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Rapeseed is the second most important oil crop in the world. Improving seed yield
and seed oil content are the two main highlights of the research. Unfortunately,
rapeseed development is frequently affected by different diseases. Extensive research
has been made through many years to develop elite cultivars with high oil, high yield,
and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the
most important strategies in the genetic deciphering of agronomic characteristics.
To comprehend the distribution of these QTLs and to uncover the key regions that
could simultaneously control multiple traits, 4,555 QTLs that have been identified
during the last 25 years were aligned in one unique map, and a quantitative genomic
map which involved 128 traits from 79 populations developed in 12 countries was
constructed. The present study revealed 517 regions of overlapping QTLs which
harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They
could be selected to customize super-rapeseed cultivars. The gene ontology and the
interaction network of those candidates revealed genes that highly interacted with
the other genes and might have a strong influence on them. The expression and
structure of these candidate genes were compared in eight rapeseed accessions and
revealed genes of similar structures which were expressed differently. The present
study enriches our knowledge of rapeseed genome characteristics and diversity,
and it also provided indications for rapeseed molecular breeding improvement in
the future.

Keywords: Brassica napus, quantitative genomic map, oil content, seed yield, disease, candidate genes, gene
expression, structural variation
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INTRODUCTION

Rapeseed (Brassica napus, AACC = 38) is a tetraploid species
derived from the natural hybridization between turnip rape
(B. rapa, AA = 20) and cabbage (B. oleracea, CC = 18) (Nagaharu,
1935; Al-Shehbaz et al., 2006; Chalhoub et al., 2014). Both
Brassica species and the model plant Arabidopsis thaliana belong
to the Brassicaceae family; their separation took place about 14–
20 million years ago (Yang et al., 1999; Beilstein et al., 2006).
Rapeseed is the second most important oil crop in the world,
which could supply 13% of the world’s vegetable oil (Hajduch
et al., 2006; Amar et al., 2009).

Rapeseed utilization is not limited to oil sources, it also can
be used for food and energy production, remediation, and as
sightseeing attraction (Raboanatahiry et al., 2021). To fulfill the
global high demand for oil, the main objectives of researchers
are to discover ways to increase the oil content and to develop
high-yielding varieties, to succeed in sustainable manufacture in
the future. Unfortunately, abiotic and biotic factors frequently
weaken the rapeseed development, such as the invasion of
Sclerotinia sclerotiorum (steam rot) and Plasmodiophora brassicae
(blackleg disease), which resulted in yield losses of 10–80%
(Wang Z. et al., 2014) and 20–30% (Wang et al., 2011),
respectively, in China. Besides, drought is one of the most
devastating abiotic stresses for seed yield, which affects 40% of
the worldwide land area (Zhang et al., 2014).

It would be of great interest to find the genetic loci
that could control the traits associated with seed yield and
quality, and disease traits, simultaneously, for artificial selection
breeding. Rapeseed has experienced selection which contributed
to the diversification of winter and spring types. The selection
also caused region restructuring where genes controlling
agronomically important traits are located. Thus, intensive
breeding allowed to optimize those important traits such as oil
content, flowering time, and pathogen resistance (Chalhoub et al.,
2014). Diversity in the same species is because every individual
has their uniqueness starting from their genome and it is reflected
into their trait characteristics. Diversity among different species
could be understood by analyzing their genomes. Variations
within the genome are a reflection of breeding events. Genome
diversity might be exploited to detect beneficial phenotypes
associated with specific loci on the genome and linked to
environmental conditions.

Quantitative trait loci (QTLs) are correlated with variations
of phenotype and are extensively used for agronomic trait
analysis and in plant breeding. Lots of phenotypic traits are
usually responsible for the improvement of most crops, they
are quantitative in nature, and are influenced both by many
genes and environmental conditions (Zhu and Zhao, 2007).
QTL mapping could be used to decipher regulatory loci and
genetic mechanism of traits (Paran and Zamir, 2003) to identify
the genomic regions which are responsible for trait variation,
and to establish a link between phenotype and polymorphic
markers in random biparental populations (Cao et al., 2010;
Jiang et al., 2014). Several research works have revealed that
the phenotypic effect of QTLs for one character in one genetic
background might produce a different phenotypic effect in

another genetic background. For example, KN (KenC-8 × N53-
2) and TN (Tapidor × Ningyou7) are two populations that were
both cultivated in China, the oil content (OC) and detected
QTLs were not similar: 41 QTLs for OC were found with a
maximum OC of 50.9% in the 202 TN-DH lines (Jiang et al.,
2014), whereas in the 348 KN-DH lines, 63 OC-QTLs were found
with maximum OC of 54.8% (Wang et al., 2013), and in 300
KN-DH lines, 67 QTLs were detected with a maximum OC
of 57.17% (Chao et al., 2017). To uncover the similarities and
differences between the discovered QTLs, a consensus map that
displays multiple QTLs from different genetic and environmental
backgrounds is indispensable.

Earlier, building a consensus map was possible, but it was
limited by the difference of markers that were used in different
studies (Raman et al., 2013). Now, it can be overcome with a
QTL alignment map which has been used for seed oil content and
seed yield QTLs by using B. napus Darmor-bzh as the reference
genome (Liu S. et al., 2016; Chao et al., 2017; Raboanatahiry et al.,
2017, 2018). The advantage of QTL alignment is to allow the easy
comparison between QTLs and the regions of overlapping QTLs
and can be used to uncover the “stable” or “specified” regions for
a trait or an environment, but also to detect the pleiotropic loci,
i.e., regions that control multiple traits, simultaneously. In our
previous studies, regions of overlapping QTLs were displayed:
on one hand, the regions involved QTLs of the same traits but
originated from different populations (e.g., OC-QTL from KN
and TN which were both cultivated in China and overlapped in
the same region), these regions can be qualified as “stable” for
Chinese environment, despite the change in populations, or if the
QTLs were from two populations which were developed in two
different environments (e.g., KN in China, and PT in Canada),
these regions were “stable” for the studied trait (e.g., oil content).
On another hand, QTLs of different traits which overlapped in the
same region were also found, and they might have a pleiotropic
effect for those multiple traits (Raboanatahiry et al., 2017, 2018).

