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Summary. Electrochemical water decomposition as a crucial approach for the gradual growth of renewable energy has attracted
extensive attention. Metal-organic frameworks (MOFs) which benefit from ultra-high specific surface area, controllable
nanostructures, and excellent porosity have been widely used as high activity catalyst for the decomposition of water by
electrochemical means. Herein, the composition and morphology of metal–organic framework nanoclusters with bimetallic Co/
Fe-incorporated PTA/FDA nanoclusters is designed for efficient and durable OER electrocatalysts, including CoFe-BTC/PTA,
CoFe-BTC/FDA, and CoFe-PTA/FDA. The crystal structure of MOF materials is composed of alternating organic hydrocarbon
BTC, PTA, or FDA and inorganic metal oxide layer. Co and Fe interact as central atoms, joining BTC, PTA, or FDA ligands
to form a highly symmetric MOF structure. The electronic structures and active sites of various metals are different, and the
insertion of iron atoms plays a certain role in the regulation of their electronic structures. CoFe-PTA/FDA shows significant
OER overpotential η10 = 295mV (1.525V vs. RHE) reached 10mA cm-2, with 62.85mV dec-1 for Tafel slope and pretty
conspicuous stability (72 hours of continuous testing). The DFT calculation results show coordination unsaturated metal atom
is the primary active center of these electrocatalytic reaction, and the coupling effect caused by adding Fe is the key to adjust
the electrocatalytic activity.

1. Introduction

In the context of the prosperousness of industry, energy even
environmental issues have become intense focus of global
attention [1–3]. In order to satisfy the rising energy con-
sumption, researchers are trying to find new efficient and
nonpolluting energy carriers to replace traditional fossil
energy [4–6]. As a green, sustainable, and clean energy with
high energy density, hydrogen is a doable method to replace
traditional fossil fuels to meet future energy demands [7–9].
Up till the present moment, the main source of hydrogen is
the reforming of fossil energy, in which byproducts such as
carbon monoxide and carbon dioxide are simultaneously
produced, which not only pollutes the environment but also
causes abundant waste of resources [10–12]. In comparison,

water electrolysis technology, as an efficient and clean pro-
duction technology, only generates hydrogen and oxygen
during the electrolysis process, which has therefore a broad
potential alternatives compared with traditional hydrogen
production technology [13–15].

Electrolysis of water to produce hydrogen involves two
reaction processes: oxygen evolution reaction (OER) and
hydrogen evolution reaction (HER). The catalysts of the
positive and negative electrodes can promote the process to
take place at a lower voltage [16–18]. So far, for the electro-
chemical water splitting process, the optimal catalysts for
HER and OER are common precious metal materials for
instance, Ir, Ru, and Pt, but these noble metals and their
compounds are limited by low durability application and
their high cost [19–21]. Consequently, researchers are
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committed to developing the catalysts for water electrolysis
with high catalytic efficiency and lower preparation costs.
Various nonnoble metal element electrocatalysts have been
extensively investigated in terms of high oxygen evolution
reaction, hydrogen evolution reaction, and overall water
decomposition efficiency [22–24]. These promising catalysts
mainly include nonnoble metal oxides [25], perovskite [26],
sulfides [27], carbides [28], nitrides [29], selenides [30],
hydroxides [31], oxyhydroxides [32], and their hybrids or
complexes. The cost of nonprecious metal electrocatalysts
is greatly reduced while still maintaining identical activity
and everlasting durability.

Metal-organic framework (MOF) is a novel kind of mate-
rial accompanied by high porosity, which are formed by the
orderly binding of organic ligands to some metal ions even
clusters, which have high degree of crystallinity and regular
permutation. Because of its immense specific surface area,
transformable chemical composition, adjustable pore struc-
ture, and various topological structure, copious MOFs have
been used to electrochemically decompose water for HER
and OER, respectively. Moreover, by coupling some other
materials, the performances of the MOFs can be uplifted or
embellished to combine into something@MOFs or MOF/sub-
strates [33–35]. With more active centers and the comprehen-
sive advantage of improving conductivity through
functionalization, excellent electrochemical water decomposi-
tion performance can be constantly acquired [36–38]. In addi-
tion, the multifunctional material-based skeleton allows atoms
to be rearranged in the process of pyrolysis at the molecular
and atomic levels [39, 40]. Therefore, MOFs or MOF-based
substances can be used as cyclostyle to the pyrolytic properties
such as electrical conductivity, porosity, specific surface area,
stability, and catalytic activity of ordered calcined polymers
was investigated [41, 42]. Consequently, these derivatives have
high research value in water decomposition [43, 44]. A series
of newmaterials have been reported on the basis of these stan-

dards. However, the MOFs reported so far still have the chal-
lenges of poor stability, impoverished electrical conductivity,
and organic ligand blocking of active metal centers, which
greatly limit the application for robust electrocatalysts [45, 46].

