗ , defined as:

q− ROFAAWA (τ1, τ2, . . . , τn) =
n
⊕

i=1
(ζiτi) = ζ1τ1 ⊕ ζ2τ2 ⊕ . . . ⊕ ζnτn

By using the AA operations on q-ROFNs, we derive the following theorem.

Theorem 2. Let τi = (αi, βi) denote some q-ROFNs. Then aggregated values of τ′i s utilizing the
q-ROFAAWA AOs is also known as a q-ROFN and given by:

q− ROFAAWA (τ1, τ2, . . . , τn)

=

 q

√
1− e

−(
n
∑

i=1
((ζi(− ln (1−(ατi )

q))
N
)

1
N ))

,e
−(

n
∑

i=1
(((ζi(− ln (βτi ))

N )
1
N )))

 (3)

Proof. By using the induction of mathematics rule:
For n = 2,

ζ1τ1 =

 q

√
1− e−((ζ1(− ln (1−(ατ1 )

q))
N
))

1
N

,e−(ζ1(− ln (βτ1 ))
N )

1
N
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ζ2τ2 =

 q

√
1− e−((ζ2(− ln (1−(ατ2 )

q))
N
))

1
N

,e−(ζ2(− ln (β2))
N )

1
N


By Definition 5, we obtain

q− ROFAAWA (τ1, τ2) = ζ1τ1 ⊕ ζ2τ2

=



 q

√
1− e−((ζ1(− ln (1−(ατ1 )

q))
N
)

1
N ) ,e

−((
n
∑

i=1
(ζ1(− ln (βτ1 ))

N )
1
N ))


⊕

 q

√
1− e−((ζ2(− ln (1−(ατ2 )

q))
N
)

1
N ) ,e

−((
n
∑

i=1
(ζ1(− ln (βτ2 ))

N )
1
N ))




=

 q

√
1− e−(ζ1(((− ln (1−(ατ1 )

q))
N
+(− ln (1−(ατ2 )

q))
N
)

1
N )) ,

e−(ζ1((− ln (βτ1 ))
N+ζ2(− ln (βτ2 ))

N ))
1
N



=


q

√
1− e

−(
2
∑

i=1
(ζi((− ln (1−(ατi )

q))
N
)

1
N ))

,

e
−(

2
∑

i=1
((ζi((− ln (βτi ))

N )
1
N )))

.

For n = k

q− ROFAAWA(τ1, τ2, . . . , τn) =
k
⊕

ζ=1
(ζiτi)

=


q

√
1− e

−(
k
∑

i=1
(ζi((− ln (1−(ατi )

q))
N
)

1
N ))

,

e
−(

k
∑

i=1
(((ζi(− ln (βτi ))

N )
1
N )))


Now for n = k + 1, we obtain

q− ROFAAWA (τ1, τ2, . . . , τk, τk+1) =
k
⊕

ζ=1
(ζiτi)⊕ (ζk+1τk+1)

=




q

√
1− e

−(
k
∑

i=1
(ζi((− ln (1−(ατi )

q))
N
)

1
N ))

,

e
−(

k
∑

i=1
(((ζi(− ln (βτi ))

N )
1
N )))


⊕

 q

√
1− e−(ζk+1((− ln (1−(ατk+1 )

q))
N
)

1
N ) ,

e−(ζ1(− ln (βτ1 ))
N )

1
N




.

=


q

√
1− e

−(
k+1
∑

i=1
(ζi((− ln (1−(ατi )

q))
N
)

1
N ))

,

e
−(

k+1
∑

i=1
(((ζi(− ln (βτi ))

N )
1
N )))


Hence, the result satisfies the condition for n = k + 1. �

Theorem 3. (Idempotency) Let τi = (αi, βi) = (α, β) = τ ∀ i. Then

q− ROFAAWA (τ1, τ2, . . . , τk) = τ
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Proof. Since τi = (αi, βi); (i = 1, 2, . . . , n).

q− ROFAAWA (τ1, τ2, . . . , τn) =
k
⊕

i=1
(αi, βi)

