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Kidney renal clear cell carcinoma (KIRC) is one of the most prevalent primary malignancies
with high heterogeneity in the urological system. Growing evidence implies that lactate is a
significant carbon source for cell metabolism and plays a vital role in tumor development,
maintenance, and therapeutic response. However, the global influence of lactate-related
genes (LRGs) on prognostic significance, tumor microenvironment characteristics, and
therapeutic response has not been comprehensively elucidated in patients with KIRC. In
the present study, we collected RNA sequencing and clinical data of KIRC from The
Cancer Genome Atlas (TCGA), E-MTAB-1980, and GSE22541 cohorts. Unsupervised
clustering of 17 differentially expressed LRG profiles divided the samples into three
clusters with distinct immune characteristics. Three genes (FBP1, HADH, and TYMP)
were then identified to construct a lactate-related prognostic signature (LRPS) using the
least absolute shrinkage and selection operator (LASSO) and Cox regression analyses.
The novel signature exhibited excellent robustness and predictive ability for the overall
survival of patients. In addition, the constructed nomogram based on the LRPS-based
risk scores and clinical factors (age, gender, tumor grade, and stage) showed a robust
predictive performance. Furthermore, patients classified by risk scores had
distinguishable immune status, tumor mutation burden, response to immunotherapy,
and sensitivity to drugs. In conclusion, we developed an LRPS for KIRC that was closely
related to the immune landscape and therapeutic response. This LRPS may guide
clinicians to make more precise and personalized treatment decisions for KIRC patients.
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INTRODUCTION

Renal cell carcinoma (RCC) represents one of the most common
primary malignancies with increasing incidence in the urological
system, constituting 2%–3% of adult malignant tumors (1). Kidney
renal clear cell carcinoma (KIRC) accounts for ~80% of all the
histological subtypes (2). Although most patients are diagnosed at
the early stages, one-third of patients present with metastases at
initial diagnosis, and a quarter develop metastases after therapy (3).
Despite therapeutic advances in molecular targeted therapies, such
as anti-vascular endothelial growth factors andmammalian target of
rapamycin inhibitors, improving the overall survival (OS) and
progression-free survival of patients remains a major clinical
challenge (4). Therefore, exploring new potential markers for
prognostic prediction and individualized treatment is of great
clinical significance.

Lactate, historically viewedas awasteproduct of glycolysis andnow
also a significant carbon source for cellmetabolism, plays a critical role
in tumor development, maintenance, and therapeutic response (5, 6).
KIRC is one of the tissues that highly rely on aerobic glycolysis and
consequently produces a large amount of lactate under hypoxia,
resulting in its accumulation in the tumor microenvironment (TME)
(7, 8). Studies have demonstrated a close correlation between tumor
lactate levels and tumormetastasis, recurrence, and poor prognosis (9,
10). Growing evidence is also showing a relationship between the
upregulationof lactate dehydrogenaseA (LDHA) and theproliferation
of tumor cells. Using in vitro and in vivo experiments, Zhao et al.
elucidated that LDHA upgrades RCC tissues and facilitates tumor
migration and invasion through epithelial–mesenchymal transition
(11). Moreover, an elevated level of LDHA can serve as a potential
indicator of poor outcomes in patients with KIRC (12). Clinically,
intervening metabolic pathways are attractive therapeutic targets with
prognostic value for patients with cancers (13). In this regard, LDHA
converts pyruvate into lactate and NAD+, as well as features in the
metabolism of tumor cells by targeting c-Myc and hypoxia-inducible
factor-1 (HIF-1), and is therefore considered as a promising anticancer
target (6). Inhibitors of LDHA, such as N-hydroxyindole and
galloflavin, can reduce cancer cell growth and invasion or induce
apoptosis (14, 15). Moreover, the monocarboxylate transporter
proteins (MCTs) are primarily engaged in lactate transport. MCT
inhibitors such as AZD3965, AR-C155858, and a-cyano-4-
hydroxycinnamate (CHC) reduce the levels of lactate in tumor cells
via the inhibition of SLC16A1 and SLC16A7 (16, 17). Of these
inhibitors, AZD3965 acquired encouraging preclinical success for
advanced cancer in a phase I clinical trial (18). Thus, targeting lactate
metabolism has been regarded as an exciting strategy for
cancer therapy.

Immune checkpoint blockade (ICB), a frequently used
immunotherapy, has demonstrated inspiring clinical success in
multiple cancer types, but with low overall efficiency. In recent
years, lactate has been proven to serve essential roles in immune
response (19). Macintyre et al. revealed that effector T cells,
especially cytotoxic T cells, become inactive under high lactate
concentrations, subsequently resulting in the reduction of cytokine
production and cell proliferation in both cancers and inflammatory
diseases (20). In addition, another study reported that PKM2, a
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glycolytic enzyme that catalyzes phosphoenolpyruvate to pyruvate,
exerts immunosuppressive functions via recruiting tumor-
associated macrophages and myeloid-derived suppressor cells to
the TME (21). Furthermore, lactate accumulation stimulated
programmed death-ligand 1 (PD-L1) induction regulated by G
protein-coupled receptor 81 (GPR81) in lung cancer cells, and
knockdown of GPR81 reduced the level and activity of PD-L1 (22).
Thus, it is necessary to estimate the immune landscape of KIRC to
promote the development of immunotherapy and improve the
outcomes of patients with cancer. The construction of a prognostic
signature has been proven to be a feasible strategy to predict disease
outcomes. To date, various risk signatures have been established to
study the prognostic value of genes related to energy metabolism in
KIRC. However, the roles of lactate-related genes (LRGs) in KIRC
are still unknown.

