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Abstract

High-density genetic linkage maps of half-smooth tongue sole were developed with 1007 microsatellite markers, two SCAR
markers and an F1 family containing 94. The female map was composed of 828 markers in 21 linkage groups, covering
a total of 1447.3 cM, with an average interval 1.83 cM between markers. The male map consisted of 794 markers in 21
linkage groups, spanning 1497.5 cM, with an average interval of 1.96 cM. The female and male maps had 812 and 785
unique positions, respectively. The genome length of half-smooth tongue sole was estimated to be 1527.7 cM for the
females and 1582.1 cM for the males. Based on estimations of the map lengths, the female and male maps covered 94.74
and 94.65% of the genome, respectively. The consensus map was composed of 1007 microsatellite markers and two SCAR
markers in 21 linkage groups, covering a total of 1624 cM with an average interval of 1.67 cM. Furthermore, 159 sex-linked
SSR markers were identified. Five sex-linked microsatellite markers were confirmed in their association with sex in a large
number of individuals selected from different families. These sex-linked markers were mapped on the female map LG1f with
zero recombination. Two QTLs that were identified for body weight, designated as We-1 and We-2, accounted for 26.39%
and 10.60% of the phenotypic variation. Two QTLs for body width, designated Wi-1 and Wi-2, were mapped in LG4f and
accounted for 14.33% and 12.83% of the phenotypic variation, respectively. Seven sex-related loci were mapped in LG1f,
LG14f and LG1m by CIM, accounting for 12.5–25.2% of the trait variation. The results should prove to be very useful for
improving growth traits using molecular MAS.
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Introduction

Genetic linkage maps have become important tools in many

areas of genetic research. To perform a linkage study, it is

necessary to genotype and map large numbers of the available

genetic markers on mapping families. Microsatellites comprise an

excellent choice for genomic mapping due to their abundance in

most of the vertebrate genomes, including the genomic distribu-

tion, high polymorphism and ease of typing via PCR. Meanwhile,

the simple sequence repeat (SSR) alleles are typically co-dominant,

and their polymorphisms can be scored in either a simple

polyacrylamide gel separation format or with high-throughput

capillary arrays. Genetic linkage maps based on microsatellite

markers have been generated for economically important marine

species, such as salmon [1], tilapia [2], European sea bass [3],

rainbow trout [4], sea bream [5], Barramundi [6], catfish [7], grass

carp [8], Japanese flounder [9] and Asian sea bass [10].

The traditional methods of genetic improvement of quantitative

traits have relied mainly on phenotype and pedigree information

[11], which are easily influenced by environmental factors. It is

generally accepted that marker-assisted selection (MAS) acceler-

ates genetic improvement in a relatively short period, especially

when the target characteristics are disease-related and there is

a sufficient amount of observed genetic variation in a given trait. A

genetic map constructed from a population segregated for a trait of

interest is required for QTL identification. Information on genetic

markers associated with QTL can be used in MAS breeding

programs to identify and select individuals carrying desired traits.

QTL mapping in commercial fishes is still in its infancy [12]. QTL

for growth, disease resistance and stress response have been

mapped in only a few species, such as Asian sea bass [10], rainbow

trout [13], tilapia [14], salmon [15], Japanese flounder [16], guppy

[17] and European seabass [18].
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Half-smooth tongue sole (Cynoglossus semilaevis) is a commercially

valuable flatfish that is widely distributed in Chinese coastal

waters. Due to its appealing taste, commercial value, easy

domestication and natural resource depletion, half-smooth tongue

sole has been selected as a promising species for aquaculture [19].

It has been one of the most popular marine species used in

aquaculture in China, together with turbot (Scophthalmus maximus),

olive flounder (Paralichthys olivaceus), Spotted halibut (Verasper

variegatus), and barfin flounder (Verasper moseri). Based on chromo-

some karyotype analysis, the karyotype of half-smooth tongue sole

was determined to be 2 n=42 t, NF= 42 [20]. After further study

based on G-banding patterns analysis, it was confirmed that, in

addition to having 20 euchromosome pairs, there was a pair of sex

chromosomes (chromosome Z and W), and sex in this species is

determined by a WZ/ZZ chromosomal system [20]. In addition,

half-smooth tongue sole females grow two to three times larger

and faster than males. Therefore, these characteristics suggest that

half-smooth tongue sole has great potential for the production of

all-female stock, as well as for studying the mechanisms of both

genome evolution and sex determination [19].

