
Advances in Computational Mathematics 5(1996)417-442 417 

Construction of C 2 Pythagorean-hodograph 
interpolating splines by the homotopy method 

G u d r u n  Alb rech t  

Mathematisches Institut, Technische Universitiit Miinchen, D-80290 Mfmchen, Germany 

E-mail: albrecht @ mathematik.tu-muenchen.de 

R ida  T. F a r o u k i  

Department of Mechanical Engineer#lg and Applied Mechanics, University of Michigan, 

Ann Arbor, M1 48109, USA 

E-mail: farouki@engin.umich.edu 

Received 6 February 1995; revised 21 September 1995 
Communicated by T. Lyche 

The complex representation of polynomial Pythagorean-hodograph (PH) curves allows the 
problem of constructing a C 2 PH quintic "'spline" that interpolates a given sequence of points 
P0, Pt, .- . ,  Pu and end-derivatives d o and du to be reduced to solving a "tridiagonal" system of 
N quadratic equations in N complex unknowns. The system can also be easily modified to 
incorporate PH-spline end conditions that bypass the need to specify end-derivatives. Homo- 
topy methods have been employed to compute all solutions of this system, and hence to con- 
struct a total of 2 ~+~ distinct interpolants for each of several different data sets. We observe 
empirically that all but one of these interpolants exhibits undesirable "looping" behavior 
(which may be quantified in terms of the elastic bending energy, i.e., the integral of the 
square of the curvature with respect to arc length). The remaining "good" interpolant, how- 
ever, is invariably a fairer curve-having a smaller energy and a more even curvature distribu- 
tion over its extent-than the corresponding "ordinary" C 2 cubic spline. Moreover, the PH 
spline has the advantage that its offsets are rational curves and its arc length is a polynomial 

function of the curve parameter. 

1. I n t r o d u c t i o n  

P y t h a g o r e a n - h o d o g r a p h  ( P H )  curves  are a nove l  class o f  p a r a m e t r i c  curves,  

su i tab le  for  use in c o m p u t e r - a i d e d  design ( C A D )  appl ica t ions ,  t ha t  p rov ide  signifi- 

c an t  c o m p u t a t i o n a l  a d v a n t a g e s  o v e r  p o l y n o m i a l  curves  in genera l  [9]. T h e  p r o p e r -  

ties tha t  d is t inguish  P H  curves  f r o m  genera l  p o l y n o m i a l  curves  m a y  be s u m m a r i z e d  

as fol lows: 

• the arc  length o f  a P H  curve  can  be c o m p u t e d  precisely - i . e . ,  w i t h o u t  numer i ca l  

q u a d r a t u r e - b y  s imply  eva lua t ing  a p o l y n o m i a l  [5]; 

O J.C. Baltzer AG, Science Publishers 



418 G. Albrecht, R.T. Farouki / C PH sptines 

• the offsets to any PH curve (the loci of a point that maintains successive fixed 
distances from it) are rational curves, and can thus be represented without 
approximation in existing CAD systems [5]; 

• the "bending energy" of PH curves-i.e., the integral of the square of the curva- 
ture with respect to arc length-admits a closed-form expression in terms of 
rational functions, arctangents, and natural logarithms that is amenable to 
optimization with respect to free parameters [7]; 

• in the interpolation of discrete point/tangent data, PH curves typically yield 
fairer loci-exhibiting smoother curvature profiles-than the "ordinary" poly- 
nomial curves [7]. 

Further details on these attributes may be found in the cited references. 
A crucial requirement in establishing the PH curves as a practical design medium 

is the provision of algorithms that offer intuitive geometric means to construct and 
manipulate these curves, while shielding the user from the formidable algebra that 
such functions nominally incur. Steps toward fulfillment of this goal-in terms of C I 
point/tangent data interpolation-were reported in [5,7,8] but thus far they fall short of 
the commonly-accepted minimum level of flexibility for any free-form design 
scheme, namely, C 2 interpolation of an ordered sequence P0, P l , . . . ,  PN of points. 

Actually, systems of equations defining C 2 piecewise-PH quintic "splines" that 
interpolate points P0,P~,..-,PN were already formulated in [5], but as a conse- 
quence of the real representation for PH quintics adopted therein, these equations 
transpired to be unduly cumbersome and were abandoned. The subsequent intro- 
duction of complex representations, and the dramatic simplifications in construct- 
ing and analyzing PH curves that ensue, prompts us to re-examine the C a 

interpolation problem from this perspective. 
The organization of this paper is as follows. In section 2 we develop the com- 

plex-form C 2 continuity condition for two PH quintic arcs that share an endpoint. 
We further show that, when interpolating a sequence of N + 1 points together with 
derivatives at the first and last point, the satisfaction of C 2 continuity at each node 
is achieved upon solving a "tridiagonal" system of N quadratic equations in N 
complex variables (only three consecutive unknowns appear in each equation). 
Since the system apparently has no simple closed-form solution, and we wish to 
investigate the full spectrum of C 2 PH splines, we formulate homotopy methods 
in section 3 that yield all solutions. 

The system may be modified, as described in section 4, to incorporate PH spline 
end conditions that circumvent the need to specify end-derivatives. As observed in 
the examples of section 5, the governing equations for PH splines are exceptionally 
well-conditioned: in double-precision arithmetic one typically obtains 14 or 15 
accurate decimal digits. Among the 2 'v+l distinct PH splines interpolating given 
data, we observe a unique "good" solution that exhibits a smaller bending 
energy-and a correspondingly fairer visual appearance-than the "ordinary" 
cubic spline. Finally, section 6 summarizes our results and identifies issues that 
are worthy of further investigation. 
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2. C o m p l e x - f o r m  C 2 cont inu i ty  condi t ions  

419 

We shall find it convenient [6] to express plane polynomial curves as complex- 
valued polynomials r(t) = x(t) + iy(t) of a real parameter t. If the derivative or 
hodograph of such a curve is the perfect square of some complex polynomial 
w(/) = 4-[u(t) + iv(t)], i.e., 

r'(t) = x'(t)+ iy'(t) = w2(t) = uZ(t)- v2(t) + i2u(t)v(t), (1) 

we say that r(t) is a Pythagorean-hodograph curve (in particular, it is a regular PH 
curve if the polynomial w(t) has relatively prime real and imaginary parts: 
gcd(u, v) = 1). Evidently the Cartesian components x'(t) and y'(t) of the hodo- 
graph r'(t) then satisfy the Pythagorean condition 

X'2(t)  + y ' 2 ( l )  ~ cr2(t), (2) 

where ~(t) denotes the polynomial u2(t)+ v2(t). Equation (2) gives rise to the 
attractive properties of PH curves enumerated in section 1. 

