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Abstract: In the intelligent optimization process of aerospace thin-walled parts, there are issues such
as solidification of core knowledge base, high system coupling degree, and real-time evaluation and
optimization feedback required for the knowledge base. These problems make it difficult to expand
the functions of the digital twin system and meet the growing processing needs, ultimately hindering
the application of digital twin technology. To address these issues, a digital twin system for controlling
processing errors in thin-walled parts was built using a microservices architecture. In addition,
a method for building a digital twin system at the processing unit level with the best coupling degree
was proposed, mainly targeting the dynamic characteristics analysis knowledge base of thin-walled
parts. Furthermore, to meet the requirements for backward compatibility of the processing unit level
digital twin system, a comprehensive solution including the construction, operation, evaluation,
optimization, and visualization of a knowledge base for the dynamic characteristics of the processing
unit was proposed, providing guidance for the digital transformation and upgrading of CNC machine
tools and the optimization of processing technology based on digital twin technology.

Keywords: CNC machine tool; digital twin; micro service; dynamic characteristics; module coupling

1. Introduction

In aerospace industry, weak rigidity thin-walled components are widely used. There
are several definitions to characterize thin-wall components, and typically “thin-wall” is
defined by a large ratio of wall length to wall thickens [1]. The most common thin-wall
components in aviation, aerospace, and the energy industry include aircraft structural parts,
impellers, and turbine blades [2].

These components are characterized by complex structures, thin walls, weak rigidity,
and high requirements for surface precision. During the milling process of weakly rigid thin-
walled components, there exist extremely complex state changes among the machine tool,
workpiece, and cutting tool, which also mutually influence each other. It is worth noting
that changes in the relative positions of the spindle and the rotary table can cause changes in
the dynamic characteristics of the machine tool. Furthermore, the comprehensive dynamic
performance of the cutting system will also vary. All of these factors have a significant
impact on the quality of the cutting process.

Wu et al. established a machine tool dynamic model by dividing the mechanical
system into three types of elements: rigid body, flexible body, and connection surface. The
model utilizes the Extended Transfer Matrix Method, which is suitable for dynamic analysis
of machine tools. By solving the mathematical matrices of the three types of elements and
performing calculations on high-dimensional matrices, the dynamic characteristics of the
entire machine tool can be easily obtained [3]. Liu applied the theory of multibody system
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kinematics to the model building process of multi-axis CNC machine tools has achieved
significant results [4]. Zhao et al. proposed a dynamic analytical modeling method for the
spindle rotor system, which elaborates in detail the contact characteristics between the tool-
holder, tool-holder-sleeve, and spindle-tool-holder interface [5]. Li et al. started with the
key dynamic performance of ultra-precision machine tools, and analyzed the mathematical
relationship between the dynamic performance of the machine tool and its position and
orientation. They employed spatial statistical methods to establish a Kriging method model
based on the machine tool dynamic characteristic variation function, which can predict
the change of machine tool dynamic performance and demonstrate the change pattern of
dynamic characteristics in the machining space of the machine tool [6]. Yang et al. collected
dynamic characteristic data of a machine tool from the same location. However, the study
showed that data from a single location cannot well reflect the dynamic characteristics
of the entire machining space, and an analysis method for the dynamic characteristics of
machine tools in the machining space be proposed [7]. Zaghbani et al. proposed a modal
analysis method that can predict the dynamic modal parameters of the machine tool during
the machining process [8]. Silva et al. discussed the integrated design issues related to
the dynamic changes of mechatronic systems [9]. Y. Altintas et al. discussed the relevant
technologies involved in virtual machining and found that one of the sources of machining
instability is the change in the vibration modes of the system, which is caused by the cutting
force during the cutting process [10,11]. Petr Kolar et al. analyzed the relationship between
machine tool dynamic characteristics and cutting tool endpoint dynamic characteristics
through physical experiments and simulation models [12].

Currently, most of the research on performance calibration of machine tool components
focuses on the stationary state of each component. However, the moving components of
the machine tool will undergo changes during the machining process, involving relative
spatial positions, angles, coupled force vectors, and so on. At the same time, the dynamic
characteristics of the main spindle pose points in the working space of the machine tool will
also vary at different times. Most current research lacks this kind of investigation, which
delves deeply into the impact of time-varying dynamic characteristics on machining errors
and control strategies.

It is critical to note that the effects mentioned above are highly relevant to the milling
process of weakly rigid thin-walled components. As such, understanding and controlling
these effects is imperative to ensure the high-quality manufacturing of such components.
By elucidating the mechanisms behind these effects and devising strategies to mitigate
their negative impact, significant advancements can be made towards the development of
more efficient and effective milling processes for weakly rigid thin-walled components.

