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Construction of 1D Heterostructure NiCo@C/ZnO 

Nanorod with Enhanced Microwave Absorption

Jianwei Wang1, Zirui Jia1,2,3, Xuehua Liu1, Jinlei Dou1, Binghui Xu1, Bingbing Wang1, 

Guanglei Wu1 *

HIGHLIGHTS

• NiCo-LDHs successfully grow in situ on rod-like ZnO with unique structures.

• The interface of NiCo@C and rod-like ZnO result in interfacial polarization.

• The RLmin of NiCo@C/ZnO reaches − 60.97 dB with the EABmax of 6.08 GHz.

• The excellent performance comes from the effect of dielectric loss and magnetic loss.

ABSTRACT Layered double hydroxides (LDHs) have a 

special structure and atom composition, which are expected 

to be an excellent electromagnetic wave (EMW) absorber. 

However, it is still a problem that obtaining excellent EMW-

absorbing materials from LDHs. Herein, we designed het-

erostructure NiCo-LDHs@ZnO nanorod and then subse-

quent heat treating to derive NiCo@C/ZnO composites. 

Finally, with the synergy of excellent dielectric loss and 

magnetic loss, an outstanding absorption performance could 

be achieved with the reflection loss of − 60.97 dB at the 

matching thickness of 2.3 mm, and the widest absorption 

bandwidth of 6.08 GHz was realized at 2.0 mm. Moreover, 

this research work provides a reference for the development 

and utilization of LDHs materials in the field of microwave 

absorption materials and can also provide ideas for the 

design of layered structural absorbers. 
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1 Introduction

Nowadays, electromagnetic waves (EMW) are currently 

used in a wide range of medical and military equipment 

as a medium for the wireless control and transmission of 

information in electronic devices [1–3]. However, the failure 

of electronic facilities, human organ damage and other nega-

tive effects caused by electromagnetic pollution deserve our 

attention [4, 5]. In order to make better prevention of EMW, 

EMW-absorbing materials that can attenuate EMW energy 

and convert incident EMW into heat or otherwise forms of 

energy have been designed and developed [6, 7]. The ideal-

ized absorbing material should meet the requirement of wide 

bandwidth, light weight and thin thickness [8–10]. However, 

the EMW absorption capacity of a single material is rela-

tively weak. Therefore, the development of composites that 

gratify the demands will become the focus of future studies.

Many suitable absorbers have been developed, such as 

carbon materials [11], alloys [12], transition metal oxides/

sulfides/selenides [13–15], and MXene [16]. With the 

development of technology, the requirements for the EMW 

absorption properties and the condition of using EMW-

absorbing materials are become more and more stringent. 

So, it is necessary to develop better materials to meet the 

requirements of practical application. At this point, metal 

alloys came into the research range due to excellent permit-

tivity and permeability, with NiCo alloys being the most 

notable [17, 18]. NiCo alloys possess the characteristics of 

high-temperature calcination resistance, oxidation resist-

ance, corrosion resistance, and easy extraction [19, 20], and 

are widely used in high-tech fields such as aerospace.

Metal organic frameworks (MOFs) are a new type of 

material formed by the self-assembly of metal cations with 

organic ligands, which have the advantages of large surface 

area, low density, and high porosity [21–24]. However, 

individual MOFs have not yet been extensively applied 

in EMW-absorbing materials as a result of poor dielectric 

properties [25]. Therefore, many attempts have been made 

to tune the electromagnetic properties of MOF materials 

and derivatives to obtain satisfactory EMW absorption per-

formance. The most popular approach is introducing other 

metal cations to modulate the morphology and elemental 

composition of MOFs and derivatives [26, 27]. Che et al. 

[28] prepared Ni/C/ZnO microspheres with yolk-shell 

structure based on bimetallic NiZn-MOFs. Zhou et al. [29] 

prepared CoZn-MOFs as templates to prepare rod-shaped 

Co/ZnO/C composites, all of which can obtain excellent 

EMW-absorbing properties. However, there are still some 

difficulties, such as complicated preparation process and 

poor attenuation performance, etc. Therefore, it is still nec-

essary to find other ideas to obtain ideal EMW-absorbing 

materials [30–32].