=

 q

√
1− e

−(
n
∑

i=1
(ζi((− ln (1−(ατi )

q))
N
)

1
N ))

,e
−(

n
∑

i=1
(((ζi(− ln (βτi ))

N )
1
N )))


=

 q

√
1− e−((− ln (1−(ατ)

q))
N
)

1
N ,e−((− ln (βτ))

N )
1
N


=
(

q
√

1− eln (1−αq), eln (βq)
)
= (α, β) = τ

�

Theorem 4. (Boundedness) Let τi = (α, β) be an accumulation of q-ROFNs. Let
τ− = min(τ1, τ2, . . . , τn) and τ+ = max(τ1, τ2, . . . , τn). Then

τ− ≤ q− ROFAAWA (τ1, τ2, . . . , τn) ≤ τ+.

Proof. Let τi = (α, β) be an accumulation of q-ROFNs. Let τ− = min(τ1, τ2, . . . , τn) =
(α−τ , β−τ ) and τ+ = max(τ1, τ2, . . . , τn) = (α+τ , β+

τ ). We obtain α−τ = min(αi), β−τ =
max(βi), α+τ = max(αi), β+

τ = min(βi). Hence, we obtained subsequent inequality as
given below:

q

√
1− e

−(
n
∑

i=1
((ζi(((− ln (1−(α−τ )

q
))
N
)))

1
N ))
≤

q

√
1− e

−(
n
∑

i=1
((ζi(− ln (1−α

q
τi
))
N
)

1
N ))

≤
q

√
1− e

−(
n
∑

i=1
((ζi(− ln (1−(α+τ )

q
))
N
)

1
N ))

e
−(

n
∑

i=1
(ζi(− ln (β−τ ))

N
)

1
N )
≤ e
−(

n
∑

i=1
(ζi(− ln βτ)

N )
1
N )
≤ e
−(

n
∑

i=1
(ζi(− ln (β+τ ))

N
)

1
N )

Therefore,
τ− ≤ q− ROFAAWA (τ1, τ2, . . . , τn) ≤ τ+

�

Theorem 5. (Monotonicity) Let τi = (αi, βi) and τ′i =
(
α′i, β′i

)
(i = 1, 2, . . . , n) be two

q-ROFSs such that τi ≤ τ′i i.e., αi ≤ α′i and βi ≥ β′i ∀ i. Then

q− ROFAAWA (τ1, τ2, . . . , τn) ≤ q− ROFAAWA
(
τ′1, τ′2, . . . , τ′n

)
Proof. Consider two q-ROFSs τi = (αi, βi) and τ′i =

(
α′i, β′i

)
(i = 1, 2, . . . , n). τi ≤ τ′i

implies that

q

√
1− e

−(
n
∑

i=1
(ζi((− ln (1−(ατi )

q))
N
)

1
N ))
≤

q

√
1− e

−(
n
∑

i=1
(ζi((− ln (1−(ατ′i

)q))
N
)

1
N ))

and

e
−(

n
∑

i=1
(((ζi(− ln (βτi ))

N )
1
N )))

≥ e
−(

n
∑

i=1
(((ζi(− ln (βτ′i

))N )
1
N )))

Implies that

q− ROFAAWA (τ1, τ2, . . . , τn) ≤ q− ROFAAWA
(
τ′1, τ′2, . . . , τ′n

)
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Definition 10. Let τi = (αi, βi) be some q-ROFNs and ζi = (ζ1, ζ2, . . . , ζn)
T be the WV of τi.

Then, the q-ROFAAOWA operator is the function: M∗n → M∗ , defined as:

q− ROFAAOWA (τ1, τ2, . . . , τn) =
n
⊕

i=1

(
ζiτp(i)

)
where, (τ1, τ2, . . . , τn) are the permutation such that τi−1 ≥ τi ∀ (i = 1, 2, . . . , n). Using AA
operations on q-ROFNs, we demonstrate the following theorem.