Half-smooth tongue sole breeding is still in its infancy. Breeding

efforts are complicated by the fact that most traits of economic

significance exhibit quantitative inheritance [21]. Half-smooth

tongue sole breeding community lacks a detailed genetic linkage

map to facilitate the breeding process. Recently, number of genetic

studies in this species have been reported, including microsatellite

markers [22–28] and female-specific DNA markers [29], the

construction of BAC libraries [30], molecular marker-assisted sex

control [31], the characterization of certain sex-related genes [32]

and artificial gynogenesis [33]. Furthermore, a low-density genetic

linkage map was first constructed for half-smooth tongue sole by

Liao et al. [19]. However, as a result this map has provided very

little information on the genomic organization of this important

marine species. Like other aquaculture species, the production of

half-smooth tongue sole is often affected by outbreaks of deadly

infectious diseases caused by bacteria, viruses or protozoan

pathogens. To accelerate the genetic improvement needed to

achieve large-scale aquaculture success, genetic studies in half-

smooth tongue sole such as MAS based on QTL, are needed.

Therefore, linkage maps need to be built mainly with co-dominant

markers, which are representative of the same loci across studies.

In the present study, we constructed a high-density micro-

satellite genetic linkage map in half-smooth tongue sole. At the

same time, sex-linked microsatellite markers were identified on the

linkage maps. In addition, four growth rate QTLs and seven sex-

related loci were mapped on the genetic linkage map and some of

them should prove to be useful in MAS in future breeding

programs in half-smooth tongue sole. These linkage maps

represent a powerful tool both for research on genome evolution

and for brood stock enhancement programs using MAS breeding

in half-smooth tongue sole, and will help facilitate genome

mapping efforts in other species of flatfish.

Results

Genetic Markers
To obtain useful microsatellite markers for linkage analysis, we

examined the segregation patterns of 4452 markers in the

mapping family. Among the 4452 markers, 1317 (29.6%) were

polymorphic in the mapping family. The sequence data of 951

newly identified polymorphic microsatellites were deposited with

the GenBank Data Library under the accession nos: JN902087 -

JN903037. A list of the 1317 polymorphic microsatellite markers is

presented in Table S1. The microsatellite locus derived from the

sequence of the SOX9 genes in half-smooth tongue sole was linked

to LG18. Gene072 (Toll-like receptor 9, FJ418072) and ghrh-ssr

(PACAP-related peptide, FJ608666) were linked to LG11 and

LG21, respectively. In addition, gene177 (Ovarian aromatase,

EF421177) and gene116 (Myostatin, EF683116) were only poly-

morphic for the female parent in the mapping family, and were

mapped in the linkage groups LG6f and LG17f, respectively.

Sex-linked Markers
Sex-specific molecular markers are a useful genetic resource for

studying sex- determining mechanisms and controlling fish sex. In

a previous study, a female-specific DNA marker was located on the

linkage map of half-smooth tongue sole. That was the first report

on the mapping of a sex-linked marker on a genetic linkage map in

teleosts [19]. In the present study, 159 sex-linked SSR markers

(JN902124–JN902282) were identified and divided into two types

(Types A and B, Figure 1). Five sex-linked microsatellite markers

were confirmed in their association with sex in 96 individuals

selected from different families and were found to be located in the

LG1f region. Using PCR-based allele-specific assay adapted from

F-382 and F-783, we mapped two sex-linked SCAR (sequence-

characterized amplified region) markers to the female map LG1f,

on which sex-linked SSR markers were located (Fig. 2). The

presence of sex-linked markers suggested the possibility of female

heterogamety (ZZ male; WZ female) in half-smooth tongue sole,

which is confirmed by the presence of a large heteromorphic sex

chromosome in the females of this species [19]. Therefore, LG1

should correspond to the sex chromosome.