In our study, we systematically analyzed the identified LRGs
in patients with KIRC using The Cancer Genome Atlas (TCGA),
E-MTAB-1980, and GSE22541 cohorts. Then, a lactate-related
prognostic signature (LRPS) based on three genes was
constructed to assess the prognosis of KIRC. Moreover, we
analyzed the relationship of the LRPS with the immune
microenvironment features and response to immunotherapy.
These results may provide an alternative signature to predict
the outcome and treatment efficacy in KIRC.
MATERIALS AND METHODS

Dataset Source and Preprocessing
Publicly available expression andclinical dataof patientswithKIRC
from TCGA (https://portal.gdc.cancer.gov/) were utilized as the
training cohort in this study. The RNA sequencing data, mutation
profiles, and corresponding clinical information were downloaded
using the “TCGAbiolinks” package in R (23). In addition, the
GSE22541 cohort (24) from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/) and the E-
MTAB-1980 cohort (25) from the EMBL-EBI database (https://
www.ebi.ac.uk/) were obtained as two independent validation
cohorts. Batch effects were corrected using the ComBat function
of the “sva” package in R (26). The detailed baseline clinical data of
patients with KIRC are summarized in Table 1.

Collection of LRGs
The predefined gene sets included in our research were acquired
from the Molecular Signatures Database (MSigDB; https://www.
gsea-msigdb.org/gsea/msigdb/index.jsp) (27). We used the term
“lactic” as the search keyword in the MSigDB database and
eventually determined five priority LRG sets, namely, GOBP
lactate metabolic process, HP increased serum lactate, HP lactic
acidosis, HP lactic aciduria, and HP severe lactic acidosis. After
deleting duplicates, 267 records were identified in total.

Identification of Differentially Expressed LRGs
and the Crosstalk Between These Genes
Principal component analysis (PCA) was first conducted to
explore the separation between KIRC and non-tumor tissues
February 2022 | Volume 13 | Article 818984
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using the expression data of LRGs. Differential expression of the
LRGs was analyzed between the normal and tumor groups using
the “limma” package in R, with p < 0.05 and |log2 fold change
(FC)| ≥ 1.50. The protein–protein interactions (PPIs) among
these differentially expressed genes (DEGs) were generated
according to the STRING database (28) and visualized using
Cytoscape v3.9.0 (29). The size of a node represents the number
of direct interactions between nodes.

Unsupervised Clustering of Differentially
Expressed LRGs
Unsupervised clustering methods were applied to separate
patients into distinct molecular subtypes based on the
differentially expressed LRGs extracted from the TCGA and E-
MTAB-1980 cohorts. A consensus clustering algorithm was
conducted to identify the number of clusters and their stability
using the “ConsensusClusterPlus” package in R (30). The R
package ConsensuClusterPlus has been widely utilized in cancer-
related studies (31–35). K-means clustering was conducted with
1,000 initial resampling and 50 iterations. The consensus matrix,
cumulative distribution function (CDF), and relative change in
area under the CDF curve were employed to select the best
cluster number. The OS rates of the distinct clusters were
assessed using Kaplan–Meier survival plots.

DEGs between Distinct Clusters and
Functional Enrichment Analysis
To further understand the pathways of the different clusters, we
analyzed the expression of the DEGs between distinct clusters via
the “limma” package in R, with significance set at p < 0.001. Gene
Ontology (GO) annotation and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were performed
with the WebGestalt database (http://www.webgestalt.org/) (36).
Gene set enrichment analysis (GSEA) was utilized to analyze the
functions related to the clusters according to the comprehensive
Frontiers in Immunology | www.frontiersin.org 3
gene expression profiles (37). A gene set with p < 0.05 and a false
discovery rate (FDR) <0.25 was considered significantly enriched.
The series of gene sets for marking 23 immune cell types was
obtained from a previous study (38). The single-sample GSEA
(ssGSEA) algorithm was then utilized to estimate the infiltration of
immune cells in each sample with the “GSVA” package in R.

Construction and Validation of the LRPS
Subsequently, the differentially expressed LRGs were subjected to
univariate Cox regression analysis to determine genes related to OS
using the data from TCGA. Statistically significant variables
(P < 0.01) were then used for the least absolute shrinkage and
selector operation (LASSO) analysis with the “glmnet” package (39).
The candidate genes were consequently identified through the
optimal penalty parameter l via the 1 − SE (standard error)
criterion. Finally, multivariate Cox analysis was used to determine
the differentially expressed LRG targets for optimal LRPS
construction based on a minimum Akaike information criterion
(AIC) (40). Risk scores were computed by summing the expression
of each differentially expressed LRG and the corresponding
coefficient. Patients were divided into a low- and a high-risk
group using the median risk scores. Furthermore, Kaplan–Meier
analysis and time-dependent receiver operating characteristic
(ROC) analysis were performed to assess the prognostic
performance of the LRPS. PCA and t-distributed stochastic
neighbor embedding (t-SNE) were utilized to investigate the
distribution of the different subgroups. Data from E-MTAB-1980
and GSE22541 were used as two external independent validation
cohorts to confirm the degree of generalization for the LRPS.

The relationships between the LRPS-based risk scores and the
clinical characteristics (age, gender, tumor grade, and stage) were
analyzed with the chi-square test in the TCGA and E-MTAB-
1980 cohorts. In addition, we performed a stratified survival
analysis for the patients classified into different subgroups to
assess the robustness of the LRPS. Cox regression analyses were
TABLE 1 | Clinicopathological characteristics of the KIRC patients included in this study.

Variables TCGA cohort E-MTAB-1980 cohort GSE22541 cohort

Age (years)
≤65 347 57 –

>65 178 44 –

Gender
Male 343 77 –

Female 182 24 –

Tissue
Normal 72 0 0
Tumor 525 101 68

Grade
1 17 13 –

2 229 60 –

3 205 23 –

4 74 5 –

Stage
I 261 66 –

II 58 10
III 124 13 –

IV 82 12 –
February 2022 | Volume
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performed to determine the independent prognostic indicators.
A nomogram combining the LRPS-based risk scores and clinical
characteristics was developed using Cox regression coefficients
predictive of the 1-, 3-, and 5-year OS in KIRC by employing the
R packages “rms”, “regplot”, and “Hmisc”. The clinical
availability nomogram was assessed using calibration curves,
ROC curves, and decision curve analysis (DCA).