Budak proposed a novel design method for variable pitch cutters, which is used to
suppress chatter during the flank milling of gas turbine blades [13]. Smith performed a time-
domain simulation of the milling process and used the peak-to-peak graphs to evaluate the
cutting force and variation information [14]. Wu et al. proposed a method for optimizing
the distribution of machining allowances during the overall milling of turbine blades. This
method was applied during the machining process. Their simulation results showed that
this method improved the stiffness of the system by a factor of 2 and increased the stability
limit of chatter by a factor of 3 [15]. Lu studied the effect of the tool’s movement along the
length of the workpiece on the stability of chatter. During high-speed cutting, the difference
between the predicted tool position and experimental results was within 9% [16]. Ferry
proposed a method that includes a semi-discrete and solid modeling approach to simulate
the five-axis flank milling of engine blades in a virtual environment. They also developed
a cutting force prediction model for five-axis flank milling that considers multiple factors,
including five-axis motion, sawtooth shape, variable helix, taper, helical ball end milling
cutters, and irregular tool-workpiece engagement. Finally, they developed two offline
optimization methods for optimizing the linear and angular feed rates of the five-axis flank
milling of blades [17]. Wang using CAM software to simulate the milling process, the
cutting path for structural modification is divided into multiple cutting steps to obtain
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the corrected FRF. Finally, an extended numerical integration method was used to predict
the stability of multi-axis milling, and the effectiveness of the method was verified using
aircraft engine blades as an example [18]. Qin proposed a feed rate variation strategy for
ball-end milling of thin-walled workpieces with semi-conical shape. The strategy takes into
account the shape and boundary conditions of the workpiece as well as the contour tool
path of the milling process to obtain predictions of cutting forces, dynamic performance,
and stability. Experimental results showed that the strategy saved about 25% of time while
achieving almost the same machining quality [19]. Olvera considered the helical angle,
runout and cutting speed effects to calculate the stability diagram. The validity of the
method is verified by machining experiments on aluminium alloy thin-walled parts [20].
Wang proposed a model of instantaneous and undistorted chip thickness for runout error
and dynamic deformation during micro-milling. The experimental results show that the
micro-milling force model has better prediction accuracy, and the difference between the
predicted resultant force and the experimental results is less than 11% [21].

The above-mentioned method can obtain more precise and accurate machining paths
and cutting parameters, which has made an important contribution to preventing chatter
and improving machining limits. However, the optimization of tool paths depends on
commercial CAM software or secondary development based on existing CAM software,
which limits its functionality. On the other hand, due to the consideration of many related
factors, more computation time is required, and the layout of distributed computing is not
taken into account to improve computational efficiency.

Traditional research methods cannot be directly integrated with the data flow of the
machine tool production process. This means that these methods cannot effectively evaluate
the production process by inputting the state of the machine tool at different working spaces
and times, while it is difficult to meet the requirement of real-time quantitative evaluation.

The research on real-time quantitative evaluation methods for processing systems is
the foundation for achieving “full perception” of intelligent cutting processes and is also
a major source of data for processing information fusion. It is a module that integrates
multidisciplinary knowledge to make cross-disciplinary judgments on processing tech-
nology. Currently, research on process evaluation is mostly focused on single physical
models or single disciplines. There are several problems with single-method-based research:
first, the algorithm’s applicability is poor due to inadequate matching between the model
and the scene perception, which affects the accuracy of the results and the feasibility of
the optimized processing strategies. Second, the evaluation methods are not verified for
a unified processing scenario, making it difficult to fully demonstrate the applicability of
the evaluation methods. Third, there is rarely a comprehensive observation and expla-
nation of the problem from multiple perspectives, the perspective is too one-sided, the
problem-solving ideas are relatively single, and it is impossible to complement each other’s
strengths and weaknesses. Based on these factors, a digital twin system for CNC machine
tools was built for the processing of thin-walled parts.