Quantitative trait loci (QTLs) investigation and the discovery
of related candidate genes can be done together, this strategy
helps to comprehend the authority of these genes over traits
(Remington and Purugganan, 2003; Zhu and Zhao, 2007).
The identification of candidate genes implies the detection of
important genes for agricultural and economic quantitative traits.
Candidate genes are present within the QTL regions and are
responsible for phenotype variation (Tabor et al., 2002). The effect
of these genes on the variation of phenotype could be elucidated
via investigation on the gene arrangement and the interaction of
loci affecting this variation (Zhu and Zhao, 2007). This technique
has already been used to identify potential candidate genes in
B. napus Darmor-bzh, for instance, Chao et al. (2017) used
this technique to identify potential candidate genes for seed oil
content traits, and found 448 genes underlying 41 oil content
QTLs. Moreover, 76 candidate genes were found for 57 QTLs
for oil content and fatty acids (Raboanatahiry et al., 2017),
and 147 candidate genes were discovered inside a region where
131 yield QTLs were overlapping (Raboanatahiry et al., 2018).
Candidate genes can be manipulated to get the most beneficial
gene combination to get the maximum profit, especially those
genes which were found in the region of overlapping QTLs
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involving many traits. For instance, LPAT2 and LPAT5 were
identified as candidate genes in the QTL interval for oil content
in the KN population of B. napus (Wang et al., 2013; Chao et al.,
2017), and the seeds of the mutants lpat2 and lpat5 lines displayed
a decrease in oil content (Zhang K. et al., 2019).

Additionally, the release of various B. napus genome
sequences: Darmor-bzh (Chalhoub et al., 2014), Tapidor (Bayer
et al., 2017), Zhongshuang11—ZS11 (Sun et al., 2017), Gangan,
Shengli, Zheyou7, Quinta, No2127, Westar, and 1689 other
accessions (Song et al., 2021), has represented a precious resource,
which will have a tremendous impact on understanding rapeseed
accessions diversity, notably the structural variation of regions
which are associated with agronomic traits.

In our previous study, regions of overlapping QTLs for
a single trait were detected (e.g., oil content or seed yield).
In this study, the purpose was to construct a quantitative
genomic map and to detect genomic regions that might control
multiple traits associated with seed, yield, hormones level, and
diseases, simultaneously, and the related candidate genes were
also identified. Moreover, the structural variation and gene
expression levels of those candidate genes were studied in eight
different accessions. Consequently, the ultimate objectives were:
(1) to build a quantitative genomic map of QTLs associated
with agronomic and disease-related traits to display overlapping
regions with multiple traits; (2) to reveal the candidate genes
within those regions of overlapping QTLs, to find genes that
might have pleiotropic effects on seed composition, seed yield,
hormones, and disease, and to analyze their interaction; (3)
to identify the homologous of these candidate genes in eight
rapeseed accessions and to analyze the genes expression and
the structural variation. The present study would enhance the
knowledge of rapeseed genome characteristics and diversity, the
findings can be used to develop molecular markers associated
with the studied traits, and also can provide some guidance for
molecular design for breeding. Identified candidate genes might
be used to target genomics-based improvement and better seed
yield, seed composition, and disease resistance in the future.

RESULTS

A Quantitative Genomic Map of
Quantitative Trait Locus Controlling Seed
Yield, Seed Components, Hormone
Level, and Disease-Related Traits
A total of 4,555 QTLs of 128 agronomic and disease-related
traits, developed from 79 different populations of three different
ecotypes and grown in 12 different countries (Supplementary
Table 1), were gathered and combined in one unique map
(Figure 1). A total distance of 978.4 Mb on the physical map of
Darmor-bzh was covered (Figure 2A, Supplementary Figure 1,
and Supplementary Table 2). Further observation revealed that
2,695 and 1,860 QTLs were located on A and C genomes,
respectively. A3 and C3 chromosomes contained the highest
number of QTLs, with 430 and 399 QTLs, respectively. A9, A3,
and C3 chromosomes contained the highest number of traits (80,

FIGURE 1 | Quantitative trait loci (QTLs) alignment of agronomic and
disease-related traits on the physical map of Darmor-bzh. QTLs were
arranged in each track, from inner to outer circle according to their apparition
on the physical map of Darmor-bzh. Track 1: Yield-related traits, track 2: Seed
composition, track 3: hormone level, track 4: biotic factor, track 5: abiotic
factor. The region of overlapping QTLs with five categories of traits is shown
inside the red rectangular label. The map was built using Circos software.

71, and 69 traits, respectively) (Figure 2A). Most QTLs for seed
components, seed yield, hormones level, and disease-related traits
were found in the A genome rather than in the C genome.

It is crucial to locate regions of the genome where multiple
traits overlapped the most. Thereby, the above-mentioned 128
traits were subdivided into five categories: 10 abiotic factor traits
(A), nine biotic factor traits (B), four hormones related traits (H),
26 seed components traits (S), and 79 yield-related traits (Y).
The total number of QTLs in each category were 349 (A), 334
(B), 42 (H), 1392 (S), and 2,438 (Y). Each region on Darmor-bzh
genome was carefully observed to detect the regions where QTLs
of more than one category of trait could overlap, i.e., regions with
two, three, four, or five categories of traits, which were present
in one region, simultaneously. A total of 517 regions that hosted
overlapping QTLs were observed (Figure 2B and Supplementary
Figure 1). The region of overlapping QTLs on each chromosome,
the number of QTLs, and the categories of traits are summarized
in Supplementary Table 3. First, eight regions were found to
harbor all the five categories of studied traits (A, B, H, S, and Y)
(Supplementary Table 4). Those eight regions were located on
six chromosomes: one region was found on each of A1 (1.71–
1.71 Mb, with 40 QTLs), A2 (2.31–2.31 Mb, with 20 QTLs), A10
(11.78–11.87 Mb, with 14 QTLs), and C3 (5.09–5.33 Mb, with 11
QTLs), and two regions were found on A6 (21.68–21.95 Mb with
15 QTLs and 22–22.30 Mb with 13 QTLs), and A9 (8.12–9.87 and
20.76–22.51 Mb, with 34 QTLs on each of them). Second, 107
regions that contained four categories of traits were found in all
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FIGURE 2 | Dissection of rapeseed genome. (A) Number of loci and total distance. (B) Regions on chromosomes with overlapping QTLs.

