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Abstract

High-density genetic linkage maps of half-smooth tongue sole were developed with 1007 microsatellite markers, two SCAR
markers and an F1 family containing 94. The female map was composed of 828 markers in 21 linkage groups, covering
a total of 1447.3 cM, with an average interval 1.83 cM between markers. The male map consisted of 794 markers in 21
linkage groups, spanning 1497.5 cM, with an average interval of 1.96 cM. The female and male maps had 812 and 785
unique positions, respectively. The genome length of half-smooth tongue sole was estimated to be 1527.7 cM for the
females and 1582.1 cM for the males. Based on estimations of the map lengths, the female and male maps covered 94.74
and 94.65% of the genome, respectively. The consensus map was composed of 1007 microsatellite markers and two SCAR
markers in 21 linkage groups, covering a total of 1624 cM with an average interval of 1.67 cM. Furthermore, 159 sex-linked
SSR markers were identified. Five sex-linked microsatellite markers were confirmed in their association with sex in a large
number of individuals selected from different families. These sex-linked markers were mapped on the female map LG1f with
zero recombination. Two QTLs that were identified for body weight, designated as We-1 and We-2, accounted for 26.39%
and 10.60% of the phenotypic variation. Two QTLs for body width, designated Wi-1 and Wi-2, were mapped in LG4f and
accounted for 14.33% and 12.83% of the phenotypic variation, respectively. Seven sex-related loci were mapped in LGTf,
LG14f and LG1m by CIM, accounting for 12.5-25.2% of the trait variation. The results should prove to be very useful for
improving growth traits using molecular MAS.
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The traditional methods of genetic improvement of quantitative
traits have relied mainly on phenotype and pedigree information
[11], which are easily influenced by environmental factors. It is
generally accepted that marker-assisted selection (MAS) acceler-
ates genetic improvement in a relatively short period, especially
when the target characteristics are disease-related and there is
a sufficient amount of observed genetic variation in a given trait. A
genetic map constructed from a population segregated for a trait of
interest is required for QTL identification. Information on genetic
markers associated with QTL can be used in MAS breeding
programs to identify and select individuals carrying desired traits.
QTL mapping in commercial fishes is still in its infancy [12]. QTL
for growth, disease resistance and stress response have been
mapped in only a few species, such as Asian sea bass [10], rainbow

Introduction

Genetic linkage maps have become important tools in many
areas of genetic research. To perform a linkage study, it is
necessary to genotype and map large numbers of the available
genetic markers on mapping families. Microsatellites comprise an
excellent choice for genomic mapping due to their abundance in
most of the vertebrate genomes, including the genomic distribu-
tion, high polymorphism and ease of typing via PCR. Meanwhile,
the simple sequence repeat (SSR) alleles are typically co-dominant,
and their polymorphisms can be scored in either a simple
polyacrylamide gel separation format or with high-throughput
capillary arrays. Genetic linkage maps based on microsatellite
markers have been generated for economically important marine

species, such as salmon [1], tilapia [2], European sea bass [3],
rainbow trout [4], sea bream [5], Barramundi [6], catfish [7], grass
carp [8], Japanese flounder [9] and Asian sea bass [10].
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trout [13], tilapia [14], salmon [15], Japanese flounder [16], guppy
[17] and European seabass [18].
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Half-smooth tongue sole (Cynoglossus semilaevis) is a commercially
valuable flatfish that is widely distributed in Chinese coastal
waters. Due to its appealing taste, commercial value, easy
domestication and natural resource depletion, half-smooth tongue
sole has been selected as a promising species for aquaculture [19].
It has been one of the most popular marine species used in
aquaculture in China, together with turbot (Scophthalmus maximus),
olive flounder (Paralichthys olivaceus), Spotted halibut (Verasper
variegatus), and barfin flounder (Verasper mosers). Based on chromo-
some karyotype analysis, the karyotype of half-smooth tongue sole
was determined to be 2 n =42 t, NI =42 [20]. After further study
based on G-banding patterns analysis, it was confirmed that, in
addition to having 20 euchromosome pairs, there was a pair of sex
chromosomes (chromosome Z and W), and sex in this species is
determined by a WZ/ZZ chromosomal system [20]. In addition,
half-smooth tongue sole females grow two to three times larger
and faster than males. Therefore, these characteristics suggest that
half-smooth tongue sole has great potential for the production of
all-female stock, as well as for studying the mechanisms of both
genome evolution and sex determination [19].