Layered double hydroxides (LDHs) are compounds con-

sisting of positively charged lamellae and interlayer anions 

interacting with each other [33–35]. Generally, the most 

common methods for generating LDHs include hydrother-

mal method, ion exchange method, co-precipitation method, 

and so on [36, 37]. Metallic alloys are acquired via high-

temperature calcination of LDHs materials in an inert gas 

environment, which is one of the methods to attain poly-

metallic alloys. The method is an important way to access 

excellent electromagnetic absorbing materials and make the 

electromagnetic parameters of the alloys controllable [38, 

39]. Zinc oxide (ZnO) is a semiconductor material with a 

wide band gap and excellent dielectric properties, which, 

together with its ease of making unique structures, makes 

ZnO promising for development as dielectric material [40, 

41].

In this paper, we presented a novel design that exploits 

the synergistic effect between components, which to develop 

electromagnetic absorbing materials that can meet practical 

needs. Hence, NiCo@C/ZnO composites decorated with 

NiCo alloy particles were synthesized through hydrothermal 

method and annealing process, which demonstrated excel-

lent EMW absorption performance. The minimum reflection 

loss (RLmin) value was − 60.97 dB with thickness of 2.3 mm, 

and the maximum effective absorption bandwidth  (EABmax) 

value was 6.08 GHz with thickness of 2.0 mm. In addition, 

the electromagnetic absorption mechanism of NiCo@C/ZnO 

composites was discussed in detail. This work not only pro-

vides ideas for the development and utilization of MOFs 

materials, but also serves references for the design of new 

electromagnetic absorbing materials.

2  Experimental Section

2.1  Chemical Reagents

All chemicals were of analytical grade (AR) and used 

directly without any further purification. Cobalt (II) nitrate 
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hexahydrate (Co(NO3)2·6H2O, AR, 99%), nickel (II) nitrate 

hexahydrate (Ni(NO3)2·6H2O AR, 99%), ammonia solu-

tion  (NH3·H2O, 28%), Zinc acetate (Zn(CH3COO)2, AR, 

99–101%), 2-methlimidazole  (C4H6N2, 98%, 2-MIM), hexa-

methylene tetramine  (C6H12N4), absolute ethanol  (C2H6OH), 

and methyl alcohol  (CH3OH, 99.5%). They are purchased 

from Chemical Reagents Company Limited of China Phar-

maceutical Group. Deionized water was used throughout the 

experiment.

2.2  Sample Preparation

2.2.1  Preparation of Rod‑Like ZnO

As shown in Scheme 1, zinc acetate and hexamethylene-

tetramine were added to 50 mL of deionized water at the 

ratio of 1:1 and stirred with a glass rod until the particles 

were completely dissolved. The pH of the mixed solution 

was adjusted to pH = 10 with ammonia and stirred continu-

ously at room temperature for about 3 h. The solution was 

transferred to 100 mL of PTFE liner and kept at 90 °C for 

12 h. Finally, after cooling to room temperature, the sample 

was dried at 60 °C after washing with deionized water and 

ethanol. The rod-like ZnO materials were defined as S-1.

2.2.2  Preparation of NiCo@C Composites

0.5 g of Co(NO3)2·6H2O and 0.5 g of Ni(NO3)3·6H2O were 

added to 40 mL of methanol solution which was recorded 

as solution A. 8 mmol of 2-methylimidazole (2-MIM) was 

dissolved in 20 mL of methanol solution and stirred until the 

pellet was completely dissolved, which was recorded as solu-

tion B. Then, solution B was quickly poured into solution A, 

and stirred continuously at room temperature for 2 h. Then, 

the solution was transferred to a 100 mL PTFE liner and 

maintained at 160 °C for 12 h. After cooling to room tem-

perature, the resulting material is washed several times with 

deionized water and ethanol and then dried at 60 °C. The 

samples were denoted as S-2. The material was calcined at 

400 °C for 3 h under argon atmosphere at a heating rate of 5 

°C  min−1. The obtained composites were designated as S-3.