Theorem 6. Let τi = (αi, βi) denote some q-ROFNs. Then aggregated values of τ′i s utilizing the
q-ROFAAOWA AOs is also known as a q-ROFN given by:

q− ROFAAOWA (τ1, τ2, . . . , τn) =

 q

√
1− e

−(
n
∑

i=1
((ζi(− ln (1−(ατp(i)

)q))
N
)

1
N ))

,e
−(

n
∑

i=1
(((ζi(− ln (βτp(i)

))N )
1
N )))

 (4)

Definition 11. Let τi be an accumulation of q-ROFNs. A q-ROFAAHA operator of dimension n is
mapping q− ROFAAHA : M∗n → M∗ such that

q− ROFAAHA (τ1, τ2, . . . , τn) =
n
⊕

i=1

(
ζi

.
τi
)

where ζ = (ζ1, ζ2, . . . , ζn)
T are the WV of the q-ROFAAHA operator having conditions such that

ζi = [0, 1] and
n
∑

i=1
ζi = 1;

.
τi = nζiτi,

( .
τ1,

.
τ2, . . . ,

.
τn
)

is any permutation of the collection of

weighted q-ROFNs such that
.
τi−1 ≥

.
τi ∀ i; ζ = (ζ1, ζ2, . . . , ζn)

T . Here n is the coefficient of
balancing, which is responsible for maintaining equilibrium.

We can prove the following theorem using AA procedures using q-ROFNs information.

Theorem 7. Consider τi = (αi, βi) denote some q-ROFNs. Then aggregated values of τi′s.
utilizing the q-ROFAAHG operator also give a q-ROFN.

q− ROFAAHA (τ1, τ2, . . . , τn) =
n
⊗

i=1

(
ζi

.
τi
)

Further,

q− ROFAAHA (τ1, τ2, . . . , τn) =


q

√
1− e

−(
n
∑

i=1
(((− log (1−( .

ατi )
q
))
N
)

1
N ))

ζi

, e
−(

n
∑

i=1
((− log (

.
βτi ))

N
)

1
N

)

ζi
 (5)

We can prove the following theorem using AA procedures using q-ROFNs information.
It is also the same as Theorem 3.

Now, we propose some geometric aggregation operators based on AA operations for
q-ROFNs.

Definition 12. Let τi = (αi, βi) be some q-ROFNs and ζi = (ζ1, ζ2, . . . , ζn)
T be the WV of τi,

having condition ζi ≥ 0 and
n
∑

i=1
ζi = 1. Then, the q-ROFAAWG operator can be described in the

form of a function: M∗n → M∗ , defined as:

q− ROFAAWG (τ1, τ2, . . . , τn) =
n
⊗

i=1

(
τ

ζi
i

)
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By using the AA operations on q-ROFNs, we derive the following theorem.

Theorem 8. Consider τi = (αi, βi) denote some q-ROFNs. Then aggregation results of τi′s
utilizing the q-ROFAAWG operator also gives a q-ROFN.

q− ROFAAWG (τ1, τ2, . . . , τn) =
n
⊗

i=1

(
τ

ζi
i

)
=

e
−(

n
∑

i=1
(((− ln (ατi )

q)
N
)

1
N ))

ζi
,

q

√
1− e

−(
n
∑

i=1
(((− ln (1−βτi ))

N )
1
N ))

ζi

 (6)

The proof follows the same pattern as Theorem 2.

Definition 13. Let τi = (ατi , βτi ) be an accumulation of q-ROFNs. An q-ROFAAOWG operator
of dimension n is mapping q-ROFAAOWG: M∗n → M∗ with the corresponding WV, ζi =

(ζ1, ζ2, . . . , ζn)
T such that ζi ≥ 0 and

n
∑

i=1
ζi = 1, as follows:

q− ROFAAOWG (τ1, τ2, . . . , τn) =
n
⊗

i=1

(
τ

ζi
p(i)

