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Background: Cancer-associated fibroblasts (CAFs) are an essential cell

population in the pancreatic cancer tumor microenvironment and are

extensively involved in drug resistance and immune evasion mechanisms.

Long non-coding RNAs (lncRNAs) are involved in pancreatic cancer

evolution and regulate the biological behavior mediated by CAFs. However,

there is a lack of understanding of the prognostic signatures of CAFs-associated

lncRNAs in pancreatic cancer patients.

Methods: Transcriptomic and clinical data for pancreatic adenocarcinoma

(PAAD) and the corresponding mutation data were obtained from The

Cancer Genome Atlas database. lncRNAs associated with CAFs were

obtained using co-expression analysis. lncRNAs were screened by Cox

regression analysis using least absolute shrinkage and selection operator

(LASSO) algorithm for constructing predictive signature. According to the

prognostic model, PAAD patients were divided into high-risk and low-risk

groups. Kaplan-Meier analysis was used for survival validation of the model

in the training and validation groups. Clinicopathological parameter correlation

analysis, univariate and multivariate Cox regression, time-dependent receiver

operating characteristic (ROC) curves, and nomogram were performed to

evaluate the model. The gene set variation analysis (GSVA) and gene

ontology (GO) analyses were used to explore differences in the biological

behavior of the risk groups. Furthermore, single-sample gene set

enrichment analysis (ssGSEA), tumor mutation burden (TMB), ESTIMATE

algorithm, and a series of immune correlation analyses were performed to

investigate the relationship between predictive signature and the tumor

immune microenvironment and screen for potential responders to immune
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checkpoint inhibitors. Finally, drug sensitivity analyses were used to explore

potentially effective drugs in high- and low-risk groups.

Results: The signature was constructed with seven CAFs-related lncRNAs

(AP005233.2, AC090114.2, DCST1-AS1, AC092171.5, AC002401.4,

AC025048.4, and CASC8) that independently predicted the prognosis of

PAAD patients. Additionally, the high-risk group of the model had higher

TMB levels than the low-risk group. Immune correlation analysis showed

that most immune cells, including CD8+ T cells, were negatively correlated

with the model risk scores. ssGSEA and ESTIMATE analyses further indicated

that the low-risk group had a higher status of immune cell infiltration.

Meanwhile, the mRNA of most immune checkpoint genes, including

PD1 and CTLA4, were highly expressed in the low-risk group, suggesting

that this population may be “hot immune tumors” and have a higher

sensitivity to immune checkpoint inhibitors (ICIs). Finally, the predicted half-

maximal inhibitory concentrations of some chemical and targeted drugs differ

between high- and low-risk groups, providing a basis for treatment selection.

Conclusion: Our findings provide promising insights into lncRNAs associated

with CAFs in PAAD and provide a personalized tool for predicting patient

prognosis and immune microenvironmental landscape.
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Introduction

Pancreatic cancer is highly malignant with a poor prognosis,

leading to almost as many deaths as cases of its incidence, and is the

seventh leading cause of cancer death (Sung et al., 2021). Pancreatic

adenocarcinoma (PAAD) is the most common type of pancreatic

cancer. A study from28 EU countries predicts that pancreatic cancer

will be the third leading cause of cancer deaths by 2025 (Ferlay et al.,

2016). Given this grim situation, it is imperative to identify the

prognostic signatures of PAAD patients and stratify and precisely

treat them to improve the accuracy of prognostic judgments and the

efficacy of individualized treatment, and improve prognosis.

A large amount of stroma constituting densemesenchyme is the

main feature of the PAAD tumor microenvironment (TME).

Cancer-associated fibroblasts (CAFs) are one of the essential

stromal components involved in multiple stages of tumor

development through different pathways (Hinshaw and Shevde,

2019; Joshi et al., 2021). CAFs-derived chemokines, cytokines,

exosomes, and growth factors not only promote tumor

proliferation but also alter the immune cell environment by

recruiting immunosuppressive cells and inhibiting the activity of

immune effector cells to induce immune evasion of cancer cells

(Tang et al., 2012; Martinez-Outschoorn et al., 2014; Öhlund et al.,

2017; Kobayashi et al., 2019). In addition, CAFs promote the

expression of immune checkpoint molecules and extracellular

matrix remodeling (Harper and Sainson, 2014; Sun et al., 2018),

thus indirectly affecting the activity of immune cells in the tumor

immune microenvironment (TIME). Therefore, the interaction

between CAFs and immune cells is vital in regulating TIME in

pancreatic cancer.