2.2.3  Preparation of Rod‑Like Structured NiCo@C/ZnO 

Composites

Typically, 1.0 g of rod-like ZnO material is added to 40 mL 

methanol and stirred to obtain a homogeneous solution. 

0.5 g of Co(NO3)2·6H2O and 0.5 g of Ni(NO3)3·6H2O were 

joined in the mixed solution. Then 8 mmol of 2-Methyl-

imidazole (2-MIM) was dissolved in 20 mL of methanol 

solution with stirring until the pellet was fully dissolved. 

The 2-methylimidazole solution was quickly poured into a 

methanolic solution containing rod-like ZnO materials and 

stirred continuously for 2 h at room temperature. Then, the 

solution was transferred to a 100 mL PTFE liner and main-

tained at 160 °C for 12 h. After cooling to room temperature, 

the resulting material is washed several times with deionized 

water and ethanol and then dried at 60 °C. The samples were 

denoted as S-4. Finally, the composites were calcinated at 

400 °C under Ar atmosphere and Air atmosphere with a 

heating rate of 5 °C  min−1 for 3 h. The as-obtained compos-

ites were named as S-5 and S-6, respectively.

2.3  Characterization

The crystalline structures of samples were obtained on 

powder X-ray diffraction (XRD, Rigaku Ultima IV with 

Cu-Ka radiation (λ = 0.15418)). The morphology of sam-

ples was characterized by a field emission scanning elec-

tron microscope (SEM, JFOL JSM-7800F) equipped with 

an energy-dispersive spectrum. The crystal structure and 

microstructure of samples were recorded by a transmission 

electron microscope (TEM, JEOL JEM-2100). Raman shift 

of samples was collected through using a Renishaw in Via 

Plus Micro-Raman spectroscopy system with a 50-mW laser 

at 532 mm. The bond states of surface elements for sam-

ples were tested by X-ray photoelectron spectroscopy (XPS) 

on Thermo Fisher ESCALAB 250Xi spectrometer with an 

Ni2+:Co2+=1:1

Zn2+

NaOH, PH=10

2-MIM Annealing

Ammonia

Ar, 400 °C

Annealing

Ar, 400 °C

Annealing

Ar, 400 °C

S-3

S-2

S-1 S-4

S-6

S-5

Mixing

Scheme 1  Illustration of the synthetic process of composites



 Nano-Micro Lett. (2021) 13:175175 Page 4 of 16

https://doi.org/10.1007/s40820-021-00704-5© The authors

Al Ka X-ray source (1486.6 eV). The thermogravimetric 

analysis (TGA) of samples was recorded by an SDT Q600 

analyzer from room temperature to 900 °C with a heating 

rate of 10 °C  min−1 under Ar atmosphere.

2.4  Electromagnetic Parameters

Based on the mass ratio of 1:2, the composites and paraffin 

are mixed evenly, and pressed into a ring sample to be tested, 

in which the inner diameter, outer diameter, and thickness 

are 3.04, 7.00, and 2.00 mm, respectively. The EM param-

eters were obtained by a vector network analyzer (N5234A, 

Agilent, USA) using a coaxial method in the frequency 

range of 2.0–18.0 GHz. Using transmission line theory is to 

work out the reflection loss (RL) values of absorbers at dif-

ferent thicknesses in their corresponding frequency [42, 43].

where c, f and d refer to the light speed, the corresponding 

frequency and the matching thickness, Zin is the normalized 

input impedance and the Z0 means the impedance of free 

space, �
r
 and �

r
 are the complex permittivity and complex 

permeability, respectively. Normally, when RL < − 10 dB, 

it means that the absorbing material will absorb more than 

90% of the incident EMW.
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3  Results and Discussion

3.1  Composition and Structure

The crystal structures of all samples were analyzed by XRD. 