Herein, we report metal–organic framework nanoclusters
with Co/Fe-Incorporated two kinds of double ligands, which
were synthesized by utilizing a mixed solution of Co(N-
O3)2·6H2O, FeCl3·6H2O, and two ligands 1,3,5-benzenetricar-
boxylic acid (BTC) and p-phthalic acid (PTA), respectively.
The crystal structure of CoFe-BTC/PTA consisted of alternat-
ing organic hydrocarbons BTC or PTA and inorganic metal-
oxygen layers. Co and Fe interact together as central atoms,
which are linking BTC and PTA ligands together to form a
highly symmetrical MOF structure. In comparison, we replace
one with 1,1-ferrocenedicarboxylic acid (FDA) to prepare
CoFe-BTC/FDA and CoFe-PTA/FDA. In addition, in order
to prove the addition of Fe has an affirmative impact on the
electrochemical properties, the single metal MOF referred as
Co-PTA/FDA has been prepared. In particular, CoFe-PTA/
FDA manifested an excellent OER performance with an over-
potential of 295mV at 10mAcm-2, a Tafel slope of 62.85mV
dec-1 at 10mAcm-2 and electrochemical surface areas of 13.52
mF cm-2, which was more superior than CoFe-BTC/PTA
(322mV, 86.38mV dec-1, and 4.51 mF cm-2), CoFe-BTC/
FDA(309mV, 75.14mV dec-1, and 8.23 mF cm-2), and Co-
PTA/FDA (307mV, 65.51mV dec-1, and 5.29 mF cm-2).
Meanwhile, it also has long-term stability (72 hours continu-
ous testing). Through a series of physical characterizations
and density functional theory (DFT) calculations, details of
active centers even mechanisms of the materials were further
proposed.

2. Results

2.1. Morphologies and Structures. Figure 1 presents a dia-
grammatic sketch of synthesizing metal–organic framework
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Figure 1: Schematic of the process of synthesizing CoFe-BTC/PTA, CoFe-BTC/FDA, and CoFe-PTA/FDA at the oil/water interface.
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nanoclusters with double ligands using cobaltous nitrate
hexahydrate and iron chloride hexahydrate. First, the Co,
Fe, ethanol, triethylamine, and DMF were straightforwardly
mingled together using hydrothermal method; afterward,
the Co/Fe was directly infixed in the principal metal–organic
framework nanoclusters by high temperature treatment. All
three MOF materials had highly symmetrical structures. The
crystal structure of bimetallic CoFe-PTA/FDA was formed
by alternating organic hydrocarbon PTA and FDA through
the joining of metal Co and Fe ions. Each Fe or Co ion coor-
dinated four atoms, including two hydroxyl groups in PTA
and two hydroxyl groups in FDA. Under heating conditions,
the free atoms could be easily removed to produce a coordi-
nation unsaturated metal site. CoFe-BTC/PTA, CoFe-BTC/
FDA, and Co-PTA/FDA were prepared based on similar
synthetic process as CoFe-PTA/FDA.