Long non-coding RNAs (lncRNAs) are non-coding RNAs with

more than 200 nucleotides. They are used as cancer biomarkers for

diagnosis and prognosis since they can be dynamically monitored at

different disease phases and better represent various cancer features

(Yan et al., 2015). Studies show that lncRNAs can regulate gene

expression in different transcriptional states and epigenetic processes,

mediating tumor angiogenesis and immune escape (Zhao et al., 2018;

Dragomir et al., 2020). lncRNAs are also widely involved in the

growth, invasion, migration, and prognosis of pancreatic cancer

(Gong and Jiang, 2020; Ramya Devi et al., 2021; Takahashi et al.,

2021). However, the application of CAFs-related lncRNAs in

predicting prognosis and immune microenvironment of PAAD

patients is yet to be understood.

This study constructed a CAFs-associated lncRNA signature

to stratify PAAD patients by risk status to predict prognosis and

TIME characteristics. It also provides a reference for selecting

individualized treatment options such as immune checkpoint

inhibitors (ICIs) and targeted drugs.

Materials and methods

Data collection

Transcriptome expression profiles, mutation data, and

relevant clinical information of patients with PAAD were
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obtained from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/repository). The data were then

collated using Strawberry Perl (version 5.32.1.1) scripts to

obtain mRNA and lncRNA data matrixes for subsequent

studies. The 86 CAFs related genes used for the study were

obtained from The Human Gene Database (https://www.

genecards.org/), with a relevance score of >11 (Supplementary

Appendix S1).

Identification of cancer-associated
fibroblasts-related long non-coding RNAs

The mRNA expression data of 86 CAFs-related genes were

extracted using the R package “limma.” The set of CAFs-related

lncRNAs was obtained by co-expression analysis using a Pearson

correlation coefficient >0.4 and a threshold of p < 0.001. The

correlation data of CAFs-related genes and lncRNAs were

constructed using the R packages “dplyr,” “ggalluvial,” and

“ggplot2,” and correlation Sankey plots were generated.

Subsequently, the “limma” package was used to merge the

survival and lncRNA expression data of each PAAD patient.

Establishing a risk model based on the
cancer-associated fibroblasts-related
long non-coding RNAs signature

The R packages “caret,” “timeROC,” “survminer,” “survival,”

and “glmnet”were used to establish the risk signature of CAFs-

related LncRNAs in PAAD. Data of the patients obtained from

the TCGA were randomly divided into training and validation

groups by 1:1, and various clinical traits were analyzed in the two

groups. Then the prognosis-associated lncRNAs in the training

group were obtained using univariate Cox analysis, and the

prognostic forest plots (p < 0.05) were plotted. Subsequently,

the “pheatmap” package was used to plot the expression heat map

of prognosis-related lncRNAs. The LASSO regression analysis was

used to screen candidate lncRNAs to avoid overfitting. Risk scores

for all patients were obtained by the following formula: risk score =

(coefficient lncRNA1*lncRNA1 expression) + (coefficient

lncRNA2*lncRNA2 expression) + . . .+ (coefficient lncRNAn*

lncRNAn expression). Coefficient and expression represent the

regression coefficient and expression values of the CAFs-related

lncRNAs model, respectively. Based on the median risk score in

the training cohort, patients in the validation and training cohorts

were split into high- and low-risk groups. In addition, the R

packages “tidyverse,” “ggplot2,” and “ggExtra” were used for

expression correlation analysis of CAFs-related genes and

model lncRNAs and to draw a correlation heat map. The

“limma,” “survivor,” and “survminer” packages were used to

plot Kaplan-Meier (KM) curves for the high- and low-

expression groups of model lncRNAs.

Validation of the risk model

The R packages “pheatmap,” “survival,” and “survminer”

were used for survival analysis of the training, validation, and

entire cohorts. Risk curves, risk heat maps, and survival status

maps were plotted for each cohort. In addition, overall survival

(OS) and progression-free survival (PFS) survival curves were

also plotted for the all cohort. Univariate and multivariate Cox

regression analyses were used to assess whether the risk score and

selected clinical characteristics were independent prognostic

factors. Additionally, ROC curve analyses were performed

using “survminer”, “survival”, and “timeROC” to assess the

prognostic value of the developed signature by the area under

the curve. Furthermore, the “survival,” “rms,” and “pec” packages

were used to calculate the consistency index (c-index) to evaluate

the best prediction of the model.

Correlation analysis of the signature with
clinicopathological parameters

The R package “ComplexHeatmap” was used to plot the heat

map of the relationship between the high- and low-risk groups of

the model and different clinicopathological parameters.

Meanwhile, “survminer” and “survival” were used to plot the

survival curves of high- and low-risk groups to determine

whether the constructed risk model applied to PAAD patients

with different clinicopathological parameters.

Nomogram construction

Based on the results of the multivariate regression analysis,

risk status and age were used to construct nomograms for 1-year,

3-years, and 5-years OS using the “regplot,” “survival,” and “rms”

R packages. Hosmer-Lemeshow test calibration curve (method =

“boot”, B = 1,000) was utilized to validate if the actual results

correlate with the anticipated results.