FIGURE 3 | Candidate genes in each category of traits. (A) Candidate genes in each chromosome. (B) Candidate genes in each category of traits. The number and
percentage of genes in each category are displayed. Different colors correspond to different categories.

19 chromosomes. The number of regions in each chromosome
was, respectively, 11 on C3, nine on each of A6 and A9, eight on
A7, seven on each of A2 and A8, six on each of A6, A10, and
C4, five on C1 and C2, four on each of A1, A3, A4, and C9,
three on each of C5 and C8, and one on C6. For example, 28
QTLs of four categories of traits (1A, 12B, 5S, 10Y) overlapped on
A2 (1.49–2.31 Mb). Note that the region on A2 (1.71–22.04 Mb)
included 288 overlapping QTLs (12A, 22B, 63S, and 191Y), which
was the richest region of overlapping QTLs in B. napus genome.
Third, 225 regions on all 19 chromosomes were found to have
overlapping QTLs involving three categories of traits: 22 on C3,

20 on C4, 18 on A7, 16 on C5, 15 on C9, 14 on each of A6,
C2, and C8, 13 on each of C1 and C7, 11 on A8, 10 on A3,
nine on A9, eight on A5, seven on each of A2 and C6, six on
each of A4 and A10, and two on A1. For instance, on a region
of A5 (3.49–5.29 Mb), 40 QTLs of three categories of traits (5B,
12S, 23Y) overlapped. Fourth, 177 regions were found to contain
overlapping QTLs which involved two categories of traits: 20 on
C4, 17 on C5, 16 on C9, 15 on C8, 14 on each of C6 and C7,
13 on A7, 11 on C1, 10 on each of C2 and C3, seven on each
of A6 and A8, five on each of A4 and A5, four on A3, three
on A1 and A9, two on A10, and one on A2. As an example,
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13 QTLs of two categories of traits (10B, 3Y) overlapped on C4
(20.66–20.70 Mb).

Note that some QTLs might overlap multiple times with other
QTLs in different regions because of their extended length, for
example, a QTL for C16:0 was located on A1 (2.25–19.86 Mb)
and it could overlap two times with QTLs in the region which
involved five and four categories (1.71–1.71 and 1.71–22.04 Mb,
respectively). Then, the most abundant and the most overlapping
categories of traits were S and Y categories, they were found in
403 among the 517 regions of overlapping QTLs detected in this
study. OC and seed yield (SY) are the two most important traits
in rapeseed, and the seed yield is determined by the number of
seeds per siliques (SNP), the number of siliques per plant, the seed
weight (Qzer et al., 1999; Quarrie et al., 2006; Chen et al., 2007),
and the overlapping QTLs for OC and SY traits were observed
in 82 regions (Supplementary Table 5), where the chromosome
A9 had the richest regions with 11 regions of overlapping QTLs
for OC and SY. The H category of the trait was found rarely
in the overlapping region since the identified QTLs in early
published papers were few (42 QTLs), so far, this H category was
found in 39 among the 517 regions of the overlapping QTLs of
this study. Otherwise, the regions of overlapping QTLs which
involved one environment or one population were observed. No
specified region was found exclusively for one population. Also,
only specified regions of overlapping QTLs, which involved some
populations developed exclusively in China, were found in 11
areas of the genome: four areas on C3 (36.94–37.27, 37.27–38.94,
39.94–40.21, and 41.40–46.52 Mb), two areas on A8 (16.87–17.37
and 17.37–18.00 Mb), and one area on each of A7 (17.48–
18.48 Mb), A10 (0.14–1.64 Mb), C4 (42.73–44.22 Mb), C6 (8.43–
9.43 Mb), and C7 (24.87–25.45 Mb) (Supplementary Table 3).
For instance, the region on A8 (16.87–17.37 Mb) had four QTLs
(3S, 1Y), which were all found with the Chinese experimental
field. Besides, “hot QTL regions” had been detected in four
locations on the rapeseed genome. Those regions were enriched
with more than 100 QTLs which were aligned: on chromosome
A1 (1.71–22.04 Mb), a total of 228 QTLs of four categories of
traits (A, B, S, Y) was found. Chromosome A3 (0.63–6.75 Mb)
had 139 QTLs of three categories of traits (B, S, Y), and A8 (9.63–
11.12 Mb) contained 111 QTLs of four categories of traits (A, B, S,
Y). Then, chromosome C6 (29.29–36.52 Mb) was enriched with
144 QTLs of three categories of traits (B, S, Y). Ultimately, the
rapeseed genome had been finely dissected to unveil regions that
harbored multiple traits, simultaneously. It would be crucial to
couple those findings with the identification of genes that were
located within those regions to understand the influence of those
genes over those traits.

Candidate Genes Identified Within
Regions of Overlapping Quantitative Trait
Locus, and Their Interaction Network
Previous studies identified 439 genes that were related to oil
formation (Raboanatahiry et al., 2017), 1,398 genes that were
related to yield traits (Raboanatahiry et al., 2018), and 1,344 genes
which were resistance genes (Dolatabadian et al., 2017). Thus, a
total of 3,181 genes were selected because they correlated with

the studied traits, and they were aligned to the physical map
of Darmor-bzh to detect the candidate genes. A total of 2,744
candidate genes were found within overlapping QTLs of two to
five categories of traits (Figure 3A and Supplementary Table 6).
A total number of genes of 26 (1%), 729 (47%), 1,291 (27%), and
700 (25%) were found for five, four, three, and two categories of
traits, respectively (Figure 3B).