Linkage Analysis
A total of 1317 demonstrably heterozygous markers were

available for mapping. Among these 1317 loci, 1138 markers were

used to construct the female map, and 958 markers were used to

construct the male map. Twenty-nine microsatellite markers did

not exhibit any significant linkage to any other markers.

Segregation distortion from that expected under Mendelian

inheritance was found in 406 (30.7%) of 1317 microsatellite

markers. As a result, 357 of these 406 markers were located the

linkage map after linkage analysis.

When the total of 1317 effective microsatellite markers and two

SCAR markers were analyzed, 1009 markers were on the linkage

map containing 21 linkage groups (LGs) at a LOD threshold value

of 4.0.

Sex-specific Maps
Significant linkages were identified for 1317 genetic markers,

including a total of 1315 microsatellite loci and two SCAR

markers. However, 305 microsatellite markers were unmapped in

this analysis. Consequently, the mapping ratio of these markers is

76.8%. The female and male maps contained 828 and 794

markers, respectively (Fig. 2 and Fig. 3). Both maps were found to

have 21 linkage groups, which is in agreement with the karyotype

of 2 n= 42. The total length of the female map is 1447.3 cM, with

an average interval of 1.83 cM. The linkage group size ranged

from 33.8 cM to 91.8 cM. The number of loci per genetic linkage

group varied from 18 to 74. The male linkage map spanned a total

genetic distance of 1497.5 cM. The length of each linkage group

varied from 38.7 to 97.9 cM and contained 23–68 loci per group,

with an average interval of 1.96 cM. The sex-specific genetic

linkage maps are presented in Figure 2 and Figure 3. The female

and male maps display 812 and 785 unique positions, respectively.

The estimated genome lengths, based on the two methods, were

1524.5 cM (Ge1) and 1531.2 cM (Ge2) for the female, and

1579.8 cM (Ge1) and 1584.4 cM (Ge2) for the male. The average

Genetic Map and Mapping of Traits in Tongue Sole
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of these two values was taken as the expected genome length,

namely 1527.7 cM for the female and 1582.1 cM for the male. A

summary of the genetic linkage maps of half-smooth tongue sole is

shown in Table 1 and Table 2. Based on recent estimations of map

length, the genomic coverage of the female and male maps were

94.74% and 94.65%, respectively.

Consensus Map
Either bridge markers or homologous loci were used to identify

the co-linear region in the female and male maps. The consensus

map was composed of 1007 microsatellite markers and two SCAR

markers in 21 linkage groups, covering a total of 1624 cM with an

average interval of 1.67 cM (Fig. 4). The genome length of half-

smooth tongue sole was estimated to be1698.2 cM, and the

coverage of 95.74% was observed. This average estimated genome

size is longer than the speculated 1451.3 cM length found by Liao

et al. [19].The linkage group length varied from 37.2 cM to

101.6 cM, and the number of markers on the linkage group varied

from 29 to 83.

Recombination Rate
The availability of SSR markers in the male and female maps

allowed an evaluation of the respective meiotic recombination

rates. The recombination rates obtained from 21 linkage groups

were on average 0.0183 in females and 0.0196 in males.

Therefore, the relative recombination ratio (female-to-male; F/

M) in these pairs was 1:1.07, slightly higher in males than females.

The average recombination rate across all of the linkage groups

is approximately 0.0163 in half-smooth tongue sole, which is

higher than that in zebrafish [34], tilapia [2], catfish [7] and grass

carp [8], and lower than rainbow trout [35], Asian sea bass [36]

and Japanese flounder [9].

QTL Associated with Growth Traits
Four QTLs associated with growth traits were mapped in LG4f

by CIM, accounting for 10.60–26.39% of the phenotypic variance

(Fig. 2 and Fig. 5). The individual QTL which were detected were

as follows: Two QTLs that were identified for body weight,

designated as We-1 and We-2, explained 26.39% and 10.60% of

the phenotypic variation. Two QTLs for body width, designated

Wi-1 and Wi-2, were mapped in LG4f and explained 14.33% and

12.83% of the phenotypic variation, respectively. Two makers,

Scaffold1442_54298 and Scaffold080351, were highly significantly

(P,0.01) correlated with growth traits (Table 3).