As displayed in Fig. 1, the curve of S-1 shows the XRD 

pattern of rod-like ZnO with characteristic peaks of 31.8°, 

34.4°, 36.3°, 47.5°, 56.6°, and 62.9°, 66.4°, assigning to the 

(100), (002), (101), (102), (110), and (103), (200) of ZnO 

crystal planes. There are obvious characteristic peaks on 

the curve of S-2, where the characteristic peaks at 11.3°, 

22.6°, 33.9°, 38.1° and 60.1° conform to the (003), (006), 

(100), (015), and (110) crystal planes of NiCo-LDHs, 

respectively [44]. The characteristic peaks correspond-

ing to the (111), (200), and (220) crystals of Ni are 44.6°, 

51.8° and 75.9°on the curves belonging to S-3 (PDF No. 

4-0850). However, compared with the standard cards Co 

(PDF No. 15-0806) and Ni (PDF No. 4-0850), the position 

of the characteristic peak is somewhat shifted, which proves 

that the nickel–cobalt alloy is formed instead of a single 

metal. In Fig. S1, in addition to the characteristic peaks of 

NiCo alloys, characteristic peaks attributed to amorphous 

C can also be seen [11, 12], proving that NiCo@C can be 

obtained from NiCo-LDHs composites through high-tem-

perature calcination in Ar. In the XRD spectrum of S-4, the 

characteristic peaks of NiCo-LDHs can be seen in addition 

to those of ZnO, which suggest the successful preparation of 

NiCo-LDHs@ZnO composites. NiCo@C/ZnO composites 

obtained via calcination of NiCo-LDHs@ZnO composites 
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under Ar atmosphere are evidenced by the distinct peaks of 

ZnO and NiCo alloys in the XRD spectrum of S-5. The XRD 

spectrum of S-6 provides characteristic peaks of ZnO and 

 Co2NiO4 from  Co2NiO4@ZnO composites. No significant 

characteristic peaks of impurities were found in all the XRD 

patterns, confirming the high purity of the prepared samples. 

Figure 1b shows the Raman spectra of S-1, S-3, and S-5. The 

characteristic peak of ZnO (437  cm−1) appears on the curve 

of S-1. The characteristic peak of NiCo (534  cm−1) and obvi-

ous D/G peaks were noted in S-3, where the ID/IG value 

was 0.95, which proves that graphitic carbon is produced 

during calcination at high temperatures. NiCo/C composites 

are favorable for the formation of conductive networks and 

the construction of heterogeneous interfaces. S-5 has both 

characteristic peaks of NiCo alloy, ZnO and obvious D/G 

peaks, in which the ID/IG value does not change, and this 

conclusion is also consistent with the XRD results.

The SEM images reveal the external morphology and 

elemental distribution of the sample. Figure 2a gives an 

SEM image of ZnO, which has a relatively homogeneous 

morphology and is not connected to each other. The cross 

section of the rod-shaped ZnO is ortho-hexagonal as seen 

in Fig. 2a-1. SEM image of NiCo-LDHs (S-2) (Fig. 1b) 

indicates the flower-like structures of NiCo-LDHs gener-

ated by stacking multiple lamellar structures, in which the 

size of each nanosheet is greater than 1 μm. It can be seen 

from the elemental distribution map of S-2 that the elements 

O, Ni and Co are uniformly dispersed in the NiCo-LDHs. 

