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Abstract
Background: Immune-related long noncoding RNAs (irlncRNAs) have been demonstrated to be actively
involved in the regulation of immune status. With this study, we aimed to establish a risk model of
irlncRNAs and further investigate the roles of irlncRNAs in prognosis prediction and the immune
landscape in pancreatic cancer.

Methods: The transcriptome pro�les and clinical information of pancreatic cancer patients were retrieved
from The Cancer Genome Atlas (TCGA). Immune-related genes (irgenes) downloaded from ImmPort were
used to screen the lncRNAs by correlation analysis (R>0.5, p<0.001). Random survival forest (RSF) and
survival tree analysis showed that 9 irlncRNAs were highly correlated with overall survival (OS) according
to the variable importance (VIMP) and the minimal depth. Then, Cox regression was used to establish a
risk model with 3 irlncRNAs, which was evaluated by Kaplan-Meier analysis. In addition, we performed
Cox regression analysis to establish the clinical prognostic model, which showed that the risk score was
the only independent prognostic factor (p<0.001). A nomogram was drawn to visualize the clinical
features. Wilcoxon signed-rank test and analysis of the correlations between the risk score and immune
cells was applied to explore the potential irlncRNAs related to immune status.

Results: A total of 176 samples were randomly divided into a training set (n=123) and a test set (n=53). A
total of 1903 irlncRNAs were identi�ed after Pearson correlation analysis between irgenes and lncRNAs. A
total of 9 irlncRNAs were identi�ed in the survival tree analysis, and 3 irlncRNAs (LINC00462, LINC01887,
RP11-706C16.8) were used to establish a risk model. The areas under curve (AUC) of the receiver
operating characteristic (ROC) for 36 months, 30 months, 24 months, 18 months, 12 months and 6
months were 0.778, 0.774, 0.751, 0.753, 0.780 and 0.756, respectively, with a concordance index (C-index)
of 0.696. In the clinical prognostic model, the C-index increased from 0.599 to 0.682 after combining the
risk scores. Furthermore, a high risk was associated with increased in�ltration of CD4+ T cells, M0
macrophages and M1 macrophages.

Conclusions: We established a novel three-irlncRNA risk model. The clinical evaluation showed its
robustness in predicting the prognosis and immune landscape of pancreatic cancer.

Backgrounds
Pancreatic cancer is a highly malignant tumor with a 5-year survival rate of less than 10%, and it is the
seventh leading cause of death in developed countries [1]. The short overall survival (OS) highlights the
need for an accurate staging system to predict the prognosis, and the modi�cation of the 8th edition of
the American Joint Committee on Cancer (AJCC) staging system contributes to this [2]. Surgical excision
is the only way to achieve a complete cure, and chemotherapy and neoadjuvant treatment play an
important role in pancreatic cancer therapy. Although immunotherapy has made great progress in several
tumors, mono- or combined immune checkpoint inhibitors show limited effects in pancreatic cancer,
which may partially be due to the reduced in�ltration of immune cells, poor immunogenic immune
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microenvironment, and abundant mesenchymal �broblasts blocking drug delivery [3, 4]. An
understanding of the immune microenvironment of pancreatic cancer is urgently needed to promote its
clinical application.

Long noncoding RNAs (lncRNAs) account for over 80% of RNAs, and their transcripts are over 200
nucleotides in length; lncRNAs do not translate into proteins. LncRNAs interfere with proteins, RNA and
DNA to participate in many biological regulation processes, including transcriptome modulation and gene
modi�cation [5]. In addition, recent studies have delineated the mechanisms of lncRNAs that are actively
involved in tumor biology, such as H19, PVT1, NEAT1 and HISLA, which were disclosed to be associated
with tumorigenesis, epithelial mesenchymal transition, metastasis, chemoresistance, immune evasion
and metabolic reprogramming [6-8].

Immune-related lncRNAs (irlncRNAs) have recently been studied in several cancers. Wang et al [9]
identi�ed 4 irlncRNAs to establish a risk model for lung adenocarcinoma, while 8 irlncRNAs were used to
construct a prognostic model for melanoma [10]. Moreover, irlncRNAs have also utilized in glioblastoma,
head and neck squamous cell carcinoma and bladder cancer [11-13]. These models demonstrate the
potential clinical signi�cance of irlncRNAs and provide novel insights for establishing a clinical
prognostic model.