Mapping of Sex-related Loci
Seven sex-related loci were mapped in LG1f, LG14f and LG1m

by CIM, accounting for 12.5–25.2% of the trait variation (Fig. 2,

Fig. 3 and Fig. 6). Four microsatellite makers, hncse206, scaf-

fold170_6408, scaffold636_2245 and scaffold467_24010, were

highly significantly (P,0.01) correlated with sex. (Table 3).

Discussion

Linkage analysis and map construction using molecular markers

is more complicated in full-sib families of out-breeding species

than in progenies derived from homozygous parents. For example,

markers may vary in the number of segregating alleles, one or both

parents may be heterozygous, markers may be dominant or co-

dominant, and usually the linkage phases of marker pairs are

unknown. Given these differences, marker pairs provide different

amounts of information for the estimation of recombination

frequencies and the linkage phases of the markers in the two

parents, and usually these have to be estimated simultaneously

[37]. Therefore, the maps are constructed independently for

maternal and paternal meiosis.

Genetic maps provide important genomic information and

allow the exploration of QTL, which can be used to maximize the

selection of target traits. The availability of a large number of

genetic markers is essential for constructing a useful high-density

linkage map and for QTL mapping of genetic traits of interest.

The increase in the availability of the genome sequencing data has

allowed the construction of genetic linkage maps in a variety of

flatfish species, such as the Japanese flounder [9] [38–39], turbot

[40], Atlantic halibut [41], and half-smooth tongue sole [19].

These maps are invaluable for investigating the genomic

organization and identifying the genetic traits of commercial

interest. Among these maps, the Japanese flounder constructed by

Castaño-Sánchez displayed the densest flatfish linkage map with

average intervals of 5.0 cM and 4.4 cM respectively. In this study,

we constructed a high-density microsatellite genetic linkage map

using 1009 markers in half-smooth tongue sole, a flatfish of great

relevance to fisheries and aquaculture. The largest space are

17.3 cM in female and 14.3 cM in male. With average inter-

marker distances of 1.83 cM in females and 1.96 cM in males, the

new map is at present the densest flatfish linkage map. These

Figure 1. Polyacrylamide gel separation of sex-linked microsatellites PCR amplification products in females and males. Type A:
Marker F-locus was only present in females, and marker M-locus present in females and males. Type B: Marker F-locus was only present in females,
and marker M-locus absent in all individuals.
doi:10.1371/journal.pone.0052097.g001
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Figure 2. Linkage maps of the female-specific map for Cynoglossus semilaevis. The female-specific genetic map comprises 828 markers
assigned to 21 linkage groups (LG1f–LG21f). Genetic distances in Kosambi centimorgans are listed on the left side of the linkage groups, and markers
are listed on the right side of the linkage groups.
doi:10.1371/journal.pone.0052097.g002
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markers will serve as an important tool for future comparative

map studies and to establish the underlying correspondence with

the linkage groups of other closely related species. There were no

small (doublet or triplet) linkage groups, indicating that this linkage

map is complete. Only 29 of the 1317 markers studied remained

unlinked to any other markers. This degree of completeness

Figure 3. Linkage maps of the male-specific map for Cynoglossus semilaevis. The male-specific genetic map comprises 794 markers assigned
to 21 linkage groups (LG1m–LG21m). Genetic distances in Kosambi centimorgans are listed on the left side of the linkage groups, and markers are
listed on the right side of the linkage groups.
doi:10.1371/journal.pone.0052097.g003
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supports the utility of the genetic map as a reference tool for future

genetic analysis in this species.
Sex-linked Markers
The molecular identification of sex is an important issue for

studies involving behavior, ecology, conservation, development

and sex determination in many species. The first sex-determining

Table 1. The characterization of linkage groups of half-smooth tongue sole.