)
Theorem 9. Let τi = (ατi , βτi ) be the collection of q-ROFNs. The aggregation finding by using
the q-ROFAAOWG operator is also q-ROFNs given by:

q− ROFAAOWG (τ1, τ2, . . . , τn) =
n
⊗

i=1

(
τ

ζi
p(i)

)
Definition 14. Let τi be an accumulation of q-ROFNs. A q-ROFAAHG operator of dimension n is
mapping q− ROFAAHG : M∗n → M∗ such that

q− ROFAAHG (τ1, τ2, . . . , τn) =
n
⊗

i=1

.
τi

ζi

where ζ = (ζ1, ζ2, . . . , ζn)
T are the WV of the q-ROFAAHG operator with ζi = [0, 1] and

n
∑

i=1
ζi = 1;

.
τi = nζiτi,

( .
τ1,

.
τ2, . . . ,

.
τn
)

is any permutation of the collection of weighted q-ROFNs

such that
.
τi−1 ≥

.
τi ∀ i; ζ = (ζ1, ζ2, . . . , ζn)

τ . Here n is the coefficient of balancing, which is
responsible for maintaining equilibrium.

Theorem 10. Let τi be the collection of q-ROFNs. The aggregation finding by using the q-
ROFAAHG operator is also a q-ROFNs given by:

q− ROFAAHG(τ1, τ2, . . . , τn) =
n
⊗

i=1

(
ζi

.
τi
)
=

e
−(

n
∑

i=1
((− log (

.
ατi ))

N
)

1
N )

ζi

,

q

√
1− e

−(
n
∑

i=1
(((− log (1−(

.
βτi )

q
))
N
)

1
N
))

ζi


5. MADM Algorithm Based on q-ROFAAWA

This section contains information using q-ROSF data to design a methodology and
apply the proposed operators in MADM.

Consider a = {a1, a2, . . . , am} are m alternatives for selection, let J = {j1, j2, . . . , jn} are
n attributes with WV, ζ. Let the q-ROSF data be H =

(
τij
)

m×n in the form of a matrix where
q-ROFN τij =

(
αij, βij

)
represents the value of the characteristic that the decision-maker

(DM) provides for the alternate jn.τij =
(
αij, βij

)
show alternative evaluation values where

0 ≤ αij
q + βij

q ≤ 1. As a result, the q-ROF decision matrix H =
(
τij
)

m×n is formed with
the help of q-ROF information.
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In this scenario, to select the best possible option, we construct the algorithm by using
the q-ROFAAWA and q-ROFAAWG operators to explain the MADM issue in the q-ROF
environment. The following steps of this algorithm are discussed below:

Step 1. First, the q-ROF decision matrix is formed, which is further into the normalized
decision matrix.

τij =

{
τij benefit attribute
τc

ij cost attribute

Let τij and τc
ij be the benefit and cost attributes of the decision matrix, respectively.

There is no need to change any of the attributes if they are of the same type. Both categories
must be changed if there are two different categories (cost and benefit).

Step 2. For alternatives ζi aggregate all the values of τi with the help of q-ROFAAWA
operator is given by:

q− ROFAAWA (τ1, τ2, . . . , τn) =
n
⊕

ζ=1
(ζiτi)=

 q

√
1− e

−(
n
∑

i=1
((ζi(− ln (1−(ατi )

q))
N
)

1
N ))

,e
−(

n
∑

i=1
(((ζi(− ln (βτi ))

N )
1
N )))


And

q− ROFAAWG (τ1, τ2, . . . , τn) =
n
⊗

i=1

(
τ

ζi
i

)
=

e
−(

n
∑

i=1
(((− ln (ατi )

q)
N
)

1
N ))

ζi
,

q

√
1− e

−(
n
∑

i=1
(((− ln (1−βτi ))

N )
1
N ))

ζi


Step 3. Calculate the score value by applying this SF provided by Liu et al. [36], which is

given by:
[labelsep = 9mm]S(τ) = α

q
i − β

q
i

Step 4. We arrange the ranking values of all of the options to choose the best one while
keeping ζi in mind.