The physical and structural characterizations of as-
synthesized CoFe-PTA/FDA can be identified through scan-
ning electron microscopy (SEM) images in Figure 2(a) and
SAED (Figure S1). In order to observe the structure of the
material, we also provided SEM and TEM images at
different scales in Figure S2-3. Element ratios are usually
studied by energy dispersive spectroscopy (EDS) mapping;
in order to get a more accurate ratio of elements, ICP
atomic absorption spectroscopy test had been performed.
The image in Figure 2(b) showed the EDS map and the
table showed the ICP results. From the data, the exact
ratios of Fe and Co in the catalyst were 27% and 23%,
respectively. Figure 2(c) showed the high resolution
transmission electron microscopy (HRTEM) image of the
CoFe-PTA/FDA structure and obtained further more
details of the structure from the fast Fourier transform
(FFT) and inverse fast Fourier transform (IFFT) modes of
the selected region (marked red frame). HRTEM shaping
on a single nanocrystal clearly shows a lattice stripe with
(110) planar spacing of 0.21 nm for CoFe-PTAFDA
lattices. The spacing lattice distance was also confirmed
with 2.462 nm through about calculated 12 fringe distances
in Figure 2(d). Subsequent composition analysis by high-
angle annular dark-field (HAADF) image and EDS
mapping (Figures 2(e)–2(i) and S4) confirms that the
obtained CoFe-PTA/FDA consisted of C, O, Fe, and Co
atoms, and the element mapping on the nanoclusters
shows an even distribution of these elements across the
COF-PTA/FDA surface. These results above dependably
corroborated that CoFe-PTA/FDA has immanent
structural periodicity characteristic and the fact that the
exposed metal atoms lose their packing layers, conforming
to the desired the desirable structural characteristics. In
addition, as MOF-based materials, specific surface area is a
relatively important role-shaping parameter, so BET test
has been conducted. From the results can be drawn, the
BET surface area of CoFe-BTCPTA, CoFe-BTCFDA, and
CoFe-PTAFDA was 38.47m2/g, 60.40m2/g, and 127.78m2/
g, respectively.

The atomic force microscopy (AFM) (Figures 3(a) and
3(b) and Figure S5-6) image accentuates an even granular
thickness of 1.82 nm, commensurate with three metal
coordination layers of 1.8 nm (Figure 3(g)). The X-ray

diffraction (XRD) (Figure 3(c)) pattern revealed that CoFe-
PTA/FDA and Co-PTA/FDA had similar crystalline
structures, but the peaks are higher when Fe was added,
indicating that there was no substantial change in the
structure of the MOFs material after the addition of Fe. In
contrast, the XRD patterns of CoFe-BTC/PTA, CoFe-BTC/
FDA, CoFe-PTA/FDA, and Co-PTA/FDA showed less
crystalline structure with an obvious peak at 10°, and the
latter two have another peak at 35°. X-ray diffraction
(XRD) analysis showed that the prepared CoFe-BTCPTA
and CoFe-BTCFDA samples exhibited a broad peak at 10°,
which could be attributed to BTC, and the prepared CoFe-
PTAFDA and Co-PTAFDA samples exhibited a broad
peak at 35°, which shows that ligands were well doped into
MOF materials and which the diffraction peaks of the
product are consistent with the standard PDF#18-1584 and
PDF#33-1622, e.g., crystal planes {110}-{011}-{032}. In
order to better analyze the structure of the material, the
three ligands were tested by XRD in Figure S7. The
composition of CoFe-BTC/PTA, CoFe-BTC/FDA, and
CoFe-PTA/FDA was further supported by X-ray
photoelectron spectroscopy (XPS). The survey scan
spectrum indicated that nanoclusters are composed of C,
O, Fe, and Co elements (Figure 3(d)), which matched with
the ICP and EDS element mapping images. Specifically,
because of the spin orbit coupling, the XPS spectra of the
Co 2p and Fe 2p regions of the catalyst splinted into two
dual states. From the XPS spectra of Co 2p in Figure 3(e),
the main deconvoluted peaks corresponded to the trivalent
Co 2p3/2 and 2p1/2, while the Co 2p3/2 peak could be fitted
into Co3+ (782.9 eV) and Co2+ (780.7 eV) peaks together
with a satellite peak (786.1 eV). In addition, Co 2p1/2 peak
could be fitted into Co3+ (797.5 eV) and Co2+ (796.1 eV)
peaks together with a satellite peak (801.9 eV) [47–49].. In
Figure 3(f), for Fe 2p spectrum, the peak centered at
712.4 eV for Fe3+ and 709.9 eV for Fe2+ with a satellite at
714.8 eV in the region of Fe 2p3/2 and while the peaks
centered at 726.1 for Fe2+ and 724.6 eV for Fe3+ with a
satellite at 718.2 eV were attributed to Fe 2p1/2 [50, 51].