The comparison of SEM images of S-2 (Fig. 2b) with S-3 

(Fig. 2c) demonstrates no significant change in the over-

all morphology after high temperature annealing under Ar 

atmosphere, it underwent a transition from NiCo-LDH to 

NiCo@C, which led to the thinning of the nanosheets in 

S-3, the EDS spectrum (Fig. S2) indicate that this mate-

rial is composed of three elements: nickel, cobalt and car-

bon, and their mass percentages are 38.42%, 33.96%, and 

27.63%, respectively. In the SEM image of NiCo-LDHs@

ZnO (S-4) (Fig. 2d), the surface of rod-like ZnO is covered 
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Fig. 2  SEM images of (a, a-1) S-1, (b, b-1) S-2, (c, c-1) S-3, (d, d-1) S-4, (e, e-1) S-5, (f, f-1) S-6 and elemental mapping distribution of g S-2, 
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with many layers of NiCo-LDHs and the layers are closely 

aligned. Zn elements are relatively concentrated, while Ni 

and Co elements are mainly scattered around the rod-like 

ZnO in the elemental distribution diagram. In Fig. 2e, the 

NiCo@C/ZnO composite (S-5) obtained after calcination at 

high temperature has a significantly lower number of layers 

coated on the rod-like ZnO. In the elemental distribution 

diagram (Figs. 2i and S3b), the distribution of Zn elements 

does not change obviously, while the distribution of Ni and 

Co elements becomes more dispersed and found that the 

contents of C, O, Ni, Co, and Zn were 15.03%, 14.43%, 

14.76%, 11.92%, and 43.85% (Fig. S3b), respectively. The 

size of the layered structure of S-6 decreases significantly, 

but the number of layers remains almost unchanged (Fig. 2f).

The TEM images allow further to observe and analyze the 

internal structure and material composition of the prepared 

samples (Fig. 3). The rod-like ZnO exhibits a diameter of 

approximately 500 nm with no connections among them-

selves (Fig. 3a), which is consistent with observation in the 

SEM images (Fig. 2a). The lattice spacing (d) observed in 

the HR-TEM image of ZnO is 0.266 nm, matching the (002) 

crystal plane of ZnO (Fig. 3a-1). In Fig. 3a-2, the spots are 

uniformly dispersed and distributed in order, demonstrating 

the single-crystal hexagonal structure of ZnO. The layered 

structure overlying the rod structure can still be visualized in 

Fig. 3b, with the shaded part of the figure shows the NiCo-

LDHs overlying the rod-like ZnO. The lattice with a spacing 

of 0.262 nm in Fig. 3b-1 corresponds to the (012) crystal 

plane of NiCo-LDHs [45]. The observed circle points to the 

(107) crystal plane of NiCo-LDHs in high-resolution TEM 

images of S-4 (Fig. 3b-2,). The lamellar structure changes in 

size and number after high-temperature annealing (Fig. 3c), 

and a number of grains (NiCo alloy) can also be observed. 

Besides, the lattice spacing of 0.204 nm (Fig. 3c-1) matches 

(111) plane of the NiCo alloy, which also confirms the 

formation of NiCo alloy [46, 47]. The diffraction rings in 

Fig. 3c-2 are attributed to the (111), (200), (220), and (311) 

crystal planes of the NiCo alloy, which are in accordance 

with the results of other characterizations.

In order to further analyze the weight variation trend of 

the samples during calcination, TGA measurements were 

made in Ar atmosphere at a temperature increasing rate of 

10 °C  min−1 from room temperature to 900 °C. In Fig. S4, 

the mass of S-4 decreased slightly before 200 °C by about 

0.99%, which is due to the gradual evaporation of the water 

contained in the sample with the increase in temperature. 

From 200 to 720 °C, the mass of the sample decreases lin-

early with the increase in temperature, and the final mass 
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decreases to 13.05%, which was due to the gradual decom-

position of NiCo-LDHs into NiCo@C composites with the 

increase in temperature. From the full-scan XPS spectrum 

(Fig. 4a), there are five characteristic peaks in S-5, which 

belong to C 1 s, Zn 2p, O 1 s, Co 2p, and Ni 2p, respectively. 