6. Numerical Example

We handle a real-world construction material selection problem in this part by using
the q-ROFAAWA and q-ROFAAWA aggregation operations. An explanation of the problem
is as follows.

A sound product is possible only with sound materials; materials are the key to
everything. The selection of the best building material is essential for the long life of the
building. This article discusses the case study for selecting cement companies from the
list of companies as cement is one of the essential constituents of construction material. In
the global market, competition between cement companies is increasing day by day, and
all companies are trying to produce high-quality cement. The selection of the best cement
company is a challenging problem that can be accomplished with the help of the MADM
procedure by keeping in mind the expert’s opinion under uncertain situations.

Example 4. Consider we are selecting the cement company from the list of five companies like
ai = (i = 1, 2, . . . , 5). We have the following attributes considered such as: G1 is the life of the
cement, G2 is the fineness of the cement, G3 is the handling storage of cement, G4 is the effect of
climate on cement. The attribute weight as ζ = (0.34, 0.26, 0.24, 0.16) distributed by the DMs.
The DMs will evaluate the five cement companies ai = (i = 1, 2, . . . , 5) in ambiguity with q-ROF
data under the following four attributes Gi = (i = 1, 2, 3, 4) as presented in Table 2. It is noted
that initially, we take parameters q = 3 and N = 1 for q-ROFAAWA and q-ROFAAWG AOs.
Furthermore, we also discuss the effect of the changeability in parameters q and N .
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Table 2. q-ROF decision matrix.

a1 a2 a3 a4 a5

G1 (0.31, 0.89) (0.29, 0.78) (0.56, 0.88) (0.33, 0.95) (0.96, 0.50)

G2 (0.32, 0.88) (0.77, 0.28) (0.87, 0.57) (0.94, 0.30) (0.95, 0.34)

G3 (0.30, 0.86) (0.28, 0.76) (0.57, 0.86) (0.30, 0.92) (0.93, 0.32)

G4 (0.28, 0.85) (0.26, 0.71) (0.55, 0.88) (0.28, 0.89) (0.90, 0.21)

Step 1. First, we construct the decision matrix by collecting the data from the five cement
companies and provide all the data collection in the form of a matrix to experts for
DM. We have considered four attributes with weight as follows: G1 is the life of
the cement 0.34, G2 is the fineness of the cement 0.26, G3 is the handling storage of
cement 0.24, G4 is the effect of climate on cement 0.16. The collection of the data is
represented in Table 2.

Step 2. In this step, we aggregate the information the DMs provide by using the q-ROFAAWA
and q-ROFAAWG AOs. The aggregation findings are presented in Table 3. (Note
that at the start, we take parameters q = 3 and N = 1 during the aggregation.)

Step 3. To apply the score values formula discussed in Definition 3. to check the best
option from five companies. The score values are shown in Table 4. For better
understanding, the findings of SF are represented geometrically in Figure 1.

For clarity and better understanding, we depict the score values in Figure 1.

Step 4. Sort the five companies in order of preference based on their scores in Table 4. It
is found that a4 and a5 are the best among the listed alternatives by applying the
proposed q-ROFAAWA and q-ROFAAWG operators, respectively. The results are
displayed in Table 5 below.

Table 3. Aggregation findings by using proposed q-ROFAAWA and q-ROFAAWG operators.

q-ROFAAWA q-ROFAAWG

a1 (0.3185, 0.8525) (0.6538, 0.9611)

a2 (0.2986, 0.7145) (0.6378, 0.9189)

a3 (0.5675, 0.8619) (0.8173, 0.9575)

a4 (0.3384, 0.8919) (0.6538, 0.9827)

a5 (0.9590, 0.2159) (0.9017, 0.4983)

Table 4. Scores of aggregated information.

q-ROFAAWA q-ROFAAWG

a1 −0.5873 −0.8917

a2 −0.3380 −0.4557

a3 −0.4573 −0.5138

a4 0.6707 −0.8343

a5 0.6489 0.6094
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Table 5. Ranking of the score function.