The concept of digital twin has been proposed as a way to reduce unpredictable and
unwanted emergency situations in complex systems. Due to its advantages in reducing
maintenance costs, improving productivity, and shortening production time, digital twin
has been researched and applied in various fields [22–24]. Taking the research on digital
twin of machining units as an example: Tong et al. established a digital twin model of
intelligent machine tools, which improved the process of data analysis and optimization
results, including machine tool dynamics, contour error estimation and compensation, and
other aspects [25]. Luo conducted research on key technologies for predictive maintenance
of CNC machine tools. This study, based on digital twin technology, includes digital twin
architecture, model modeling methods, scenario perception methods, data fusion and
predictive maintenance methods, and finally applied and validated [26]. Jiang studied
the optimization of tool path in machining by constructing a digital twin of the machine
tool, and designed and optimized the tool path of the CNC machine tool by monitoring
the real-time operation status of the CNC machine tool in the digital space [27]. The
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characteristics of digital twin technology provide new impetus for the transformation
and upgrading of manufacturing units. These characteristics include the fusion of virtual
and real environments with real-time interaction, iterative operation and optimization,
all-element, all-process, and all-business data-driven [28,29].

During the production process, new problems with different forms will arise, which
requires the digital twin system to have good flexibility and robustness, enabling it to
transition from the initial functionality at the design stage to newly added functionalities,
thereby adapting to specific production needs.

At the same time, when designing the digital twin system, designers not only need
to delve into the professional knowledge required for the system but also consider the
system architecture from a holistic perspective, focusing on responding to future demand
changes, thinking about potential problems, and preparing specific strategies on the design
diagram. If we consider the factors of technology update and iteration, it is worth noting
that the interdisciplinary coupling of the digital twin system largely increases the possibility
of technological updates and iterations. Therefore, in the process of putting the system
into production, as technology updates and physical machine tools add new sensors, new
requirements are placed on quality and processes. The digital twin system in the digital
space should also be able to keep up with these changes in a timely manner, provided that
this was considered from the beginning of the system’s creation.

However, the solidification of core knowledge base in the manufacturing unit, high
system coupling, and issues such as knowledge base-assisted real-time processing evalua-
tion and optimization feedback make it difficult to expand the functionality of the digital
twin system. Therefore, it is necessary to adopt a design scheme that reduces the coupling
degree between various modules of the twin system, enhances the embeddability of knowl-
edge into the knowledge base, so as to reduce the development cost and lower the difficulty
of subsequent functional updates and iterations.

By utilizing digital twin technology, a digital twin system for complex equipment
objects can be built for specific production processes. By inputting the data flow loop into
the machine tool dynamic characteristic knowledge base, using data cleaning analysis,
feedback training, and ultimately improving the model accuracy, production problems can
be solved and production quality can be improved. This not only requires the digital twin
system to be reasonably segmented and accurately modeled for complex scenarios, but
also to be compatible with various algorithm models, with good scalability and robustness.

2. A Digital Twin System Architecture for Evolvable Machine Tools
2.1. Basic Structure

During the design phase, a low-coupling architecture was adopted, and the CNC ma-
chine tool entity was divided into many functional modules. The division of these modules
also took into account the actual problems to be solved and the overall requirements of the
digital twin system, considering mapping content, information flow, core elements, and
other aspects, as shown in Figure 1. While minimizing the coupling relationship between
modules, the constructed digital twin system has the ability to expand its functions. This is
to prepare for future physical space changes and twin system upgrades, thereby meeting
future needs. The solution is based on the full lifecycle of the digital twin system, which
greatly affects the use of the processing unit digital twin system and the development plan
of functional modules, indicating that the project will go through a process of continuously
adding and modifying functional modules. However, by reducing the coupling degree
between functional modules and considering optimizing the difficulty of frequent addition
and deletion through architectural design before building, the modules in this system can
be called in other systems to improve computing power and increase system robustness.
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embedding algorithms and data; 4. Algorithm scheduling for parallel architecture.

2.2. Architecture Design to Reduce Coupling

The architecture of the digital twin system for the machining unit involves the phys-
ical space of the CNC machine tool, the digital twin system, and the data transmission
between the two. Software and hardware need to be comprehensively considered: not only
should they be able to undertake complex tasks such as computation, big data processing,
visualization display, and data transmission, but they should also integrate advantageous
frameworks based on the existing framework, continuously upgrade and update, and
realize the iteration of the digital twin system, thereby improving the twin model.