Evaluation of the Immunogenomic
Landscape
We exploited the TIMER (41), CIBERSORT (42), CIBERSORT-
ABS, quanTIseq (43), MCP-counter (44), xCell (45), and EPIC
(46) algorithms to investigate immune infiltration and function
between the low- and high-risk groups based on the LRPS.
Besides, we evaluated the abundance of 29 immune cells and
immune-related molecules for each KIRC sample using the
ESTIMATE algorithm. The differences in the immune score,
stromal score, ESTIMATE score, and tumor purity were
calculated and compared based on the gene expression profiles
in the two groups.

Evaluation of the Cancer–Immunity Cycle
The anticancer immune response, also called the cancer–immunity
cycle, has seven steps in theTME.The activity score of each stepwas
generated using Tracking Tumor Immunophenotype (TIP; http://
biocc.hrbmu.edu.cn/TIP/index.jsp) (47). Then, we compared the
differences in the activity scores of the seven steps to analyze the
status of anticancer immunity and the proportion of tumor-
infiltrating immune cells between different groups as in previous
studies (48).

Mutation and Evaluation of the
Therapeutic Efficacy
To examine differences in the somatic mutations between the low-
and high-risk groups, somatic mutations fromTCGAwere analyzed
using the R package “maftools.” (49). Subsequently, we estimated the
tumor mutational burden (TMB) of each patient between the two
groups. To evaluate the therapeutic sensitivities between the two risk
groups, we used computational methods to examine the effects of
immunotherapy and chemotherapy. The immunophenoscore (IPS)
was utilized to predict the immunotherapeutic responses (anti-PD-1
andanti-CTLA4)of thedifferent groupsbasedonthegeneexpression
profiles using The Cancer Immunome Atlas (TCIA; https://tcia.at/)
as described previously (38). For targeted therapeutic drug analysis,
we adopted the “pRRophetic” package, which evaluates the half-
maximal inhibitory concentration (IC50) through ridge regression
based on theGenomics ofDrug Sensitivity inCancer (GDSC; https://
www.cancerrxgene.org/) database (50). Moreover, we also analyzed
theexpressionof the targetgenesof variousdrugs fromtheDrugBank
(www.drugbank.ca) database.

RNA Extraction and Quantitative Real-
Time Polymerase Chain Reaction
A total of 30 pairs of fresh KIRC and adjacent non-tumor tissues
were collected from Shandong Provincial Hospital (Jinan,
Shandong) between 2020 and 2021. This study was approved
Frontiers in Immunology | www.frontiersin.org 4
by the Ethics Committee of Shandong Provincial Hospital, and
informed consent was obtained from all enrolled patients. We
validated the expression of genes using quantitative real-time
PCR (qRT-PCR). In brief, total RNA isolation from the tissue
was conducted with a TRIzol reagent (Invitrogen, Waltham, MA,
USA). The quality and the concentration of total RNA were
measured with a NanoDrop 2000 (Thermo Fisher Scientific,
Waltham, MA, USA), then 500 ng RNA was used to synthesize
cDNA using a reverse transcription kit (Takara, Shiga, Japan)
following the manufacturer’s instruction. qRT-PCR analyses
were applied using an Applied Biosystems 7500 Fast Real-Time
PCR System (Thermo Fisher Scientific) with the SYBR Premix
Ex Taq™ kit (Takara). GAPDH was used as an internal
reference. The relative expression level was calculated with the
2−DDCT method. The primer sequences are listed in
Supplementary Table S1.

Statistical Analysis
All statistical analyses and graph visualization were implemented
using R v4.1.1 (http://www.r-project.org). A p < 0.05 was
considered to be significant, unless stated otherwise.
RESULTS

Multi-Omics Landscape of LRGs in KIRC
Five priority LRG sets, including 267 genes, were selected from the
MSigDB database. Based on the expression of these genes, we were
able to discriminate KIRC tissues from normal controls by PCA,
indicative of the different regulatory effects of lactate in normal
kidney vs. KIRC tissues (Supplementary Figure S1A). We also
observed that TP53 appeared to be the most frequently mutated
LRG in KIRC samples (Supplementary Figure S1B). To better
clarify the impact of lactate on the progression of KIRC, we
explored the mRNA expression profiles of the selected genes
between the KIRC and normal samples. A total of 17 LRGs
(p < 0.05 and |log2 FC| ≥ 1.50) were differentially expressed,
among which 5 genes were upregulated and 12 were
downregulated (Figures 1A, B). We next assessed the incidence
of mutation profiles and the copy number variations (CNVs) of
the differentially expressed LRGs in KIRC. The mutations of these
genes were similar—not more frequent. Among the 336 KIRC
cases, only 18 (5.36%) had mutations in the five LRGs, including
ALDOB, PCK1, G6PC, PCCB, and PHKA2 (Figure 1C). We also
found prevalent CNVs in most differentially expressed LRGs.
Among them, PCCB, PFKFB2, and PYGL had comparatively
high amplification, while MPC1, HADH, and HS6ST2 showed
primarily deletion in the investigation of CNV alterations
(Figure 1D). The locations of CNV alterations of the 17
differentially expressed LRGs on chromosomes are shown in
Figure 1E. The regulatory network depicted the comprehensive
landscapes of the 17 LRGs concerning their interactions,
correlation, and prognostic value (Figure 1F). We found that
the upregulated genes presented a significant correlation with poor
prognosis. Besides, close connections were established between the
17 LRGs using Spearman’s analyses (Supplementary Figure S1C).
February 2022 | Volume 13 | Article 818984
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Identification of Lactate Clusters
and Their Correlation with Biological
Functions in KIRC
To further recognize the expression characteristics of lactate, we
used an unsupervised clustering algorithm to classify the KIRC
patients according to the expression of the 17 differentially
expressed LRGs. The results showed that the optimal number
of the clusters identified was three (k = 3), which was defined by
the least crossover in the consensus matrix (Figure 2A and
Supplementary Figures S2A, B), the smooth trend in the CDF
(Supplementary Figure S2C), and no significant shift in the area
under the curve (Supplementary Figure S2D). Accordingly, the
entire cohort was sorted into clusters A (n = 240), B (n = 198),
Frontiers in Immunology | www.frontiersin.org 5
and C (n = 193). The results from PCA revealed distinct
clustering of these three groups based on the expression of the
17 LRGs, indicating significant differences in the patterns of
DEGs (Supplementary Figure S2E). Survival analysis revealed
that the patients in cluster B suffered the worst prognosis, while
cluster C patients had the best prognosis (Figure 2B). The
expression profiles of the 17 LRGs and the clinical features in
individual clusters were illustrated in a heatmap (Figure 2C).
The three lactate clusters showed significant differences in the
expression of LRGs, as expected, and most protective genes were
upregulated in cluster C (Supplementary Figure S2F).
Furthermore, three lactate clusters had surprisingly obvious
distinct immune phenotypes. The abundance of the majority of
A B