In this article, we retrieved the transcriptome pro�ling data and clinical information of patients in The
Cancer Genome Atlas pancreatic cancer dataset (TCGA-PAAD). After correlation analysis of lncRNAs with
immune-related genes (irgenes), irlncRNAs were identi�ed. The irlncRNAs underwent differential
expression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis and
Cox regression analysis to establish a novel and robust risk model. Then, the risk model was evaluated in
the validation cohort. The irlncRNA signatures were analyzed with other clinical characteristics, and we
established a clinical prognostic model. Furthermore, irlncRNA signatures were demonstrated to be
associated with immune cell in�ltration in pancreatic cancer.

Results
Identi�cation of immune-related long noncoding RNAs (irlncRNAs)

The process �ow of this study is shown in Figure 1. First, we obtained the transcriptome pro�le from high-
throughput sequencing (HTseq) count data (npatient=176, nnormal=4) and the clinical information of
patients from The Cancer Genome Atlas pancreatic cancer dataset (TCGA-PAAD). Second, we retrieved
the gene transfer �les (GTFs) from Ensembl to annotate the lncRNAs from the expression matrix. Third,
immune-related genes (irgenes) were downloaded from the ImmPort database. Pearson correlation
analysis between the lncRNAs and irgenes was completed, and 1903 irlncRNAs were identi�ed (R>0.5,
p<0.001) (Table S1).

Establishment of risk model by random survival forest (RSF) analysis
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RSF was applied constructed to determine the irlncRNAs that are of most signi�cance to the OS of
pancreatic patients. The samples were randomly divided into a training set (n=123) and a test set (n=53)
at a ratio of 7:3. In the survival tree analysis, the 9 most signi�cant variables (CTC-529P8.1, RP11-
706C16.8, LINC01493, LINC01887, LINC00462, LINC01510, LINC02205, RP11-1082L8.2 and RP11-
402N8.1) were selected according to the variable importance (VIMP) and the minimal depth. The
subsequent Cox regression analysis identi�ed 3 irlncRNAs (LINC00462, LINC01887, RP11-706C16.8), with
a coe�cient index and risk score for each sample in the training set calculated. To validate this model,
the receiver operating characteristic (ROC) curves were drawn, and the areas under the curves (AUCs) for
36 months, 30 months, 24 months, 18 months, 12 months and 6 months were 0.778, 0.774, 0.751, 0.753,
0.780 and 0.756, respectively (Figure 2). In addition, the C-index for this risk model was 0.696 (p<0.001).

Clinical evaluation of the risk model

Instead of the median risk score value, the best cutoff value calculated by X-Tile software
(https://medicine.yale.edu/lab/rimm/research/software/) was utilized to divide the samples into high-
risk and low-risk groups in the training set and validation set. It was 1.44 in training set and 1.40 in test
set. To clinically evaluate the risk model, several analytical methods were applied. First, Kaplan-Meier
analysis showed that the OS of patients in the high-risk group was signi�cantly lower than that of
patients in the low-risk group (p<0.001). In the high-risk group, the 5-year OS rate was 5.66%, and the 95%
con�dence interval (CI) was 0.88 to 361; the 5-year OS rate was 30.9%, and the 95% CI was 18.28 to 52.4
in the low-risk group. In the test set, Kaplan-Meier analysis showed a signi�cant difference in OS between
the two groups (p<0.001) (Figure 3).

The risk model is an independent prognostic factor for pancreatic cancer

To construct a more accurate clinical prognostic risk model, the AUC of each ROC for every clinical
characteristic and the risk score was calculated; the AUCs of the risk score, age, sex, T stage, N stage, M
stage and stage were 0.778, 0.654, 0.548, 0.564, 0.686, 0.462 and 0.557, respectively, with the risk score
AUC being the only one above 0.7. After univariate Cox regression analysis, the risk score (p<0.001), N
(p=0.006) and T (p=0.034) were selected for multivariate Cox regression analysis, which revealed that the
risk score (p<0.001) was the only independent prognostic factor for pancreatic cancer (Table 1).
Moreover, the addition of the risk score to the clinical model can raise the C-index from 0.599 to 0.682,
indicating that it greatly contributes to prognosis prediction. A nomogram and the related calibration
plots were established to visualize the speci�c method, calculate the risk scores and show the ability of
the model to predict OS at 6 months, 12 months and 36 months (Figure 4).