As shown in Figure 2, a processing unit-level digital twin system architecture based
on microservice theory is proposed, considering the coupling characteristics of multiple
knowledge bases, functional scalability, and robustness. Based on SpringBoot [30], the
digital twin microservice system is built, and Docker container technology [31] is used to
simplify the construction, deployment, and operation process of microservice applications
in the processing unit twin system. To solve the problem of management complexity caused
by the continuous increase of microservices and the growth of the twin system application
functions, the Kubernetes [32] framework is used to achieve automatic deployment of sys-
tem functions and automatic scheduling of resources. At the same time, the OpenFeign [30]
framework is used to build a system task assignment mechanism to ensure load balancing
of the twin system server.
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To achieve the real-time read-write tasks of high-frequency data such as the real-time
position of the spindle, spindle speed, and machine tool rotary table angle information,
Redis, MongoDB, and other cache frameworks are studied for their application in the
processing unit digital twin system. According to the data type, the data analysis business
process is divided, and the structured data of multiple sources of information monitored
during the machining process (cutting force, cutting vibration, etc.) are stored persistently
in the MySQL database. The visualization layer data such as tool wear is handled by
the Hadoop framework for data read-write business. To complete the retrieval task of
complex data, ElasticSearch [30] search engine is combined with the structured data of
the machining process. To ensure message caching, persistence, improve fault tolerance
and throughput of the digital twin system, Kafka [33] is used as a message broker in the
server cluster. Nginx [30] is used to deploy the gateway and realize information interaction
between modules in the digital twin system.

A rolling data-discretization model-driven method for inverse modeling of machining
processes is proposed to enhance the matching between the model and the functionality
of the digital twin system, achieving deep exploration and dimensionality analysis of the
monitoring data of machining processes. To improve development speed, ensure applica-
tion security, and maintain compatibility with databases, URL routing, middleware, view
layer, and model layer, a digital twin system algorithm server is built using the Django [30]
framework. Distributed and efficient computing is realized by introducing micro-batch and
streaming frameworks such as Spark Streaming or Flink [30]. To enhance the speed and
accuracy of the mechanistic model, the collected data is connected to the server-side data
rolling model through the http/https protocol to improve the data interaction efficiency
between the main server-side and the visualization side.

3. Functional Module Development

This section introduces the various modules of the digital twin system for machining
units. The digital twin system for machining units, built in a microservices architecture,
includes the following modules: data acquisition, storage, computation, transmission,
invocation, visualization, and other related issues.

3.1. Data Acquisition and Transmission Module of Digital Twin System

The data acquisition module is a module that receives data from data acquisition
devices or obtains machine tool operating signals through CNC protocols, and requires
end-to-end data read/write capabilities as well as data storage design. Data acquisition
devices include various types of sensors (such as cutting force, power, acceleration, acoustic
emission, temperature, etc.), cameras, RFID tags and readers, signal processing equipment,
etc. The machine tool protocol is based on the CNC system of the machine tool and uses pro-
tocols such as OPC-UA, MT Connect to obtain information such as the feed axis coordinates,
speed, load, and alarm signals of the machine tool. Currently, industrial data acquisition
devices are more of a combination of the two. Since the collected data may come from
different machining units with different collection frequencies and expression attributes,
higher requirements are placed on the design of the database and the transmission of data.
Moreover, the increasing input devices such as sensors require greater scalability of the
data acquisition module and database. The remote multi-source nature of the equipment
poses a challenge to the high concurrency of the machining unit twin system.

To address the above issues, when designing the data acquisition module, frequent
read-write and high real-time requirements for data such as the feed axis and feed axis load
of the processing unit are separated and stored in different tables and databases. Redis,
Memcached, and other caching architectures are introduced to alleviate the pressure of
database read-write operations and optimize the structure and indexes of the database. The
configuration is managed uniformly in Nacos to meet the needs of expansion and improve
the robustness of the system. The management of heterogeneous data from multiple sources,
as well as the threshold processing of data, are included in the preprocessing module to
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reduce the difficulty of data storage and processing. At the same time, the low coupling
design makes it easier to adapt to future technology updates and the increasing demand for
data acquisition. Based on the data obtained by this module, intelligent calculations and
mining can be performed in other modules, and machine tool state data can be provided
for application scenario analysis.

Additionally, as shown in the Figure 3, the data storage of the digital twin system
is managed by the data storage server. The collected sensor data, workpieces, tools, ma-
chine tools, and other information are saved in the data storage server and corresponding
databases and data tables are established in the server. Considering the data types, struc-
tured data such as CSV and TXT are stored using MySQL, while unstructured data such as
MP4 and PNG are stored using NoSQL to achieve reasonable data storage. Furthermore,
the data storage server is responsible for data caching function and improves data flow read
and write efficiency by accessing the data caching framework. Meanwhile, by establishing
the data storage server, data can be transmitted within the LAN. Combined with network
servers and microservice frameworks, parallel scheduling can be achieved between the
intranet and internet, laying a foundation for improving computing efficiency.
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In the process of data transmission and utilization, corresponding domain knowledge
such as fitting, filtering, and threshold processing units can be added to this module to
alleviate the pressure of data transmission, and achieve pre-processing, feature extraction,
and feature selection of machining data. This lays the foundation for the visualization
demonstration of the CNC machine tool digital twin model, the evaluation of machining
process strategies, and the optimization of machining processes.