D

E F

C

FIGURE 1 | Multi-omics landscape of the differentially expressed lactate-related genes (LRGs) in kidney renal clear cell carcinoma (KIRC). (A) Volcano plot of the
significantly dysregulated LRGs in KIRC tissue. (B) Boxplot of the expressions of the 17 differentially expressed LRGs in the TCGA-KIRC cohort. (C) Mutation frequency
of the 17 differentially expressed LRGs in 336 patients with KIRC. (D) Copy number variations (CNVs) of the 17 differentially expressed LRGs. (E) Locations of the CNV
alterations of the 17 differentially expressed LRGs on 23 chromosomes. (F) Correlations and prognosis of the 17 differentially expressed LRGs in patients with KIRC.
***p < 0.001.
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antitumor immune cells, such as activated CD4 T cells and
activated dendritic cells, was remarkably higher in cluster B than
that in clusters A and C (Supplementary Figure S2G).
Therefore, cluster B might be thought of as an immune-
inflamed phenotype, while clusters A and C might be immune-
desert phenotypes. Based on the above findings, we proposed
that lactate serves an important role in the characteristics of
immune infiltration.
Frontiers in Immunology | www.frontiersin.org 6
To further investigate the heterogeneity of each lactate cluster,
we identified 1,818 lactate phenotype-related DEGs
(Supplementary Figure S2H) and then conducted functional
enrichment analysis for these DEGs. GO analysis confirmed that
these DEGs were concentrated on biological processes related to
metabolic processes (Figure 2D). KEGG pathway analysis
showed enrichment of metabolic pathways and peroxisomes
(Figure 2E). GSEA suggested that cluster B was closely related
A B

D

E F

C

FIGURE 2 | Clusters of differentially expressed lactate-related genes (LRGs) and biological characteristics in kidney renal clear cell carcinoma (KIRC). (A) Unsupervised
clustering of the 17 differentially expressed LRGs and optimal consensus matrices for k = 3. (B) Survival analysis of three LRG clusters. (C) Unsupervised clustering of the
17 differentially expressed LRGs in the two KIRC cohorts (TCGA and E-MTAB-1980). (D) Gene Ontology (GO) annotation of 1,818 lactate phenotype-related differentially
expressed genes (DEGs). (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the above-mentioned genes. (F) Gene set enrichment analysis
(GSEA) of several cancer-related pathways enriched in cluster B.
February 2022 | Volume 13 | Article 818984
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to several cancer-related pathways (Figure 2F), which may
explain the inconsistent clinical outcomes among diverse
lactate clusters. Taken together, it is reasonable to suggest that
lactate might have a non-negligible role in the development
of KIRC.

Construction of LRPS in TCGA Database
To construct an LRPS for prognosis indication of patients with
KIRC, we conducted univariate Cox regression on the 17
differentially expressed LRGs and selected six genes that were
significantly linked with OS using TCGA (Table 2). To eliminate
the effect of overfitting, LASSO analysis was employed and five
genes were retained (Figure 3A). Subsequently, three genes,
namely, two protective genes (FPB1 and HDAH) and one risk
gene (TYMP), were retained to construct the optimal LRPS based
on the minimum AIC value by multivariate Cox regression
(Figure 3B). Then, we examined the mRNA levels of the three
targets with qRT-PCR and found that FPB1 and HDAH had
lower expressions, while TYMP had a higher expression in KIRC
samples than in adjacent non-tumor samples (Figure 3C). Using
the Human Protein Atlas (HPA) database (https://www.
proteinatlas.org/), we also found a consistent trend in the
protein levels of these genes (Supplementary Figure S3). The
TISIDB (http://cis.hku.hk/TISIDB/index.php) database was
further utilized to study the prognostic value of the three genes
and their correlation with the clinicopathological characteristics.
We noticed that the mRNA expressions of FPB1 and HDAH
were negatively correlated with tumor grade in patients with
KIRC, while that of TYMP was positively correlated (Figure 3D).
The same pattern was observed in the tumor stage (Figure 3E).
Kaplan–Meier analyses confirmed that patients with low
expressions of FPB1 and HDAH and a high expression of
TYMP suffered poor prognosis (Figure 3F).

