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Abstract. Kobayashi [13] introduced complex contact manifolds as a variant of real contact manifolds. Later,
Ishihara and Konishi [11] defined normality of complex contact manifolds as for Sasakian manifolds in real contact
geometry. In this paper, we construct normal complex contact manifolds via reduction from hyperkähler manifolds,
and give a new example of normal complex contact manifolds. To check the normality for the new examples, we give
a useful identity about sectional curvatures of normal complex contact manifolds. We also give an explicit example

of a non-normal complex almost contact metric structure on S4m+3 × S4n+3.

1. Introduction

The theory of complex contact geometry started with the papers of Kobayashi [13] and
Boothby [4], [5], as a variant of real contact geometry. More recent examples, including
complex projective space and the complex Heisenberg group, are given in [1] and [3]. Ishihara
and Konishi [11] defined the so-called I-K normality of complex contact manifolds as for
Sasakian manifolds in real contact geometry. In this paper, we construct normal complex
contact manifolds via reduction from hyperkähler manifolds. Leaving the detailed notion of
hyperkähler manifolds to Definition 5.1, we state the first main result as follows:

THEOREM A (Theorem 5.2). Let (M̃, J1, J2, J3, g̃) be a hyperkähler manifold. As-
sume that C∗ acts on M̃ holomorphically, properly and freely. Then the quotient space M̃\C∗
is naturally equipped with a smooth manifold structure and the quotient map π : M̃ −→
M̃\C∗ canonically induces an I-K normal complex almost contact metric structure on M̃\C∗.

Using this theorem, we construct a new example of a normal complex contact manifold

(Example 6.2), a quotient space M = (C4\{z1z2z3z4 = 0})/C∗, where C∗ acts on C4\{0} by

λ · (z1, z2, z3, z4) = (λz1, λz2, λ
−1z3, λ

−1z4) (λ ∈ C∗) .(1)

M is diffeomorphic to C3\{w1w2w3 = 0}. This is a new example of an I-K normal complex
almost contact metric manifold.
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This paper is organized as follows. In Section 2, we recall the definition of complex
contact manifolds, which is a pair consisting of a manifold and a covering which admits a
holomorphic 1-form ω. It is known that there exists a complex contact metric structure on
any complex contact manifold. The complex (almost) contact metric structure looks like
two (almost) contact metric structures which transform to each other via the fixed complex
structure. In Section 3, we recall the notion of I-K normality defined by Ishihara and Konishi
[11].

This normality implies any complex contact metric manifold is also a Kähler manifold.
We prove that the sectional curvature K of an I-K normal complex contact metric manifold
has a special property:

PROPOSITION (Proposition 3.6). On I-K normal complex contact manifolds, we have

K(X, JX) + K(X,GX) + K(X,HX) = 6 ,(2)

for any X ∈ H, where K(X, Y ) is the sectional curvatures of the plane spanned by {X,Y },
and G,H and J are associated to the complex contact metric structure (see Definition 2.3).

By this theorem, we can check whether any complex contact structure has I-K normality.
For example, the odd dimensional complex projective space with the Fubini-Study metric is
an I-K normal complex contact metric manifold, but there are no other known examples.

On the other hand, Korkmaz [15] has introduced a different notion of normality. As
we show in Section 4, the normality Korkmaz defines is weaker than I-K normality, and
there are some manifolds which admit normal which Korkmaz defines complex contact metric
structures. In Section 5, we prove Theorem 1 and use it to construct new I-K normal complex
contact metric manifolds by a projection from a hyperkähler manifold. In Section 6, we give
a new example of I-K normal complex almost contact metric manifolds.

The second main result is to construct complex almost contact metric structures. Calabi-

Eckmann [6] proved that S2p+1 × S2q+1 admits a complex structure J . In section 7, we show

that 3-Sasakian structures on S4m+3 and S4n+3 induce a non-normal complex almost complex

metric structure on S4m+3 × S4n+3 with respect to J .

THEOREM B (Theorem 7.2). The complex almost contact metric structure

(Gm,n,Hm,n, Jm,n, um,n, vm,n, Um,n, Vm,n, gm,n) on S4m+3 ×S4n+3 given by (15), (16), (18),
(19) and (21) is not I-K normal.

2. Definitions

We first recall the notion of complex contact metric manifolds [3].
DEFINITION 2.1. Let M be a complex manifold with dimCM = 2n + 1 and J the

complex structure on M . M is called a complex contact manifold if there exists an open
covering U = {Oλ} of M such that:
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1) On each Oλ there is a holomorphic 1-form ωλ with ωλ ∧ (dωλ)
n �= 0 everywhere;

2) If Oλ ∩ Oμ �= φ, there is a nonvanishing holomorphic function hλμ on Oλ ∩ Oμ such
that

ωλ = hλμωμ in Oλ ∩ Oμ .(3)

For each Oλ, we define a distribution Hλ = {X ∈ TOλ | ωλ(X) = 0}. Note that the
hλμ are nonvanishing, and Hλ = Hμ on Oλ ∩ Oμ. Thus H = ∪Hλ is a holomorphic,
nonintegrable subbundle on M , called the horizontal subbundle.