In the high-resolution spectra in C1 s (Fig. 4b), the charac-

teristic peaks located at 284.6, 286.5, and 288.5 eV ascribed 

to C–C/C=C, C–O, and C–C=O, respectively [48]. From 

the high-resolution spectra of Zn 2p (Fig. 4c), the charac-

teristic peak at 1021.4 eV corresponds to Zn  2p3/2 and the 

characteristic peak at 1044.6 eV corresponds to Zn  2p1/2. 

On the high-resolution spectrum of O 1 s of S-5 (Fig. 4d), 

three characteristic peaks of 531.5, 530.6, and 529.0 eV can 

be observed, corresponding to the water or O adsorbed on 

the sample surface, oxygen vacancies and metal-O (Ni–O/

Co–O) respectively [49, 50]. Co 2p can be fitted to six dis-

tinct characteristic peaks (Fig. 4e), the characteristic peaks at 

779.2 and 795.4 eV ascribed to metal-Co, and the character-

istic peak at 780.6 and 796.3 eV can match the Co–O bond. 

The remaining characteristic peaks at 788.3 and 803.4 eV 

can be matched to the satellite peaks [51, 52]. In the Ni 2p 

high-resolution XPS spectrum of S-5 (Fig. 4f), the peaks at 

878.9 and 860.8 eV are attributed to satellite peaks, and the 

peaks at 870.1 and 855.2 eV can be ascribed to the Ni–O 

bond. The O in the Co–O and Ni–O bond may originate 

from the surface oxidation of NiCo alloy when exposed to 

air. The characteristic peaks at 871.5 and 853.6 eV can be 

matched to the metal Ni in NiCo alloy [53, 54].

3.2  Electromagnetic Performance and Parameter

According to Eqs. 1 and 2, we can calculate the relation-

ship between the thickness of the corresponding EMW-

absorbing material and the reflection loss (RL) in the range 

of 2–18 GHz frequency. The RLmin value is a key index to 

evaluate the performance of EMW-absorbing materials. Fig-

ures 5 and 6 show 3D and 2D reflection loss diagrams of 

frequency and thickness correspondence for all samples in 

the 2–18 GHz range. The RLmin value of S-1 is − 49.01 dB, 

corresponding to a thickness of 9.8 mm (Fig. 5a), and the 

 EABmax values reaches 3.36  GHz at 5.2  mm (Fig.  6a), 

which means the EMW absorption of S-1 performance is 

not ideal. Figures 5b and 6b present the EMW-absorbing 

performance of S-2. However, the RLmin value of − 16.05 dB 

and the  EABmax value of 1.04 GHz indicate that the EMW-

absorbing performance of the NiCo-LDHs material also 

fail to meet the requirements. The corresponding RLmin 

value of S-3, at a thickness of 4.5 mm, is − 41.46 dB and 

the  EABmax values, at a thickness of 5.1 mm, is 4.0 GHz; 

the reason is that NiCo-LDH is transformed into NiCo@C 
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composite by high-temperature annealing, which not only 

facilitates the construction of conductive network, but also 

the magnetic loss generated by NiCo alloy can improve the 

electromagnetic performance. In contrast, after plating the 

NiCo-LDHs on the surface of rod ZnO, the performance of 

S-4 has changed not much compared with S-1, the RLmin 

value of S-4 at 9.9 mm is − 46.51 dB, and the  EABmax value 

is 3.20 GHz, which corresponds to the thickness of 5.3 mm.

Figures 5e-f and 6e-f correspond to S-5 and S-6 obtained 

from calcining S-4 in different atmospheres, respectively. The 

results showed that the absorption properties of the products 

obtained by annealing in different inert atmospheres differed 

significantly. As compared to S-4, the EMW-absorbing per-

formance of S-6 is slightly improved, and the RLmin value 

drops sharply at a thickness of 7.8 mm is − 43.75 dB, and the 

 EABmax value reaches 4.24 GHz at the thickness of 7.1 mm. 