Half-smooth tongue sole breeding is still in its infancy. Breeding
efforts are complicated by the fact that most traits of economic
significance exhibit quantitative inheritance [21]. Half~smooth
tongue sole breeding community lacks a detailed genetic linkage
map to facilitate the breeding process. Recently, number of genetic
studies in this species have been reported, including microsatellite
markers [22-28] and female-specific DNA markers [29], the
construction of BAC libraries [30], molecular marker-assisted sex
control [31], the characterization of certain sex-related genes [32]
and artificial gynogenesis [33]. Furthermore, a low-density genetic
linkage map was first constructed for half-smooth tongue sole by
Liao et al. [19]. However, as a result this map has provided very
little information on the genomic organization of this important
marine species. Like other aquaculture species, the production of
half-smooth tongue sole is often affected by outbreaks of deadly
infectious diseases caused by bacteria, viruses or protozoan
pathogens. To accelerate the genetic improvement needed to
achieve large-scale aquaculture success, genetic studies in half-
smooth tongue sole such as MAS based on QTL, are needed.
Therefore, linkage maps need to be built mainly with co-dominant
markers, which are representative of the same loci across studies.

In the present study, we constructed a high-density micro-
satellite genetic linkage map in half-smooth tongue sole. At the
same time, sex-linked microsatellite markers were identified on the
linkage maps. In addition, four growth rate QTLs and seven sex-
related loct were mapped on the genetic linkage map and some of
them should prove to be useful in MAS in future breeding
programs in half-smooth tongue sole. These linkage maps
represent a powerful tool both for research on genome evolution
and for brood stock enhancement programs using MAS breeding
in half-~smooth tongue sole, and will help facilitate genome
mapping efforts in other species of flatfish.

Results

Genetic Markers

To obtain useful microsatellite markers for linkage analysis, we
examined the segregation patterns of 4452 markers in the
mapping family. Among the 4452 markers, 1317 (29.6%) were
polymorphic in the mapping family. The sequence data of 951
newly identified polymorphic microsatellites were deposited with
the GenBank Data Library under the accession nos: JN902087 -
JN903037. A list of the 1317 polymorphic microsatellite markers is
presented in Table S1. The microsatellite locus derived from the
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sequence of the SOX9 genes in half-smooth tongue sole was linked
to LG18. Gene072 (Toll-like receptor 9, FJ418072) and ghrh-ssr
(PACAP-related peptide, FJ608666) were linked to LG11 and
LG21, respectively. In addition, genel77 (Ovarian aromatase,
EF421177) and genell6 (Myostatin, EF683116) were only poly-
morphic for the female parent in the mapping family, and were
mapped in the linkage groups LG6f and LG17f] respectively.

Sex-linked Markers

Sex-specific molecular markers are a useful genetic resource for
studying sex- determining mechanisms and controlling fish sex. In
a previous study, a female-specific DNA marker was located on the
linkage map of half-smooth tongue sole. That was the first report
on the mapping of a sex-linked marker on a genetic linkage map in
teleosts [19]. In the present study, 159 sex-linked SSR markers
(JN902124-JN902282) were identified and divided into two types
(Types A and B, Figure 1). Five sex-linked microsatellite markers
were confirmed in their association with sex in 96 individuals
selected from different families and were found to be located in the
LGI1f region. Using PCR-based allele-specific assay adapted from
F-382 and F-783, we mapped two sex-linked SCAR (sequence-
characterized amplified region) markers to the female map LG1f,
on which sex-linked SSR markers were located (Fig. 2). The
presence of sex-linked markers suggested the possibility of female
heterogamety (ZZ male; WZ female) in half-smooth tongue sole,
which is confirmed by the presence of a large heteromorphic sex
chromosome in the females of this species [19]. Therefore, LG1
should correspond to the sex chromosome.