The case where we take w(t) to be the quadratic 

w(t) = + [ w 0 ( 1 - t )  2 + w , 2 ( l - t ) t + w 2 t  2] (3) 

with Bernstein coefficients w0, w~, w2 yields a PH quintic 

r(t) = Z Zk (1 -- t)S-kt k 
k=0 

upon substituting into (1) and integrating. The complex B6zier control points 
Zk = Xk + iYk may be expressed [6] in terms of these coefficients as 

1 
z l  = Zo + Wo 2 , 

1 
z2 = zl + ~  WoWl, 

2 w 2 + WoW 2 
z3 = z2 -t 15 ' 

1 
Z 4 = Z 3 -'~5 W1W2' 

1 
z5 = z4 + ~ w~, (4) 

where the constant of integration z0 is arbitrary. Note that the position of the final 
control point relative to the initial one is given by 

1 w 2 + ~ W o W , + 2 w ~ + w ° w 2 + l w , w 2 + l  w~ (5) 
z5 - z0 ---- ~ 15 5 " 

The problem of Hermite interpolation to given end-point/derivative data by 
individual PH quintic arcs was thoroughly investigated in [8]. We are concerned 
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here with how a sequence of such interpolants may be pieced together to yield a 
curve that passes through given points with second-order continuity. Previous 
attempts [5] to solve this problem proved unsuccessful; we will now show that 
the complex formulation offers a simple and tractable approach. 

Suppose P0, P~,.--,  Pu is a sequence of  N + 1 points (complex values) that we 
wish to interpolate by a C 2 piecewise-PH-quint ic  curve. Let rk(t) for t E [0, 1 ] 
be the constituent arc of  this curve between consecutive points Pk-t and Pk- We 
denote the B6zier control points of this arc by 

Zk,0, Zk, l ,  Zk,2, Zk,3, Zk,4, Zk,5, (6) 

and if it is to have a Pythagorean hodograph,  these points must be expressible in the 
form (4) in terms of  three complex values 

(--1)'kWk,0, (--l)'*Wk,1, (--1)'kWk,2 (7) 

for k = 1 , . . . ,  N. To interpolate the points Pk-~ and Pk, we clearly must have 

Zk,0 = P~-l and Zk,s = Pk" (8) 

2.1. ConthTuity equations 

Consider now the imposition of  C ~ continuity at the juncture of  arcs rk(t) and 
rk+l (t). We require that 

r[.(1) = r~.+,(0) 

for k = 1 , . . .  , N -  1. Since r[.(t) = w~.(t) and r~+l(t) = w~.+,(t), where Wk(t) and 
Wk+I (t) are quadratics with Bernstein coefficients 

(--1)'kWk,0, (--1)~kWk,1, (--1)'kWk,2, 

and 

(--X)'~+'Wk+l,0, (--1)'k+'Wk+l,i, (--1)'k+'Wk+l,2, 

we can achieve C ~ continuity for k = 1 , . . . ,  N - 1 by taking 

wk+l, 0 = ( -  l)i~ Wk,2, where ik E {0, 1 }. (9) 

Consider next the imposition of  C 2 continuity. The first derivatives of  adjacent 
arcs k and k + 1 are given by 

t 2 ]2 r~( t )  [Wk,0( l  -- t) 2 + Wk,12(1 -- t ) t  q- Wk, 2 , 

, = t 2 ]2 (10)  rk+l(t) [ Wk+l,0 (1 -- t) 2 + Wk+l,I 2(1 -- t)t + Wk+l,2 • 

By differentiating the above, it can be seen that the C 2 conditions 

r~,'.(1) = r~+l(0) 
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for k --- 1 , . . . ,  N - 1 are equivalent to 

2Wk.2 = Wk, t + (--l)ikWk+l,l. (11) 

Note that the conditions (9) and (11), with i k = (ek + £k+l) mod 2, yield C o and 
C t continuity, respectively, of  the polynomial wk(t) at t = 1 with the polynomial 
wk+~ (t) at t = 0. These conditions thus guarantee C 1 and C 2 continuity of the seg- 
ments rk(t) and rk+l (t) at their juncture. 

We now define three sets of N complex values c0 , . . . ,  eN-~ and b l , . . . ,  bN and 
a l , . . . ,  aN by setting 

ck-1 := wk,0, bk := Wk, l, a/, := wk,2 (12) 

for k = 1 , . . . ,  N. Consequently, the conditions (9) and (11) read 

C k = ( - - l ) i k a k  and 2ak = bk -t- (--1)i~bk+l (13) 

where ik ~ {0, 1 } for k = 1 , . . . ,  N - 1. The above amount  to 2N - 2 equations for 
3N unknowns,  e0, . . .  ,CN-I and b l , . . .  ,bN and a l , . . .  ,aN. Now a further N equa- 
tions arise from the condition that, for each arc rk(t), the chosen values (12) and 
the endpoints (8) must be consistent with (5). This gives 

3c~._, + ck-lak + 3a~, + 3(ck_l +ak)  bk + 2b 2 

= 15 (Pk - Pk-1) (14) 

for k = 1 , . . . ,  N. We thus have a total of  3N - 2 equations, namely (13) and (14), 
for the 3N unknowns Co, . . . ,  eU-~ and b l , . . . ,  bN and a~ , . . . ,  aN. 

As in the case of  "ordinary"  splines, we need additional end conditions in order 
to close the system. We defer the detailed treatment of  end conditions to section 4, 
and at present consider only the simplest approach, namely, specifying values d0 
and du for the end derivatives: 

e02 = r',(0) = do and aN = r~v(1) = tiN, (15) 

i.e., we assign complex values ab initio to e0 and aN. 
Equations (13) and (14) are equivalent to a far more cumbersome system-pre- 

viously quoted as equations (38) and (39), respectively, in [5]-that arises from 
the real formulation of  PH quintics. Note, in particular, that the linearity of  equa- 
tions (13) is specific to the complex formulation. 

Suppose that e0 and aN are prescribed. Then from equations (13) we can substi- 
tute e k_ l = ½ [ ( -  1 )ik_t bt,_ l + bk ] and ak = ½ [ bk + (-- 1 ),k bk+l ] into equations (14) in 
order to express the latter in terms of  b~, b2 , . . . ,  bN only. This gives the system of 
quadratic equations 

3b~._~ + 27b 2 + 3b~+~ + 13(--t)i~-~bk_~bk + 13 (--1)ikbkbk+l 

+ ( -1 )  ik-'+ik bk_,bk+l = 60 (Pk -- Pk-,) (16) 
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for k = 2 , . . . ,  N - 1, while for the cases k = 1 and k = N we have 

17b~ + 3b~ + 12(-1)i 'b,  b2 + 14c0b, 

+ 2(-1)i'c0b2 + lZe~ = 60(p~-P0) ,  

17b 2 + 3b2_1 + 12(-1)iu-'bubu_l + 14aNbu 

+ 2(--1);N-~aNbN-1 + 12a 2 = 60(pN--PN-I) 

(17) 

(18) 

where ik E {0, 1 } for k = I , . . . ,  N - 1. 
In section 2.2 and section 2.3 we will show that, without loss of generality, one 

may set ik = 0 for k = 1 , . . . ,  N - 1 in the system of equations (16)-(18), and that 
this system has only finite solutions. The reader interested in practical implemen- 
tation details may proceed directly to section 3. 

2.2. Equivalence of  the 2 N-l equation systems 

For each choice of ( i , , . . . ,  iu_,) E {0, 1} N-' in (16)-(18), we have a system of N 
simultaneous quadratic equations for the N quantities b l , . . . ,  bu, with at most 3 
consecutive unknowns appearing in each equation. If these equations can be 
solved for b l , . . . ,bN,  the values of ej, . . . ,CN_l and al , - - - ,aN-i  follow directly 
from equations (13). 