3.2. Digital Twin System Algorithm Module

The algorithm module is a module that further utilizes the collected machine tool
sensor data and simulation result data. By including various types of algorithms to extract
data features, reduce noise in data, or analyze mechanisms, it explores the physical meaning
behind the data and finds the cause of problems. For a digital twin system, the algorithm
module is more like the brain of the digital twin system, which can efficiently process large
amounts of data, clean and analyze data effectively, thereby improving the accuracy of
the model, and the final results are displayed by the visualization module of the digital
twin system. This makes the module require the following points: (1) can accommodate
various different algorithms, and the operation of the algorithms does not affect each other.
(2) The module can transfer information to other modules. (3) The algorithm can contin-
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uously improve the accuracy according to data growth. (4) Able to adapt to distributed
computing requirements and improve computing efficiency.

Considering the above requirements, Python language has advantages in big data
algorithms. The algorithm server of the machining unit digital twin system was built
through the Django framework, and the embedded Python language algorithm in the
server can complete the calling of various big data algorithms, and they are relatively
independent of each other. Data transmission between modules is carried out in JSON
format through HTTP protocol to improve the information flow between modules. Through
the formed closed-loop digital twin system, data is deeply mined, and model accuracy
is improved through data rolling, thereby continuously improving the advantages of the
machining unit digital twin system.

In this digital twin system, with the help of microservice architecture, multiple types of
Kriging algorithms and path optimization algorithms are embedded in the built algorithm
server to calculate experimental and simulation data, and obtain the machine tool dynamic
characteristics in the machining unit workspace. The results can be called by the machining
process optimization module of the digital twin system through load allocation.

3.3. Processing Unit Processing Process Evaluation Module

The emergence of digital twins provides ideas for solving the above problems. By
constructing a processing technology evaluation module in the twin system, this module
allows for exploration of problems from multiple perspectives based on the evaluation
rules provided in the knowledge base. It can also comprehensively evaluate multiple
evaluation schemes for the same processing area, provide evaluation results, guide the
development of globally optimal processing technology optimization schemes, and achieve
process optimization for specific processing scenarios. Taking impeller machining as
an example, the same machining path evaluation for impellers can be obtained through
different evaluation methods from the dynamic characteristics knowledge base in the
previous step. At the same time, it is possible to choose whether to use a single optimal
evaluation rule to evaluate the results or to use a combination of multiple evaluation rules to
evaluate different areas [as shown in Figure 4]. This approach can not only bind application
scenarios with processing strategies but also combine evaluation methods with evaluation
areas, providing the possibility for verifying multiple processing strategies in the same
physical model. Through multidisciplinary cross-evaluation, the evaluation perspective
can be more systematic and comprehensive.
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In addition, this module needs to provide feedback to the corresponding evaluation
indicators in the knowledge base module based on the processing results. The purpose of
this is to indicate the direction of improvement and upgrade for the knowledge base, and
the predictive accuracy, computational efficiency, and the ease of conversion into dynamic
evaluation indicators all affect the effectiveness of this module.

3.4. Processing Unit Processing Process Optimization Module

The module of process optimization for machining units is responsible for optimizing
the machining process by adjusting process parameters, tool paths, tool positions and
orientations, and selecting optimal tools based on the results of the evaluation module.
It builds on the evaluation results from the previous module and aims to address any
regions that do not meet the required machining specifications. By calling upon the results
from the evaluation module, it proposes improvement strategies and solutions for specific
machining system parameters at non-compliant tool positions, and stores the optimized
information in the database container for future reference. In addition, the optimization
information is converted into machine-executable code and used to control the machining
process by adjusting the spindle speed in a closed loop, completing the operation in the
virtual space.

When selecting machining parameters for impeller blades, it is necessary to ensure the
surface quality of the machined surface and maximize machining efficiency. The machining
error e and the machining efficiency MRR are selected as the optimization objectives, and
the optimization parameters are the rotational speed v and the spindle feed rate [as show in
Figure 5]. Before optimizing the machining parameters, the functional relationship between
the optimization parameters and the optimization objectives and the evaluation function
for evaluating the optimization effect should be clarified. Due to the existence of the digital
twin model, after inputting the specific machining object and process into the digital twin
evolution knowledge base, the machining error e and the chatter frequency of the current
process can be obtained based on the generated dynamic characteristic field and machining
code, by inputting parameters such as the rotational speed and the spindle feed rate.
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Figure 5. Optimization and feedback strategy of processing unit processing technology.