Ordering

q-ROFAAWA a4 > a5 > a2 > a3 > a1

q-ROFAAWG a5 > a2 > a3 > a4 > a1

The results obtained by utilizing the q-OFAAWA and q-OFAAWG operators show that
a5 is the suitable alternative. Additionally, aggregated results from WA and WG operators
do not always need to give the same rankings. However, it depends upon the DMs which
WA and WG operators they select for the data aggregation.

6.1. The Effect of Parameters

As we saw in Section 3, all of the AOs proposed in this study depend on the two
restrictions N and q. We observe the changeability effect of parameters (N and q) on the
ranking order of our proposed AOs.

6.1.1. The Effect of N
In our numerical example, we can see the value of the parameter N = 1. However, a

change in the valueN may influence the ranking results. We observed that when we change
the value of parameter N in our proposed q-ROFAAWA and q-ROFAAWG operators, a
significant variation occurs in the ranking sequence of alternatives. Such changes can be
seen in Tables 6 and 7.
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Table 6. Ranking of score values by changing in N q-ROFAAWA.

Ranking of Score Values of q-ROFAAWA

N Ordering N Ordering

1 a5 > a2 > a3 > a1 > a4 2 No result identified

3 a5 > a2 > a3 > a1 > a4 4 No result identified

5 a5 > a2 > a3 > a1 > a4 6 No result identified

7 a5 > a2 > a3 > a1 > a4 8 No result identified

9 a5 > a2 > a3 > a1 > a4 10 No result identified

13 a5 > a2 > a3 > a1 > a4 20 No result identified

15 a5 > a2 > a3 > a1 > a4 40 No result identified

17 a5 > a2 > a3 > a1 > a4 60 No result identified

19 a5 > a2 > a3 > a1 > a4 80 No result identified

99 a5 > a2 > a3 > a1 > a4 100 No result identified

Table 7. The ranking order of score function by changing in N q-ROFAAWG operator.

Ranking of Score Values of q-ROFAAWG

N Ordering N Ordering

1 a5 > a2 > a3 > a1 > a4 2 No result identified

3 a5 > a2 > a3 > a1 > a4 4 No result identified

5 a5 > a2 > a3 > a1 > a4 6 No result identified

7 a5 > a2 > a3 > a1 > a4 8 No result identified

9 a5 > a2 > a3 > a1 > a4 10 No result identified

13 a5 > a2 > a3 > a1 > a4 20 No result identified

15 a5 > a2 > a3 > a1 > a4 40 No result identified

17 a5 > a2 > a3 > a1 > a4 60 No result identified

19 a5 > a2 > a3 > a1 > a4 80 No result identified

99 a5 > a2 > a3 > a1 > a4 100 No result identified

The aggregation findings of Table 5. are further represented in Figure 2. We can easily
observe from the data there is no change in aggregation findings with the variations in
N . It is also observed that there when we take N as an even number, then there is no
result identified.

All rankings in Table 6. can be observed in Figure 2. It can be noticed that in the
q-ROFAAWA operator, there is no change when we take N as odd numbers. It is also
observed that when we take N as even, no result will be identified.

Now, we also change the parameterN for q-ROFAAWG operators, and all the findings
obtained are presented in Table 6, as given below.

The ranking of Table 7. can be seen geometrically in Figure 3, as given below. We
noticed no change in a ranking order by the variation in N . It is also a highly significant
factor; when we take N as an even number, then no result is identified.

It is observed that when we take a variation of N as odd, then the sequence of listed
five companies comes out to be the same, but this is not always guaranteed. On the other
hand, when we take the variation of N even then, no result is identified.
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Figure 2. The graphical representation of score value, variation by N .
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Figure 3. The graphical representation of score function, variation by N , where the lines represent
the raking of score value.