2.2. Evaluation of Electrochemical Activity. A standard three-
electrode system was used in 1M KOH solution for evalua-
tion of the electrocatalytic OER performances of the CoFe-
BTC/PTA, CoFe-BTC/FDA, CoFe-PTA/FDA, and Co-
PTA/FDA. In addition, other OER activities of RuO2 were
also determined for comparison. In order to minimize the
capacitive current, all the linear sweep voltammetry (LSV)
curves were obtained at a slow scan rate of 5mVs−1

(Figure 4(a)). In the meantime, CoFe-PTA/FDA exhibited
excellent OER catalytic activity with overpotential of
295mV, lower than that of CoFe-BTC/PTA (322mV),
CoFe-BTC/FDA (309mV), and Co-PTA/FDA (307mV).
In comparison, RuO2 as a benchmark electrocatalyst, its
electrochemical properties is slightly better than the prepara-
tion of these materials with η10 of 279mV. At the same time,
in order to better compare the electrochemical properties of
MOF materials, Fe-PTA/FDA, Co-BTC/PTA, and Fe-BTC/
FDA were prepared, and their OER curves have been
observed in Figure S8. For the sake of further
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Figure 2: Physical characterization of CoFe-PTA/FDA. (a) SEM image of CoFe-PTA/FDA. (b) EDS spectra and ICP data of CoFe-PTA/
FDA. (c) HRTEM images and FFT, IFFT pattern of CoFe-PTA/FDA. (d) Spacing lattice distance of CoFe-PTA/FDA. (e–i) High-angle
annular dark-field image of CoFe-PTA/FDA and EDS mapping of C, Fe, Co, and O elements, respectively.
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Figure 3: Continued.
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understanding other OER properties, different samples’
Tafel plots were determined to explore their OER
dynamics (Figure 4(b)). A relatively small Tafel slope in
connection with a rapid increase in current density reveals
a faster kinetic process. CoFe-PTA/FDA, Co-PTA/FDA,
and RuO2 showed a low slope 62.85 mVdec−1, 65.51mV
dec−1, and 60.11mV dec−1, less than that of CoFe-BTC/
PTA (86.38mV dec−1) and CoFe-BTC/FDA (75.14mV
dec−1). Additionally, the outstanding OER performance of
Co-PTA/FDA is identified by its prominent double layer
capacitance (13.52 mF cm-2) in Figure 4(c). Both CoFe-
PTA/FDA (13.52mF cm−2) and CoFe-BTC/FDA (8.23mF
cm−2) have larger electrochemical active surface areas than
CoFe-BTC/PTA (4.51mF cm−2), substantiating that the
CoFe-PTA/FDA has the advantage of remarkably
expanding electrochemical active surfaces. We measured
the electrochemically active surface area (ECSA) of the
studied catalysts using the nonfaradaic double-layer
capacitance method, and the results of RuO2, CoFe-BTC/
PTA, CoFe-BTC/FDA, CoFe-PTA/FDA, and Co-PTA/FDA
were 28.86 cm2, 23.66 cm2, 14.40 cm2, 9.26 cm2, and

7.89 cm2, respectively. To further illustrate the high OER
performance of CoFe-PTA/FDA, electrochemical
impedance spectroscopy (EIS) was kept a record for
different samples (Figure 4(d)). Consistently, the
corresponding Nyquist plots of CoFe-PTA/FDA also
showed the smallest arc radius.

The smallest charge transfer resistance of CoFe-PTA/
FDA reflects the faster electron transfer process due to the
exceptional structure of MOF materials, which is concordant
with LSV images. Figure 4(e) summarized the overpotential
of the five samples with 10mAcm−2 current density. The
CoFe-PTA/FDA showed significantly decreased overpoten-
tials than Co-PTA/FDA. The excellent stability plays an
important part in appraising the wide application of electro-
catalysts [52]. As illustrated in chronopotentiometry curve
image (Figure 4(f)), in the process of continuous electrolysis
for 72 hours, there was no palpable augment in overpoten-
tial, corroborating its long-lasting stability. The HRTEM
image (the inset in Figure 4(f)) showed the structure of
CoFe-PTA/FDA remained intact and the change is negligi-
ble, which indicated that CoFe-PTA/FDA is indeed

1.8 nm

(g)