3.5. Visualization Module

The visualization module is a tool for presenting data and the processing process in
a clear and intuitive way. It can exist in the form of a browser, client, or mini-program.
Since most of the computing is done on the server side, the role of the visualization module
is mainly to interact with the user, and the priority of its content needs to be distinguished.
The HTTP protocol is used as the communication protocol between the visualization
module and the server.
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4. Experiment and Analysis
4.1. Experiment and Simulation

The research machine tool is a five-axis machine tool, and the travel ranges of the
five axes XYZAC are as follows: 1080 mm in the x direction, 710 mm in the y direction,
710 mm in the z direction, 120◦ in the A axis (spindle swing), and 360◦ in the C axis
(worktable rotation). The position of the machining space is sampled, and the changes of
the five axes are taken as experimental variables. The experimental equipment used is the
Donghua Testing and Detection Platform as shown in Table 1, which tests the frequency
response of the acceleration of a point on the spindle end of the machine tool at each
sampled position through force hammer excitation. The experimental site is shown in
Figure 6. Based on the travel ranges of XYZAC and the number of experiments, the
rationality of uniformly distributing the sampling points is analyzed, and a position table
is established as shown in Table 2.

Table 1. Main equipment for modal experiments.

No Device Name Equipment Model Purpose

1 impact hammer Handheld impact hammer Input excitation
2 Acceleration sensor PCB Picking up acceleration signal

3 Data collection and
analysis system DH5922 Collect and store signalsMachines 2023, 11, x FOR PEER REVIEW 11 of 18 

 

 

 
Figure 6. Modal experiment: (a) experimental test scenario (b) machine tool spindle position (c) 
modal test system. 

Figure 7 shows the modal simulation of the machine tool in the same attitude. Figure 
8 shows the different machine position modes and according to the experimental and 
simulation data comparison in Figure 9, when analyzing the dynamic characteristics of 
the machine tool in a static state, the compared data have small differences. The error 
between the natural frequencies obtained from the experiment and those obtained from 
Ansys-Workbench finite element modal simulation is approximately between 3% and 
12%. The error value is relatively small. Therefore, it can be proven that the accuracy and 
effectiveness of the established model of the dual-rotary five-axis machine tool, which can 
be used for modal analysis of the machine tool. 

 
Figure 7. Modal simulation of machine tool at the same pose. 

 
Figure 8. Different machine position modes. 

Figure 6. Modal experiment: (a) experimental test scenario (b) machine tool spindle position
(c) modal test system.

Table 2. Processing positions of test samples.

No X/mm Y/mm Z/mm A/◦ C/◦ No X/mm Y/mm Z/mm A/◦ C/◦

1 −125 125 0 −25 90 5 125 125 0 0 180
2 −125 375 −100 0 180 6 125 375 −100 50 270
3 125 125 −200 25 270 7 −125 125 −200 −25 90
4 125 375 −300 50 360 8 −125 375 −300 25 360

Figure 7 shows the modal simulation of the machine tool in the same attitude.
Figure 8 shows the different machine position modes and according to the experimental
and simulation data comparison in Figure 9, when analyzing the dynamic characteristics
of the machine tool in a static state, the compared data have small differences. The error
between the natural frequencies obtained from the experiment and those obtained from
Ansys-Workbench finite element modal simulation is approximately between 3% and 12%.
The error value is relatively small. Therefore, it can be proven that the accuracy and effec-
tiveness of the established model of the dual-rotary five-axis machine tool, which can be
used for modal analysis of the machine tool.
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4.2. Knowledge Base Server Construction and Tool Path Evaluation Algorithm Embedding

The algorithm server of the digital twin system is built on the Django framework and
serves as the implementation of the knowledge base processing unit of the digital twin system.
This server is a key component in forming a closed loop between the data and knowledge
base of the digital twin system. It can analyze various data and connect them to the modal
system of the machine tool. Additionally, by integrating with big data algorithm frameworks
such as Flink, it can perform real-time streaming computation on the collected data.

4.2.1. Embedding Three Types of Kriging Algorithms into the Knowledge Base

For multi-axis high-speed machining of weakly rigid thin-walled parts, during the
movement of machine tool components in the entire workspace, the structural character-
istics, relative spatial positions, and coupling force vectors of each part of the machine
tool are time-varying. Therefore, the dynamic characteristics of each position point in the
workspace of the machine tool are different at different times. After obtaining the discrete
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dynamic characteristic data of the machine tool through experimentation or simulation, the
Kriging algorithm can be used to obtain the dynamic characteristic data of the machine
tool in the entire machining space [34].