Linkage Analysis

A total of 1317 demonstrably heterozygous markers were
available for mapping. Among these 1317 loci, 1138 markers were
used to construct the female map, and 958 markers were used to
construct the male map. Twenty-nine microsatellite markers did
not exhibit any significant linkage to any other markers.
Segregation distortion from that expected under Mendelian
inheritance was found in 406 (30.7%) of 1317 microsatellite
markers. As a result, 357 of these 406 markers were located the
linkage map after linkage analysis.

When the total of 1317 effective microsatellite markers and two
SCAR markers were analyzed, 1009 markers were on the linkage
map containing 21 linkage groups (LGs) at a LOD threshold value
of 4.0.

Sex-specific Maps

Significant linkages were identified for 1317 genetic markers,
including a total of 1315 microsatellite loci and two SCAR
markers. However, 305 microsatellite markers were unmapped in
this analysis. Consequently, the mapping ratio of these markers is
76.8%. The female and male maps contained 828 and 794
markers, respectively (Fig. 2 and Fig. 3). Both maps were found to
have 21 linkage groups, which is in agreement with the karyotype
of 2 n=42. The total length of the female map is 1447.3 cM, with
an average interval of 1.83 cM. The linkage group size ranged
from 33.8 ¢cM to 91.8 ¢cM. The number of loci per genetic linkage
group varied from 18 to 74. The male linkage map spanned a total
genetic distance of 1497.5 cM. The length of each linkage group
varied from 38.7 to 97.9 ¢cM and contained 23-68 loci per group,
with an average interval of 1.96 cM. The sex-specific genetic
linkage maps are presented in Figure 2 and Figure 3. The female
and male maps display 812 and 785 unique positions, respectively.
The estimated genome lengths, based on the two methods, were
1524.5 cM (Gel) and 1531.2 cM (Ge2) for the female, and
1579.8 <M (Gel) and 1584.4 cM (Ge2) for the male. The average
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Figure 1. Polyacrylamide gel separation of sex-linked microsatellites PCR amplification products in females and males. Type A:
Marker F-locus was only present in females, and marker M-locus present in females and males. Type B: Marker F-locus was only present in females,

and marker M-locus absent in all individuals.
doi:10.1371/journal.pone.0052097.g001

of these two values was taken as the expected genome length,
namely 1527.7 cM for the female and 1582.1 cM for the male. A
summary of the genetic linkage maps of half-smooth tongue sole is
shown in Table 1 and Table 2. Based on recent estimations of map
length, the genomic coverage of the female and male maps were
94.74% and 94.65%, respectively.

Consensus Map

Either bridge markers or homologous loci were used to identify
the co-linear region in the female and male maps. The consensus
map was composed of 1007 microsatellite markers and two SCAR
markers in 21 linkage groups, covering a total of 1624 c¢cM with an
average interval of 1.67 cM (Fig. 4). The genome length of half-
smooth tongue sole was estimated to bel698.2 cM, and the
coverage of 95.74% was observed. This average estimated genome
size is longer than the speculated 1451.3 c¢M length found by Liao
et al. [19].The linkage group length varied from 37.2 cM to
101.6 cM, and the number of markers on the linkage group varied
from 29 to 83.

Recombination Rate

The availability of SSR markers in the male and female maps
allowed an evaluation of the respective meiotic recombination
rates. The recombination rates obtained from 21 linkage groups
were on average 0.0183 in females and 0.0196 in males.
Therefore, the relative recombination ratio (female-to-male; F/
M) in these pairs was 1:1.07, slightly higher in males than females.

The average recombination rate across all of the linkage groups
is approximately 0.0163 in half-smooth tongue sole, which is
higher than that in zebrafish [34], tilapia [2], catfish [7] and grass
carp [8], and lower than rainbow trout [35], Asian sea bass [36]
and Japanese flounder [9].

QTL Associated with Growth Traits

Four QTLs associated with growth traits were mapped in LG4f
by CIM, accounting for 10.60-26.39% of the phenotypic variance
(Fig. 2 and Fig. 5). The individual QTL which were detected were
as follows: Two QTLs that were identified for body weight,
designated as We-1 and We-2, explained 26.39% and 10.60% of
the phenotypic variation. Two QTLs for body width, designated
Wi-1 and Wi-2, were mapped in LG4f and explained 14.33% and
12.83% of the phenotypic variation, respectively. Two makers,
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Scaffold1442_54298 and Scaffold080351, were highly significantly
(P<<0.01) correlated with growth traits (Table 3).