Exploring the correlation between immune cell in�ltration and the risk model

The irlncRNAs identi�ed by correlation analysis of irgenes and lncRNAs at the beginning of this study
may exert an in�uence on immune status, including immune cell in�ltration. We employed the Tumor
IMmune Estimation Resource (TIMER), CIBERSORT, QUANTISEQ, MCPcounter and EPIC resources to
delineate the immune cell in�ltration of the training set (Table S2). Wilcoxon signed-rank analysis
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between the risk score and immune cell in�ltration revealed that high risk was associated with greater
in�ltration of cancer-associated �broblasts, follicular helper T cells, CD4+ T cells, M0 macrophages and
M1 macrophages, while low risk was correlated with greater in�ltration of B cells and M2 macrophages.
Pearson correlation analysis showed the correlation between the risk score and the in�ltration of 3 types
of immune cells (M0 macrophages, CD4+ T cells and M1 macrophages) (p<0.1) (Table S3). The
correlation results were expressed in a lollipop graph. However, the Wilcoxon signed-rank test comparing
risk and immune checkpoint inhibitor (ICI) biomarkers, including CTLA4, LAG3, IDO1, PDCD1 and ICOS,
showed no signi�cant association, which is re�ective of the poor effect of ICIs in clinical trials (Figure 5).

Discussion
In this research, we established a risk model and clinical prognostic model with 3 irlncRNAs and explored
the correlation between the irlncRNA signature and immune cell in�ltration. First, correlation analysis of
lncRNAs and irgenes was performed to obtain irlncRNAs. Second, random survival forest, survival tree
decision and Cox regression analyses were applied to establish the risk model by irlncRNAs. In addition,
we calculated the AUC of the time-dependent ROC curve to validate its practical signi�cance. Third, to
con�rm its clinical signi�cance, Kaplan-Meier analysis, chi-square test, Wilcoxon signed-rank test, and
Cox regression analysis were utilized and con�rmed that irlncRNA signature was the only independent
prognostic factor among clinical characteristics. Finally, we explored the relationship between the
irlncRNA signature and immune cell in�ltration, which revealed that speci�c immune cells differentially
in�ltrated tissues from the high- and low-risk groups, shedding light on the immune microenvironment of
pancreatic cancer. The risk model established from irlncRNAs in this research has high predictive value.
After combining the risk score into the clinical prognostic model, the C-index increased from 0.599 to
0.682, indicating that it signi�cantly contributes to clinical prognosis e�cacy among pancreatic cancer
patients. Furthermore, the irlncRNA signature can predict the immune landscape, including immune cell
in�ltration in tumor tissue, thus providing insights for immunotherapy.

lncRNAs have been widely applied in predicting the prognosis of different cancers in the past few
months. A total of 3 lncRNAs were identi�ed to establish a risk model in pancreatic cancer, and they were
discovered to be correlated with epithelial metastasis transition (EMT) [14]. A risk model composed of 5
lncRNAs was associated with cancer-related and drug response pathways in pancreatic ductal
adenocarcinoma [15]. Several other studies have also taken advantage of lncRNAs to construct
prognostic models [16–18]. These studies indicate that lncRNAs play a role in tumor biological functions,
including chemotherapy resistance, tumorigenesis and EMT. Our research focused on the potential
immune functions of lncRNAs and conducted integrated clinical evaluation of the risk model. To improve
the e�cacy and accuracy, we performed validation in another cohort and applied multiple analyses and
databases to provide insights into exploring the tumor immune microenvironment. Wei et al. [19]
disclosed the potential biological functions of irlncRNAs in pancreatic tumors, indicating that tumor
purity is negatively associated with the in�ltration of �broblasts, myeloid dendritic cells and monocytes.
This �nding paved the way for further research on irlncRNAs and their potential regulatory mechanisms
in pancreatic cancer.
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lncRNAs have special localization features and functional mechanisms; for example, they can assemble
with proteins, RNA and DNA to participate in various biological processes. Previous studies have revealed
that lncRNAs are correlated with tumorigenesis, tumor progression, metabolism and immune status; thus,
they have gradually become drug targets [20]. For example, TARID can methylate TCG21 to promote
tumorigenesis, and CCAT1-L is involved in tumor progression, metastasis and drug resistance [21, 22]. Of
note, lncRNAs may play a role in regulating the tumor immune microenvironment by activating immune
cells, promoting immune evasion or other mechanisms [23]. NKILA is a typical lncRNA that can regulate
the apoptosis sensitivity of different types of T cells, and the silencing of NKILA can improve
immunotherapy effects in breast cancer [7, 12]. The irlncRNAs identi�ed in our research included
LINC00462, LINC01884, and RP11-706C16.8, and some of them have been previously studied. For
example, LINC00462 participates in the miR-666/TGFBR1-TGFBR2/SMAD2/3 or AKT signaling pathways
to promote tumor invasion and progression in pancreatic cancer and hepatic cancer [24–26]. Further
research on the mechanisms of the identi�ed irlncRNAs may reveal their potential regulatory function in
the tumor microenvironment.