The risk scores were computed with a formula that included
the expression of the three genes and their coefficients: risk
score = FPB1 × (−0.006) + HDAH × (−0.015) + TYMP × 0.004.
Frontiers in Immunology | www.frontiersin.org 7
Using the median risk score, the patients were assigned into a
low-risk group and a high-risk group. In TCGA, survival was
markedly longer in the low-risk group than in the high-risk
group (Figure 4A). The area under the ROC curve (AUC) values
were 0.726, 0.670, and 0.713 for 1-, 3-, and 5-year survival,
respectively (Figure 4B). The risk score plot and living status
indicated that the low-risk group had better survival status and
longer survival time (Figure 4C). In addition, the heatmap of the
expressions of the three genes showed that the two protective
genes (FPB1 and HDAH) were downregulated and the one risk
gene (TYMP) was upregulated in the high-risk subgroup. The
samples in the two subgroups were further divided into two
distribution patterns using PCA and t-SNE (Figure 4D). The
results revealed that the LRPS might effectively predict the
outcomes of patients with KIRC.
Validation of LRPS in Two Independent
External Cohorts
To evaluate the universality of the constructed LRPS from the
training cohort, two independent cohorts (E-MTAB-1980 and
GSE22541) were introduced as validation groups. The risk score
of each patient in these two validation cohorts was computed
using the same formula as that for the TCGA cohort. For the E-
MTAB-1980 cohort, patients in the high-risk group suffered
poorer survival status than those in the low-risk group
(Figure 4E). In addition, the AUC values of the LRPS
according to ROC analysis were 0.857 in 1 year, 0.782 in
2 years, and 0.776 in 3 years (Figure 4F). The distribution plot
of the risk score, survival status, and expressions of the three
genes showed that there was an increase in mortality with an
increasing risk score (Figure 4G). PCA and t-SNE illustrated the
diverse direction distribution in the two risk subgroups
(Figure 4H). The same analyses were conducted in the
GSE22541 cohort, and similar findings were obtained
(Supplementary Figure S4).
TABLE 2 | Univariate Cox regression analysis of the 17 differentially expressed lactate-related genes.

Genes HR UI of 95%CI LI of 95%CI p-value

HADH 0.9763 0.9672 0.9855 5.35E−07
FBP1 0.9925 0.9893 0.9957 3.86E−06
TYMP 1.0048 1.0026 1.0070 1.41E−05
GATM 0.9967 0.9951 0.9984 8.17E−05
MPC1 0.9912 0.9862 0.9963 0.0006
LDHD 0.9751 0.9608 0.9896 0.0008
PCK1 0.9973 0.9953 0.9994 0.0110
HS6ST2 1.0606 1.0131 1.1104 0.0119
SUCLG1 0.9925 0.9853 0.9997 0.0409
LDHA 0.9995 0.9991 1.0000 0.0419
G6PC 0.9879 0.9763 0.9997 0.0442
PHKA2 0.9961 0.9901 1.0021 0.2046
PCCB 0.9885 0.9660 1.0115 0.3236
ALDOB 1.0001 0.9998 1.0004 0.5047
ACTN3 1.1375 0.6641 1.9484 0.6389
PFKFB2 0.9971 0.9824 1.0121 0.7052
PYGL 0.9992 0.9932 1.0053 0.8000
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FIGURE 3 | Construction of a lactate-related prognostic signature (LRPS) in The Cancer Genome Atlas (TCGA) cohort. (A) Coefficient profiles of the six lactate-
related genes (LRGs) and identification of the best parameter (lambda) in the LASSO (least absolute shrinkage and selection operator). (B) Three genes retained to
construct the optimal LRPS using multivariate Cox analysis. (C) mRNA levels of three LRGs detected by qRT-PCR. (D, E) Correlations of the three LRGs in LRPS
and tumor grade (D) and tumor stage (E). (F) Kaplan–Meier survival analysis of the three LRGs in LRPS. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Analysis of the Correlation Between LRPS
and Clinical Features
We further analyzed the value of the LRPS between the two
groups stratified by different clinical factors in TCGA. Male
patients with advanced tumor grade and stage had higher risk
scores, but no significant difference was found for age
(Figures 5A–D). Stratified survival analysis indicated that
patients who were older (Figure 5E) and with advanced tumor
grade (Figure 5G) and TNM stage (Figure 5H) tended to have
poorer OS, while the gender-specific survival analysis did not
show differences (Figure 5F). In addition, we also found that
Frontiers in Immunology | www.frontiersin.org 9
patients in the high-risk group were closely linked to a poorer
outcome across all subgroups, except for those with tumor grades
1–2 (Supplementary Figures S5A–D). In the E-MTAB-1980
cohort, men were at higher risk than women, whereas the risk
scores of patients with advanced tumors were higher relative to
those with early tumor grade and TNM stage (Supplementary
Figures S6B–D). No differences were noticed between patients
stratified by age (Supplementary Figure S6A). In addition,
Kaplan–Meier analyses based on the tumor grade and TNM
stage with significant OS differed between the two groups
(Supplementary Figures S6E–H). There were significant
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FIGURE 4 | Prognostic value of the lactate-related prognostic signature (LRPS) in patients with kidney renal clear cell carcinoma (KIRC). (A, E) Kaplan–Meier
analysis of overall survival (OS) in The Cancer Genome Atlas (TCGA) and E-MTAB-1980 cohorts. (B, F) Receiver operating characteristic (ROC) analysis of the LRPS
in predicting the 1-, 3-, and 5-year OS in the TCGA and E-MTAB-1980 cohorts. (C, G) Distribution plots of the risk score, OS status, and heatmap of gene
expressions in the TCGA and E-MTAB-1980 cohorts. (D, H) Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) plot of the
TCGA and E-MTAB-1980 cohorts.
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differences among the four subgroups, including older age
(≤65 years), being men, with tumor grades 3–4, and with
tumor stages III–IV (Supplementary Figures S5E–H).

To investigate the independence of LRPS and other clinical
factors (age, gender, tumor grade, and TNM stage), both univariate
and multivariate Cox regression analyses were conducted
(Supplementary Table S2). In the TCGA cohort, univariate Cox
regression revealed that age, grade, and stage were associated with
the OS of patients with KIRC. The stage and risk score remained
significant using multivariate Cox regression analysis. Thus, the
stage and risk score were regarded as independent prognostic
indicators, which were confirmed in the E-MTAB-1980 dataset.