Mapping of Sex-related Loci

Seven sex-related loci were mapped in LG1f, LG14f and LG1m
by CIM, accounting for 12.5-25.2% of the trait variation (Fig. 2,
Fig. 3 and Fig. 6). Four microsatellite makers, hncse206, scaf-
fold170_6408, scaffold636_2245 and scaffold467_24010, were
highly significantly (P<<0.01) correlated with sex. (Table 3).

Discussion

Linkage analysis and map construction using molecular markers
is more complicated in full-sib families of out-breeding species
than in progenies derived from homozygous parents. For example,
markers may vary in the number of segregating alleles, one or both
parents may be heterozygous, markers may be dominant or co-
dominant, and usually the linkage phases of marker pairs are
unknown. Given these differences, marker pairs provide different
amounts of information for the estimation of recombination
frequencies and the linkage phases of the markers in the two
parents, and usually these have to be estimated simultaneously
[37]. Therefore, the maps are constructed independently for
maternal and paternal meiosis.

Genetic maps provide important genomic information and
allow the exploration of QTL, which can be used to maximize the
selection of target traits. The availability of a large number of
genetic markers is essential for constructing a useful high-density
linkage map and for QTL mapping of genetic traits of interest.
The increase in the availability of the genome sequencing data has
allowed the construction of genetic linkage maps in a variety of
flatfish species, such as the Japanese flounder [9] [38-39], turbot
[40], Atantic halibut [41], and half-smooth tongue sole [19].
These maps are invaluable for investigating the genomic
organization and identifying the genetic traits of commercial
interest. Among these maps, the Japanese flounder constructed by
Castafio-Sanchez displayed the densest flatfish linkage map with
average intervals of 5.0 ¢cM and 4.4 cM respectively. In this study,
we constructed a high-density microsatellite genetic linkage map
using 1009 markers in half-smooth tongue sole, a flatfish of great
relevance to fisheries and aquaculture. The largest space are
17.3 cM in female and 14.3 cM in male. With average inter-
marker distances of 1.83 ¢cM in females and 1.96 ¢cM in males, the
new map is at present the densest flatfish linkage map. These
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Figure 2. Linkage maps of the female-specific map for Cynoglossus semilaevis. The female-specific genetic map comprises 828 markers
assigned to 21 linkage groups (LG1f-LG21f). Genetic distances in Kosambi centimorgans are listed on the left side of the linkage groups, and markers
are listed on the right side of the linkage groups.

doi:10.1371/journal.pone.0052097.g002
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Figure 3. Linkage maps of the male-specific map for Cynoglossus semilaevis. The male-specific genetic map comprises 794 markers assigned
to 21 linkage groups (LG1m-LG21m). Genetic distances in Kosambi centimorgans are listed on the left side of the linkage groups, and markers are
listed on the right side of the linkage groups.

doi:10.1371/journal.pone.0052097.g003

markers will serve as an important tool for future comparative small (doublet or triplet) linkage groups, indicating that this linkage
map studies and to establish the underlying correspondence with map is complete. Only 29 of the 1317 markers studied remained
the linkage groups of other closely related species. There were no unlinked to any other markers. This degree of completeness
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Table 1. The characterization of linkage groups of half-smooth tongue sole.