There are altogether 2 N-1 such systems, and as they are all of similar structure- 
differing only in the signs of certain coefficients-the question naturally arises as to 
whether their solutions might be closely related. We will show that, in fact, the solu- 
tions to any of these systems yield a unique set of 2 N+l distinct PH splines, and it 
will therefore suffice to consider just one of the choices ( i l , . . . ,  iN_l) E {0, 1} u-1. 

By making the substitution ~ 

N-1 

bk --~ I I ( - -1)9  bk for k =  1 , . . . , N  (19) 
j=k 

in equations (16)-(18) and allowing for the sign ambiguity co = +v~0 in the end-  
conditions (15), one obtains the system 

17b~ + 3b~ + 12bib 2 + 14cob ~ + 2cob2 + 12c~] 

= 60 (Pl - P0), (20) 

3b2_1 + 27b 2 + 3b~+l + 13bk_lbg + 13bkbk+l + b k _ l b k + l  

= 60(pk--pk_~) for k = 2 , . . . , N -  1, (21) 

17b 2 + 3b2_1 + 12bNbN_l + 14aNbN + 2aNbN_L + 12a 2 

= 60 (PN - PN-,), (22) 

For  k = N,  this becomes bu --* b u. 
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which evidently corresponds to the special choice ( i l , - . . , i N - l ) =  (0 , . . . ,0 )  in 
equations (16)-(18). 

This means that any solution { bk }k=3....,,v of (20)-(22) induces a solution 

{ / be := 1-I(-1)  ~' bk (23) 
j=k k=~,...,N 

of the "generic" system (16)-(18). Since we also know by Bezout's theorem-see, for 
example, [11, p. 230]-that the systems (16)-(18) all have the same number of solu- 
tions (counted with multiplicity over the projective domain), namely 2 u, we can 
restrict our attention to the solution of just one of these systems-equations (20)- 
(22), say. 

We now denote by Ok, ak the quantities from (13) related to the solution 
b l , . . . ,  bN of the system (20)-(22) defined by ( i l , . . . ,  i~_l) = (0,_..,  0 ) ,and  simi- 
larly by ~-k, fik those related to the corresponding solution b~,...,b~v of the 
system (16)-(18) for an arbitrary choice of (il, . . . , ilv-l).  Clearly, we have 
co 2 = ~:~ = do and a~ = ~,~ = dN. 

To obtain the B~zier control points (6) of the arc r~(t) we need, according to 
expressions (4), the complex values 

cT,-1, Ck_lbk, b 2, Ck-lak, bkak, aM (24) 

in the case of the system (20)-(22), and 

~z~-l, Ck-lb~, b~, ~Zk-1"~k, f~kak, a~, (25) 

in the case of (16)-(18). But from (13) and (23) we have 

N - I  N-1  

~zk = I ~  ( -  1)~ ck and "~k = I ~ ( - I ) ~  ak 
j = k + l  j=k 

for k = 1 , . . . ,  N - 1, and using these relations it is easy to verify that the corre- 
sponding quantities in (24) and (25) are identical. Thus, not only do the systems 
(16)-(18) have closely related solutions, but in all cases these solutions yield exactly 

the same set of  interpolating C 2 PH splines. 

Hence, by writing a0 := e0, we may completely solve the C 2 PH spline interpo- 
lation problem with prescribed end derivatives a0 = do and a~v = dN by finding 
all solutions to the following system of quadratic equations: 

17b~ + 3b~ + 12b~b2 + 14a0b~ + 2a0b2 + 12a02 

= 6 0  (Pt - P 0 ) ,  

3b2_1 + 27b~ + 3b~.+l + 13bk_lbk + 13bkbk+l + bk-lbk+l 

= 60(pk--Pk-l) for k = 2 , . . . , N - 1 ,  

17b~ + 3b~v_t + 12bNb~_l + 14aNbN + 2aNbN-1 + 12a 2 

= 60 (Pu - PN-,) • (26) 
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Note  that,  because of  the choice ( i l , . . . ,  iN-i) = (0 , . . .  ,0), we need only be con- 
cerned with a0 , . . .  , aN and b t , . . . ,  bN, and equations (13) become 

ak = ½ (bk + bk+l) for k = 1 , . . . ,  N - 1. (27) 

2.3. Absence o f  solutions at infinity 

Each of  the quadrat ic  equat ions (26) can be interpreted geometrically as a hyper- 
quadric- i .e . ,  a hypersurface of  second o rde r - in  N-d imens iona l  complex projective 
space, pU. The homogeneous  representat ion of  these hyperquadrics in pN is 

obtained by introducing the homogenizing variable bu+l via the substi tution 

bk ~ bk/bN+l for k = 1 , . . . ,  N in each of  the equations (26) and then multiplying 
through by b~v+l. 

The  problem of  finding the solutions of  the system (26) is thus equivalent to 
determining the intersection points  of  the corresponding hyperquadrics.  Whereas 
such intersections might,  in general, lie in both  the affine space R N (i.e., 

bN+l ¢ 0) and in the hyperplane at infinity (bN+l = 0), we will show that  our  parti- 
cular system (26) never has solutions at infinity. 

To  establish this, we must  verify that  the system 

H I ( b I , . . . , b N )  := 17b~ + 3b~ + 12bib 2 = 0 ,  

H~(bj ,  , bN) := 3 b 2 • .. k-i + 27b~. + 3b~+l + 13bk_lbk + 13bkbk+l 

+ bk-lbk+i = 0 for k = 2 , . . . , N -  1, 

+ 3b~v_l + 12bubN_) = 0,  H N ( b l , . . . , b N )  := 17b~v 

obtained by setting bu+j = 

(28) 

0 in the homogeneous  version of  (26), admits  only the 
trivial solution 2 bl . . . . .  b~ = 0. 

We can find solutions of  (28) by successively eliminating the variables b), b2, . . . ,  
bN_l, and thus reducing the system of  N quadrat ic  equat ions to one equat ion of  
order 2 N in bu. According to [10, p. 87], this may be done by successively building 
Sylvester's resultants 3 

R~ = Resultantb~_~ (R~_l, Hk) (29) 

with respect to bk-1 for k = 2 , . . . ,  N, where RI = H1 and RN = 0 represents the 
above -men t ioned  equat ion of  order 2 N in bN. 

N o w  the first step is to show that  Rk for k = 1 , . . . ,  N - 1 is of  the form 

2 k 
~--~  ~2k--r t r  

Rk = 2.., ak,r ag ak+l (30) 
r = 0  

for certain real coefficients ak, ,  Equat ion  (30) is proved by induct ion on k. RI = HI 
is obviously of  the form (30). By assuming (30) to be valid for a certain k in the 

2 The values (bl .. . .  , bu, bu+l) = (0,..., 0, 0) do not identify a proper point of pU. 
3 For the formal definition of Sylvester's resultant see e.g. [10, p. 86]. 