Collected simulation information of 125 machine tool position points in the processing
area, and then used Kriging interpolation to interpolate them. After converting the Kriging
algorithm into code and embedding it into the digital twin system, the input variables,
such as tool path and cutting amount, are used as input variables of the digital twin system
for calculation, and the evaluation results of the tool path are obtained, which provides
data support for the machining parameter optimization module. Figures 10 and 11 show
the calibration diagrams of the dynamic characteristics spectrum of the machining space
generated based on the collected data.
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4.2.2. Cutting Parameter Optimization Algorithm Embedded in Knowledge Base

The specific process is shown in Figure 12, and the main optimization objectives
are the machining chatter error and the inherent frequency of the machine tool. The
specific optimization parameters are spindle speed, spindle feed rate. The fitness of each
chromosome is obtained through the evolutionary knowledge base and evaluation rule
function of the digital twin.
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Also, according to literature [35], the relationship between machine tool chatter fre-
quency fa and cutter tooth passing frequency fc is:[

fa
fc
= T + ε

2π

fc = nN
(1)

where: N is the number of cutter teeth; n is the spindle speed; ε is the phase displacement
difference between adjacent cutter tooth machining surfaces; T is an integer of another

ε
2π < 1.
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It can be seen from Formula (1): when ε = 2π, chatter in the machining process of
the machine tool can be avoided, whereby the different natural frequencies fζ = fa of
the machine tool that vary with the spatial position during the machining process can be
obtained, and under the conditions of ε = 2π, the spindle rotation speed n that avoids
chatter in the machining process of the machine tool can be obtained. The expression is:

n =
fζ

N(T + 1)
(2)

Therefore, the spindle rotation speed obtained by Formula (2) under different natural
frequencies and the parameters after this optimization will be tested and verified.

Based on the research mentioned above, the optimization information is digitized
using the digitalization module and transmitted to the physical space for multi-axis CNC
machining optimization.

4.3. Visualization Interface of Processing Unit Digital Twin System

The digital twin scene of the CNC machine tool is developed using the Unity engine
and communicates with the algorithm server through the HTTP protocol, leveraging
Unity’s web module. Meanwhile, the UI operating interface is designed based on the
production environment and algorithm factors. Figure 13 shows the visualization interface
of the digital twin system for the machining unit.
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4.4. Cutting Experiment Verification

The workpiece blank is made of 7075 hard aluminum alloy, and the fixture used is
a commonly used self-centering three-jaw chuck. The cutting tool is a four-bladed tapered
ball head cutter, which specific parameters are detailed in Table 3. The experimental process
in this article is the side milling finishing process. The control group processing parameters
are a speed of 8000 r/min, a feed per tooth of 0.0625 mm, a feed speed of 2000 mm/min,
and a cutting depth and cutting pitch of 0.2 mm each. The experimental group’s processing
parameters, after parameter optimization, are a speed of 9200 r/min, and a feed per tooth
of 0.0313 mm, while the cutting depth and cutting pitch remain unchanged.

Table 3. Processing tool parameters.

Tool Bilateral
Angle (◦)

Tool Nose
Radius (mm)

Tool Diameter
(mm)

Blade
Length (mm)

Cutter
Length (mm) Blade Count

Conical Ball end Cutter 4 1.5 7 59 218 4
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The optimal 16 measurement points (highlighted in red) were selected on the tested
blade, as shown in Figure 14. Next, the impeller was fixed on the coordinate measur-
ing machine (PMM-C) measurement table, as shown in Figure 15. The overall impeller
measurement steps for PMM-C are as follows: (1) Place the impeller on the turntable;
(2) Establish the impeller coordinates; (3) Edit the individual blade detection program;
(4) Add turntable blade rotation instructions to the program; (5) Use the embedded
PC-DMIS to complete the measurement; (6) After the inspection is completed, output
and print the report.
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Figure 15. Impeller measuring machine tool Leitz PMM-C.

Finally, the blade was measured according to the measurement procedure. Since
the blade is thin and may deform during the machining process, a margin of 0.2 mm
was reserved, and the tolerance of the measurement points was set to ±0.2 mm. The
measurement data are shown in Tables 4 and 5.
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Table 4. Measured roughness values of impeller before optimization.