Functional analysis and mechanism
exploration

The Gene Set Variation Analysis (GSVA) computationally

detects differences in pathway activity in a sample population

(Hänzelmann et al., 2013). GSEA enrichment analysis by the R

package “limma,” “GSEABase,” and “GSVA” to obtain the

enrichment of the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway in the high-risk and low-risk groups. The R

package “pheatmap” was used to plot the pathway enrichment

heatmap. In addition, differentially expressed genes between

high- and low-risk populations (A fold change >2 and

FDR <0.05) were identified using the R package “limma.”
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Subsequently, “enrichplot,” “GOplot,” “ggplot2,” “org.Hs.eg.db,”

and “clusterProfiler” packages were used to complete GO

analysis and explore potential pathways.

Correlation between cancer-associated
fibroblasts-related long non-coding RNAs
signature and tumor mutation burden

The Strawberry Perl script collated the PAAD mutation data

downloaded from the TCGA to obtain the tumor mutation

burden (TMB) data for each patient. R packages “Limma” and

“ggpubr” were used to analyze the TMB differences between the

high- and low-risk groups of the model and generate violin plots.

Meanwhile, “maftools”was used to map the mutation waterfall of

the 15 genes with the highest mutation frequency in the high- and

low-risk groups. In addition, the R software was used to obtain

the optimal cutoff values of tumor mutation burden and classify

patients into low-TMB and high-TMB groups. The “survivor”

and “survminer” packages were used to plot the survival curves of

patients in two risk groups and the survival curves of patients in

the high- and low-TMB groups combined with the high- and

low-risk groups.

Correlation between cancer-associated
fibroblasts-related long non-coding RNAs
signature and immune microenvironment

CAFs play an essential regulatory role in the tumor immune

microenvironment. To further explore the correlation between

risk models constructed by CAFs-related lncRNA signature and

immunemicroenvironment, the R packages “ggtext,” “tidyverse,”

“ggpubr,” “scales,” and “ggplot2” were used to analyze the

correlation between immune cells and risk scores and

generate correlation bubble plots. In addition, single sample

GSEA (ssGSEA) was performed to classify gene sets with

common physiological regulation and biological functions

(Subramanian et al., 2005). The “GSEABase” and “GSVA”

packages were utilized for ssGSEA analysis to calculate the

immune cell and immune-related function scores of the

samples. “reshape2,” “ggpubr”, “pheatmap,” and “reshape2”

packages were used to obtain box plots for ssGSEA

differential analysis and heat maps for immune function

differences in high- and low-risk groups of the model.

The potential predictive value of CAFs-related lncRNA

signature for immune checkpoint efficacy was explored by

utilizing the “ggplot2” and “ggpubr” packages to analyze the

differences of immune checkpoint-related genes between the

high- and low-risk groups and generate box plots of

differentially expressed genes. Immune checkpoint

programmed death-ligand 1 (PD-L1) on cancer cells binds to

programmed cell death-1 (PD-1) on immune cells and

contributes to the immune escape of tumor cells (Yi et al.,

2021). Furthermore, in some cases, tumor PD-L1 expression

correlates with immunotherapy response (Yu et al., 2016; Yi et al.,

2018). “ggpubr” and “limma” packages analyzed the correlation

between PD-L1, PD1, and CTLA4 expression and seven model

lncRNAs and “corrplot” package plotted the correlation.

ESTIMATE is a new algorithm for counting immune and

stromal cells infiltrating tumor tissue (Yoshihara et al., 2013).

Using the R packages “ESTIMATE” and “limma,” the amount of

immune and stromal cells in the tumor tissue of each PAAD case

was evaluated to determine the corresponding scores. The sum of

the stromal and immune scores is the ESTIMATE score, which is

inversely linked to tumor purity. Box plots illustrating the

differences in stromal, immune, and ESTIMATE scores

between high- and low-risk groups were generated using the

“ggpubr” package.

Drug sensitivity analysis

The potential clinical significance of CAFs-related lncRNA

signatures in chemotherapy and targeted therapies were explored

using the half-maximal inhibitory concentrations (IC50) of

different drugs in the high-risk and low-risk groups, obtained

using the R packages “ggpubr” and “pRRophetic” (Geeleher et al.,

2014). Drugs with different IC50s in the two groups were

represented as box plots (p < 0.001).

Results

Cancer-associated fibroblasts-related
long non-coding RNAs in pancreatic
adenocarcinoma

We obtained expression data from TCGA database for

179 PAAD tumor samples. By co-expression analysis of

mRNAs of CAFs-related genes, we obtained 378 CAFs-

associated lncRNAs (correlation coefficient >0.4, p < 0.001)

(Figure 1A).

Construction and validation of cancer-
associated fibroblasts-related long non-
coding RNAs signature

The TCGA cohort was divided into training and validation

groups, and clinicopathological characteristics were compared

(Table 1). Univariate Cox (uni-Cox) regression analysis obtained

72 CAFs-related lncRNAs in the training group that was

significantly associated with the OS of patients (p < 0.05).