Despite the fact that immunotherapy has made great progress in tumor treatment, it shows limited
effects and many side effects in pancreatic cancer. Some clinical trials on immunotherapy in pancreatic
cancer, such as ICIs applied alone or combined with chemotherapy (NCT02558894, NCT02331251);
immune vaccines (NCT00084383); CD40 antibodies (NCT00711191); and mesenchymal target therapy
(NCT02734160), are currently under way [27–31]. In this research, we conducted Pearson correlation
analysis of the irlncRNA signature and common biomarkers of ICIs. However, there was no signi�cant
correlation, which is consistent with the limited immunotherapy effect in pancreatic cancer [27, 32].
Pancreatic cancer is usually regarded as poorly immunogenic and is accompanied by fewer mutated
antigens recognized by patient T cells than lung cancer and melanoma [33]. However, this research
showed that high risk was associated with increased in�ltration of cancer-associated �broblasts, CD4 + T
cells, M0 macrophages and M1 macrophages, while low risk was correlated with M2 macrophage
in�ltration, indicating that macrophage differentiation may be correlated with malignancies and may be a
potential target in immunotherapy.

There are limitations to this bioinformatic research. First, the TCGA-PAAD database lacks information on
immunotherapy, which limits further evaluation of the clinical prognostic model in predicting the
response to immunotherapy. Second, the limited number of samples may in�uence the risk model
established with irlncRNAs. Third, this research lacks outside validation for the nonoverlapping irlncRNAs
in the Gene Expression Omnibus (GEO) database. To improve the accuracy, we applied the random
survival forest model and completed integrated analysis to con�rm the robustness of the risk model.

In conclusion, we established a novel and robust risk model with 3 irlncRNAs and a 3-year survival AUC of
0.778. The risk model was identi�ed as the only prognostic factor in the clinical evaluation and can
delineate the immune landscape of pancreatic cancer, which has potential clinical value.

Materials And Methods
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Retrieval of the transcriptome data and identi�cation of immune-related lncRNAs (irlncRNAs)

We obtained the transcriptome pro�le data (high-throughput sequencing (HTseq) counts) and clinical
information of patients (npatient=176, nnormal=4) from The Cancer Genome Atlas pancreatic cancer
dataset (TCGA-PAAD). Then, we downloaded the gene transfer �les (GTFs) from Ensemble
(http://asia.ensembl.org) to annotate the transcriptome pro�les and extract the lncRNA expression
pro�les. In addition, immune-related genes (irgenes) were downloaded from the ImmPort database
(http://www.immport.org), and a total of 2438 genes were obtained. After a Pearson correlation analysis
of lncRNAs and irgenes, 1903 irlncRNAs were identi�ed (r>0.5, p<0.001). In this step, the Hmisc package
was employed.