Eight regions of the overlapping QTLs of five categories of
traits (A, B, H, S, and Y) were found in six chromosomes (A1,
A2, A6, A9, A10, and C3). A total of 26 candidate genes were
found on three among those six chromosomes: seven genes on A6
(four on 21.68–21.95 Mb and three on 22–22.30 Mb), 18 genes
on A9 (six on 8.12–9.87 Mb and 12 on 20.76–22.51 Mb), and
one gene on C3 (5.09–5.33 Mb). For example, three candidates
were found on A6 (22–22.30 Mb) which were a DHLAT
gene (BnaA06g33300D), an RLK gene (BnaA06g33320D), and
an AAPPT gene (BnaA06g33540D). Meanwhile, 729 candidate
genes were found within overlapping QTLs of four categories
of traits in all 19 chromosomes, and they were, respectively, of
129 (A1), 120 (A9), 71 (A8), 58 (A10), 46 (C3), 44 (A5), 43
(A3), 38 (A6), 37 (A2), 28 (A7 and C1, each), 22 (A4), 15 (C5),
12 (C9), 11 (C4 and C7, each), 10 (C2), four (C6), and two
(C8). For example, three candidate genes (CCT BnaA03g14860D,
RLK BnaA03g15210D, and KAT2 BnaA03g15290D) on A3 (6.84–
7.12 Mb) were found within 19 overlapping QTLs (2B, 1H,
5S, 11Y). Moreover, 1,289 candidate genes were located within
overlapping QTLs of three categories of traits, and they were
found on all 19 chromosomes: 169 (C3), 129 (A3), 121 (A2), 104
(C2), 77 (A5), 74 (C4), 70 (C8), 66 (A6 and C6), 61 (A7), 56
(A4), 53 (C1), 48 (C9), 47 (A9), 44 (C7), 40 (A10), 37 (C5), 24
(A8), and three (A1). For instance, two candidate genes (ADC2
BnaC01g03710D, and FAE BnaC01g04130D) were found on C1
(1.93–2.16 Mb) involving 13 overlapping QTLs (4B, 1S, 8Y). At
last, overlapping QTLs of 2 categories of traits contained 700
candidate genes in 18 chromosomes (excluding A2): 110 (C9),
75 (C5), 61 (C4), 59 (C7), 51 (A7), 48 (C2), 42 (C3), 41 (C1),
40 (C6), 31 (A3), 29 (A6), 28 (C8), 21 (A5), 19 (A8), 16 (A4), 15
(A10), 9 (A1), and 5 (A9). For example, two candidate genes (RLK
BnaC07g13860D and RN BnaC07g14020D) were found on C7
(19.60–19.79 Mb) involving two overlapping QTLs (1 A and 1 B).
In assumption from those findings, important genes which were
located within regions of overlapping QTL with multiple traits
were identified. They might influence more than one category
of traits, and they could be selected according to the desired
improvement of two or multiple traits.

The interaction network analysis of the 2,744 candidate genes
was made with their 1,555 orthologous genes in A. thaliana
because B. napus are not available on the String database. Gene
ontology (GO) analysis indicated that the 1,555 genes could
be classified into 16 categories, according to Panther GO-slim
biological process’s classification (Supplementary Table 7): it
included the cellular process, biological phase, reproductive
process, multi-organism process, localization, interspecies
interaction between organisms, reproduction, biological
regulation, response to stimulus, signaling, developmental
process, rhythmic process, multicellular organismal process,
metabolic process, growth, immune system process. Other
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FIGURE 4 | Candidate genes interaction network. The interaction analysis
was made with orthologous A. thaliana genes by using STRING
(http://string-db.org/) and visualized with Cytoscape_V3.8.2. 1271 nodes and
10101 edges are shown. Eleven categories of genes are displayed according
to their GO term enrichment. (A) Signaling, (B) multicellular organism, (C)
growth, (D) biological regulation, (E) cellular process, (F) developmental
process, (G) immune system process, (H) localization, (I) metabolic process,
(J) rythmic process, (K) response to stimulus, (L) reproduction, (M) others.

genes which could not fit into those categories were classified as
“Others.”

The interaction network was visualized with Cytoscape and
1,271 nodes and 10,101 edges were displayed (Figure 4). In this
network, 34 genes might be more influential over other genes
(degree layout, DL=60) (Supplementary Table 8). Those genes
belonged to the GO categories of the cellular process, metabolic
process, multicellular organismal process, rhythmic process, and
“others” category. ACP, DGAT, KASI, KASII, KASIII, LPAAT,
and MCMT had functions related to oil biosynthesis (Li-Beisson
et al., 2013), AGL20, AP2, AUX1, CO, COP1, EMB, FLC, FLD,
FRI, FT, FVE, GI, LPAAT, PHYA, PHYB, RGA, SVP, TFL1, and
TFL2 were related to yield traits, while AP40, ARP, ERD, GMP
synthase, HEME, SH3, and WUS were involved in plant resistance
to disease (Poole, 2007). The 26 candidate genes detected in the
region of overlapping QTLs involving five categories of traits had
less influence over the other genes DL < 46 (Supplementary
Table 9), in comparison to the 11 above-mentioned genes. The
most influential genes had different functions and were involved
in different metabolism pathways, yet they might have a higher
effect over other genes, this might indicate that the simultaneous
control of multiple categories of traits might be affected at
different paths of metabolisms.