Figures 1B,C show the prognostic forest plot and expression

heat map of the 72 LncRNAs, respectively. We further performed
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lasso regression analysis (Figures 2A,B) and extracted seven of

these LncRNAs for model construction (Table 2). Risk scores

were calculated from lncRNAs screened by lasso regression to

create the formula: Risk score = AP005233.2 × (0.257) +

AC090114.2 × (−0.829) + DCST1-AS1 × (0.596) +

AC092171.5 × (−0.561) + AC002401.4 × (0.215) +

AC025048.4 × (−1.388) + CASC8 × (0.348). The correlation

between the expression of seven lncRNAs and CAFs-related

genes was demonstrated with a heat map (Figure 2C).

Survival analysis showed that patients with high expression

of AC090114.2, AC092171.5, and AC025048.4 had significantly

better survival rates than the low expression group, while the

remaining four genes showed the opposite effect (Figures 2D–J).

The expression heat map showed that AC090114.2, AC092171.5,

and AC025048.4 were low in both the training, validation, and

entire cohorts in the high-risk group. Whereas consistent with

the above results, the remaining four genes showed the opposite

effect (Figures 3A–C). Subsequently, the survival status, risk

score distribution, and OS survival curves of the low- and

high-risk patients in the training, validation, and entire

cohorts were assessed using the risk scores. All results showed

that the prognosis of the low-risk group was significantly better

than that of the high-risk group (Figures 3D–L). Similar results

were obtained for the PFS survival curves of the training and

FIGURE 1
CAFs-associated lncRNAs in PAAD. (A) Sankey co-expression network plot of CAFs-associated genes and lncRNAs. (B) Prognostic forest plots
showing the 72 CAFs-associated lncRNAs extracted by univariate Cox regression analysis. (C) Heat map of the 72 CAF-associated lncRNAs
expression in normal and tumor samples.
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entire TCGA cohorts. Although there was no statistical difference

in PFS between the high- and low-risk groups in the validation

group, a trend towards a separation of survival curves was

observed (Figures 3M–O).

Assessment of the cancer-associated
fibroblasts-related long non-coding RNA
signature

A heat map of clinicopathological parameters showed

differences in tumor grade between high- and low-risk groups

(Figure 4A). Survival analysis showed that PAAD patients with

different gender, ages, tumor grades, and stages all survived

significantly better in the low-risk group than in the high-risk

group (Figures 4B–I), demonstrating the model’s applicability to

PAAD patients with different clinicopathological parameters.

Further, univariate Cox (uni-Cox) regression and multivariate

Cox (multi-Cox) regression suggested the risk score as an

independent prognostic factor with hazard ratios (HR) of

1.174 and 1.190, respectively, with 95% confidence intervals

(CI) of 1.124–1.227 (p < 0.001) and 1.135–1.248 (p < 0.001)

(Figures 5A,B). Also, the patient’s age was an independent

prognostic parameter. In addition, the ROC curve was used to

assess the sensitivity and specificity of the risk model to the

prognosis of PAAD. The results showed that the model had a

significantly higher predictive value than other clinicopathological

parameters, with an area under the curve (AUC) of 0.811, 0.816,

and 0.840 at 1, 3, and 5 years respectively (Figures 5C–F).

Furthermore, the c-index of the risk score was also higher than

that of the other clinical parameters (Figure 5G). Together, these

results demonstrate the good performance of the risk model.

Nomogram construction

We constructed a nomogram based on the patient’s age and

risk status to facilitate prognosis prediction for PAAD patients

(Figure 5H). The corresponding scores for the patient’s age and

risk status were calculated in the nomogram, and the total score

was used as a prognostic prediction tool. A calibration curve was

also plotted (Figure 5I). The results showed a good agreement

between the survival of the PAAD patients and the values

predicted by the nomogram.

Gene set variation analysis and gene
ontology analysis

To explore the differences in biological behavior between

high- and low-risk groups, we used GSVA to investigate the

differences in functional pathways between the groups. The

pathways enriched in the high-risk group included the cell

cycle, DNA replication, p53 signaling pathway, mismatch

repair, and fatty acid metabolism, which were associated with

tumor invasion. On the other hand, functions such as intestinal

TABLE 1 Comparison of clinicopathological features between the validation and training cohorts.