G. Albrecht, R.T. Farouki / C 2 PH splines 425 

induction step, we have to show that Rk+ ) has the form 

2k+ I 
2 TM r 

Rk+l = E Otk+l,r b k + l -  b~+2 (31) 
r=0 

for certain coefficients ak+l , .  By definition, Rk+ 1 = Resu l tan tbk (Rk ,Hk+l )  is the 
resultant of the polynomials 

2 k 

Rk ~ L2k--r . r  
OLk, r Dk Dk+l ) 

r=0 

Hk+ I = 3 b 2 4- (13 bk+ 1 4- bk+2) b k 

+ 27b2+1 + 13bk+lbk+2 4- 3b2+2 

with respect to bk. By using the abbreviations 

!} = %.b~+, and qj = ~ @. b~+"l b"k+Z (32) 
r=0 

with suitable real values 7u and @ for i = 0 , . . . ,  2 k+l and j = 0 , . . . ,  2 k 4- 1, Rk+ 1 

may be written (see, e.g., [10, p. 86]) as the determinant 

q~ q~ q~ 

qO q~ q02 

• ~(o) 
g k +  1 ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ :  L~.k+ 1 

q~ qo l q02 

! ° . . . . . . . . . . . .  lo 

of order 2 k + 2. Since elementary row operations do not alter the value of a deter- 
minant, we now subtract suitable multiples of the first and second rows from the 
(2 k + 1)-th and (2 k + 2)- th rows, respectively, and obtain 

qo ° qo l q~ 
qO q~ qo 

. . . .  ° , ,  . . . . . . . . .  . . °  . . . . . . . . . . . . . . . . . . . .  

R(~) k+t : ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
q0 ° qo' q0 

ql q~ I~ . . . . . . . . . . . .  i~ k 

ql q~ 1o 3 . . . . . . . . . .  10 2* 

By continuing this process (with R~! 1 generated by subtracting a suitable multi- 
ple of rows j and j 4- 1 of R ~  ) from*rows 2 k 4- 1 and 2 k 4- 2, respectively) after 
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2 k - 1 steps we have 

R(2k-l) k+l 

which is equal to 

m 

qo ° qo l q~ 

qo ° q~ qo 2 

qo ° q~ q~ 
q2 k- 1 9~ 

zk-I q~ -X  
2 k-  1 2 k 

q2 k-I q2 k I 

R(2 k) , 0x2k/ 2 k 2 k 2k--I 2k+lx 9 TM 

k+l : ~qo) [q2kq2k--I -- q2k--lq2k ) = q~k+I " 

According to (32), the above final value for Rk+l has the desired form (31). 

In the same way, it may now be shown that RN, the resultant of  the polynomials 

H N and RN_ l with respect to bN-l, has the form 

2 N 
RN = 7 bN 

for a certain non-ze ro  real value 7. By back-subst i tut ing the solution bu = 0 of  

RN = 0 into equations (28), the values bN_l . . . . .  bl = 0 are obtained. 4 

3. So lu t ion  by the h o m o t o p y  m e t h o d  

Homotopy  methods (also known as "cont inuat ion"  or "embedding"  methods) 

are numerical procedures that determine a l l  solut ions-real  or complex- to  a 

given system of  N non- l inear  equations in N variables [1,13]. 

In order to investigate the geometrical nature of  the multiple solutions to the C 2 

p iecewise-PH-quint ic  interpolation problem, we have made use of  such methods 

to systematically compute  and compare  all solution loci. To construct the interpo- 

lants, we need to find all solutions of  the system 

fl(bl, , b u ) =  17b~ + 3b2 2 + 12bib2 

+ 14aobl + 2aob2 + 12ao 2 

- 6 0  (p~ - po) = o ,  

f j ( b l , . . . , b u )  = 3b~_x + 27b~ + 3bj2.+l 

+ 13bj ibj + 13bjbj+l + bj_lbj+l 

- 6 0 ( p j - p j _ t )  ---- 0 for j =  2,. .. , N -  l , 

4 The method used here applies specifically to tridiagonal systems of  equations. For  a general system 

of  N polynomial  equations in N variables, successive application o f  the univariate resultant (29) does 

not ordinarily lead to a final equation RN = 0 dependent only on the single variable bu. A multivariate 

resultant [3] is required to accomplish this. 
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fN(bl, . . . ,bN) = 17b 2 + 3b2_, + 12bNbN_, 

+ 14aNbN + 2aNbN_l + 124 2 

-- 60(pN-- PN-1) = 0 (33) 

of N quadratic equations in N complex unknowns b ) , . . . ,  bN. If a0 and aN are given, 
we know by Bezout's theorem that there are 2 N solutions altogether (counted with 
multiplicity over the projective domain; see section 2). 

Now the values a 0 and aN appearing in f l (b l , . . . ,bN)  and fN(bl,-.. ,bN) are 
determined by the given end-derivatives do and ds, they must satisfy 

a~ = do and a 2 = tiN. (34) 

Since the above conditions yield two complex values for each of a 0 and aN, it might 
appear that there are 2 N+2 sets of values a0, • • •, as and bl,. • •, bN satisfying (33) and 
(34)-together with equations (27)-that define C 2 piecewise-PH-quintic interpo- 

lants to the data Po,-. . ,  PN and do, tiN. 
However, if values a0 , . . . ,  aN and b l , . . . ,  bN satisfy these equations, then so also 

do - a 0 , . . . , - a N  and - b l , . . . , - - b N ,  and it is clear from expressions (10), (12), and 
(I 3) that these two solutions yield exact ly  the same curve. As the two values defined 
by (34) for each of a0 and aN differ merely by the factor - 1, inserting all four com- 
binations of these values into (33) would result in a systematic duplication of 
the interpolant curves. By choosing a specific value for (say) aN in combination 
with the two possible values of a0, one generates 2 N+l distinct interpolants without 
replication. 

We have implemented two predictor-corrector path-following programs to 
solve the system (33). The first, described in section 3.1, is "customized" to the pro- 
blem at hand:-it makes explicit use of complex arithmetic and the tridiagonality of 
the Jacobian. For simplicity, this code uses only constant, linear prediction steps in 
the homotopy parameter. The second program, described in section 3.2, was 
adapted from an established code [16]. It employs a higher-order adaptive stepping 
procedure with respect to arc-length along the homotopy path, and is implemented 
in real arithmetic. 

3.1. Cus tomized  predic tor-corrector  pa th - fo l l owing  

By deleting certain terms from each of the equations f j (b~ , . . . ,bN)= 0 for 
j = 1 , . . . ,  N, the system (33) can be reduced to an "initial system" that admits a 
simple closed-form solution (see, e.g., [15]). In particular, we take 

g l (b l , . . . ,bN)  = 17b 2 + laa0b, + 12a20 

- 6 0 ( p l - p 0 )  = 0, 

gj(bl , . . . ,bN) = 27b} - 6 0 ( p j -  pj_,) = 0 

for j = 2 , . . . ,  N - 1, 
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gu(b l , . . . , bN)  = 17b~v + 14aNbN + 12a2N 

- 60 ( P N  - -  P N - I )  = 0 

as our starting system-it  has the straightforward solutions 

(35) 

bl ---- -- 7a° + V/1020 (Pl -- P0) -- 155a0 ~ , 

17 

b j = ±  V/5 (pj - pj_,) for j = 2 , . . . , N -  1, 

--7aN :t: V /1020(pN-pN_, )  - 155a~v 
bN = 17 (36) 

By considering all combinations of  signs in the above expressions we obtain, in gen- 
eral, 2 N distinct sets of  starting values for the quantities b0 , . . . ,  bN. 