Development of a Clinical Nomogram
Subsequently, we developed a nomogram for OS prediction
using clinical parameters and the LRPS-based risk scores in the
TCGA (Figure 6A) and E-MTAB-1980 (Supplementary Figure
S7A) cohorts. A calibration plot for internal validation of the
nomogram showed excellent consistency between the
nomogram-predicted probability and actual observations of the
Frontiers in Immunology | www.frontiersin.org 10
1-, 3-, and 5-year OS (data for the TCGA and E-MTAB-1980
cohorts are shown in Figure 6B and Supplementary Figure S7B,
respectively). In the TCGA cohort, the AUCs of the combined
nomogram for 1-, 3-, and 5-year OS were 0.728, 0.715, and 0.748,
respectively, increasing the efficiency of the other clinical factors
for predicting OS (Figure 6C). Additionally, the AUCs of the
nomogram at 1, 3, and 5 years (0.936, 0.922, and 0.898,
respectively) showed satisfactory accuracy in the E-MTAB-
1980 cohort (Supplementary Figure S7C). The DCA curves
exhibited that the nomogram obtained a higher net benefit in
both cohorts (TCGA and E-MTAB-1980 cohorts in Figure 6D
and Supplementary Figure S7D, respectively). These results
indicated that the predictive nomogram for OS performed with
improved accuracy and could help clinical management.

Immune Landscape of LRPS Groups
To further understand the underlying correlation of the risk score
with the immune landscape of the KIRC samples, the differences in
the various immune cell components between the low- and high-
risk groups were compared. According to seven algorithms, a
A B

D

E F G H

C

FIGURE 5 | Correlation between the lactate-related prognostic signature (LRPS) and clinical features in The Cancer Genome Atlas (TCGA) cohort. (A–D) Proportion
of clinical features (age, gender, tumor grade, and stage) in the low- or high-risk group. Distribution of risk scores in different groups according to clinical features.
(E–H) Kaplan–Meier analysis for patients with kidney renal clear cell carcinoma (KIRC) based on the LRPS stratified by clinical features (age, gender, tumor grade,
and stage). **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, not significant.
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heatmap of the various immune cell components is shown in
Supplementary Figure S8A. The correlation coefficients of the
components with LRPS-based risk scores were calculated using
Spearman ’s analysis and visualized in a lollipop plot
(Supplementary Figure S8B). Subsequently, the immune score,
stromal score, ESTIMATE score, and tumor purity were calculated
for the low- and high-risk groups using the ESTIMATE algorithm
(Figure 7A). The high-risk group demonstrated a higher immune
score, stromal score, ESTIMATE score, but a lower tumor purity
than the low-risk group (p<0.05) (Figure7B), implying that several
immune cells and immune-relatedmolecules were abundant in the
high-risk group. Various tumor-infiltrating immune cells were
positively correlated with a higher risk score, indicating the
significant impacts of these cells on the pathogenesis of KIRC
(Figure 7C). Moreover, the scores of all immune-related
Frontiers in Immunology | www.frontiersin.org 11
molecules were significantly higher in the high-risk group,
including that of human leukocyte antigen (HLA), major
histocompatibility complex (MHC) class I, and type II interferon
(IFN) response (Figure 7D).

To further confirm the reliability of the LRPS on immunotyping,
we next exploited the correlation between the risk scores and the
previously reported pan-cancer immune subtypes. In the present
study,KIRCpatientswith theC1,C2, andC6subtypes showedhigher
risk scores compared to those with the other two immune subtypes
(Figure 7E). In contrast, the risk scores were significantly lower for
patientswith theC3andC4 subtypes. It iswell known thatC3 andC6
are related to better and inferior outcomes, respectively. These results
demonstrated the unique characteristics of the KIRC immune
microenvironment, offering a conducive complement to previous
studies. An antitumor immune response must launch a sequence of
A
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C

FIGURE 6 | Construction of a nomogram predicting the overall survival (OS) of patients with kidney renal clear cell carcinoma (KIRC) in The Cancer Genome Atlas
(TCGA) cohort. (A) Nomogram based on the lactate-related prognostic signature (LRPS), age, gender, tumor grade, and stage. (B) Calibration curves for internal
validation of the nomogram. (C) Time-dependent receiver operating characteristic (ROC) curves of the nomogram in predicting the 1-, 3-, and 5-year OS. (D)
Decision curve analysis (DCA) of the nomogram. **p < 0.01, ***p < 0.001.
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stepwise events to eliminate cancer cells effectively (51). To further
explore the impact of immune cells on KIRC, we calculated the
immune activity score of each step using TIP analysis with the RNA
expressiondata.We thenexamined thedifferences in the scoresof the
seven steps among two groups. The results showed that the
abundance of antitumor immune cells was higher in the high-risk
group than that in the low-risk group (Figure 7F).
Frontiers in Immunology | www.frontiersin.org 12
Mutation and Immunotherapeutic
Responses of LRPS Groups
Considering that the TMB is closely related to the efficacy of
immunotherapy, we estimated the value of TMB between the two
risk groups based on LRPS. As expected, the high-risk subgroup
possessed a higher TMB through TMB quantification analysis
(Figure 8A). Consequently, patients with low TMB demonstrated
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FIGURE 7 | Correlation of the lactate-related prognostic signature (LRPS) with the immune landscape of patients with kidney renal clear cell carcinoma (KIRC).
(A) Enrichment levels of immune-related cells and types between the low- and high-risk groups. (B) Violin plot showing the differences in the immune score, stromal
score, ESTIMATE score, and tumor purity between the low- and high-risk groups. (C) Correlation between the risk score and immune subtypes. (D) Differences in
the 16 immune cells between the low- and high-risk groups. (E) Differences in the 13 immune-related functions between the low- and high-risk groups. (F) The
difference of the abundance of antitumor immune cells between low- and high-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, not significant.
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a satisfactory survival benefit (Figure 8B). We then explored the
value of combining the risk score and TMB in predicting the
outcomes of patients. Results of the Kaplan–Meier analysis
suggested that a low risk score and a low TMB are linked with a
longer survival (Figure 8C). Subsequently, we further investigated
the distribution patterns of the top 20 somatic mutations between
the two groups based on TCGA using the “maftools” package. The
most common mutations were VHL and PBRM1, with a rate of
the 20th most significant mutated gene of 85.31% versus 76.63%
(Figures 8D, E). Accumulated evidence demonstrated that a high
TMB was linked with a better outcome of immunotherapy.
Considering the importance of checkpoint inhibitors in clinical
treatment, we further analyzed the differences in the expressions of
ICBs and found substantial differences in PD-1, CTLA4, LAG3,
and CD27 between the two groups (Figure 8F). Moreover, we
specifically investigated the significance of the risk scores to assess
the effect of immunotherapy using TCIA. The results illustrated
that the relative probabilities of responding to CTLA4positive/PD-
L1positive treatments in the high-risk group were higher than those
in the low-risk group (Figure 8G). This suggested that patients in
the high-risk group might be more likely to respond to
CTLA4positive/PD-L1positive immunotherapy and thus obtain
more satisfactory clinical outcomes.