Establishment of the risk model by random survival forest (RSF) analysis

The RSF model was applied to determine the irlncRNAs that were of signi�cance to the OS and survival
status according to variable importance (VIMP) and the minimal depth. Survival tree analysis was
constructed according to the variables selected from the previous procedure (CTC-529P8.1, RP11-
706C16.8, LINC01493, LINC01887, LINC00462, LINC01510, LINC02205, RP11-1082L8.2, RP11-402N8.1),
with 2000 trees and the log-rank splitting rule. After deleting the variables with extremely low expression,
the risk model was established by multivariable Cox regression analysis. A total of 3 variables
(LINC00462, LINC01887, RP11-706C16.8) were selected by Cox regression analysis and were used to
predict the risk score for each sample in the training set. The forest map of the 3 irlncRNAs was drawn. In
addition, the areas under the receiver operating characteristic (ROC) curves (AUCs) for 36 months, 30
months, 24 months, 18 months, 12 months and 6 months as well as the concordance index (C-index) for
the risk model were calculated. The randomForestSRC, glmnet, survival, surviminer, ggplot2, forestplot,
survcopm, and prodlim packages were used in this procedure.

Clinical validation of the risk model

According to X-Tile software (https://medicine.yale.edu/lab/rimm/research/software/), the best cutoff
value for the risk score was determined to be 1.44 in the training set and 1.40 in the test set. After dividing
the samples into high-risk and low-risk groups in the training set and test set separately, Kaplan-Meier
analysis was conducted to analyze the difference in OS in the high- and low-risk groups. Furthermore, we
drew survival plots and survival curves to visualize the difference between the two groups. The
survivalROC, plotROC, ggplot2, survival and survminer packages were applied in this step.

Establishment of the clinical prognostic model

To evaluate the clinical signi�cance of the irlncRNAs in the signature, we further conducted several
analyses, including Cox regression analysis and Pearson correlation analysis. The AUC for each clinical
characteristic and the risk score were calculated to determine the potential prognostic factors. Univariate
Cox regression and multivariate Cox regression analysis were applied to construct the clinical prognostic
model. A nomogram was constructed and a calibration plot was drawn to show the results of Cox
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analysis. The C-index of the clinical prognostic model increased from 0.599 to 0.682 after taking the risk
score into consideration. The dplyr, ggolot2, ggpubr, survival, survminer, rms, and survcomp packages
were used in this step.

Exploring the correlation between the irlncRNA signature and immune cell in�ltration

Correlation analysis of lncRNAs and irgenes was conducted initially. Therefore, we further explored the
correlation between the irlncRNA signature and immune cell in�ltration by employing the Tumor IMmune
Estimation Resource (TIMER), CIBERSORT, XCELL, QUANTISEQ, MCPcounter and EPIC databases. The
Wilcoxon signed-rank test showed the signi�cantly in�ltrated immune cells (p<0.1), and Pearson
correlation analysis revealed the correlation index between immune cells and the risk score. In addition,
we performed the Wilcoxon signed-rank test to assess the association between immune checkpoint
inhibitor (ICI) biomarkers and risk. The Hmisc, ggplot2 and ggrepel packages were used here.

Abbreviations
Irgenes: immune-related genes; irlncRNA: immune-related long non-coding RNA; AUC: Area Under Curve;
ROC: Receiver Operating Characteristic;
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Figure 1

The process �ow to establish the immune-related lncRNAs risk model and its clinical evaluation.
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Figure 2

The establishment of risk model. (A) The important variables selected with the random survival forest
model. (B) The forest map of multivariate Cox regression results. (C) The ROC curve of the risk model for
survival at 36 months, 30 months, 24 months, 18 months, 12 months and 6 months. (D) The ROC curve
of clinical characteristics



Page 15/17

Figure 3

Clinical evaluation of the risk model in the training and test sets. (A-C) Kaplan-Meier analysis in the
training set. (D-F) Kaplan-Meier analysis in the test set.
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Figure 4

The nomogram and calibration plot of the clinical prognostic model. (A) The nomogram of the clinical
prognostic model. (B-D) The calibration curves for the 1-, 3- and 5-year survival plots comparing the
actual and predicted values.
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Figure 5

The exploration of risk score and immune in�ltration status. (A) Lollipop graph of the correlation between
immune cell in�ltration and risk score. (B-F) Violin plot of risk and ICI targets, including CTLA4, IDO1,
PDCD1, ICOS, and LAG3.
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