However, the EMW absorption performance of S-5 is sig-

nificantly increased. The RLmin value has reached − 60.97 dB, 

but the matching thickness is 2.3 mm. The  EABmax value has 

reached 6.08 GHz, and the matching thickness is only 2.0 mm. 
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This is because the formation of NiCo@C composites makes 

significant changes in the structure of S-5, the increase in layer 

spacing makes the reflection and scattering of incident EMW 

more frequently, and the appearance of NiCo@C composites 

particles also promotes the polarization loss of incident EMW.

3.3  Microwave Absorption and Mechanism

The EM wave absorption characteristics of samples is usually 

analyzed according to the complex permittivity (εr = ε′ − jε″) 
and the complex permeability (μr = μ′ − jμ″) [55]. As shown 

in Fig. 7a, the real part of complex permittivity for S-5 is 

larger than that of other samples, and the ε′ value decreases 

gradually from 8.7 to 7.0 with the increase in frequency. It has 

typical dielectric response characteristics [56]. The ε′ values 

of S-1 and S-4 gradually increase with the increase in fre-

quency, which is associated with the presence of ZnO. The 

ε′ values of S-2 and S-3 do not change significantly with fre-

quency, but S-3 shows a significantly improvement than S-2. 

This is due to weak dielectric loss of NiCo-LDHs and NiCo 

alloy, which also proves that high-temperature calcination can 

significantly improve their dielectric properties. In addition, 

it can also be observed in Fig. 7b-c that the sample has multi-

ple fluctuations at high-frequency bands, which implies that 

there is a significant polarization loss during the attenuation 
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of the incident EMW, which could be due to the interfacial 

polarization caused by charge accumulation on heterogene-

ous junction surfaces and the dipole polarization occurring 

on defects or functional groups of materials. Both polariza-

tions increase the dielectric loss capacity of the absorber [57, 

58]. The curves of μ′ and μ″ versus frequency of all samples 

(Fig. 7d-e) were observed. A similar trend can be observed 

for all materials except for S-6, indicating poor magnetic 

properties. The μ′ values of all these materials occur in the 

range of 4–7 GHz. In general, the large fluctuations in the 

low-frequency band indicate the presence of natural resonance 

behavior, while fluctuations in the high-frequency band are 

attributed to exchange resonance, which contribute magnetic 

loss for the microwave-absorbing material [59, 60].

Debye relaxation is an important way for absorbing mate-

rials to have dielectric loss. It can usually be deduced by 

Eqs. 3 and 4 to obtain Eq. 5, which can express relationship 

between ε′ and ε″ [61, 62].
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where τ stands for polarization relaxation time, εs for static 

permittivity, and ε∞ points to the high-frequency limited 

permittivity. As shown in Fig. 8a, more semicircles can be 

observed in the Cole–Cole diagram of S-5, which implies 

that more relaxation processes occur in S-5, related to the 

interface between ZnO@C and ZnO. The presence of a vari-

able number of semicircles in other samples can also be seen 

in Fig. S5, which proves that the Debye relaxation process 

is prevalent in the prepared material [63]. According to the 

transmission line theory, the attenuation constant (α) can 

be calculated by Eq. 6 to reflect the attenuation ability of 

the absorbing material. Figure 8b is the correlation curve 

between attenuation coefficients and frequencies of all sam-

ples. With increasing frequency, all the curves show a sig-

nificant change, but the attenuation system of S-5 is more 

prominent than that of other samples, which means that S-5 
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has a stronger attenuation ability to the incident EMW and 

shows better absorption performance, which conforms to our 

previous conclusion [64].

where d denotes the thickness of the absorber and μ0 means 

vacuum permeability. The relationship between C0 value and 

frequency can be used to analyze the mechanism of magnetic 

loss. When eddy current loss occurs inside the absorbing 

material, the C0 value will not change significantly with the 

change of frequency [65]. Figure 8c is the correlation curve 

between C0 and the frequency of all samples. As the fre-

quency increases, the C0 value of S-6 does not change much, 

which indicates that the magnetic loss caused by eddy cur-

rent loss plays a dominant role, while the other samples have 

two larger fluctuating peaks at 4–7 and 12–14 GHz, repre-

senting natural resonance and exchange resonance respec-

tively. This is consistent with our previous analysis. In the 

range of 8–11 and 14–18 GHz, the variation of  C0 value is 
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quite small, which indicates that the eddy current loss plays 

a greater role in the attenuation of electromagnetic waves in 

this frequency range.