6.1.2. The Effect of q

We take parameter q = 3 in the proposed numerical example and aggregate the data by
utilizing the q-ROFAAWA and q-ROFAAWG AOs. If DMs can vary the value of parameter
q, the ranking sequence also changes with the variation in q. We observed that the behavior
of our proposed q-ROFAAWA and q-ROFAAWG AOs depends upon the parameter q
for the interpretation of raking results. When we change the value of parameter q in the
proposed q-ROFAAWA and q-ROFAAWG AOs, raking results are also affected by the
changing of parameter q, which can be observed in Tables 8 and 9, respectively.
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Table 8. Ranking of score values by changing q.

q Ranking of Score Values of q-ROFAAWA

3 a1 > a2 > a3 > a5 > a4

6 a5 > a2 > a3 > a1 > a4

9 a5 > a2 > a1 > a3 > a4

12 a5 > a2 > a1 > a3 > a4

15 a5 > a2 > a1 > a4 > a3

18 a1 > a2 > a5 > a4 > a3

36 a1 > a2 > a5 > a3 > a4

Table 9. Ranking of score values by changing q.

Q Ranking of Score Values of q-ROFAAWG

3 a5 > a2 > a3 > a1 > a4

6 a5 > a2 > a3 > a1 > a4

9 a5 > a2 > a3 > a1 > a4

12 a5 > a3 > a1 > a2 > a4

15 a5 > a3 > a2 > a1 > a4

18 a5 > a2 > a3 > a1 > a4

36 a5 > a2 > a3 > a1 > a4

The ranking values of Table 8 are geometrically represented in Figure 4, as given below.
Here, the range of score values describes vertically, and lines on horizontal lines show
different values of the q.
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The geometrical illustration of the ranking order in Table 9 is presented in Figure 5.
Here, lines on horizontal lines represent the values of the SF, and vertical lines denote the
range of score values of [−1, 1].
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It is found that, in the sequence of the alternatives, when we take q = 3, we obtain
the sequence of the listed five alternate values as follows a5 > a2 > a3 > a1 > a4. It is
also a highly observable thing; when we take the parameter q = 12, then the ranking of
alternatives also varies due to changes in q; the variation in the sequence of alternatives is
as follows a5 > a3 > a1 > a2 > a4. Therefore, we can confidently say that the variation in
the parameter q also changes the sequence of alternatives.

7. Comparative Analysis

In this part, we compared the aggregated findings produced with q-ROFAAWA and
q-ROFAAWG operators to the aggregated results obtained with Dombi WA and WG AOs
for q-ROFS by Jana et al. [17], q-ROF Yage WA (q-ROFYHA) and q-ROF Yager WG (q-
ROFYWG) by Akram and Shahzadi [39], q-ROF weighted averaging (q-ROFWA), and
geometric (q-ROFWG) operators by Liu and Wang [36]. All the results are shown in
Table 10. We also showed that most of the AOs fail to aggregate the information provided
in the form of q-ROFNs. These AOs include:

• IF Aczel–Alsina WA (IFAAWA), and Aczel–Alsina WG (IFAAWG) operators by Senap-
ati et al. [40].

• Interval-valued IFAAWA (IVIFAAWA) and interval-valued IFAAWA (IVIFAAWG) by
Senapati et al. [41].

• PyF Aczel–Alsina weighted averaging (PyFAAWA) and geometric (PyFAAWG) opera-
tors by Hussain et al. [42].

• PyF weighted averaging (PyFWA) and geometric (PyFSWG) operators by Wei et al. [43].

Table 10. Comparative analysis with existing operators.

Methods Operators Score Values Ranking Results

Proposed operators

q-ROFAAWA
S(c1) = −0.5873,S(c2) = −0.3380,
S(c3) = −0.4573,S(c4) = 0.6707,

S(c5) = 0.6489
a4 > a5 > a2 > a3 > a1

q-ROFAAWG
S(c1) = −0.8917,S(c2) = −0.4557,
S(c3) = −0.5138,S(c4) = −0.8343,

S(c5) = 0.1223
a5 > a2 > a3 > a4 > a1
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Table 10. Cont.