The homotopy method amounts  to "continuously deforming" the initial equa- 
tion system (35) into the desired system (33) while steadily tracking the motion 
of  the solutions from their initial values (36) during the deformation process. We 
shall use the simple homotopy defined f o r j  = 1 , . . . ,  N by 

h j (b l , . . .  ,bN, A) = A fj(b~,.. .  ,bN) 

+ (1 -- A) z g j ( b t , . . . , b N )  = 0 (37) 

where A is a real "homotopy  parameter"  and z is a non-ze ro  complex number.  As 
A increases from 0 to 1, expressions (37) yield a continuous transformation from the 
start system (35) with known solutions (36) to the system (33) that we wish to solve. 
Corresponding to each A value, the system (37) will possess 2 ~ solution sets 
b 1 ( A ) , . . . ,  bN()~ ) that we can track from the known solutions (36) at A = 0 to the 
desired ones at A = 1. 

The complex number z in (37) is a point on the unit circle, z = exp(i~b), cor- 
responding to a randomly-chosen  angle 4'. Morgan and Sommese [14] and 
Zulehner [17] show that, for all but a finite set of angles ~b, the 2 ~ solution 
paths bl(A), . . . ,bN(A) are regular for 0 < A < 1, i.e., the Jacobian matrix M 
with elements 

0hi 
MJk = Obk for 1 <_j,k < N (38) 

is non-s ingular  for each position along these solution paths. For the functions (37), 
the Jacobian matrix is tr idiagonal-i ts  non-zero elements are 

Mk,~-i = A(6bk_l + 13bk + bk+l),  

M ~  = 13A(bk_, + bk+,) + 5 4 ( A +  (1 - A)z)bk, 

Mk.k+l = A(b~,_l + 13bk + 6bk+l) 
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for rows k = 2 , . . . ,  N - 1, while for rows 1 and N we have: 

Mll = 12Ab2 + (A+  (1 - A)z)(34bl + l aa0) ,  

M12 = A(12bl + 6b2 + 2a0) ,  

MN,N-I = A(6bN-l + 12bN + 2aN),  

MNN = 12AbN_l + (A+  (1 - A)z) (34bN + 14aN). 

In order  to trace solution paths f rom the initial posit ions (36) at A = 0 to the 
desired solutions at A = 1, we employ a predic tor -correc tor  method.  For  a step 
AA in the h o m o t o p y  parameter ,  the prediction stage consists of  comput ing  incre- 

ments  A b e , . . . ,  AbN to the current  b l , . . . ,  bN values that  correspond to a linear 
expansion of  equations (37) about  the current  position. In other words, we step 
a distance AA along the tangent direction to the one-d imens iona l  locus in 
CNx R defined by equat ions (37). This gives rise to the tr idiagonal (linear) 

system of  equat ions 

N 

Mjk Abk = (zg i - fj) AA,  j : 1 , . . .  , N  (39) 
k=l 

for the increments A b e , . . . ,  AbN, where it is unders tood  that  the Jacobian matrix 
elements (38) and the functions f / a n d  gj are to be evaluated at the current position 

( b t , .  • • ,  bN,  A) .  

Owing to the curvature of  the solution locus, the prediction step generally incurs 
an appreciable deviation f rom the precise solution of  (37) at A + AA. To compen-  
sate for this, we employ N e w t o n - R a p h s o n  correction i terations 

b(r+D ~) k = b + bb k for k =  1 , . . . , N  

and r = 1 ,2 , . . . ,  where the starting approximat ion  bl °), • •. ,"Nh(0) corresponds to the 
ou tcome of  the predict ion step. At  the r - t h  iteration, the increments 6b~, . . . ,  o"b N 

are solutions to the tridiagonal system 

N 

nnCr) ~bk - h~ ~), j :- 1, N (40) 
k=l 

h! r) being evaluated at (bl r), h(r) the matrix elements ~(~) and functions -7 • - - ~ u  N , "*jk 

A + AA). The  correction iterations proceed until the quanti ty 

~ r )  = ] hj(blr) , . . . ,  b~) A + AA) 12 ( 4 1 )  

diminishes below a prescribed tolerance value: typically, only a few iterations are 

needed when this value is set to ~ 10 -~° and AA is not  too large. 
Note  that  both  the predict ion step (39) and correction iterations (40) each incur 

only a tridiagonal linear system, which can be solved [4] in just  3N - 3 addit ions and 

multiplications and 2N - 1 divisions. Once a solution b l , . . . ,  bN to (33) has been 



430 G. Albrecht, R.T. Farouki / C 2 PH splines 

determined to sufficient accuracy, for given a0 and a/v values, one computes the 
remaining values a l , . . . ,  at¢_~ from (27). Finally, integrating the hodographs (I0) 
with rl(0) = P0 and rk(1) = rk+l(0) for k = 1, . . .  , N -  1, completes the construc- 
tion of a C z PH-quintic  spline. This process is repeated for each of the 2 u sets 
of starting values (36) and the two values of (say) a0. 

3.2. G enera l  p r e d i c t o r - c o r r e c t o r  p a t h - f o l l o w i n g  

We now briefly describe a homotopy scheme for genera l  systems of N polyno- 
mial equations in N complex unknowns, and we compare it to the "customized" 
one described above. Among the many available predictor-corrector path-follow- 
ing methods [2], we selected the one implemented in the HOMPACK [2,t 6] soft- 
ware package. If dy is the degree of the polynomial fj in (33), the "initial" system 
reads 

gj(bl,. .  , bN) = aj. aj aj • ujaj  - v j  = 0 for j :  1 , . . . , N  (42) 

where uj and vj are randomly chosen complex values. For each j ,  equation (42) has 
the straightforward solutions 

~ e x p ( i 2 ~ . k ~  for k = O,. . . , d  i -  1. 
uj \ a j ]  

The homotopy map is then given by 

hj(A, b l , . . . , b N )  = Afj(bl , . . . ,bu)  + ( 1 -  A) gj(bl , . . . ,bN) = 0 (43) 

where A E [0, 1]. By introducing the real  2N-dimensional vectors 5 

Re(hi) / /Re(f l )  ~ Re(g1) / /Re(h i )  

Im(b,) [Im(f,)/ Im(g,) Jim(h,) 
B : =  " , F : =  " , G : =  " , H : =  " 

Re (bN) | Re ifN) ] Re (gN) | ReihN ) 
Im (bN) \ Im (fN) ] Im (gN) \ Im (hu) 

the homotopy path, which we parametrize with respect to its arc length s, may be 
written as 

B(s) )' (44) 
and it satisfies 

_= 0 .  

The algorithm comprises four phases-prediction, correction, estimation of step 

s Re (x) and Im (x) denote the real and imaginary parts of the complex value x. The complex contin- 
uation system (43) is thus replaced by a real one, and the problem is solved in 2N-dimensional real 
space. For details, see [13, pp. 284-290]. 
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size, and computation of the solution at A = 1. For the latter two phases, we refer 
the reader to [16]; here we briefly describe only the prediction and correction step to 
allow a comparison with the customized algorithm. For the prediction of the i - th  
point 6 on the homotopy path (44) the cubic Hermite interpolant, uniquely deter- 
mined by the previous two points and tangent vectors, 

(A(si_2),B(si_2)) , (~s (Si_2),~s (Si_z)) 

and 

(d~ dB (si-1)) 

is formed and evaluated at si = s,._l + As. The resulting point, denoted by 
(A (°) (s,.), B(°)(si)), is then used as a starting approximation for Newton-Raphson 
correction iterations 

= t, + 

for r = 0, 1,2, . . .  At the (r + 1)-th iteration, the increments (rA, 6B) are solutions 
to the linear system 

DH~r) ~B = ' 

where/4,.(r) and the 2N x (2N + 1)-dimensional Jacobian DH~ ~) (which has full 
rank along the homotopy paths for randomly chosen coefficients uj, vj in (42) - 
see, for example, [16, p. 302]) are evaluated at (A(')(si), BCr)(si)). 