Gene Expression and Structural Variation
of Candidate Genes in Eight Rapeseed
Accessions
The 34 most influential genes of the interaction network in
B. napus were selected for the current gene expression analysis.
Additionally, the 26 candidate genes which were found within
QTLs of five categories (A, B, H, S, and Y) were also added to
the analysis (Supplementary Table 10). Two groups of genes
could be observed, the first group was the genes that were
mainly expressed in the seeds and siliques, including FUS3, PRP4
KINASE B, KR, RCN1, KASI, KASIII, MCAT, FLC, FVE, and EMB
(Figure 5A and Supplementary table 11), with higher expression
in the seeds rather than in the siliques, except for the EMB gene.
The second group had the genes expressed in different tissues
and the genes with very low expression levels (Figure 5B and
Supplementary Table 11).

A quantitative PCR (qPCR) was performed using the
complementary DNA (cDNA) from the seeds and siliques of
KenC-8. It was observed that the genes had higher expression in
the seeds than in the siliques, except for the PRP4 KINASE B gene
which had higher expression in the siliques than in the seeds.
Moreover, the EMB gene which had a higher expression in the
siliques than in the seeds of ZS11, had a higher expression in the
seeds than in the siliques of KenC-8 (Figure 6).

Besides, the gene expression and the structural variation of
the above-mentioned 10 genes were analyzed in eight rapeseed
varieties, including two winter-types (Quinta and Tapidor), two
spring-types (Westar and No2127), and four semi-winter types
(ZS11, Zheyou7, Shengli and Gangan). The synteny of the genes
in the nine rapeseed varieties is shown in Figure 7. The genes
were located in five chromosomes in Darmor-bzh, and in eight
chromosomes in the other eight rapeseed varieties. The length of
the genes was almost similar in the eight varieties but they were
much longer in size in Darmor-bzh (Supplementary Table 12).
The expression of those 10 genes was compared in the eight
rapeseed varieties (Supplementary Figure 2). The nucleotide
sequence identity was analyzed (Supplementary Table 13).
Genes with a higher rate of sequences identity had similar gene
expressions. It was the case of the KASIII genes in Zheyou
and ZS11. However, genes that displayed 100% of sequence
identity could also have different expression profiles, such as the
KR genes of the eight varieties that shared 100% of sequence
identity but displayed a different expression level. More, some
other genes with different sequences identity showed similar
expression profiles, like the case of FLC genes in Gangan and
No2127.

DISCUSSION

The current study aimed to combine QTLs for seed component,
seed yield, hormones, and disease-related traits, which were
detected in previous studies, in one physical map in rapeseed,
to identify the related candidate genes and to analyze their
expression and structural variation in different rapeseed
accessions. The same strategy was used to find the regions
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FIGURE 5 | Expression level of the candidate genes in ZS11. (A) Ten genes exclusively with higher expression in the siliques and seeds. (B) Expression of other
genes in different tissues. The heatmap was built using Heatmapper (http://www2.heatmapper.ca/).

that might control multiple traits of one category, i.e., seed
oil (Raboanatahiry et al., 2017) and seed yield (Raboanatahiry
et al., 2018). In those two studies, some regions were suggested
to possibly contribute to the improvement of one trait or
multiple traits of one category, and some regions were supposed
to be stable for one given environment. For example, a
region on A1 (2.50–2.99 Mb) had overlapping QTLs for plant
height, which was from two populations developed in China
(Tapidor × Ningyou7 and Express617 × V8), so this region
might affect the plant height and it is a stable region for the
Chinese environment (Raboanatahiry et al., 2018). More,
QTLs for C16:0, C18:0, C18:1, C18:2, C20:0, and C22:1 were
overlapping on C3 (53.75–58.29 Mb), thus, this region might
control those six traits, simultaneously (Raboanatahiry et al.,
2017). The current study was made at a higher level because
it was not limited to one category of trait as in the previous
studies, but five categories which involved almost all the studied
traits in rapeseed.

Increasing seed oil and seed yield is among the main focus of
researchers on rapeseed, to cater to the increasing demand for

FIGURE 6 | Expression level of genes in seeds vs. siliques of KenC-8. Actin
was used as reference gene.
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FIGURE 7 | Synteny of the ten genes in nine rapeseed varieties. The map was built with TBtools software, with Darmor-bzh (Da), Gangan (Ga), No2127 (No), Quinta
(Qu), Shengli (Sh), Tapidor (Ta), Westar (We), Zheyou (Zh), Zhongshuang 11 (Zs). Chromosome location is displayed near the genome name.

oil. However, the usage of rapeseed is not limited to biomass for
oil, but also multiple purposes, such as protein, carbohydrate,
vitamins sources, and many more (Raboanatahiry et al., 2021).
Despite the effort in improving seed components and seed
yield, rapeseed crops are under attack from various diseases
that resulted in huge crop loss. For example, Leptosphaeria
maculans causes blackleg disease (West et al., 2001), which
has created an economic loss of $900 million per growing

season globally (Fitt et al., 2008). Although resistant cultivars
have been developed and cultivated since the 1990s in Canada
(Kutcher et al., 2010), which has decreased the yield loss by
1% (Gugel and Petrie, 1992), abiotic stresses have also caused
about 50% yield reduction in major crops (Bray et al., 2000).
Extensive research is still undertaken to take total control
of those biotic and abiotic diseases, via selective breeding.
Otherwise, phytohormones play important roles in plant growth
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FIGURE 8 | Suggestions for selective breeding. Regions on A6, A9, and C3 chromosomes where QTLs of five categories overlapped.

and development, such as IAA (Grossmann, 2010), but also on
plant adaptation to assure survival to face the environmental
fluctuation. Abscisic acid (ABA) responds to both biotic and
abiotic stresses (Cao et al., 2011), which have an influence on
one another (Fujita et al., 2006). Those phytohormones support
agronomic trait improvement and response to disease. Therefore,
all the five categories of traits analyzed in the current study are
correlated and are pivotal for rapeseed crop improvement.

Dissection of Rapeseed Genome
Revealed Regions Controlling Multiple
Traits
The current study is the first study to gather all the QTLs of
important agronomic and disease-related traits discovered in
B. napus over 25 years, to construct a quantitative genomic
map, which is crucial to uncover similarities and differences in
QTLs detected from different populations and environments, but
also to reveal the regions that might control multiple beneficial
traits, simultaneously.