Figure 3: (a, b) Atomic force microscopy image and the corresponding height profiles of CoFe-PTA/FDA. (c) XRD of CoFe-BTC/PTA,
CoFe-BTC/FDA, CoFe-PTA/FDA, and Co-PTA/FDA. (d) XPS spectra of CoFe-BTC/PTA, CoFe-BTC/FDA and CoFe-PTA/FDA. (e)
XPS spectra of Co 2p of CoFe-BTC/PTA, CoFe-BTC/FDA, and CoFe-PTA/FDA. (f) XPS spectra of Fe 2p of CoFe-BTC/PTA, CoFe-
BTC/FDA, and CoFe-PTA/FDA. (g) Theoretical thickness of CoFe-PTAFDA with three metal coordination layers.
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structural stable catalyst. In order to better verify the stability
of the materials, materials were conducted the XPS test
before and after the electrochemical process. From the

Figure S9-11, there was no obvious change of XPS in the
material before and after electrochemical treatment, which
further proved the good stability of the material.
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Current densities of RuO2, CoFe-BTC/PTA, CoFe-BTC/
FDA, CoFe-PTA/FDA, and Co-PTA/FDA were recorded
with different scan rates (Figures 5(a)–5(d) and S12). We
contrasted the electrochemical property of our materials
with preceding narrated OER electrocatalysts with Co or
Fe metal in terms of the Tafel slope and overpotential at
10mAcm-2 for electroncatalysts. The CoFe-PTA/FDA per-
formed better than the vast majority of listed Co/Fe OER
electrocatalysts (as shown in Figure 5(e) and Table S1) [4,
43, 53–60].. The excellent OER performance and
outstanding stability of CoFe-PTA/FDA proved that it has
broad application prospects.

2.3. Insights into OER Mechanism. For the sake of further
exploring the potential mechanisms of enhanced activity of
the activity enhancement of these MOF materials, density
functional theory (DFT) calculation was conducted using
Material Studios. The corresponding free energy is calcu-
lated to be 1.54 eV of CoFe-PTA/FDA. A compelling prob-
lem is how Fe and Co interact in CoFe-PTA/FDA to
produce the remarkable electrocatalytic performance. The
fundamental steps of OER process on CoFe-PTA/FDA were
summarized in Figure 6(a), mainly divided into four steps.
The first step is summarized as adsorption, the second step
and the third part are combined as dissociation, and the final
step is capsuled as desorption. In addition, the other mate-
rials are shown in Figure S13-14. Molecular model of
CoFe-BTC/PTA, CoFe-BTC/FDA, CoFe-PTA/FDA, and
Co-PTA/FDA was calculated. The rhombus-shape

primitive cell shows the cell parameters of 13:30 × 8:69 ×
4:21Å3

, α = β = 90:0 ° , and γ = 60:0 ° , as illustrated in

Figures 6(b)–6(e). As shown in the Gibbs free energy
figures (Figure 6(f)), the energy barrier (△G1) for
generation of OH∗in CoFe-BTC/PTA (1.32 eV), which is
contrarily proportional to the adsorption strength for OH,
is larger than CoFe-PTA/FDA (1.21 eV), corroborating that
the latter is more vivacious during electrocatalytic process.
A circumstantial study of the Gibbs free energies of the
four materials communicates several significant
information. First of all, contrasted with the other three
materials, the lower △G1 value of CoFe-PTA/FDA proves
the preferential adsorption of OH is advantageous to the
initiation of OER process. Moreover, after the formation of
CoFe-PTA/FDA, the e-orbital occupancy of coordination
unsaturated metals was optimized. Consequently, the
theoretical overpotentials of CoFe-PTA/FDA decrease by
10mV (1.55 eV to 1.54 eV) compared with Co-PTA/FDA
(Figure 6(f)), in accordance with the inclination of the
electrochemical measurements results.

DFT calculations created a model in order to better sim-
ulate the conceivable active sites in materials. The simplifica-
tion of the original crystal structure made it clear to consider
the binding site between the catalytic atom and the reaction
intermediate. The results of free energy showed that the
binding energy between intermediate and active atom could
be efficaciously decreased by using a little Fe atoms incorpo-
rated into a material containing Co, thus providing a novel
method to ameliorate the electrocatalytic activity. The elec-
tron density of state curve was used to further analyze the
electronic properties of these four models, and the results
were shown in Figure 6(g). The results showed that CoFe-
BTC/PTA, CoFe-BTC/FDA, CoFe-PTA/FDA, and Co-
PTA/FDA were high density conductors with electron
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density distribution at Fermi level, which was mainly caused
by the hybridization of Co 2p–Fe 2p [61, 62]. The coordina-
tion unsaturated metal atoms were the principal active cen-
ter; furthermore, the coupling effect of Co and Fe atoms
further contributed to the activity of the electrocatalyst.
Meanwhile, as shown in Figure S15-20, it showed the
calculated the full-state density and band structure of the
model system. Consequently, the DFT results highlighted
and reinforced that it is important to design appropriate
ligand combination structures to facilitate development to
enhance OER catalysts.