No
Measured Value/mm

Status No
Measured Value/mm

Status
X Y Z X Y Z

1 −35.7542 −71.4724 14.7275 Pass 9 −45.6457 −44.7441 34.2733 Pass
2 −36.5741 −71.2224 17.1114 Failed 10 −42.7587 −43.5744 36.7548 Pass
3 −37.4242 −61.0441 19.5853 Pass 11 −42.4755 −47.6842 37.3387 Pass
4 −37.4524 −60.2742 21.5781 Failed 12 −41.0445 −48.3775 38.3211 Pass
5 −39.7524 −54.4553 21.5334 Pass 13 −38.7527 −49.7566 39.5283 Pass
6 −41.2424 −51.7252 24.5745 Pass 14 −40.7674 −52.1141 41.3347 Failed
7 −43.4277 −48.5524 27.4228 Pass 15 −36.8333 −59.4769 43.2344 Pass
8 −45.3633 −50.4566 32.7527 Failed 16 −38.6787 −62.0775 46.3679 Failed

Table 5. Measured roughness values of impeller after optimization.

No
Measured Value/mm

Status No
Measured Value/mm

Status
X Y Z X Y Z

1 −34.7561 −70.0465 14.1042 Pass 9 −43.3906 −42.1025 33.4213 Pass
2 −35.1352 −69.0652 17.7841 Pass 10 −45.7952 −42.0489 35.0569 Pass
3 −37.3987 −64.1038 20.4408 Failed 11 −44.3619 −45.3721 38.1146 Pass
4 −35.4621 −57.1854 19.7619 Pass 12 −43.4216 −46.0981 37.4102 Pass
5 −40.6872 −54.3278 23.3561 Failed 13 −37.3069 −47.8742 39.3964 Pass
6 −40.9042 −50.6531 24.7848 Pass 14 −37.7632 −48.5631 40.9451 Pass
7 −42.1104 −48.7758 27.2246 Pass 15 −35.4211 −58.3964 43.0196 Pass
8 −43.0138 −48.6653 30.0193 Pass 16 −36.0145 −60.0047 45.8745 Pass

Based on the experimental results in Figure 16, it can be seen that the surface quality
of the workpiece after optimizing the machining parameters is smoother and has fewer
visible defects compared to the control group. The experimental results indicate that the
machining parameters obtained through the optimization model have improved the surface
quality of the impeller blades.
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In Figure 17, the blue curve represents the workpiece contour error detection data for
the control group under the machining parameter experiment, and the red represents the
detection data for the experimental group. As can be seen from the figure, for the blade
that has not undergone optimization of multi-axis coordinated machining error evaluation
and control method based on digital twin technology, the maximum machining contour
deviation of the blade is 0.2333 mm, and the overall contour error polyline has a steeper and
more tortuous slope. However, for the blade detected after optimization of multi-axis coor-



Machines 2023, 11, 600 16 of 18

dinated machining error evaluation and control method based on digital twin technology,
the maximum contour deviation of the blade is 0.2298 mm, Meanwhile, as shown in Table 5,
the pass rate has increased from 68.75% to 87.5%.and its overall contour error polyline has
a flatter slope. It can be concluded that the average contour error of the blade detected after
optimization of multi-axis coordinated machining error evaluation and control method
based on digital twin technology is reduced by 18.75%. Therefore, it can be seen that the
proposed method of multi-axis coordinated machining error evaluation and control based
on digital twin technology can effectively improve the surface quality of the workpiece.
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5. Conclusions

1. In response to the intelligent processing needs of aviation thin-walled parts, a dynamic
characteristic digital twin system building method for thin-walled machining units
was proposed by combining digital twin technology and microservice technology.
The method aimed to gradually build a complete information communication process
starting from data collection, transmission, and processing, and to reduce system
coupling as much as possible from the design stage of the twin system.

2. By simulation and experimental methods, dynamic characteristic data at different
positions and orientations of the machine tool were obtained, and the dynamic data
were used as the input of the digital twin system to support the optimization of
thin-walled machining parameters. On the basis of the established data loop of the
digital twin system, the Kriging method was used to analyze the change rules of the
relative spatial position of the machine tool spindle and the swivel table angle by
establishing a knowledge base for calibrating the time-varying dynamic characteristic
spectrum of the machine tool, and a set of evaluation and optimization strategies
based on the digital twin system was proposed for thin-walled machining.

3. A traceable optimization scheme for thin-walled machining parameters and pro-
cesses was proposed for poorly machined areas, and the maximum deviation of
the machining contour of the impeller was reduced from 0.2333 mm to 0.2298 mm
after optimization. The average machining contour error of the impeller detected
after the proposed method optimization was reduced by 18.75%, which verified the
effectiveness of the proposed method.
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