It was obvious that most of the QTLs were found on the
A rather than C genome (2,695 vs. 1,860 QTLs, respectively).
Selection has played important role in improving B. napus. It was
reported that the C genome rather than the A genome, contained
extended breeding regions (51.15 Mb on C vs. 16.80 Mb on
A) which might contribute more to alleles producing elite traits
(Wang Z. et al., 2014). However, a recent investigation on the
origin of B. napus and the genetic loci that contributed to its
improvement had revealed that the parallel selection of the A
and C genomes had led to seed quality improvement in B. napus
(Lu et al., 2019). “A” genome-specific selection greatly enhanced
disease resistance, oil accumulation, and environment adaptation
of B. napus during its first stage of improvement, while the C
genome had improved developmental traits. This might explain
the fact that most of the QTLs of studied traits in the current

study could be found on the A genome. Particularly, for Asian
B. napus varieties, it was reported that they have experienced
strong artificial selection from the A genome which contributed
to their adaptation following their introduction from Europe
(Zou et al., 2019).

Apart from that, 517 regions were found with overlapping
QTLs involving at least two categories of traits. Those regions
might be suitable for selection to improve two or more desired
traits, simultaneously, for example, to improve both abiotic stress
response, seed component, and seed yield (A4:3.07–4.11 Mb).
Several studies have already investigated on the co-location of
QTLs from a different category of traits (Shi et al., 2012; Zhao J.
et al., 2012; Ding et al., 2014; Bouchet et al., 2016; Körber
et al., 2016; Stein et al., 2017; Wan et al., 2017; Rahaman
et al., 2018; Jan et al., 2019; Wrucke et al., 2019; Wu et al.,
2019; Zhang K. et al., 2019). Those studies demonstrated the
importance of analyzing multiple traits, at the same time, to
target the loci for breeding cultivars with the most advantageous
profile. For example, a study that focused on flowering time (FT)
and Sclerotinia stem rot resistance (SSR) reported that early FT
might increase susceptibility to S. sclerotiorum, and regions of co-
location of FT and SSR resistance traits were found which were
crucial for breeding early maturing and SSR resistance cultivars.
Moreover, four co-localized QTL hotspots of SSR resistance and
FT on A2 (0–7.7 Mb), A3 (0.8–7.5 Mb), C2 (–15.2 Mb), C6 (20.2–
36.6 Mb), which were consensual with previous studies (Wu et al.,
2019). In the current study, the QTL of SSR and DIF (FT) were
also co-localized in those regions.

Particularly, seed components and seed yield traits often
overlapped in this study. In earlier studies, yield traits such
as the flowering time, the morphology of the root, and the
plant growth environment could affect seed quality traits
such as erucic acid, oil, protein, and glucosinolate contents
(Paran and Zamir, 2003; Si et al., 2003; Quijada et al., 2006;
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Shi et al., 2013; Wang X. et al., 2017). In oil crops, QTLs that
could influence both seed quality and yield traits had already
been discovered in several studies, positively or negatively. For
instance, oil and protein contents were positively correlated
with seed weight in 11 B. carinata lines developed in Canada
(Getinet et al., 1996). Zhao et al. (2006) found evidence
of a positive correlation between oil content and seeds per
silique while evaluating 282 DH lines from a cross between
Sollux and Gaoyou (B. napus), and developed in Germany and
China. In a study performed by Chen et al. (2010) in a DH
population derived from a cross between high and low oil content
B. napus and developed in Canada, oil content and flowering
time were negatively correlated. In that study, QTLs for oil
content, flowering time, and seed yield were co-localized on
a small region of LG7 where alleles of low oil content, early
flowering time, and higher seed yield were found together.
However, QTLs for high oil content and early flowering time
were found in the co-location on LG2. Otherwise, since oil
content and seed yield are the most important trait in rapeseed,
82 QTL regions were discovered, where QTLs for these two
traits overlapped. They could be selected to improve the two
traits, simultaneously.

Overlapping QTLs of multiple traits might happen when
gene alteration frequencies at nearly linked loci occur, but
also, it might be caused by the pleiotropic effect when an
appropriate substitution of genes occurs (Smith and Haigh,
1974). Also, pleiotropy or/and linked genes might have caused
this phenomenon. Hot QTLs regions were also discovered
with more than 100 aligned QTLs, which is interesting
for rapeseed molecular breeding, because the region with
the QTLs of diverse traits could be targeted to improve
multiple traits, simultaneously, and the more the number
of QTLs increased in that region, the more the locus
was stable because, despite the diversity in population and
environment background, it did not alter the location of the
QTL on the genome.

The region on the chromosome which was exclusively for
QTLs from one population was not found, and those exclusively
for one environment were for China only (fixed environment
for China). This indicated that those QTLs remained unchanged,
despite the variation of population and environment.

Identified Candidates Genes Might Be
Pleiotropic or Linked Genes?
In previous studies, 110 genes in Arabidopsis were identified
to be involved in oil formation (Li-Beisson et al., 2013) and
439 homologous genes were found in B. napus (Raboanatahiry
et al., 2017). Moreover, 425 yield genes which were related to
branch number, flowering time, maturity time, plant height,
pod number, seed number, seed weight, and seed yield
in Arabidopsis were identified (Shi et al., 2009) and 1,398
homologous genes were detected in B. napus (Raboanatahiry
et al., 2018). Dolatabadian et al. (2017) found 1,344 resistance
genes in B. napus. Those genes had a relationship with the
currently studied traits, thus, they were selected to uncover the
candidate genes.