Drug Susceptibility Analysis of LRPS Groups
We explored the association between the LRPS-based risk scores of
patients with KIRC and their response to six common anticancer
drug agents (sunitinib, temsirolimus, sorafenib, pazopanib,
rapamycin, and axitinib) using the pRRophetic algorithm. We
calculated the IC50 of these agents in the low- and high-risk
groups and observed that patients in the low-risk group were
significantly more sensitive to sunitinib and temsirolimus, while
sorafenib and pazopanib had higher IC50 values in the high-risk
group (Figures 9A–F). We further evaluated the expressions of the
target genes—based on targeted drug therapy—in advanced KIRC
in the two groups. These target genes from the DrugBank database
included FLT1, FLT3, FLT4, FGF1, FGFR3, SH2B3, BRAF, MTOR,
ITK, RAF1, FKBP1A, KIT, and KDR (Supplementary Table S3).
Interestingly, all of the target genes exhibited significant differences
in their expressions between the two groups (Figure 9G). These
findings suggested that the risk score might distinguish more
suitable patients to receive appropriate therapy.

Pan-Cancer Analysis of TYMP
To study the functional implication of the risk gene (TYMP) in
cancer development, we performed a pan-cancer analysis.
Among the 20 cancer types in TCGA, the expression of TYMP
was elevated in 75% (15/20) of tumor tissues relative to normal
controls (Supplementary Figure S9A). We investigated the links
between the tumor-infiltrating lymphocyte (TIL) markers and
TYMP. The results suggested that the expression of TYMP was
notably related to the expression of immunocyte markers and
potentially involved in regulating the immune response
(Supplementary Figure S9B). In addition, we evaluated the
associations between the expression of TYMP and the levels of
TMB and noticed that the mRNA level of TYMP was linked to
several cancers, including KIRC (Supplementary Figure S9C).
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Microsatellite instability (MSI) is a unique molecular alteration
caused by defects in DNA mismatch repair and is potentially
involved in the increased immunogenicity of tumor cells. The
radar plot displayed the association of TYMP expression with
MSI in several cancers, including KIRC (Supplementary Figure
S9D). Besides, the expression of TYMP was correlated with the
expressions of the DNA mismatch repair (MMR) genes (MLH1,
MSH2, MSH6, PMS2, and EPCAM) and DNA methylation
regulatory genes (DNMT1, DNMT2, DNMT3A, and DNMT3B)
in various cancer types (Supplementary Figures S9E, F).
DISCUSSION

KIRC is the primary subtype of RCC with high heterogeneity and
metastatic potential and immune-responsive tumors. Despite the
increasing incidence of KIRC, the survival of patients with advanced
RCC has been markedly improved with molecular target–drug
combinations (sunitinib and pazopanib) combined and ICB
(nivolumab). However, the complexity of the TME in RCC,
including the accumulation of lactate, results in insufficient
therapeutic response and resistance to drugs, as well as relapse
during treatment in some patients. Therefore, it is imperative to
comprehensively investigate LRGs to predict the outcomes and
therapeutic responses of new treatment targets for patients with
KIRC. To the best of our knowledge, this is the first research
exploring risk signatures for the prediction of prognosis and
therapeutic efficacy in KIRC.

In our study, we identified 17 differentially expressed LRGs,
three of whichwere determined to construct an LRPS using LASSO
and Cox regression analyses. The signature could classify patients
with KIRC into low- and high-risk groups. The performance of this
signature was confirmed in two independent validation cohorts,
demonstrating its robust survival prediction efficiency for KIRC.
Moreover, the results suggested that LRPS can serve as an
independent prognostic factor. Simultaneously, ROC analysis was
applied to illustrate its assessment of time-associated outcomes in
patients, which indicated a relatively high diagnostic performance
in predicting short-term survival (1-year OS, AUC = 0.726)
compared to long-term survival (5-yr OS, AUC = 0.713) in the
TCGA cohort. Accordingly, we also found similar results for the
external validation cohorts. An explanation might be that the
complicated mechanisms of KIRC are influenced by various
factors, not just the LRGs that contributed to tumor progression;
thus, some other important genes should also be incorporated into
the signature in the future. In addition, the LRPS-based risk scores
presented a significant positive correlation with TNM stage (stages
I/II vs. stages III/IV) in theTCGAcohort,whichwas consistentwith
the results in the E-MTAB-1980 cohort, confirming the prognostic
merit of our signature.Moreover, a nomogramwas constructed via
the integration of the LRPS-based risk scores with clinical factors
(age, gender, tumor stage, and grade),which could guide the follow-
up of individual treatments.