DEFINITION 2.2. Let M be a complex manifold with dimC = 2n+1 and J a complex
structure. Let g be a Hermitian metric. M is called a complex almost contact metric manifold
if there exists an open covering U = {Oλ} of M such that:

1) On each Oλ there are 1-forms uλ and vλ = uλJ , (1,1) tensors Gλ and Hλ = GλJ , unit
vector fields Uλ and Vλ = −JUλ such that

GλJλ = −JλGλ , H 2
λ = G2

λ = −id + uλ ⊗ Uλ + vλ ⊗ Vλ ,

g(GλX, Y ) = −g(X,GλY ) , g(Uλ,X) = uλ(X) ,(4)

GλUλ = 0 , uλ(Uλ) = 1 ;
2) If Oλ ∩ Oμ �= φ, there are functions a, b on Oλ ∩ Oμ such that

uμ = auλ − bvλ , vμ = buλ + avλ ,

Gμ = aGλ − bHλ , Hμ = bGλ + aHλ ,(5)

a2 + b2 = 1 .

DEFINITION 2.3. Let (M, {ωλ}) be a complex contact manifold with complex contact
structure J and Hermitian metric g . We call (M, u, v,U, V, J, g) a complex contact metric
manifold if there exists an open covering U = {Oλ} of M such that (here and below G = Gλ,

etc) :

1) On each Oλ there is a local (1,1) tensor Gλ such that (uλ, vλ,Uλ, Vλ,Gλ,Hλ =
GλJ, g) is an almost contact metric structure on M;

2) g(X,GλY ) = duλ(X, Y ) + (σλ ∧ vλ)(X, Y ) and g(X,HλY ) = dvλ(X, Y ) − (σλ ∧
uλ)(X, Y ), where σλ(X) = g(∇XUλ, Vλ) with ∇ the Levi-Civita connection with respect to
g .

REMARK 2.4. Foreman [8] showed the existence of complex contact metric structures
on complex contact manifolds.

REMARK 2.5. We can locally choose orthonormal vectors X1, . . . , Xn in H such that
{Xi, JXi,GXi,HXi,U, V | 1 ≤ i ≤ n} is an orthonormal basis of the tangent spaces of Uα .
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3. I-K normality on complex contact structures

We recall the definition of I-K normality introduced by Ishihara and Konishi [10] for
(almost) complex contact metric structures. We set the two tensor fields S and T by,

S(X, Y ) = [G,G](X, Y ) + 2g(X,GY)U − 2g(X,HY)V(6)

+2v(Y )HX − 2v(X)HY + σ(GY)HX

−σ(GX)HY + σ(X)GHY − σ(Y )GHX ,

T (X, Y ) = [H,H ](X, Y ) − 2g(X,GY)U + 2g(X,HY)V(7)

+2u(Y )GX − 2u(X)GY + σ(HX)GY

−σ(HY)GX + σ(X)GHY − σ(Y )GHX .

DEFINITION 3.1. A complex contact manifold M is I-K normal if the tensors S and T

both vanish.

REMARK 3.2. I-K normality implies that the underlying Hermitian manifold
(M, J, g) is a Kähler manifold (cf. [11]).

We recall properties obtained by Korkmaz [15].
PROPOSITION 3.3. On an I-K normal complex contact manifold, for X,Y,Z ∈ H, we

have

g((∇XG)Y,Z) = −σ(X)g(HX, Y ) + v(X)Ω(GZ,GY)

−2v(X)g(HGY,Z) − u(Y )g(X,Z) − v(Y )g(JX,Z)

+u(Z)g(X, Y ) − v(Z)g(X, JY ) ,

and

g((∇XH)Y,Z) = −σ(X)g(GX, Y ) + u(X)Ω(HZ,GHY)

−2u(X)g(HGY,Z) + u(Y )g(JX,Z) − v(Y )g(X,Z)

+u(Z)g(X, JY ) + v(Z)g(X, Y ) ,

where ∇ is the Levi-Civita connection with respect to g .