Covariates Type Total Validation cohort Training cohort p-value

Age ≤65 94 (52.81%) 48 (53.93%) 46 (51.69%) 0.8807

>65 84 (47.19%) 41 (46.07%) 43 (48.31%)

Gender FEMALE 80 (44.94%) 47 (52.81%) 33 (37.08%) 0.0501

MALE 98 (55.06%) 42 (47.19%) 56 (62.92%)

Grade G1-2 126 (70.79%) 61 (68.54%) 65 (73.03%) 0.7997

G3-4 50 (28.09%) 27 (30.34%) 23 (25.84%)

unknown 2 (1.12%) 1 (1.12%) 1 (1.12%)

Stage Stage I-II 168 (94.38%) 86 (96.63%) 82 (92.13%) 0.9631

Stage III-IV 7 (3.93%) 3 (3.37%) 4 (4.49%)

Unknown 3 (1.69%) 0 (0%) 3 (3.37%)

T T1-2 31 (17.42%) 14 (15.73%) 17 (19.1%) 0.6416

T3-4 145 (81.46%) 75 (84.27%) 70 (78.65%)

Unknown 2 (1.12%) 0 (0%) 2 (2.25%)

M M0 80 (44.94%) 45 (50.56%) 35 (39.33%) 1

M1 4 (2.25%) 2 (2.25%) 2 (2.25%)

Unknown 94 (52.81%) 42 (47.19%) 52 (58.43%)

N N0 49 (27.53%) 24 (26.97%) 25 (28.09%) 0.886

N1 124 (69.66%) 64 (71.91%) 60 (67.42%)

Unknown 5 (2.81%) 1 (1.12%) 4 (4.49%)
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immune network, chemokine signaling pathway, and glycan

degradation were enriched in the low-risk group (Figure 6A).

We further analyzed the enrichment of differentially expressed

genes (DEGs) in different risk groups in terms of biological

functions by GO analysis. The results suggested that DEGs were

enriched in functions such as cellular ion channels, membrane

receptors, T-cell receptors, and transduction of signals

(Figures 6B,C).

FIGURE 2
Derivation and selection of the CAFs-associated lncRNAs signature in the training cohort. (A,B) LASSO coefficient and partial likelihood
deviance of the prognostic signature. (C) Heat map showing the correlation between the expression of seven lncRNAs and CAFs-related genes.
(D–J) Kaplan-Meier curves analyzed the correlation between the expression of the seven crucial lncRNAs and the prognosis of PAAD.
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Correlation of risk model with tumor
mutation burden in pancreatic
adenocarcinoma

Tumor mutation burden (TMB) is defined as the number of

somatic mutations per megabase. TMB is a crucial driver in

generating immunogenic neopeptides in tumor cells and

affecting the patient’s response to ICIs (Sha et al., 2020). We

used the TGCA somatic mutation data to generate TMB scores.

Further analysis revealed that TMB levels were significantly lower

in the low-risk group than in the high-risk group (Figure 7A). Also,

survival analysis showed that higher TMB in PAADwas associated

with a poorer OS (Figure 7B). Given the prognostic role of the risk

model and TMB in PAAD, we further explored the prognostic

value of combining the two by dividing all samples into four

groups: high-TMB/high-risk, low-TMB/low-risk, high-TMB/low-

risk, and low-TMB/high-risk. The results showed a significant

difference in survival between the four groups (p < 0.001), with

patients with high-TMB/high-risk having the worst OS and those

in the low-TMB/low-risk group having the best overall survival

(Figure 7C). In addition, the frequency of mutations was higher in

the high-risk group (96.88%) than in the low-risk group (62.12%)

(Figures 7D,E). The highest mutation frequencies were found in

KRAS (79%), TP53 (68%) and SMAD4 (24%) in the high-risk

group, while the highest mutation frequencies in the low-risk

group were in TP53 (39%), KRAS (35%) and SMAD4 (18%).

Cancer-associated fibroblasts-related
long non-coding RNAs signature for
prediction of the immune
microenvironment

The tumor immune microenvironment (TIME) is closely

related to the prognosis of patients with tumors. There is growing

evidence that CAFs can synergize with TIME components,

particularly immune cells, to render the tumor

microenvironment (TME) immunosuppressive (Barrett R. and

Puré E., 2020; Barrett R. L. and Puré E., 2020). To further explore

the correlation between the CAFs-related lncRNAs signature and

TIME, we analyzed the association between immune cells and risk

scores. The results indicated that most immune cells were negatively

related with the risk scores. In contrast, regulatory T cells (Tregs) on

the CIBERSORT platform and common lymphoid progenitor, CD4+

Th1/2 cells on theXCELLplatform,were positively correlatedwith the

risk scores (p < 0.05) (Figure 8A). In addition, ssGSEA analysis

showed that CD8+ T cells, dendritic cells (DCs), plasmacytoid

dendritic cells (pDCs), neutrophils, mast cells, helper T cells, and

tumor-infiltrating lymphocytes (TIL) were significantly fewer in the

high-risk group than in the low-risk group (Figure 8B). In terms of

immune-related functions, T cell co-stimulation, T cell co-inhibition,

type II interferon (IFN) responses, and cytolytic activity were

significantly weaker in the high-risk group than in the low-risk.

The opposite trend was seen with the major histocompatibility

complex (MHC) class I and type I IFN response (Figures 8C,D).