Methods Operators Score Values Ranking Results

Jana. et al. [17]

Dombi WA
S(c1) = −0.6342, S(c2) = −0.411,
S(c3) = −0.4889, S(c4) = −0.7604,

S(c5) = 0.1223
a5 > a2 > a3 > a1 > a4

Dombi WG
S(c1) = −0.6460, S(c2) = −0.4250,
S(c3) = −0.4928, S(c4) = −0.7954,

S(c5) = 0.1024
a5 > a2 > a3 > a1 > a4

Akram and Shahzadi
[39]

q-ROFYHWA
S(c1) = −0.3024, S(c2) = −0.5319,
S(c3) = −0.1609,S(c4) = −0.1580,

S(c5) = 0.2885
a5 > a4 > a3 > a1 > a2

q-ROFYHWG
S(c1) = 0.3022, S(c2) = 0.5318,
S(c3) = 0.1607,S(c4) = 0.1574,

S(c5) = 0.2875
a2 > a1 > a5 > a3 > a4

Liu and Wang [36]

q-ROFWA
S(c1) = −0.3062,S(c2) = −0.2487,
S(c3) = −0.3560,S(c4) = −0.4298,

S(c5) = 0.0913
a5 > a2 > a1 > a3 > a4

q-ROFWG
S(c1) = −0.6411, S(c2) = −0.4208,
S(c3) = −0.4912, S(c4) = −0.7820,

S(c5) = 0.1088
a5 > a2 > a3 > a1 > a4

Senapati et al. [40] IFAAFWA
IFAAFWG Unable to specify Not applicable

Senapati et al. [41] IVIFAAWA
IVIFAAWG Unable to specify Not applicable

Hussain et al. [42] PyFAAWA
PyFAAWG Unable to specify Not applicable

Wei et al. [43] PyFS WA
PyFS WG Unable to specify Not applicable

Their structure is not allowed to aggregate the data. A short review of the aggregated
outcomes of this article with other existing AOs is represented below in Table 10 and its
geometrical representation in Figure 6.

The results of Table 9 are described in Figure 6 for further clarity.
In Table 10 and Figure 6, we compared our results with Jana et al. [17], Akram and

Shahzadi [39], Liu and Wang [36] by applying the AOs discussed in those references in our
example. Since the work in Jana. et al. [17], Akram and Shahzadi [39], Liu and Wang [36]
are based on Dombi, Yager, and algebraic TN and TCN, while our proposed work is based
on AATN and AATCN. By keeping in mind that AATN and AATCN work significantly
more than other discussed TNs, as suggested by [44]. Due to this fact, we believe that
the proposed work is better than the previous work. We also discussed the limitations of
several other AOs proposed by Senapati et al. [40], Senapati et al. [41], Hussain et al. [42],
and Wei et al. [43]. The AOs discussed in [40–43] fail to aggregate the information provided
in the form of q-ROFNs.
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8. Conclusions

A decision-making strategy is one of the most critical and valuable techniques for
evaluating the best optimal form for selecting preferences. The main conclusions of this
analysis are described below:

1. We pioneered AA operational laws for q-ROFSs and justified them with the help of
examples.

2. We diagnosed the theory of q-ROFAAWA, q-ROFAAWG, q-ROFAAOWA, q-ROFAAOWG,
q-ROFAAHA, and q-ROFAAHG operators.

3. We evaluated some properties (“Idempotency, Monotonicity, and Boundedness”) and
the results of the evaluated approaches.

4. We illustrated a MADM technique based on diagnosed information and also described
the comparison between the proposed work and some prevailing information to
enhance the worth of the evaluated theory.

5. Geometrical representation of the proposed information is also part of this manuscript.

The future aspects of the work include the following:

• We aim to try to utilize the proposed concept in wastewater management system [45],
VIKOR method [46], lane-keeping systems [47], construction material [48], controlled
distribution [49], detection of driver fatigues during traveling [50], pattern recogni-
tion [51], similarity measure [52], risk evaluation [53], and transportation systems [54].

• We also aim to associate the proposed work with complex TSFs power AOs [55], Power
AOs [56], hybrid decision-making [57], and complex TSFs [58].
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