Female maps Male maps Consensus maps

LG No. of markers Length (cM) LG No. of markers Length (cM) LG No. of markers Length (cM)

1f 38 79.2 1 m 29 63.1 1 52 79.1

2f 68 89.2 2 m 66 93.4 2 83 101

3f 33 66.5 3 m 41 89.3 3 46 85.8

4f 18 84 4 m 26 54.4 4 29 47.9

5f 74 68.5 5 m 68 69.9 5 87 79.5

6f 43 80 6 m 39 77.5 6 47 78.9

7f 28 48.5 7 m 25 66.1 7 34 64.7

8f 55 85.1 8 m 39 79.1 8 57 94.8

9f 40 91.8 9 m 42 97.9 9 59 101.5

10f 49 67.2 10 m 41 65.8 10 51 68.9

11f 42 60.7 11 m 42 78 11 49 90.3

12f 39 58.7 12 m 35 63.3 12 45 79.2

13f 42 71.6 13 m 43 81.4 13 51 83.1

14f 36 65.1 14 m 36 72.7 14 46 73.8

15f 41 70.5 15 m 46 67.4 15 53 74.2

16f 36 66.4 16 m 38 59.3 16 46 69.4

17f 35 66.2 17 m 32 66.9 17 39 72.1

18f 31 68 18 m 29 62.1 18 37 68.9

19f 24 61.6 19 m 23 78.2 19 30 101.6

20f 31 64.7 20 m 29 73 20 36 72.1

21f 25 33.8 21 m 25 38.7 21 32 37.2

Total 828 1447.3 Total 794 1497.5 Total 1009 1624

doi:10.1371/journal.pone.0052097.t001

Table 2. Summary of genetic linkage maps of half-smooth tongue sole.

Female maps Male maps Consensus maps

Number of markers scored 1138 958 1317

Number of markers mapped 828 794 1009

Number of unique positions 812 785 991

Number of genetic linkage groups 21 21 21

Average number of markers per group 39 38 48

Minimum number of markers per group 18 23 29

Average marker spacing (cM) 1.83 1.96 1.67

Maximum length of group (cM) 91.8 97.9 101.6

Minimum length of group (cM) 33.8 38.7 37.2

Observed genome length (cM) 1447.3 1497.5 1624

Estimate genome length (cM)

Ge1 1524.2 1579.8 1694.2

Ge2 1531.2 1584.4 1698.2

Ge 1527.7 1582.1 1696.2

Genome coverage % 94.74 94.65 95.74

doi:10.1371/journal.pone.0052097.t002
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gene was identified in the teleost fish medaka [42]. In recent years,

sex-linked markers have been identified in various cultured fish

species, including rainbow trout [43], yellowtail [44], Nile Tilapia

[45], cichlid [46] and nine-spined stickleback [47]. In the half-

smooth tongue sole, a female-specific SCAR marker was proven to

be highly associated with female gender and was assigned to the W

chromosome [29].

The marked sexual dimorphism in growth which is observed

between the male and female half-smooth tongue sole has led to

suggestions that the efficiency of the culture systems could be

improved by setting up a production system focused on the faster-

growing sex. Combining genome sequencing analysis, we identi-

fied 159 sex-linked microsatellite marker alleles in this mapping

family. Five sex-linked microsatellite markers were confirmed in

their association with sex in a large number of individuals selected

from different families, suggesting a tight linkage between these

microsatellite markers and sex. We were able to map these sex-

linked microsatellite markers onto the LG1f region in which

female-specific SCAR markers F-382 and F-783 were assigned.

Both the male and female maps share the homologous region of

LG1 containing the same microsatellite markers, which imply that

the LG1 segment is homologous in the females and males, and is

an indication of a pseudoautosomal region of the sex chromosome.

Further comparison mapping of the W and Z chromosomes

should be carried out with these linkage groups. The identification

of a sex-linked marker in a general population of half-smooth

tongue sole is vital for the further development of mono-sex

culture in this species. Sex-linked microsatellite markers are

Figure 4. Linkage maps of the consensus map for Cynoglossus semilaevis. The consensus genetic map comprises 1009 markers assigned to 21
linkage groups (LG1–LG21). Genetic distances in Kosambi centimorgans are listed on the left side of the linkage groups, and markers are listed on the
right side of the linkage groups.
doi:10.1371/journal.pone.0052097.g004

Figure 5. LOD curve graph of four growth-related QTLs. Abscissa indicates the relative position on the linkage groups, vertical coordinates
indicates the value of LOD; the figure in ‘‘()’’ represents (position, value of LOD).
doi:10.1371/journal.pone.0052097.g005
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needed for elucidating sex determination mechanism. This is

especially important in half-smooth tongue sole because of a large

difference in the growth rate between males and females. In

addition, sex-linked microsatellite markers have potential other

important applications in basic research, such as the identification

of sex-related genes and the influence of environmental factors on

sex differentiation. The sex-linked microsatellite markers de-

veloped in the present study can be used for the molecular

identification of genetic sex in tongue sole, and also provide an

important tool for screening and isolation of the sex-determining

locus and sex manipulation in half-smooth tongue sole.