Three genes [fructose-1,6-bisphosphatase 1 (FBP1), short-
chain-L-3-hydroxyacyl-CoA dehydrogenase (HADH), and
thymidine phosphorylase (TYMP)] included in the constructed
signature have previously been associated with the progression of
February 2022 | Volume 13 | Article 818984
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FIGURE 8 | Tumor mutational burden (TMB) and immunotherapeutic responses of the lactate-related prognostic signature (LRPS). (A) TMB between the low- and
high-risk subgroups based on LRPS. (B) Survival analysis of the different groups stratified by TMB. (C) Survival analysis of distinct groups stratified by both TMB and
LRPS. (D, E) Waterfall plot of tumor somatic mutation in the high- and low-risk groups. (F) Differences in the expressions of immune checkpoints between the low-
and high-risk groups. (G) Comparison of the immunophenoscore (IPS) between the low- and high-risk groups stratified by both CTLA4 and PD-1. *p < 0.05,
**p < 0.01, ***p < 0.001.
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multiple cancers. The gluconeogenic rate-limiting enzyme FBP1,
which resided on chromosome 9q22, was found to inhibit tumor
growth in several cancer types, among others also in KIRC (52). Li
et al. revealed thatFBP1 could regulate the uptake of glucose and the
secretion of lactate by alleviating the level of glycolysis andNADPH
in KIRC cells under the influence of hypoxia-inducible factors
(HIFs). Furthermore, FBP1 suppressed HIF activity in the nucleus
through direct interaction with a HIFa inhibitory domain,
independent of its enzymatic activity (53). The HADH gene,
which consists of 10 exons, encodes HADH, which is a key
enzyme in the third step of the fatty acid b-oxidation (54).
Recently, growing evidence has demonstrated its significant role
Frontiers in Immunology | www.frontiersin.org 15
in different carcinomas. For example, several studies have
demonstrated that the overexpression of HADH was related to
poor clinical outcomes in acutemyeloid leukemia and colon cancer
(55, 56).Additionally, Shen et al. illustrated that the downregulation
of HADH facilitated gastric cancer cell migration and invasion
through activating theAkt signaling pathway, associatedwithmore
advanced stage and poorer outcomes (57). In patients with KIRC, a
decreased expression of HADH was also related to immune
infiltration and poor prognosis (58). TYMP, also known as a
platelet-derived endothelial cell growth factor, catalyzes the
reversible phosphorolysis of thymidine (59). TYMP was shown to
beupregulated inmultiple solid tumors,where it is implicated incell
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FIGURE 9 | Evaluation of therapeutic response by the lactate-related prognostic signature (LRPS). (A–F) Sensitivity analysis for sunitinib (A), sorafenib (B),
temsirolimus (C), rapamycin (D), pazopanib (E), and axitinib (F) in patients at low and high risk. (G) Differences in the expressions of the target genes after targeted
drug therapy between the low- and high-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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proliferation and angiogenesis (60). Itwas previously demonstrated
that both tumor cells and the surrounding matrix cells expressed
TYMP in theTME (60).Our results suggested that the expression of
TYMPwas notably related to the expression of several immunocyte
markers andmight be involved in regulating the immune response.
Many studies have indicated that TYMP was a potential target for
cancer immunotherapy (59, 61). Our study suggested that the
prognostic value of these three LRGs in KIRC and the
mechanism of the three genes in KIRC need further investigation.

The TME consists of tumor cells, various infiltrating immune
cells, stromal cells, and cytokines. Among these components,
infiltrating immune cells play a significant role in tumor growth,
invasion, metastasis, and in modulating anticancer immunity.
Therefore, it serves as a promising therapeutic target (62). In the
present study, we first divided the patients into three clusters with
distinct immune features using unsupervised clustering based on
the expressions of 17 differentially expressed LRGs. Patients in
cluster B, with a higher proportion of activated CD4, CD8 T cells,
natural killer cells, macrophages, and some regulatory T cell
infiltration, presented with an improved prognosis than those in
clusters A and C. Intriguingly, we also found different immune
components between the different risk groups classified based on
the LRPS-based risk scores. Both targeted therapy and ICBs, asfirst-
line treatments, play an irreplaceable role in the treatment of KIRC
(63). However, there are still difficulties in determining the optimal
treatment for individuals. CTLA4 and PD-1 are both critical ICBs.
By comparing the expressions of the immune checkpoint genes
(CTLA4andPD-1) stratifiedby the risk score,we founda significant
difference between the two risk groups in patients receiving positive
CTLA4 and PD-L1 treatments. Moreover, patients with different
risk scores might exhibit distinct sensitivity treatments with
sunitinib, temsirolimus, and sorafenib. In line with the different
sensitivities to targeteddrugs, the target genes of these drugs, suchas
FLTs,KIT, andmTOR, exhibited significant differences between the
two groups. These findings implied that the LRPS-based risk score
may be a remarkable marker for assessing the response to targeted
therapy and immunotherapy to facilitate the development of
personalized therapy for KIRC.

Despite the merits of our findings, several limitations should be
noted. Firstly, the findings were constructed and validated
retrospectively in public databases. Therefore, prospective
research is essential to evaluate the clinical utility of the signature
in patients with KIRC. Moreover, comprehensive functional
experiments are essential to illuminate the elusive mechanisms of
the three lactate-related genes.
Frontiers in Immunology | www.frontiersin.org 16
To summarize, we first identified the differentially expressed
LRGs inKIRC and divided KIRCpatients into three clusters. These
clusters presented significant differences in prognosis and immune
cell infiltration. Furthermore, we constructed a novel prognostic
signature using three LRGs (FBP1,HADH, and TYMP) in patients
with KIRC, which can serve as a robust predictor of prognosis and
response to immunotherapy. In conclusion, the constructed LRPS
can provide important insights for subsequent mechanisms in
functional research and guide clinicians in making rational
treatment decisions.
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