In addition to the attenuation coefficient, impedance 

matching ( ||Zin
∕Z

0
|
| ) is a critical factor to determine the 

absorption performance of EMW--absorbing materials. 

According to Eq. 7, we can get the relationship between 
|
|Zin

∕Z
0
|
| and frequency of different samples. Generally, the 

closer the ||Zin
∕Z

0
|
| value of the EMW-absorbing material is 

to 1, the EMW materials will absorb EM more easily [66], 

and the absorbing material will show better EMW absorp-

tion performance. From Fig. 8d, it can be found that the 

curve of S-5 is closer to 1, which matches its excellent 

EMW-absorbing performance. The impedance matching 

values of other materials vary greatly, which means that their 

impedance matching performance is poor, giving rise to poor 

EMW absorption performance [67].

Scheme 2 shows a possible EMW absorption mechanism 

for S-5, which implies that the excellent absorption perfor-

mance comes as a result of multiple mechanisms. Due to 

the large specific surface area of the composite material, it 

is easy to form a conductive network, which is conducive to 

induced current transmission under the action of the exter-

nal magnetic field, causing the internal electrons to undergo 

directional migration and converting electromagnetic energy 

into thermal energy [68, 69]. On the one hand, the incident 

EMW that can enter the material is reflected and scattered, 

with large amount of EMW attenuating in the process [70]. 

Secondly, due to the different layered media between NiCo 

alloy and rod-like ZnO, electrons will accumulate on the 

contact interface, leading to interface polarization, which is 

an important reason for the excellent dielectric parameters 

of S-5 [71, 72]. Thirdly, the presence of NiCo@C compos-

ites and O vacancies cause dipole polarization in face of an 

external magnetic field, which promotes the loss of incident 

EMW. Furthermore, the eddy current loss and resonance 

loss caused by the presence of NiCo alloy are main sources 
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Scheme 2  EM wave absorption mechanism of S-2

Table 1  electromagnetic wave absorption performance of typical 

composites

Sample RLmin (dB) EAB (GHz) d (mm) References

Ni@C − 59.5 4.7 2.5 [12]

Ni@C@ZnO − 55.8 4.1 2.5 [28]

Co/ZnO/Ti3C2Tx − 44.22 5.28 2.4 [30]

Ni/NiO@C − 51.1 5.12 2.7 [46]

C/MoS2 − 50.1 6.0 2.2 [58]

Fe/MnO@C − 45.0 5.0 2.0 [60]

CNT-CoFe@C − 40.0 5.62 2.0 [71]

NiCo@C/ZnO − 60.97 6.08 2.0 This work
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of the magnetic loss [73]. In addition, as shown in Table 1, 

the composite absorber prepared in this study has better 

overall absorption performance than other composites.

4  Conclusion

In summary, we obtained NiCo-LDHs@ZnO composites 

through a reasonable combination of NiCo-LDHs with 

rod-like ZnO through simple experiments, and the final 

NiCo@C/ZnO composites were obtained after calcina-

tion and had excellent EMW absorption properties. The 

RLmin value reached − 60.97 dB at the matching thickness 

of 2.3 mm, and the  EABmax value is 6.08 GHz when the 

matching thickness is 2.0 mm. The interaction of dielec-

tric and magnetic losses is the main reason for the excellent 

attenuation properties of EMW. This work provides an idea 

for further expanding the application of LDHs in absorbent 

materials and provides a method for preparing hetero-struc-

tured absorbent materials.
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