The function of those selected genes correlated with the
studied traits. Since many genes could be found within a
region of a genome, a preselection is necessary, so that the
candidates have a close connection to the studied traits, and
have a functional outcome on the process (Zhu and Zhao,
2007). A total of 2,744 genes related to oil, yield, and resistance
were found within overlapping QTLs involving two to five
categories of traits. As mentioned above, overlapping QTLs
might be caused by pleiotropy or linked genes. Pleiotropy
is when one gene can control multiple unrelated phenotypic
traits (Stearns, 2010; Conner et al., 2011; Wagner and Zhang,
2011; Solovieff et al., 2013). Pleiotropy is largely distributed
due to biochemical and developmental systems and it affects
development and evolution and creates correlations between
genes and phenotype, and it affects selection and imposes the
accessibility of the evolution extent (Gromko, 1987; Lynch and
Walsh, 1998). The pleiotropic organization of traits (dominant
or epistatic) can be modified by selection and inbreeding
(Goodnight, 1988; Cheverud and Routman, 1996; Hansen
and Wagner, 2001). Linked genes are genes located close
to each other on the same chromosome and are inherited
together during meiosis. Genes might separately control different
phenotypes but are found closely located on the same region
of a chromosome.

Candidates found within the region of overlapping QTLs
with five categories of traits attracted more attention since
they might be more influential than the others over multiple
traits. A total of 26 candidates were found on five regions
distributed on A6, A9, and C3 chromosomes, and they
would be the most recommended in this study, for genomic
selection to target multiple traits simultaneously (Figure 8).
They belonged to different families and might have different
distinct roles, but the way they act to influence each other
or to affect the studied traits still needs a deep investigation.
Functional investigation of each gene over the studied traits
would be indispensable to comprehend their influence on the
traits and would reveal whether they were pleiotropic genes
or linked genes.

Gene interaction network revealed that 34 genes might have
more influence over the other genes. Genes are responsible for the
genetic variation of traits (Tabor et al., 2002), and the structure
and dynamism of the genetic regulatory network have an impact
on quantitative traits (Frank, 2003). In this study, KAS, ACP,
AUX1, CO, FT, PHYA, and AGL20 were also identified as the
most influential genes in our previous studies (Raboanatahiry
et al., 2017, 2018). Despite the number of genes identified in
this study being far larger than those of the previous study,
and the gene function were also broader, those seven genes of
different functions still had higher influence over the other genes,
indicating that simultaneous control of multiple traits might be
affected at different metabolism pathways.

The expression analysis of the candidate genes revealed an
exclusive increase for 10 genes (FUS3, PRP4 KINASE B, KR,
RCN1, KASI, KASIII, MCAT, FLC, FVE, and EMB) in the seeds
and siliques of ZS11, with higher expression in the seeds than in
the siliques, except for EMB. Reversely, the PRP4 KINASE B of
KenC-8 had increased expression in the siliques in comparison
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to the seeds. Previous studies reported the function of those
10 genes: MCAT, KASI, and KASIII (β-ketoacyl-ACP synthase I
and III), and KR (β-ketoacyl- ACP reductase) are enzymes of
fatty acid biosynthesis. MCAT (Malonyl-CoA:ACP transacylase)
was suggested to be essential for a high oil content B. napus,
and might be used to improve the seed oil contents (Qu et al.,
2014). Plastidial KASIII genes could alter the fatty acid profile
of B. napus seeds, by increasing the C18:2 and C18:3 contents
at the expense of C18:1 (Verwoert et al., 1995). KASI played
a positive role in Arabidopsis morphology and fertility, and in
polar lipid composition. Moreover, KASI disruption affected
embryo development and decreased the fatty acid contents
(Wu and Xue, 2010). FUS3 (FUSCA3) is a regulator of seed
development and seed oil content. It induces the genes of fatty
acid biosynthesis during development in Arabidopsis (Wang
et al., 2007). Likewise, the oil production decreased in fus3 of
B. napus (Elahi et al., 2015). In Arabidopsis, RCN1 (roots curl
in naphthylphthalamic acid1) encodes a regulatory α-subunit of
protein phosphatase 2A. RCN1 modulates auxin responses in
roots (Garbers et al., 1996), and defection resulted in increased
basipetal auxin transport and a significant delay in gravitropism
(Rashotte et al., 2001). Moreover, rcn1 roots had a reduced
elongation in seedlings and hypocotyl elongation (Muday et al.,
2006). FLC (FLOWERING LOCUS C) is a vernalization regulator
with a high expression level in winter-type rapeseeds (Schiessl
et al., 2019). It induces a delayed flowering time in Arabidopsis
and Brassica rapa (Kim et al., 2007), but also in B. napus (Tadege
et al., 2001). However, FLC could be repressed by FVE genes
which act on the regulation of flowering time (Baek et al., 2008;
Yu et al., 2016). EMB (EMBRYO DEFECTIVE) is required for
growth and development in Arabidopsis (Devic, 2008; Meinke,
2020). In the current study, the particular presence of those
genes in the seeds indicated their importance at an early stage
of plant formation.

The expression and structural variation analysis of the genes
in eight rapeseed varieties showed that some genes which had
100% sequence identity displayed different expression profiles,
and some other genes with different sequences identity showed
similar expression profiles. Note that Vector NTI software
(Invitrogen) was used to calculate the sequence identity, and
it was observed that even with a large structural variation, the
software still displayed a 100% of sequence identity between
the genes, which was unexpected. However, genes with several
SNPs had less than 100% of sequence identity. Several SNPs
(case of KASI) and a large structure variation (case of MCAT
genes) in the candidate genes were observed, which might
explain the difference in expression. This probably implied that
trait variations possibly occur because of the structure and
expression variation of the candidate genes, which can be verified
in future studies.