To determine the general solution of the linear system (46), we require a particu- 
lar solution P(') E R 2N+l o f  the inhomogeneous system and a vector V (') E R 2N+I in 
the one-dimensional kernel of DH~ ~). They are calculated by QR-factorization of 
the matrix DH} ~) in each step. From the totality of solutions P(r) + #V (~) with 
Iz E R, the one with the minimum norm is then selected for the increments 
(6,k, rB). Once such a point (/~(k+l)(si),B(k+l)(si)) has converged sufficiently close 
to the homotopy path (i.e., within a prescribed error bound), it is accepted as the 
i-th point on the path, and the vector V(k-ll/I I V (k-i) ]l calculated in the k-th iteration 
(45) is accepted as the unit tangent vector at this point. 

Although the general predictor-corrector path following method is far more 
sophisticated than the "customized" scheme described above, the latter was 
found to be more efficient and very reliable in practice. There was no discernible 
difference in the accuracy of the results generated by the two methods. 

6 For i = 2, only the tangent is used. 
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4. End condit ions  

In many contexts, the need to specify end-derivatives d o and dN in addition to 
the points P0, Pl,. • •, PN is a rather artificial requirement. It is desirable to formulate 
suitable end conditions for PH splines that circumvent this need. 

Three forms of  end condition are commonly enforced on the "ordinary"  C 2 
cubic spline-(i) quadratic end-spans;  (ii) the periodic end condition; and (iii) the 
" n o t - a - k n o t "  end condition ( so-named because enforcing C 3 continuity at the 
junctures of the first and last pair of  cubic segments implies that these pairs actually 
correspond to single cubic curves). 

We shall formulate analogs of  conditions (i) and (ii) for the PH splines. It is also 
easy (but somewhat more cumbersome) to derive conditions that ensure C 3 conti- 
nuity between the first and last pair of  quintic segments for PH splines, though it 
would perhaps be misleading to call these " ' no t - a -kno t "  condi t ions-for  brevity 
we shall omit the details. 

4.1. Cubic end spans 

The simplest means of  avoiding the need to explicitly specify do and dN is to force 
the initial and final spans to be cubic PH-curve  segments. 7 A cubic PH segment 
arises if the quadratic (3) defining the hodograph (1) is actually a degree-elevated 

linear polynomial, which corresponds [6] to the condition wl = ½ (w0 + w2). In 
terms of the quantities e0, . . .  , cN_ 1 and b l , . . . ,  bN and a l , . . . ,  aN defined by (12) 
this gives bl = ½ (c0 + at) and bN = ½ (ON-1 + a,v), and by using the relations (13) 
we can solve explicitly for c 0 and aN as 

co = ½ [3bl - (-1)~)b2] and aN = ½ [3bN--  (--1)'N-)bN-1]. (47) 

Substituting into (17) and (18), the latter equations can thus be replaced by 

13b~ + b~ - 2( -1) i l  bib2 = 1 2 ( p l - P 0 ) ,  

13b~ + b~v_l -- 2(--1)iN-'bNbN-1 = 12(pN--PN-1)- (48) 

For  each instance of  ( i1 , . . . ,  iN-t) E {0, 1} N-l the above equations, together with 
(16), again comprise a tridiagonal system of N quadratic equations for the N 
unknowns bl, • • •, bN. 

Now by substituting expression (19) into this system we obtain 

13b~ + b~ - 2bib2 = 1 2 ( p l - P 0 ) ,  

13b~ + b~_l - 2bNbN_l = 12(pN -- PN-l) (49) 

together with equations (21); this new system also corresponds to the special choice 
( i l , . . .  ,iN-l) = (0 , . . .  ,0) in (16) and (48). The same reasoning as in section 2.2 
(with (:0 = I ~ ~ l ( - 1 ) / J  c0 and "a N = aN) then leads, again, to the conclusion that 

7 These are actually portions of a unique curve, known as Tschirnhausen's cubic [9]. 
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all the systems defined by (16) and (48) yield exactly the same set of interpolating C 2 
piecewise-PH quintics. 

We may thus restrict our attention to just one of these systems-e.g., that defined 
by equations (21) and (49), which can be solved by the methods described in section 
3. For the starting system of section 3.1, g l (bl , . . . ,bN) and gN(bl, . . . ,bN ) are 
defined by retaining only the first terms on the left in each of equations (49), 
while gj(b), . . . ,bN) for j - -  2 , . . . , N -  1 are as in (35). 

Once the b~, . . . ,  bN values are known, we may obtain a0 = Co and a~, . . . ,  aN from 
equations (13) and (47). Since equations (47) are just linear, as compared to 
the quadratic equations (34) for the case of specified end-derivatives, there are 
in general just 2 N-1 (rather than 2 N+I) distinct PH splines having cubic end 
spans. Although the end-spans are now actually cubics, they will normally be 
represented in degree-elevated form as PH quintics. 

For open curves, the cubic end-span formulation is the most convenient means 
of avoiding the need to choose values for the end-derivatives do, dN. It can gener- 
ally be relied upon to produce more pleasing loci than even the most well-inten- 
tioned "guesses" for do and tiN. 

4.2. Periodic end condition 

Periodic end conditions are necessary when a closed C 2 curve is to be created, 
which may be indicated by coincidence of the initial and final point: PN = P0. At 
this common juncture of the first and last span, the continuity conditions 
r~v(1) = r't (0) and r~(1) = r'((0) yield the equations 

~ ° z 
aTv = c8 and aN -- aNbN = c0bl -- c , 

which may be solved for Co and aN in terms of bl and bu: 

Co = ½ [b) + and aN = ½ [bN + (50) 

where i0 ~ {0, 1}. By substituting the latter expressions into (17) and (18) we thus 
obtain 

3b~v + 27b~ + 3b~ + 13(-1)h blb2 + 13 (-1);°bNbl 

+ (--1) i°+i' bNb 2 = 60 (p, - P0), 

3b~_1 + 27b~v + 3bl + 13(--1)i~-IbN_ibN + 13(-1)i°bNbl 

+(-1)i°+/N-' bN_lbl = 60(pN--PN-,) .  (51) 

For each instance of ( i l , . . . ,  iN-l) E {0, 1} N-) the above equations, together with 
(16), amount to a system of N quadratic equations for the unknowns b l , . . . ,  bN. 
By again substituting (19) into (16) and (51) we obtain the system comprising 

3b~, + 27b~ + 3b~ + 13bib2 + 13bNbl 4- bNb2 

= 60 (Pl - P0), 
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3b~_i + 27b,~ + 3b~ + 13bN_,bu + 13bNbl -4- bN_,bl 

- 60 (PN -- PN-,) (52) 

together with equations (21)-this may also be identified with the special choice 
(il, . . . ,  is_l) = (0, . . . ,  0) in equations (16) and (51). 