Sex-Specific Patterns of Recombination
In this study, the average interval between markers was slightly

less for the female map (1.83 cM) than the male map (1.96 cM),

suggesting that the recombination rate was slightly higher in males

than in females. The recombination ratio between the male and

female parents of half-smooth tongue sole was 1.07:1. Although it

was slightly higher in males than females, the ratio was still close to

1:1. Differences in map length can result from a variation in the

number of recombination events in the two parents as well as

variations in the number and location of the mapped loci. It is

common to find a difference in the recombination ratio between

the two sexes in most aquatic species. For instance, the male/

female recombination ratios are 1:8.26 in Atlantic salmon [48],

1:3.25 in rainbow trout [49], 1:1.43 in Japanese flounder [9] and

1:2 in halibut [41].

Despite this being a common phenomenon, the mechanism

responsible for the different recombination rates between the

genders is still not well understood. Some studies have shown that

recombination rate differences are associated with QTL [50].

Selection using linked markers is more efficient when recombina-

tion does not occur between the markers and the QTL loci.

Segregation Distortion
In the mapping family of this study, segregation distortion was

observed for 406 markers and the distortion rate was approxi-

mately 30.7%, which is lower than the ratio of 33% reported by

Liao et al. [19]. This suggests that a high ratio of segregation

distortion may be a common phenomenon in half-smooth tongue

sole. A higher distortion rate has been reported in previous studies,

such as 40.5% for Pacific white shrimp [51]. For other marine

species, the rate is 26.9% in Pacific Oyster [52], 16% in channel

catfish [53] and 16.3% in common carp [54]. The reasons for the

distortion of the segregation ratios may be due to the factors such

as chromosome loss [55], genetic isolation [56], sampling errors,

scoring errors, the progeny population size and amplification of

a single-sized fragment derived from several different genomic

regions [57]. Additionally, lethal effects caused by a recessive

homozygote in the juvenile period may affect distorted segregation

[58–59].

Mapping of Sexual and Growth-related Traits
Half-smooth tongue sole (Cynoglossus semilaevis) is one of the most

economically important marine species in Chinese coastal waters.

Information on genetic markers associated with quantitative trait

loci (QTL) can be used in breeding programs to identify and select

individuals carrying desired traits. In this work, sex-specific linkage

maps were used for mapping of sexual and growth-related traits,

which provided a full-scale detection of QTL and estimation of the

gene effects.

In total, four QTLs associated with growth traits were detected.

The additive effects were negative values. To improve the utility of

the QTL in MAS and also move toward the positional cloning of

candidate genes, fine mapping of the QTL to a more restricted

chromosomal region is necessary. Although QTL mapping has

been conducted in a few foodfish species, such as rainbow trout

[13], salmon [15], European seabass [16], tilapia [17], the guppy

[18] and turbot [60], the region is usually longer than 10 cM. In

this study, the QTL intervals were 2.4 and 1.6 cM for body

weight, and 3.6 and 2.5 cM for body width. Moreover, the four

QTL for growth traits clustered on one linkage map (LG4f), which

will likely prove to be very useful for improving growth traits by

molecular MAS.

In addition, seven sex-related loci were mapped. Half-smooth

tongue sole females grow larger and faster than males. Therefore,

half-smooth tongue sole has great potential for the production of

all-female stock, as well as for studying the mechanisms of both

genome evolution and sex determination. Mapping of sex-related

locus provide an important tool for screening and isolation of the

sex-determining gene and sex manipulation in half-smooth tongue

sole.

Table 3. Biometrical parameters of individual QTL affecting growth traits and sex of half-smooth tongue sole.