Epigenetics is one of the factors which might cause an
alteration in gene expression while preserving the primary DNA
sequence or genotype (Bird, 2002; Tchurikov, 2005). Epigenetic
mechanisms include DNA methylation which commonly induces
gene silencing by blocking the transcription binding sites, histone
modification which alters chromatin structure and accessibility
of genes for transcription, and non-coding RNA-associated gene

silencing which targets mRNA transcripts for destruction induce
and preserve epigenetic change (Egger et al., 2004; Tirado,
2014). Even if an epigenetic change is natural and regular,
it can also be influenced by environmental factors (Aguilera
et al., 2010; Feil and Fraga, 2012). In the case of our study,
further analysis is needed to conclude about epigenetic via
comparison of promoter sequence between genes. Because the
full genomic sequences are absent in Brassica napus pan-genome
information resource (BnPIR), the analysis could not be done
in the current study. Also, the eight accessions were produced
with different genetic and environmental backgrounds, and the
age of plant materials also plays a role in gene expression.
Thus, the difference in the gene expression even with a similar
sequence was expected.

Breeding a Super-Rapeseed Cultivar
That Meets Expectations
The current study uncovered regions, with two, three, four,
or five categories of traits that can be chosen and used
for marker-assisted selection, to produce a customized
rapeseed cultivar with desired traits. For instance, stresses
imposed by heat are detrimental to seed yield and quality
(reviewed by Sehgal et al., 2018). To control these traits at
once, the region on A3 (11.40–12.47 Mb) could be selected
for fine-mapping, since it contained overlapping QTLs for
heat, seed yield, and seed composition. Candidate genes
included in this region could be cloned and validated
through functional analysis, to understand the related
molecular mechanism.

Another innovation of the current study is the usage of the
rapeseed pan-genome of BnPIR to compare the gene expression
and gene structure of candidate genes. This strategy aimed
to comprehend how the same genes of different accessions
would be expressed, and how their structures are different.
This might serve later to explain their functions. Since
numerous rapeseed accessions have been sequenced, performing
the same study as our current study is now feasible in
those other accessions. It would enhance our understanding
of rapeseed genome variation. In the future, it would be
interesting to know whether the QTLs of multiple traits could
also be found overlapping in the same region of the other
rapeseed varieties, as found in Darmor-bzh of this study. It
is important to discover if the regions were maintained in all
the varieties of rapeseed. The characterization of haplotypes
is also needed to understand if those regions could be
inherited together.

Besides, compared to rice, the rapeseed breeding program
needs more effort and innovation. Until now, rapeseed research
focused on QTLs and the studied traits were repetitive. However,
the rice breeding program already focuses on QTG (quantitative
trait gene) and QTN (quantitative trait nucleotide) for the
improvement of this crop (Wei et al., 2021). This effort was made
to further close the gap between genomic studies and practical
breeding, and to facilitate the localization of causative variants of
all known traits. A collection of rice varieties with those variations
was made and a genome navigation system was established for
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breeding. Thus, research on rapeseed should switch progressively
into those QTG and QTN analyses. Multiple rapeseed accessions
are also available and a collection of variations should be
implanted for breeding.

Finally, the current study has enhanced our knowledge of
rapeseed genome characteristics and diversity. Co-localized QTLs
might have an ally or antagonistic effect. For the usage in
practical breeding, identification of the most favorable alleles
combinations which will produce maximum profits is still crucial.

MATERIALS AND METHODS

Alignment of Quantitative Trait Locus on
the Physical Map of Darmor-bzh
Extensive literature inquiry allowed us to identify more
than 350 papers that reported on genome-wide association
studies (GWAS) and QTLs analyses in B. napus over
the last 25 years (1995–2020). They were manually sorted
according to data availability. Research articles with missing
information were removed (absence of flanking markers,
marker sequence, or physical position of QTLs on Darmor-
bzh). QTLs/GWAS with just one flanking marker were
kept and given an area of 1 cm from the unique marker
as loci. A total of 4,555 QTLs for seed, yield, hormones,
and disease-related traits were collected from 145 research
articles, involving 79 different populations of three different
ecotypes and grown in 12 different countries (Supplementary
Table 1). They were aligned in the physical map of
Darmor-bzh. The location of QTLs flanking markers on
the physical map was detected via e-PCR (Schuler, 1997;
Rotmistrovsky et al., 2004), and the method of alignment
was as similar as our previous studies (Raboanatahiry
et al., 2017, 2018). The map was built using Circos software
(Krzywinski et al., 2009).

Identification of Candidate Genes
Genes in B. napus which were reported in three different pieces
of literature were selected as a basis for the identification of
candidate genes in the current study: 439 genes were related
to oil formation (Raboanatahiry et al., 2017), 1,398 genes
were related to yield traits (Raboanatahiry et al., 2018), and
1,344 genes were resistance genes (Dolatabadian et al., 2017).
They were aligned into the physical map of Darmor-bzh, and
the genes located within overlapping QTLs were identified as
candidates for the traits.

Construction of Gene Interaction
Network
The gene interaction network was predicted using STRING
(Szklarczyk et al., 2015).1 Orthologous genes in A. thaliana
were used to perform the analysis (Chao et al., 2017;
Raboanatahiry et al., 2017, 2018). The genes were clustered

1http://string-db.org/

using Panther GO-slim biological process (Mi et al., 2021),2

and the interaction was visualized with Cytoscape_V3.6.0
(Shannon et al., 2003).

Gene Expression and Structural Variation
Analyses of Candidate Genes
The gene expression was obtained from BnTIR (Liu et al., 2021),
because ZS11 is the only rapeseed variety available in the BnTIR
database, it was used as a reference for this analysis. ZS11 genes
were acquired from the BnPIR database (Song et al., 2021) and the
genes expression analysis was obtained from the BnTIR database
(Liu et al., 2021). The heatmap was built using Heatmapper
(Babicki et al., 2016).3 The developing siliques and the seeds of
KenC-8 were collected 30 days after flowering for the q-PCR
analysis, and Actin7 was used as an internal control.

The identification of homologous candidate genes in Gangan,
No2127, Quinta, Shengli, Tapidor, Westar, Zheyou7, and ZS11 was
made with a blast tool in the BnPIR database (Song et al., 2021),4

using Darmor-bzh gene sequences as a query sequence. In silico
gene expression analysis was made using the “gene expression”
tool of BnPIR. The identity percentage between CDS sequences
was calculated using Vector NTI Advance 11.5.1.
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