Female maps Male maps Consensus maps

LG No. of markers Length (cM) LG No. of markers Length (cM) LG No. of markers Length (cM)
1f 38 79.2 Tm 29 63.1 1 52 79.1
2f 68 89.2 2m 66 934 2 83 101
3f 33 66.5 3m 41 89.3 3 46 85.8
4f 18 84 4m 26 54.4 4 29 479
5f 74 68.5 5m 68 69.9 5 87 79.5
6f 43 80 6m 39 77.5 6 47 789
7f 28 48.5 7m 25 66.1 7 34 64.7
8f 55 85.1 8m 39 79.1 8 57 94.8
of 40 91.8 9m 42 97.9 9 59 101.5
10f 49 67.2 10 m 41 65.8 10 51 68.9
1f 42 60.7 11 m 42 78 1 49 90.3
12f 39 58.7 12m 35 633 12 45 79.2
13f 42 71.6 13 m 43 814 13 51 83.1
14f 36 65.1 14 m 36 72.7 14 46 73.8
15f 41 70.5 15 m 46 67.4 15 53 74.2
16f 36 66.4 16 m 38 59.3 16 46 69.4
17f 35 66.2 17 m 32 66.9 17 39 72.1
18f 31 68 18 m 29 62.1 18 37 68.9
19f 24 61.6 19 m 23 78.2 19 30 101.6
20f 31 64.7 20 m 29 73 20 36 72.1
21f 25 338 2T m 25 387 21 32 37.2
Total 828 1447.3 Total 794 1497.5 Total 1009 1624
doi:10.1371/journal.pone.0052097.t001

supports the utility of the genetic map as a reference tool for future Sex-linked Markers

genetic analysis in this species. The molecular identification of sex is an important issue for
studies involving behavior, ecology, conservation, development
and sex determination in many species. The first sex-determining

Table 2. Summary of genetic linkage maps of half-smooth tongue sole.

Female maps Male maps Consensus maps
Number of markers scored 1138 958 1317
Number of markers mapped 828 794 1009
Number of unique positions 812 785 991
Number of genetic linkage groups 21 21 21
Average number of markers per group 39 38 48
Minimum number of markers per group 18 23 29
Average marker spacing (cM) 1.83 1.96 1.67
Maximum length of group (cM) 91.8 97.9 101.6
Minimum length of group (cM) 33.8 387 37.2
Observed genome length (cM) 1447.3 1497.5 1624
Estimate genome length (cM)
Gel 1524.2 1579.8 1694.2
Ge2 1531.2 1584.4 1698.2
Ge 1527.7 1582.1 1696.2
Genome coverage % 94.74 94.65 95.74
doi:10.1371/journal.pone.0052097.t002
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Figure 4. Linkage maps of the consensus map for Cynoglossus semilaevis. The consensus genetic map comprises 1009 markers assigned to 21
linkage groups (LG1-LG21). Genetic distances in Kosambi centimorgans are listed on the left side of the linkage groups, and markers are listed on the

right side of the linkage groups.
doi:10.1371/journal.pone.0052097.9g004

gene was identified in the teleost fish medaka [42]. In recent years,
sex-linked markers have been identified in various cultured fish
species, including rainbow trout [43], yellowtail [44], Nile Tilapia
[43], cichlid [46] and nine-spined stickleback [47]. In the half-
smooth tongue sole, a female-specific SCAR marker was proven to
be highly associated with female gender and was assigned to the W
chromosome [29].

The marked sexual dimorphism in growth which is observed
between the male and female half-smooth tongue sole has led to
suggestions that the efficiency of the culture systems could be
improved by setting up a production system focused on the faster-
growing sex. Combining genome sequencing analysis, we identi-
fied 159 sex-linked microsatellite marker alleles in this mapping
family. Five sex-linked microsatellite markers were confirmed in

their association with sex in a large number of individuals selected
from different families, suggesting a tight linkage between these
microsatellite markers and sex. We were able to map these sex-
linked microsatellite markers onto the LGIf region in which
female-specific SCAR markers I-382 and F-783 were assigned.
Both the male and female maps share the homologous region of
LG1 containing the same microsatellite markers, which imply that
the LG1 segment is homologous in the females and males, and is
an indication of a pseudoautosomal region of the sex chromosome.
Further comparison mapping of the W and Z chromosomes
should be carried out with these linkage groups. The identification
of a sex-linked marker in a general population of half-smooth
tongue sole is vital for the further development of mono-sex
culture in this species. Sex-linked microsatellite markers are
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Figure 5. LOD curve graph of four growth-related QTLs. Abscissa indicates the relative position on the linkage groups, vertical coordinates
indicates the value of LOD; the figure in “()” represents (position, value of LOD).

doi:10.1371/journal.pone.0052097.9005
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needed for elucidating sex determination mechanism. This is
especially important in half-smooth tongue sole because of a large
difference in the growth rate between males and females. In
addition, sex-linked microsatellite markers have potential other
important applications in basic research, such as the identification
of sex-related genes and the influence of environmental factors on
sex differentiation. The sex-linked microsatellite markers de-
veloped in the present study can be used for the molecular
identification of genetic sex in tongue sole, and also provide an
important tool for screening and isolation of the sex-determining
locus and sex manipulation in half-smooth tongue sole.