Further, we analyzed the relationship between risk groups and

ESTIMATE scores. The results suggested that the ESTIMATE

score, stromal score, and immune score were significantly higher

in the low-risk group than in the high-risk group (Figures 8E–G),

which corroborated with the above results and together indicated that

the low-risk group had a higher immune cell infiltration status.

ICIs therapy offers a new tool for clinical cancer treatment by

enhancing anti-tumor immune responses through a regulatory

pathway of T cells (Sharma and Allison, 2015). However,

immune checkpoint therapy benefits only a small proportion

of patients with specific tumor types, and one of the main

problems is the lack of validated prognostic biomarkers

(Sharma et al., 2021). The current ICIs target the

programmed death-1 (PD-1), programmed death-ligand 1

(PD-L1), and cytotoxic T-lymphocyte-associated protein 4

(CTLA-4) ((Sharma et al., 2021). Although the expression of

PD-L1 did not differ in the high- and low-risk groups, the

mRNAs of most other immune checkpoint-related genes,

including PD1 and CTLA4, were highly expressed in the low-

risk group (Figure 8H). Our results suggest that low-risk patients

may benefit more from ICIs. Finally, we analyzed the correlation

of the expression between the seven lncRNAs and the three

immune checkpoints. The results showed that DCST1-AS and

AC092171.5 were negatively correlated with the expression of all

three immune checkpoints (p < 0.05, Figures 8I–K). Together,

these results suggest that CAFs-related lncRNAs signature might

better distinguish PAAD patients with different tumor immune

microenvironment characteristics and provide a basis for

selecting clinical immunotherapy.

The effect of risk score on the sensitivity of
chemical compounds

Using the pRRophetic algorithm analysis, we found that the

IC50 of some compounds differed between the high- and low-

risk groups of the model (p < 0.001) (Figures 9A–P). Among

TABLE 2 Long non-coding RNA signature models associated with
CAFs.

CAFsLncSig Coef HR HR (95%CI) p-value

AP005233.2 0.257 1.305 1.124–1.515 <0.001
AC090114.2 −0.829 0.433 0.237–0.791 0.006

DCST1-AS1 0.596 2.268 1.401–3.671 <0.001
AC092171.5 −0.561 0.653 0.444–0.960 0.030

AC002401.4 0.215 1.433 1.128–1.820 0.003

AC025048.4 −1.388 0.381 0.172–0.844 0.017

CASC8 0.348 1.873 1.407–2.493 <0.001

HR, hazard ratio; CI, confidence interval.
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them, the IC50 of mTOR inhibitor AZD8055, All-trans retinoic

acid (ATRA), lestaurtinib (CEP-701), Bcl-2 family protein

inhibitor navitoclax (ABT-263), and other drugs were higher

in the high-risk group than in the low-risk group. The opposite

effect was shown by drugs such as doxorubicin, gefitinib, and

mitomycin C.

FIGURE 3
Prognostic values of the CAFs-associated lncRNAs signature. (A–C) Heat map showing expression levels of the seven lncRNAs in the training,
validation, and entire cohorts. (D–F) Survival time and status in the training, validation, and entire cohorts. (G–I) Risk score distribution in the training,
validation, and entire cohorts. (J–L) Kaplan-Meier curve for OS in the training, validation, and entire cohorts. (M–O) Kaplan-Meier curve for PFS in the
training, validation, and entire cohorts.
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Discussion

Dense mesenchyme formed by excessive fibrosis is an

essential feature of TME in pancreatic cancers (Erkan et al.,

2012). At the same time, fibrosis exacerbates the lack of

vascularity and hypoxia in TME, which not only promotes

tumor proliferation, invasion, and migration but also makes it

resistant to anti-tumor agents. In addition, the low infiltration of

effector T cells and high infiltration of immune suppressor cells

in the TME of most pancreatic cancers makes them exhibit an

immune-desert phenotype, i.e., an immunosuppressive TME

phenotype (Muller et al., 2022). In this process, CAFs can

recruit immunosuppressive cells, including myeloid-derived

suppressor cells (MDSCs) and, through the induction of

cytokines such as IL-6 and IL-11, and participate in tumor

immune evasion mechanisms (Tang et al., 2012; Mace et al.,

2013; Pothula et al., 2020). Moreover, the fibrous proliferative

mesenchyme produced by CAFs also impeded the infiltration of

effector immune cells into PAAD tumor areas (Ene-Obong et al.,

2013; Wu et al., 2020). Collectively, these findings suggest an

important role for CAFs in suppressive TIME.

lncRNAs broadly regulate the biological behavior of

pancreatic cancer, such as promoting tumor angiogenesis,

metastasis, proliferation, immune escape, and metabolic

reprogramming (Chen et al., 2018; Deng et al., 2018; Guo

et al., 2020; Hu et al., 2020; Zhai et al., 2021). Moreover,

studies suggest that CAFs can regulate the function of

lncRNAs (Ren J. et al., 2018; Ren Y. et al., 2018). Although

lncRNAs have been shown to have a good predictive capability in

PAAD prognosis (Yu et al., 2021; Zhu et al., 2022), the prognostic

and immune microenvironmental predictive value of CAFs-

associated lncRNAs in PAAD remains unclear.