Again, we need only solve the system defined by (21) and (52) to generate 
all distinct solutions of the C 2 PH quintic interpolation problem (reasoning 
as in section 2.2, with ~ 0 = I - ~ S l ( - 1 )  ~ ½[bl+l--[/U__ol(-1)~bN] and hN - 1  
[bs + ]~.U=o)(-1)')bl ]). Note, however, that this system-and hence its Jacobian- 
is no longer tridiagonal. Thus, a general purpose linear-equations solver is 
required to execute each prediction step and each correction iteration. 

Note that we choose the plus or minus signs in (52) according to whether i0 = 0 
or i0 = 1 in (50). For the starting system of section 3.1, we retain only the terms 
27 b~ and 27 bE on the left in (52). Once bl, b2, • • •, bN are known, the corresponding 
values a 0 = Co and a l , . . . ,  aN are given by (13) and (50). As in the case of specified 
end-derivatives, there are in general 2 N+l distinct C 2 periodic PH splines inter- 

polating points P0, Pl , . . . ,  PN (with PN ---- P0). 

5. Empir ical  results 

The "customized" homotopy method of section 3. I was coded up in a double-  
precision, complex-arithmetic FORTRAN program. The use of complex arith- 
metic, and the fact that little more than a tridiagonal solver is needed (except in 
the case of periodic end conditions) allowed a remarkably compact and bug-free 
implementation. Having no prior experience with the homotopy method, the 
authors were pleasantly surprised with its accuracy, efficiency, and reliability. 

The "general" homotopy method discussed in section 3.2 is available in the 
POLSYS polynomial system solver, a suite of FORTRAN subroutines in the 
HOMPACK software package [16,2]. This solver, originally designed for solving 
polynomial systems with real coefficients, was modified to deal with systems 
having complex coefficients. The option of projective transformation available in 
POLSYS for eliminating divergent homotopy paths (see, e.g., [16, p. 303] and 
[15, p. 124], which is useful for systems with solutions at infinity, was not needed 
for the system (33) we are concerned with because of the absence of solutions in 
the hyperplane at infinity (see section 2.3). 

For the particular system (33) we observed that the customized program and the 
POLSYS code produced solutions of comparable accuracy, though the former was 
less demanding in terms of cpu time and memory. The following discussion and 
examples, therefore, pertain to results generated by the customized program. 

Numerous tests have shown that the homotopy system (37) is, in general, exceed- 
ingly well-conditioned, allowing PH splines to be constructed to a very high level 
of precision (see the data in table 1 below). We have employed constant steps in the 
homotopy parameter, AA = 0.02, for the examples described herein. For most 



G. Albrecht, R.T. Farouki / C 2 PH splines 

Table 1 
Comparison of nodal derivatives and "gaps" for Example 1. 

435 

node 

I Azl ( 0.000000000000000, 
r~(1) ( 1.360779002855208, 
6(0) ( 1.360779002855208, 
r~(1) ( 5.632083355923054, 
r~(0) ( 5.632083355923054, 

2 Az 2 (-0.000000000000001, 
6(1) ( 2.048883028548189, 
r~(0) ( 2.048883028548189, 
r~(1) (-7.081869673180421, 
r~(0) (--7.081869673180421, 

3 Az3 ( 0.000000000000000, 
r~(1) ( 2.842303868097108, 
r~(0) ( 2.842303868097108, 
r~(1) ( 8.462769563261957, 
4(0) ( 8.462769563261962, 

4 Az, ( 0.000000000000000, 
~(1) (--0.755435263095192, 
~(0) (-0.755435263095192, 
r~(1) (-9.583644688862023, 
r~(0) (-9.583644688862023, 

5 Az5 ( 0.000000000000000, 
r~(1) (-1.735966775898855, 
~(0) (-1.735966775898856, 
r~(l) ( 4.743411905896337, 
4(0) ( 4.743411905896337, 

0.000000000000000) 
-2.652974680926679) 
-2.652974680926679) 
-0.182314923482134) 
-0.182314923482134) 

0.000000000000000) 
2.211132842356474) 
2.211132842356474) 
5.944174277861420) 
5.944174277861420) 
0.000000000000000) 
1.968545850008491) 
1.968545850008490) 

-7.740519332527053) 
-7.740519332527053) 

0.000000000000000) 
-2.914313055871553) 
-2.914313055871553) 

5.647009445446316) 
5.647009445446313) 
0.000000000000000) 

-1.230156974065111) 
-1.230156974065111) 
-3.811925035449617) 
-3.811925035449615) 

instances this choice transpired to be very conservative-considerably larger steps 
could have been safely used. However, we did find that large steps (AA > 0.1) 
could incur "jumps" between distinct solution paths during the predictor-correc- 
tor steps, which meant that not all of the distinct interpolants would be generated 
upon commencing with distinct solutions of the "start" system (35). 

The well-conditioned nature of the system (37) allowed the use of a tight toler- 
ance on the norm (41) that governs the Newton-Raphson correction iterations. We 
consistently employed 10 -12 for this tolerance value without encountering conver- 
gence difficulties. Note that the transformation of the "initial" system (35) into the 
"desired" system (33) through the homotopy (37) is not, in general, a monotone 
process: Figure 1 shows the variation of norms analogous to (41) for the f and g 
functions in a typical instance. 

We have observed empirically that, among the 2 N+I distinct C 2 PH splines inter- 
polating prescribed data (or 2 u-I for the cubic end-span case), all but one of these 
loci exhibits undesirable loops that do not agree with the intuitive "shape" of that 
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Figure 1. Variation of the f, g, and h function norms (solid dots, open dots, and smaller solid dots) 
during 50 equal steps of the continuation method. 

data. The remaining "'good" PH spline, however, is invariably a smoother or fairer 

locus than the ordinary cubic spline. 
To quantify these perceptions, two measures are employed to identify the 

"good" PH spline: the absolute rotation index and the energy integral 

Rabs • ~ ds and E = n2 ds, (53) 

n and s being the curvature and arc length. For PH splines, these integrals may be 
reduced analytically, as described in [7] and [8]. For the ordinary cubic spline, how- 
ever, numerical quadrature must be employed. 

In all examples we have tested, the PH spline with the minimum Rab s proved to 
also have the minimum E. We do not, however, believe that this is necessarily 
always the case, and the user may be called upon to judge as to which of these 
two quantities identifies the "better" interpolant-see [7] for an example in the sim- 
pler context of two-point  Hermite interpolation. 

Example 1 
We interpolate the points P0 = (-2.1, 1.8), Pl = (-3.1,0.0), P2 = ( -0 .3 , -0 .8 ) ,  
P3 = (0.7, 2.2), P4 = (3.4,0.5), P5 = (1.I , -0 .6) ,  P6 = (2.3,-2.4) by a C 2 PH-quin-  
tic spline with cubic end spans. Among the 32 distinct solutions, the "good" PH 
spline, as compared in figure 2 with the corresponding "ordinary" cubic spline 
using quadratic end spans, evidently has a much more pleasing shape. Inspection 
of the curvature profiles, shown in figure 3, corroborates this claim. 
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Figure 2. Comparison of PH quintic spline with cubic end-spans (solid) and "ordinary" cubic spline 
with quadratic end-spans (dotted) for Example 1. 