Sex-Specific Patterns of Recombination

In this study, the average interval between markers was slightly
less for the female map (1.83 cM) than the male map (1.96 cM),
suggesting that the recombination rate was slightly higher in males
than in females. The recombination ratio between the male and
female parents of half-smooth tongue sole was 1.07:1. Although it
was slightly higher in males than females, the ratio was still close to
1:1. Differences in map length can result from a variation in the
number of recombination events in the two parents as well as
variations in the number and location of the mapped loci. It is
common to find a difference in the recombination ratio between
the two sexes in most aquatic species. For instance, the male/
female recombination ratios are 1:8.26 in Atlantic salmon [48],
1:3.25 in rainbow trout [49], 1:1.43 in Japanese flounder [9] and
1:2 in halibut [41].

Despite this being a common phenomenon, the mechanism
responsible for the different recombination rates between the
genders is still not well understood. Some studies have shown that
recombination rate differences are associated with QTL [50].
Selection using linked markers is more efficient when recombina-
tion does not occur between the markers and the QTL loci.

Segregation Distortion

In the mapping family of this study, segregation distortion was
observed for 406 markers and the distortion rate was approxi-
mately 30.7%, which is lower than the ratio of 33% reported by
Liao et al. [19]. This suggests that a high ratio of segregation
distortion may be a common phenomenon in half-smooth tongue
sole. A higher distortion rate has been reported in previous studies,
such as 40.5% for Pacific white shrimp [51]. For other marine

PLOS ONE | www.plosone.org

Table 3. Biometrical parameters of individual QTL affecting growth traits and sex of half-smooth tongue sole.

Trait QTL name LG Marker position Associated markers LOD scores QTL Interval R? (%)

Body weight We-1 LG4F 24.2 Scaffold1442_54298 47 22.8-25.2 26.39
We-2 LG4F 66.7 Scaffold080351 26 66.0-67.6 10.60

Body width Wi-1 LG4F 23.2 Scaffold1442_54298 3.0 34.4-38.0 14.33
Wi-2 LG4F 66.7 Scaffold080351 28 72.6-75.1 12.83

Sex S-1 1f 14.2 hncse206 37 11.6-14.3 11.5
S-2 1f 154 scaffold170_6408 6.7 15.4-26.5 25.2
S-3 14f = = 346 2.1-39 =
S-4 14f - - 6.3 27.9-28.8 -
S-5 Tm 15.9 scaffold636_2245 114 11.6-17.7 19.9
S-6 Tm 236 scaffold467_24010 59 20.5-23.8 16.6
S-7 Tm - - 37 32.6-33.1 -

R? (%): proportion of the explained phenotypic variance.

LG: linkage group.

doi:10.1371/journal.pone.0052097.t003

species, the rate is 26.9% in Pacific Oyster [52], 16% in channel
catfish [53] and 16.3% in common carp [54]. The reasons for the
distortion of the segregation ratios may be due to the factors such
as chromosome loss [55], genetic isolation [56], sampling errors,
scoring errors, the progeny population size and amplification of
a single-sized fragment derived from several different genomic
regions [57]. Additionally, lethal effects caused by a recessive
homozygote in the juvenile period may affect distorted segregation

[58-59].

Mapping of Sexual and Growth-related Traits

Half-smooth tongue sole (Gynoglossus semilaevis) is one of the most
economically important marine species in Chinese coastal waters.
Information on genetic markers associated with quantitative trait
loci (QTL) can be used in breeding programs to identify and select
individuals carrying desired traits. In this work, sex-specific linkage
maps were used for mapping of sexual and growth-related traits,
which provided a full-scale detection of Q'T'L and estimation of the
gene cffects.