In this study, we generated a CAFs-related lncRNA signature

to predict the prognosis and immune microenvironmental

FIGURE 4
Correlation analysis of the risk signature with clinicopathological parameters. (A)Heatmap of the distribution of clinicopathological parameters
in the high- and low-risk groups. (B,C) Kaplan-Meier survival curves of low- and high-risk groups sorted by age. (D,E) Kaplan-Meier survival curves of
low- and high-risk groups sorted by gender. (F,G) Kaplan-Meier survival curves of low- and high-risk groups sorted by grade. (H,I) Kaplan-Meier
survival curves of low- and high-risk groups sorted by TNM stage.
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landscape of PAAD patients. The results suggest that the risk

score of this signature is an independent predictor of PAAD

patients, and is also applicable to patients with different

clinicopathological parameters. Together with the assessment

of ROC and nomogram, it suggests that the constructed

CAFs-related lncRNA signature can accurately predict the

prognosis of PAAD patients. Among the seven lncRNAs used

to construct the signature, AC092171.5 has previously been

reported as an immune- and m6A-related lncRNA in

pancreatic cancer and is significantly associated with patient

prognosis (Wei et al., 2019; Cao et al., 2022). CASC8 has been

suggested as a marker to predict the prognosis of PAAD and as a

potential target for treatment (Wang et al., 2020; Ping et al.,

2022), which is consistent with our findings. AC090114.2 was

reported to be a pyroptosis-related lncRNA and was associated

with PAAD prognosis and tumor immune microenvironment

FIGURE 5
Assessment of the predictive signature. (A,B) Forest plot for univariate Cox (A) and multivariate Cox regression analysis (B). (C) ROC curves of 1,
3, and 5 years survival for the predictive signature. (D–F) Comparison of the prediction accuracy of the risk model with age, gender, grade, and TNM
stage at 1, 3, and 5 years. (G) The consistency index analysis curve. (H) Nomogram for predicting the 1, 3, and 5 years survival of patients with HCC.
(I) The calibration curves for 1, 3, and 5 years OS.
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(Zhao et al., 2022). However, there are no related studies on the

remaining lncRNAs in PAAD. Of these, AP005233.2 is thought to

be associated with metabolism and patient prognosis in

intrahepatic cholangiocarcinoma (Zou et al., 2021). DCST1-AS1

can enhance chemoresistance in triple-negative breast cancer cells

by promoting TGF-β-induced epithelial-mesenchymal transition

(Tang et al., 2020). In addition, AC025048.4 was identified as a

ferroptosis-related lncRNA in lung adenocarcinoma (Zheng

et al., 2021). Together, the above results suggest that the

same lncRNA can be involved in regulating different

biological functions. Given the prognostic value of these

CAFs-associated lncRNAs in PAAD, their regulatory

mechanisms in PAAD deserve further exploration.

In recent years, the advent of immunotherapy, represented

by immune checkpoint inhibitors, has changed the goal of

intervention in anti-cancer therapy, attempting to achieve

tumor control by enhancing the host’s immune response

(Galon and Bruni, 2019). However, the low overall response

FIGURE 6
Gene set variation analysis and gene ontology analysis. (A)Heatmap highlighting the differences in functional pathways in high-risk and low-risk
groups. (B,C) Exploring the enrichment of differentially expressed genes between high- and low-risk groups in terms of biological function by GO
analysis.
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rate to immune checkpoint inhibitor therapy is currently a

clinical challenge. One of the main reasons for this situation is

the insufficient infiltration of effector T cells in tumors, referred

to as “cold immune tumors" (Bonaventura et al., 2019; Galon and

Bruni, 2019). In contrast, immunoinflammatory cancers

characterized by high infiltration of CD8+ T cells and immune

checkpoint activation are “hot immune tumors” (Galon and Bruni,

2019; Liu and Sun, 2021). The latter, in turn, is often the population

that benefits from ICIs. Therefore, tumor immunophenotyping is

vital for predicting the efficacy of immunotherapy in patients. In the

present study, most immune cells, including CD8+ T cells, were

negatively correlated with the risk score. ssGSEA analysis also

validated this finding at both the immune cell and immune

function levels. Further, ESTIMATE analysis suggested that the

low-risk group had a significantly higher immune score, stromal

score, and ESTIMATE score than the high-risk group, which

corroborated with the results above and together suggested that the

low-risk group had a higher immune cell infiltration status. These

results partly explain the better prognosis of the low-risk group. Most

immune checkpoint genes, including PD1, CTLA4, and LAG3, are

highly expressed in patients in the low-risk group. It is further

suggested that low-risk patients are more in line with the

characteristics of “hot immune tumors” and might benefit from

ICIs therapy more than high-risk patients.