LEMMA 3.4. Under the same assumptions as in Proposition 3.3, we have

g(R(X,GX)Y,GY) = g(R(X, Y )X, Y ) + g(R(X,GY)X,GY)

+4g(JX, Y )Ω(X, Y ) − 4g(HX, Y )Ω(GX, Y )

−2g(GX, Y )2 − 4g(HX, Y )2 − 2g(X, Y )2

+2g(X,X)g(Y, Y ) − 4g(JX, Y )2 ,

and



CONSTRUCTION OF COMPLEX CONTACT MANIFOLDS 513

g(R(X,HX)Y,HY) = g(R(X, Y )X, Y ) + g(R(X,HY)X,HY)

+4g(JX, Y )Ω(X, Y ) + 4g(GX, Y )Ω(HX, Y )

−2g(HX, Y )2 − 4g(GX, Y )2 − 2g(X, Y )2

+2g(X,X)g(Y, Y ) − 4g(JX, Y )2 .

LEMMA 3.5. On an I-K normal complex contact manifold, for X ∈ H, we have

Ω(JX,X) = −2g(X,X) .

PROOF. Since J is parallel for ∇,

g(R(X,HX)JX,GX) = g(JR(X,HX)X, JHX)(8)

= −g(R(X,HX)HX,X) .

By Lemma 3.4, we get

g(R(X,HX)JX,GX) = −g(R(X,HX)HX,X)(9)

−2g(X,X)(Ω(JX,X) + 2g(X,X)) .

Comparing the right hand sides of (8) and (9), we get the lemma. �

Finally, we have the following property of sectional curvatures.

PROPOSITION 3.6. On I-K normal complex contact manifolds, we have

K(X, JX) + K(X,GX) + K(X,HX) = 6 ,

for any horizontal vector field X, where K(X, Y ) is the sectional curvature of the plane
spanned by {X,Y }.

PROOF. Since J is parallel for ∇,

g(R(X,GX)JX,GJX)) = −g(JR(X,GX)X, JGX)(10)

= g(R(X,GX)GX,X) .

On the other hand, by Lemmas 3.4 and 3.5,

g(R(X,GX)JX,GJX) = −g(R(X, JX)JX,X) − g(R(X,HX)HX,X)

−4g(X,X)Ω(JX,X) − 2g(X,X)2

= −g(R(X, JX)JX,X) − g(R(X,HX)HX,X)(11)

+6g(X,X)2 .

This gives the conclusion. �

EXAMPLES 3.7. The odd-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic curvature 4 is an example of an I-K normal complex
contact structure and satisfies K(X,GX) = K(X,HX) = 1 (see Example 6.1 below or [15]).
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4. Normality of complex contact manifolds

The notion of I-K normality seems too strong, since the complex Heisenberg group ad-
mits no I-K normal contact metric structure while the real Heisenberg group admits a normal
contact metric structure. Korkmaz introduced a weaker version of normality as follows.

DEFINITION 4.1. A complex contact metric structure is normal in the sense of [15] if
{

S(X, Y ) = T (X, Y ) = 0 for every X,Y ∈ H ,

S(U, Y ) = T (V, Y ) = 0 for every Y .

From now on, we use this definition of normality.

The following lemma is obtained by Korkmaz [15] .

LEMMA 4.2. If X is a horizontal vector field on a normal complex contact metric
manifold, then

g(R(X, JX)JX,X) + g(R(X,GX)GX,X) + g(R(X,HX)HX,X)

= −6g(X,X)(Ω(JX,X) + g(X,X)) .

EXAMPLE 4.3. We introduce the example of the complex Heisenberg group, the
closed subgroup HC of GL(3, C) given by

⎧⎨
⎩

⎛
⎝

1 b12 b13

0 1 b23

0 0 1

⎞
⎠

∣∣∣∣ b12, b13, b23 ∈ C

⎫⎬
⎭ .

Blair [1] defined the following complex contact metric structure on HC (see also [3]). Let

z1, z2, z3 be the coordinates on HC ∼= C3, defined by z1(A) = b23, z2(A) = b12, z3(A) = b13

for A in HC. Then the Hermitian metric

g = 1

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + |z2|2 0 −z2

0 0 1 0

−z̄2 0 1

1 + |z2|2 0 −z̄2

0 1 0 0

−z2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a left invariant metric on HC. We define real 1-forms u, v and unit vector fields U,V by
decomposing the holomorphic 1-form θ = (dz3 − z2dz1)/2 and the complex vector field
X = 4(∂/∂z3) into their real parts and the imaginary parts:

θ = u − iv , X = U + iV .



CONSTRUCTION OF COMPLEX CONTACT MANIFOLDS 515

Also define two type-(1, 1) tensors

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 −1 0 0

0 z2 0
0 1 0

−1 0 0 0
0 z̄2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0
0 i 0 0

0 −iz2 0
0 i 0
−i 0 0 0
0 iz̄2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then one can check that (u, v,U, V,G,H, J, g) is a normal complex contact metric structure
on HC [15].