3. Conclusions

In summary, a simple hydrothermal synthesis means has
been matured for the preparation of metal-organic frame-
works with synergistic unsaturated metal centers. We report
metal–organic framework nanoclusters with Co/Fe-incorpo-
rated two kinds of double ligands, which were synthesized by
utilized a mixed solution of Co(NO3)2·6H2O, FeCl3·6H2O,
two kinds of ligands combination of BTC, PTA, and FDA,
respectively. Furthermore, in order to prove the addition of
Fe has a unique impact on the electrochemical properties,
the single metal MOF referred as Co-PTA/FDA has been

prepared compared with a bimetallic MOF. Significantly,
the CoFe-PTA/FDA catalyst has excellent OER performance
and bodacious catalytic stability. The clear atomic structure
of CoFe-PTA/FDA allows the exploration of the origin of
the high electrocatalytic activity. The coordination unsatu-
rated metal atom is the main active center of the electrocata-
lyst, and the coupling effect of Co and Fe atoms further
contributes to the activity of the electrocatalyst.

4. Methods

4.1. Materials. Cobaltous nitrate hexahydrate (Co(N-
O3)2·6H2O, 99.5%, Adamas-beta), iron(III) chloride hexahy-
drate (FeCl3·6H2O, 99.5%, Adamas-beta), N,N-
dimethylformamide (DMF, 99.5%, Adamas-beta), ruthe-
nium oxide (RuO2, 99.9%, Adamas-beta), perfluorinated
resin solution containing nafion (NF, 5wt.%, Adamas-beta),
triethylamine (C6H15N, 98%, Adamas-beta), 1,3,5-benzene-
tricarboxylic acid (BTC, 99.9%, Adamas-beta), p-phthalic
acid (PTA, 99.9%), 1,1-ferrocenedicarboxylic acid (FDA,
99.9%, Adamas-beta), potassium hydroxide (KOH, 99.9%,
Adamas-beta), ethanol absolute (C2H5OH, 99.9%, Adamas-
beta), and deionized water (18.2 MΩ. cm. 25°C). All the
experimental materials were bought from Aladdin

7500 RPM for 3 times

Ultrasound for 30 minutes

5𝜇L

(a)

(b) (c)

Figure 7: (a) Preparation before electrochemical data measurement. (b) Electrochemical workstation (CHI760E). (c) Three-electrode
electrochemical cell.
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chemicals. Moreover, all reagents were of reagent grade and
can be considered as received samples, and there was no
need to proceed further purification.

4.2. Synthesis of CoFe-BTC/PTA. 0.15mmol Co(N-
O3)2·6H2O, 0.04mmol FeCl3·6H2O, 0.2mmol BTC,
0.2mmol PTA, and 15mlN, N-dimethylformamide were
added into a conical flask and then stirred the resulting mix-
ture for 30 minutes. Then, added two milliliters of water and
1 : 1 of alcohol and 0.2ml triethylamine to the mixture then
kept stirring. The mixed liquid was poured into a stainless
steel autoclave polytetrafluoroethylene lining with 20ml
capacity and stirred for 30min at room temperature and
react for 12 hours in an oven at 170°C. When the reaction
is finished, the autoclave is naturally cooled to ambient tem-
perature, and the reaction product was centrifuged for two
minutes at 7500 rpm and laundered with C2H5OH for two
times. Processed finished sample was dried in 60°C oven
for 6 hours until the product was completely dry and grind
into fine powder in a quartz mortar.