TMB is thought to have a significant role in producing

immunogenic neopeptides that are expressed on the MHC on

the tumor cell surface and affect the patients’ responses to ICIs

(Sha et al., 2020). Interestingly, our study showed a higher TMB

in the high-risk group than in the low-risk group. However,

pancreatic cancer has a low mutational burden compared to high

mutational burden tumors such as melanoma (Alexandrov et al.,

2013). From this perspective, TMB does not appear to be a good

predictor of efficacy in PAAD ICIs. However, it is worth noting

that in this study, TMB was significantly associated with

FIGURE 7
Correlation of risk model with tumor mutation burden in PAAD. (A) Violin plot of TMB status in the high- and low-risk groups (B) Kaplan Meier
curve of high-TMB and low-TMB. (C) Kaplan-Meier curve of TMB + Risk. (D) Mutant gene waterfall plot in the high-risk group. (E) Mutant gene
waterfall plot in the low-risk group.
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FIGURE 8
Correlation of the risk model with the immune microenvironment in PAAD. (A) Bubble plot of correlation coefficients between immune cells
and risk scores. (B) Comparison of the enrichment scores of immune cells between high- and low-risk groups. (C) Comparison of the enrichment
scores of immune-related functions between high- and low-risk groups. (D)Heatmap depicting the status of immune-related functions in the high-
and low-risk groups. (E–G) Correlation of high- and low-risk groups with immune cell score, stromal cell score, and ESTIMATE score.
(H) Comparison of immune checkpoints in high- and low-risk groups. (I–K) Correlation between the expression of three immune checkpoints (PD-
L1, PD-1, and CTLA4) and seven signature lncRNAs, respectively. *p < 0.05, **p < 0.01, and ***p < 0.001.
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prognosis, and its combination with risk score could more

accurately predict the prognosis of PAAD patients. Our

results also showed that the mutation rate of KARS and

TP53 was much higher in the high-risk than in the low-risk

group. Mutations in KRAS can impair T cell recognition of

pancreatic cancer cells, leading to immune evasion (Cullis et al.,

2018). As a well-known tumor suppressor gene, TP53 mutations

can affect the recruitment and activity of T cells, which can also

lead to tumor immune evasion (Blagih et al., 2020). These results

suggest a high degree of immunosuppression in the high-risk

group, leading to poorer survival.

Currently, the treatment of advanced PAAD is still

dominated by chemotherapy, and almost all advanced patients

experience disease progression even after treatment. And patients

are recommended to be enrolled in clinical trials after second-line

treatment. A crucial direction to the clinical trials is

understanding how to carry out individualized combination

therapy for patients. The CAFs-related lncRNA signature in

this study provides the basis for selecting some

chemotherapeutic and targeted drugs. ATRA has previously

been shown to limit connective tissue proliferation and inhibit

tumor growth in a PAAD model (Froeling et al., 2011).

Meanwhile, ATRA can reverse the process in PAAD by which

pancreatic stellate cells (PSCs) hinder the infiltration of effector

immune cells into the tumor microenvironment (Ene-Obong

et al., 2013). A phase II clinical trial of ATRA as a stromal-

FIGURE 9
Investigation of drug sensitivity in risk groups. (A–P) Comparison of IC50 values for different agents in high- and low-risk groups.
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targeting agent in combination with chemotherapy for pancreatic

cancer is underway (Kocher et al., 2020). This study suggests that

the low-risk group is more sensitive to ATRA than the high-risk

group. Our results indicate that the low-risk group is more

susceptible to ATRA than the high-risk group. Furthermore,

in vitro activation and extracellular matrix buildup of PSCs are

suppressed by the Hsp90 inhibitor 17AAG (Peng et al., 2021).

The IC50 values indicated that high-risk patients were more

sensitive to 17AAG. Our data also suggest that high-risk patients

are more susceptible to the chemotherapy drugs Doxorubicin,

Pyrimethamine, and Mitomycin C than low-risk patients.

Although the signature generated in this researchwas validated by

different methods, there remain some limitations. First, we only used

TCGA database data for internal validation, whereas we still need to

validate the signature in the future with a prospective large sample

clinical cohort to test the applicability of the predictive signature. In

addition, the mechanism underlying lncRNA association with CAFs

in PAAD needs further experimental validation.

Conclusion

In conclusion, the CAFs-associated lncRNAs signature

identified in this study can effectively predict the prognosis

and immune microenvironment profile of PAAD patients. It

also provides a basis for understanding the possible mechanisms

of the role of CAFs-related lncRNAs in PAAD and for clinical

selection of ICIs, chemotherapeutic agents, and targeted drugs.

Nevertheless, our findings require further validation in the

future.
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