Correspondingly, the PH spline has energy E = 9.39, while E = 13.40 for the 

ordinary cubic spline. 

We use this example to illustrate the remarkable level of accuracy that can be 

achieved in the construction of PH splines. Once a0 , . . . ,  aN and b l , . . . ,  bN have 

been computed by the homotopy method, we make the assignments (12) and 

compute the control points (6) for each PH quintic span k = 1 , . . . ,  N using equa- 

tions (4). These control points are then used to test continuity of  the left- and 
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Figure 3, Comparison of curvature profiles for the PH quintic spline (solid) and the "ordinary" cubic 

spline (dotted) interpolating the data of Example 1. 
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Figure 4. Comparison ofPH quintic (solid) and "ordinary" cubic (dotted) periodic spline interpolants 
for the point data of Example 2. 

right-derivatives at each node, using the formulae 

r~(1) = 5 (Zk,5 -- Zk,4), 

r~-+l (0) = 5 (zg+l,l - Zk+l,O), 

r~(1) = 20 (Zk,5 - 2 Z k  A q- Zk,3), 
I! 

rk+l (0) = 20 (Zk+l,2 -- 2 Zk+l,l + Zk+l,0), 

for k ---- 1 , . . . ,  N - 1. The results are enumerated in table 1-it  can be seen that, 

despite the "'numerical" nature of  the solution procedure, the nodal derivatives 

agree to ~ 15 significant digits in all instances. For  standard double-precis ion 

arithmetic, with rounding and a mantissa of  d = 53 bits, the machine unit is 

2-(d-l) 10-t6 r / = ½  ~ 1.1× , 

and hence the computed solutions are accurate to within about  one decimal digit o f  

the theoretical limit imposed by the f loat ing-point  number  system! 

As another  measure of  accuracy for the constructed PH splines, we examine the 

magnitude of  the "gaps" 

Azk = Zk+l,0 -- Zk,5 (54) 

for k = 1 , . . . ,  N - 1 that arise between consecutive arcs owing to the fact that the 

final control point zk,5 of  arc k, as given by expressions (4), need not Coincide pre- 

cisely with the initial control point zk+~,0 of  arc k + 1. Again, we see from table 1 

that the effects of  numerical errors are extremely subdued, and these gaps are con- 
sequently insignificant. 

The data presented in Table 1 are by no means "specia l" - they are, in fact, repre- 

sentative of  what we have observed in numerous examples. 

Example 2 
We wish to construct periodic curves that interpolate the point data P0 = 

(2 .3 , -0 .2) ,  p~ = (1.0, 1.5), P2 = ( -0 .2 ,0 .5) ,  P3 = ( -2 .1 ,  1.1), P4 = ( - 1 . 6 , - 0 . 3 ) ,  
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Figure 5. Comparison of periodic PH quintic spline (solid) and "ordinary" cubic spline (dotted) 
approximations to the unit circle-see Example 3. 

P 5  = ( - - 2 . 0 , - - 1 . 5 ) ,  P 6  = ( 0 . 1 , - - 0 . 8 ) ,  117 = ( 1 . 7 , - - 1 . 8 ) ,  a n d  P8 = ( 2 . 3 , - 0 . 2 )  = P 0 -  

The resulting "good" PH spline is compared with the "ordinary" cubic spline in 
figure 4. The discrepancy between the curvature distributions is even more pro- 
nounced than in Example 1-the ordinary cubic spline has a maximum curvature 
more than 10 times greater than that of the PH spline! This difference is apparent 
in the curve energies: E = 28.0 for the PH spline, whereas E = 148.5 for the ordin- 
ary cubic spline. 
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Figure 6. Curvature profiles of the periodic PH quintic (solid) and "ordinary" cubic (dotted) spline 
approximations to the unit circle-see Example 3. 
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Figure 7. The six different shapes among the 32 distinct PH quintic splines that interpolate four 
equally-spaced points on the unit circle (see Example 3). 

Example 3 
Here we desire a periodic curve that interpolates four equally-spaced points, 

P0 = (1,0), Pl = (0, 1), P2 = ( -1 ,0) ,  P3 = (0 , -1) ,  and P4 = (1,0) = P0, on the 
unit circle. The resulting PH spline is compared with the "ordinary" periodic 
cubic spline in figure 5. The corresponding curvature plots in figure 6 indicate 
that the former is a much better approximation of the unit circle than the latter 
(for the ordinary cubic spline, the curvature varies from a minimum of 0.84 to a 
maximum of 1.33, while that of the PH spline has a much narrower range-from 
0.97 to 1.06). The energy integral clearly has the value E = 27r for an exact circle: 
for the PH spline, we have E/27r = 1.0034, whereas the ordinary cubic spline 
gives E/27r = 1.0376. 

The present example is an interesting context in which to illustrate the multipli- 
city of solutions to the problem of PH spline interpolation. Although, for N - 4 
and periodic boundary conditions, there are 32 distinct solutions, only six of 
these are actually of different shape (see figure 7) owing to the symmetry of the 
data. Other than the "good" solution in the top left-hand corner, all the interpo- 
lants exhibit loops-in some cases, they are so "tight" as to be virtually hidden by 
the dots representing the interpolation points. Correspondingly, the bending energies 
and absolute rotation indices are much higher than that of the "good" solution. 

6. Closure  

We have developed a precise formulation for the problem of interpolation by C 2 
PH splines, using complex representations, and we have shown that it yields highly 
accurate solutions by means of standard numerical methods. The formulation is 
simple to implement, and admits flexibility in terms of spline end conditions. 
Empirical results indicate that PH splines have exceptionally attractive shape 
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properties compared with the "ordinary"  cubic splines, a fact that has previously 

been noted [7] in the context of  individual Hermite arcs. Furthermore,  the arc 

lengths and offset curves of  the PH splines admit exact representations. 

Perhaps the greatest shortcoming of  the method,  as it currently stands, is the 

need to sift through 2 N+I solutions in order to select the sole "good"  interpolant. 

In contexts where a high degree of  interactivity is required, and where N is large, 

this burden may prove intolerable. We remain hopeful that the theory will further 

unfold to a point where this "wasteful" aspect may be obviated. In the interim, in 

such contexts where speed is not of  paramount  concern and the superior shape 

properties or exact arc lengths and offsets of  PH curves are highly valued, we 

believe the formulation is ready for practical use and thus worthy of  a permanent  

place [12] among the plethora of  available curve interpolation/design schemes. 
Several important  extensions of  the C 2 PH spline method described herein come 

immediately to mind. For  brevity, we only mention two here: 

• As with "ordinary"  splines, it would be useful to extend the formulation to 

accommodate  the case of  non-un i form k n o t s - w h i c h  are better suited to inter- 

polating unevenly-spaced sequences of  points. 

• Unlike the "ordinary"  splines, extending the method to space curves is not a 

trivial ma t t e r - the  complex representation, which was instrumental in simplify- 

ing the defining equations for planar PH splines, has no natural generalization 

to the three-dimensional  case. 

We hope to turn our attention to these issues in due course. 
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