In total, four QTLs associated with growth traits were detected.
The additive effects were negative values. To improve the utility of
the QTL in MAS and also move toward the positional cloning of
candidate genes, fine mapping of the QTL to a more restricted
chromosomal region is necessary. Although QTL mapping has
been conducted in a few foodfish species, such as rainbow trout
[13], salmon [15], European seabass [16], tilapia [17], the guppy
[18] and turbot [60], the region is usually longer than 10 cM. In
this study, the QTL intervals were 2.4 and 1.6 cM for body
weight, and 3.6 and 2.5 ¢cM for body width. Moreover, the four
QTL for growth traits clustered on one linkage map (LG4{), which
will likely prove to be very useful for improving growth traits by
molecular MAS.

In addition, seven sex-related loci were mapped. Half-smooth
tongue sole females grow larger and faster than males. Therefore,
half-smooth tongue sole has great potential for the production of
all-female stock, as well as for studying the mechanisms of both
genome evolution and sex determination. Mapping of sex-related
locus provide an important tool for screening and isolation of the
sex-determining gene and sex manipulation in half-smooth tongue
sole.
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Figure 6. LOD curve graph of seven sex-related loci. Abscissa indicates the relative position on the linkage groups, vertical coordinates
indicates the value of LOD; the figure in “()” represents (position, value of LOD)
doi:10.1371/journal.pone.0052097.g006
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Materials and Methods

Ethics Statement

All the experimental animal programs involved in this study
were approved by the Yellow Sea Fisheries Research Institute’s
animal care and use committee, and followed the experimental
basic principles. A slight fin tissue from the parents and FI1
offspring was sheared under MS222 anesthesia, and all efforts
were made to minimize suffering.

Mapping Family

In September 2010, a full-sib family of half-smooth tongue sole
was constructed and used for the development of a genetic linkage
map. The male parent was selected from a group of fish derived
from a wild population. The female parent was selected from
a cultured population. Experimental crossing was conducted at the
MingBo Aquaculture Company (Yantai, China). Induction of the
maturation of broodstock and artificial fertilization of sperm and
eggs were carried out as described previously [33]. 120 days post
hatching, 300 fry were transferred into big aquarium with
recirculation. All conditions in the aquarium were maintained
constantly, i.e. water temperature was kept at 20-23°C and fish
were fed two times per day at around 6:00 a.m. and 5:00 p.m. at
satiation. The fish were cultured in such conditions for 6 months
before analysis of their genotypes and phenotypes. In June 2011,
the F1 offspring had shown apparent disparity in the growth-
related characters. Ninety-two individuals from the mapping
family were collected randomly. Two growth related traits were
evaluated: body weight and body width. We represents the body
weight in grams and Wi represents the length in centimetres. The
genomic DNA from the two parents and their progeny was
extracted following phenol/chloroform procedures with RNase
treatment [61].

Microsatellite Markers

A total of 3965 half-smooth tongue sole microsatellite markers
were tested for segregation across a set of eight progeny
individuals. These microsatellite markers were recruited from
three sources. (1) The first set of 3000 microsatellite markers was
developed from genome sequencing. (2) The second set of 965
microsatellite markers was developed through the construction of
microsatellite enriched libraries and EST libraries [19]. (3) The
remaining 111 markers were developed from public databases and
previous publications [25-28].

In addition, 486 microsatellite markers that were developed
from other species were used, including 83 barfin flounder SSRs,
78 spotted halibut SSRs, 182 Atlantic halibut SSRs, 96 Japanese
flounder SSRs, and 47 Senegal sole and common sole SSRs.

SCAR Markers

Two female-specific SCAR markers were generated from half-
smooth tongue sole in the mapping family (Marker name: F-382,
Forward primer: ATTCACTGACCCCTGAGAGC, Reverse
primer: AACAACTCACACACGAC AAATG. F-783, Forward
primer: GCTGGTGAAGGCTACAATAGG, Reverse primer:
TCAGAACACATCACTGCTGQ).