Trait QTL name LG Marker position Associated markers LOD scores QTL Interval R2 (%)

Body weight We-1 LG4F 24.2 Scaffold1442_54298 4.7 22.8–25.2 26.39

We-2 LG4F 66.7 Scaffold080351 2.6 66.0–67.6 10.60

Body width Wi-1 LG4F 23.2 Scaffold1442_54298 3.0 34.4–38.0 14.33

Wi-2 LG4F 66.7 Scaffold080351 2.8 72.6–75.1 12.83

Sex S-1 1f 14.2 hncse206 3.7 11.6–14.3 11.5

S-2 1f 15.4 scaffold170_6408 6.7 15.4–26.5 25.2

S-3 14f – – 34.6 2.1–3.9 –

S-4 14f – – 6.3 27.9–28.8 –

S-5 1 m 15.9 scaffold636_2245 11.4 11.6–17.7 19.9

S-6 1 m 23.6 scaffold467_24010 5.9 20.5–23.8 16.6

S-7 1 m – – 3.7 32.6–33.1 –

R2 (%): proportion of the explained phenotypic variance.
LG: linkage group.
doi:10.1371/journal.pone.0052097.t003
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Figure 6. LOD curve graph of seven sex-related loci. Abscissa indicates the relative position on the linkage groups, vertical coordinates
indicates the value of LOD; the figure in ‘‘()’’ represents (position, value of LOD).
doi:10.1371/journal.pone.0052097.g006
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Materials and Methods

Ethics Statement
All the experimental animal programs involved in this study

were approved by the Yellow Sea Fisheries Research Institute’s

animal care and use committee, and followed the experimental

basic principles. A slight fin tissue from the parents and F1

offspring was sheared under MS222 anesthesia, and all efforts

were made to minimize suffering.

Mapping Family
In September 2010, a full-sib family of half-smooth tongue sole

was constructed and used for the development of a genetic linkage

map. The male parent was selected from a group of fish derived

from a wild population. The female parent was selected from

a cultured population. Experimental crossing was conducted at the

MingBo Aquaculture Company (Yantai, China). Induction of the

maturation of broodstock and artificial fertilization of sperm and

eggs were carried out as described previously [33]. 120 days post

hatching, 300 fry were transferred into big aquarium with

recirculation. All conditions in the aquarium were maintained

constantly, i.e. water temperature was kept at 20–23uC and fish

were fed two times per day at around 6:00 a.m. and 5:00 p.m. at

satiation. The fish were cultured in such conditions for 6 months

before analysis of their genotypes and phenotypes. In June 2011,

the F1 offspring had shown apparent disparity in the growth-

related characters. Ninety-two individuals from the mapping

family were collected randomly. Two growth related traits were

evaluated: body weight and body width. We represents the body

weight in grams and Wi represents the length in centimetres. The

genomic DNA from the two parents and their progeny was

extracted following phenol/chloroform procedures with RNase

treatment [61].

Microsatellite Markers
A total of 3965 half-smooth tongue sole microsatellite markers

were tested for segregation across a set of eight progeny

individuals. These microsatellite markers were recruited from

three sources. (1) The first set of 3000 microsatellite markers was

developed from genome sequencing. (2) The second set of 965

microsatellite markers was developed through the construction of

microsatellite enriched libraries and EST libraries [19]. (3) The

remaining 111 markers were developed from public databases and

previous publications [25–28].

In addition, 486 microsatellite markers that were developed

from other species were used, including 83 barfin flounder SSRs,

78 spotted halibut SSRs, 182 Atlantic halibut SSRs, 96 Japanese

flounder SSRs, and 47 Senegal sole and common sole SSRs.

SCAR Markers
Two female-specific SCAR markers were generated from half-

smooth tongue sole in the mapping family (Marker name: F-382,

Forward primer: ATTCACTGACCCCTGAGAGC, Reverse

primer: AACAACTCACACACGAC AAATG. F-783, Forward

primer: GCTGGTGAAGGCTACAATAGG, Reverse primer:

TCAGAACACATCACTGCTGC).