4.3. Synthesis of CoFe-BTC/FDA. 0.15mmol Co(N-
O3)2·6H2O, 0.04mmol FeCl3·6H2O, 0.2mmol BTC,
0.2mmol FDA, and 15mlN, N-dimethylformamide were
added into a conical flask and then stirred the resulting mix-
ture for 30 minutes. Then, added two milliliters of water and
1 : 1 of alcohol and 0.2ml triethylamine to the mixture then
kept stirring. The mixed liquid was poured into a stainless
steel autoclave polytetrafluoroethylene lining with 20ml
capacity and stirred for 30min at room temperature and
react for 12 hours in an oven at 170°C. When the reaction
is finished, the autoclave is naturally cooled to ambient tem-
perature, and the reaction product was centrifuged for two
minutes at 7500 rpm and laundered with C2H5OH for two
times. Processed finished sample was dried in 60°C oven
for 6 hours until the product was completely dry and grind
into fine powder in a quartz mortar.

4.4. Synthesis of CoFe-PTA/FDA. 0.15mmol Co(N-
O3)2·6H2O, 0.04mmol FeCl3·6H2O, 0.2mmol PTA,
0.2mmol FDA, and 15mlN, N-dimethylformamide were
added into a conical flask and then stirred the resulting mix-
ture for 30 minutes. Then, added two milliliters of water and
1 : 1 of alcohol and 0.2ml triethylamine to the mixture then
kept stirring. The mixed liquid was poured into a stainless
steel autoclave polytetrafluoroethylene lining with 20ml
capacity and stirred for 30min at room temperature and
react for 12 hours in an oven at 170°C. When the reaction
is finished, the autoclave is naturally cooled to ambient tem-
perature and the reaction product was centrifuged for two
minutes at 7500 rpm and laundered with C2H5OH for two
times. Processed finished sample was dried in 60°C oven
for 6 hours until the product was completely dry and grind
into fine powder in a quartz mortar.

4.5. Synthesis of Co-PTA/FDA. To 0.15mmol Co(N-
O3)2·6H2O, 0.2mmol PTA, 0.2mmol FDA, and 15mlN,
N-Dimethylformamide, the mixture was stirred in magnetic
stirrer for 30 minutes at ambient temperature. Then, added
1ml ethanol absolute, 1ml deionized water, and 0.2ml of

triethylamine with constant stirring. The mixed liquid was
added to a stainless steel autoclave with polytetrafluoroethyl-
ene lining with 20ml capacity and stirred for 30min at room
temperature and react for 12 hours in an oven at 170°C.
When the reaction is finished, the autoclave is naturally
cooled to ambient temperature and the reaction product
was centrifuged for two minutes at 7500 rpm and laundered
with C2H5OH for two times. Processed finished sample was
dried in 60°C oven for 6 hours until the product was
completely dry and grind into fine powder in a quartz
mortar.

4.6. Preparation of Catalyst. First of all, 30mL of 5wt%
Nafion solution and 1ml of mixed solution of water and eth-
anol (3 : 1) were added into the centrifuge tube, then put
4mg of electrocatalyst, and ultrasound for 30 minutes to
mix evenly into the ink. Then, as shown in Figure 7(a), the
5mL mixed ink was well-distributed dripped on a 0.07 cm2

glassy carbon electrode with the pipette gun and dried in
the oven at low temperature until a film was formed on
the electrode surface.

4.7. Electrochemical Measurements. The electrochemical
measurements were carried out in a three-electrode configu-
ration unit (Figure 7(c)) using a platinum wire electrode and
a saturated calomel electrode (SCE) as a pair electrode and a
reference electrode, respectively. The electrochemical perfor-
mance of the materials was tested in a 1.0mol L-1 KOH solu-
tion using an electrochemical workstation (CHI760E)
(Figure 7(b)) at ambient temperature. It should be empha-
sized that, in order to make our tests more meticulous, the
1M electrolyte was prepared by high purity KOH, which
concentration was 99.9%. The polarization curves were
obtained by linear sweep voltammetry (LSV) at a scanning
rate of 5mV·s-1. The measured potentials vs. SCE were
turned into vs. reversible hydrogen electrode (RHE) accord-
ing the equation: ERHE = ESCE + 0:231 + 0:0591pH. Plot
the LSV curve as the logarithm of the standard potential
and current density to obtain the Tafel diagram, and the
Tafel is calculated by the equation:

η = a + b × log j, ð1Þ

where η represents the overpotential, a represents the
Tafel constant, b represents the Tafel slope, and j represents
current density.
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