Genes

SOX9 is one of the genes having a critical role in vertebrate sex
determination. Mutations of SOX9 leading to haploinsufficiency
can cause campomelic dysplasia and sex reversal. The micro-
satellite marker sox9-1 (GQ402461) is derived from the sequence
of the SOX9 gene in the mapping family. In addition, the
microsatellite markers gene072 (Toll-like receptor 9, EJ418072),

PLOS ONE | www.plosone.org

11

Genetic Map and Mapping of Traits in Tongue Sole

ghrh-ssr (PACAP-related peptide, FJ608666), genel77 (Ovarian
aromatase, EF421177) and genell6 (Myostatin, EF683116) were
also genotyped and used for the map construction.

Genotyping

The primers flanking the microsatellite regions were designed
using Primer3 and Primer) software. All primers were designed for
a 57.5°C annealing temperature, a total amplification product size
of 100-300 bp and 40-60% GC content. All of the microsatellite
markers were used to genotype two parents and six progeny for
screening the segregation markers in the mapping population. The
microsatellite markers that produced polymorphic fragments were
used in the subsequent genotyping of the parents and 92 progeny
to construct the linkage maps. Amplifications were performed in
an ABI Veriti 96 well thermal cycler, BIO-RAD MyCycler
thermal cycler and Fisher Scientific LabServ LS-P96G thermal
cycler. The PCR amplifications were carried out under the
following conditions: 95°C for 5 min, followed by 32 cycles at
95°Ci for 30 s, a specific annealing temperature of a specific primer
pair for 30 s and 72°C for 30 s, and the final extension was 72°C
for 10 min. Amplification reactions were carried out in a 15-ul
volume consisting of 10x Taq buffer, 0.5 U Taq polymerase
(TTANGEN), 0.6 mM dNTP (+MgCl, 1.5 mM), 0.6 UM of each
primer and 10-30 ng template DNA. The final volume was
adjusted with sterile distilled water. The PCR products were
separated on 8% polyacrylamide gels (PAGE) and visualized by
silver staining [62].

Linkage Analysis

Genetic marker data were scored according to the definition of
JoinMap 4.0 [63]. All of the statistical analyses described below
were made using the same software using a cross-pollinating (CP)
type population, which handles F1 outbreeding population data
containing various genotype configurations. Pairwise analyses
were performed and markers were sorted in linkage groups at
a minimum LOD score of 4.0. The “locus genotype frequency”
function calculated the chi-square values for each marker to test
for the expected Mendelian segregation ratio. The linkage
distances were estimated for each LG assuming the Kosambi
mapping function. All weak linkage markers were excluded to
ensure a correct marker order. Although distorted segregation
markers normally are excluded from linkage analysis, the use of
the independent LOD score, one of the grouping parameters
provided by JoinMap4.0, allows these markers to be included.
This test for independence is not affected by segregation distortion
and leads to a less spurious linkage [64].

Genome Size and Coverage

The estimated genome length (Ge) of the consensus female and
male genome was estimated using two different methods. First,
Genome Estimation size 1 (Gel) was calculated by adding 2 s to
the length of each genetic linkage group to account for the
chromosome ends, where s was the average spacing of the genetic
linkage map. The first method estimates s on a genome scale [65].
Genome Estimation Size 2 (Ge2) was calculated by multiplying the
length of each genetic linkage group by (m+1)/(m—1), where m
was the number of loci in each genetic linkage group. The second
method estimates the average spacing for each chromosome
independently [66]. The estimated genome size (Ge) for each sex
was taken as the average of the two estimates. Observed genome
length was taken as the total length (Goa) considering all linkage
groups, triplets and doublets [67]. The map coverage, Coa, was
calculated as Goa/Ge [68].
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QTL Analyses

QTL analysis was performed with WinQTLCart2.5 software
using the composite interval mapping (CIM) method. Unlinked
might act as an additional environmental effect that reduces the
significance of the estimated marker-trait association. Therefore,
CIM includes neighboring markers and uses the remaining
background markers as cofactors in order to remove the effects
of multiple QTL. While the CIM analysis was conducted
separately for each map, the background markers used in these
analyses were derived from both maps. Five background markers
were employed in CIM analysis. The derived genome-wide
threshold value for the three traits was LOD =2.5. When we
analyzed sex-related loci, we considered the sex trait as qualitative
trait. The female was “1”, and male was “0”.
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