Genes
SOX9 is one of the genes having a critical role in vertebrate sex

determination. Mutations of SOX9 leading to haploinsufficiency

can cause campomelic dysplasia and sex reversal. The micro-

satellite marker sox9-1 (GQ402461) is derived from the sequence

of the SOX9 gene in the mapping family. In addition, the

microsatellite markers gene072 (Toll-like receptor 9, FJ418072),

ghrh-ssr (PACAP-related peptide, FJ608666), gene177 (Ovarian

aromatase, EF421177) and gene116 (Myostatin, EF683116) were

also genotyped and used for the map construction.

Genotyping
The primers flanking the microsatellite regions were designed

using Primer3 and Primer5 software. All primers were designed for

a 57.5uC annealing temperature, a total amplification product size

of 100–300 bp and 40–60% GC content. All of the microsatellite

markers were used to genotype two parents and six progeny for

screening the segregation markers in the mapping population. The

microsatellite markers that produced polymorphic fragments were

used in the subsequent genotyping of the parents and 92 progeny

to construct the linkage maps. Amplifications were performed in

an ABI Veriti 96 well thermal cycler, BIO-RAD MyCycler

thermal cycler and Fisher Scientific LabServ LS-P96G thermal

cycler. The PCR amplifications were carried out under the

following conditions: 95uC for 5 min, followed by 32 cycles at

95uC for 30 s, a specific annealing temperature of a specific primer

pair for 30 s and 72uC for 30 s, and the final extension was 72uC

for 10 min. Amplification reactions were carried out in a 15-ml

volume consisting of 106 Taq buffer, 0.5 U Taq polymerase

(TIANGEN), 0.6 mM dNTP (+MgCl2 1.5 mM), 0.6 mM of each

primer and 10–30 ng template DNA. The final volume was

adjusted with sterile distilled water. The PCR products were

separated on 8% polyacrylamide gels (PAGE) and visualized by

silver staining [62].

Linkage Analysis
Genetic marker data were scored according to the definition of

JoinMap 4.0 [63]. All of the statistical analyses described below

were made using the same software using a cross-pollinating (CP)

type population, which handles F1 outbreeding population data

containing various genotype configurations. Pairwise analyses

were performed and markers were sorted in linkage groups at

a minimum LOD score of 4.0. The ‘‘locus genotype frequency’’

function calculated the chi-square values for each marker to test

for the expected Mendelian segregation ratio. The linkage

distances were estimated for each LG assuming the Kosambi

mapping function. All weak linkage markers were excluded to

ensure a correct marker order. Although distorted segregation

markers normally are excluded from linkage analysis, the use of

the independent LOD score, one of the grouping parameters

provided by JoinMap4.0, allows these markers to be included.

This test for independence is not affected by segregation distortion

and leads to a less spurious linkage [64].

Genome Size and Coverage
The estimated genome length (Ge) of the consensus female and

male genome was estimated using two different methods. First,

Genome Estimation size 1 (Ge1) was calculated by adding 2 s to

the length of each genetic linkage group to account for the

chromosome ends, where s was the average spacing of the genetic

linkage map. The first method estimates s on a genome scale [65].

Genome Estimation Size 2 (Ge2) was calculated by multiplying the

length of each genetic linkage group by (m+1)/(m21), where m

was the number of loci in each genetic linkage group. The second

method estimates the average spacing for each chromosome

independently [66]. The estimated genome size (Ge) for each sex

was taken as the average of the two estimates. Observed genome

length was taken as the total length (Goa) considering all linkage

groups, triplets and doublets [67]. The map coverage, Coa, was

calculated as Goa/Ge [68].
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QTL Analyses
QTL analysis was performed with WinQTLCart2.5 software

using the composite interval mapping (CIM) method. Unlinked

might act as an additional environmental effect that reduces the

significance of the estimated marker-trait association. Therefore,

CIM includes neighboring markers and uses the remaining

background markers as cofactors in order to remove the effects

of multiple QTL. While the CIM analysis was conducted

separately for each map, the background markers used in these

analyses were derived from both maps. Five background markers

were employed in CIM analysis. The derived genome-wide

threshold value for the three traits was LOD=2.5. When we

analyzed sex-related loci, we considered the sex trait as qualitative

trait. The female was ‘‘1’’, and male was ‘‘0’’.
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