5. I-K normal complex contact structures from hyperkähler structures

In this section, we construct a normal complex contact structure on the quotient space of
a hyperkähler manifold via a C∗ action. We first recall the definition of hyperkähler manifolds.

DEFINITION 5.1. (M, J1, J2, J3, g) is a hyperkähler manifold if J1, J2, J3 are com-
plex structures on a complex manifold M satisfying

J 2
1 = J 2

2 = J 2
3 = J1J2J3 = −id ,

and g is a Hermitian metric on M with respect to J1, J2 and J3.

We can produce a complex contact metric manifold from hyperkähler manifolds

THEOREM 5.2. Let (M̃, J1, J2, J3, g̃) be a hyperkähler manifold. We assume that C∗
acts on M̃ holomorphically, properly and freely. Then the quotient space M̃\C∗ is naturally
equipped with a smooth manifold structure and the quotient map π : M̃ −→ M̃\C∗ canoni-
cally induces an I-K normal complex almost contact metric structure on M̃/C∗.

PROOF. Let {Õλ} be an open covering of M̃ . We choose local sections sλ : π(Õλ) −→
Õλ. Then we define type (1, 1) tensors J,G and H on T (M̃/C∗), and 1-forms u, v by

⎧⎨
⎩

J1(sλ)∗X = (sλ)∗JX ,

J2(sλ)∗X = (sλ)∗GX + u(X)ν + v(X)J1ν ,

J3(sλ)∗X = (sλ)∗HX − v(X)ν + u(X)J1ν ,

(12)
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where ν and J1ν are unit tangent vectors to the orbit by C∗. For example, u and v are explicitly
given by

u(X) = g̃(J2s∗X, ν) , v(X) = g̃(J2s∗X, J1ν) = −g̃(J3s∗X, ν) .(13)

Finally, we define the unit vector fields U,V on M̃/C∗ by

U = −π∗(J2ν) , V = π∗(J3ν) .(14)

It is easily seen that the structure (u, v,U, V,G,H, J, g) (with g the metric induced by g̃)
satisfies Definition 2.3 and Definition 3.1. �

6. Examples of I-K normal complex contact structures from hyperkähler struc-
tures

EXAMPLES 6.1. By Theorem 5.2, the complex projective space CP 2n+1 with the
Fubini-Study metric admits an I-K normal complex contact structure. Now we express this
structure analytically in the case of n = 1.

Let C4\{0} have the hyperkähler structure (J1, J2, J3, 〈, 〉), where J1, J2 and J3 act on the
position vector p = (z1, z2, z3, z4) by

J1p = (iz1, iz2, iz3, iz4) ,

J2p = (z̄3, z̄4,−z̄1,−z̄2) ,

J3p = (iz̄3, iz̄4,−iz̄1,−iz̄2) ,

and 〈, 〉 is the standard metric on C4\{0}. We denote the norm
√∑4

k=1 zkz̄k of z =
(z1, z2, z3, z4) by ‖z‖.

C∗ acts on C4\{0} by λ · (z1, z2, z3, z4) = (λz1, λz2, λz3, λz4), which acts freely and
commutes with J1. We can easily check that at z, the orbit space of C∗ has tangent space at z

spanned by vectors

ν = 1

2‖z‖
4∑

j=1

(
zj

∂

∂zj

+ z̄j
∂

∂z̄j

)
,

J1ν = i

2‖z‖
4∑

j=1

(
zj

∂

∂zj

− z̄j
∂

∂z̄j

)
.

By calculating with the inner product 〈, 〉, u and v are given by

u = 1

2‖z‖
2∑

j=1

(−z2j−1dz2j − z̄2j−1dz̄2j + z2j dz2j−1 + z̄2j dz̄2j−1
)

,
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v = −i

2‖z‖
2∑

j=1

(
z2j−1dz2j − z̄2j−1dz̄2j − z2j dz2j−1 + z̄2j dz̄2j−1

)
.

Then in complex coordinates G and H are given by

G = 1

‖z‖2

(
O A

Ā O

)
, H = 1

‖z‖2

(
O iA

−iĀ O

)
,

where

A = i

⎛
⎜⎜⎝

z2z̄1 −‖z‖2 + z2z̄2 z2z̄3 z2z̄4

‖z‖2 − z1z̄1 −z1z̄2 −z1z̄3 −z1z̄4

z4z̄1 z4z̄2 z4z̄3 −‖z‖2 + z4z̄4

−z3z̄1 −z3z̄2 ‖z‖2 − z3z̄3 −z3z̄4

⎞
⎟⎟⎠ .

Finally, the two vector fields U and V are given by

U = 1

2‖z‖
2∑

j=1

(−z̄2j−1dz2j − z2j−1dz̄2j + z̄2j dz2j−1 + z2j dz̄2j−1
)

,

V = i

2‖z‖
2∑

j=1

(
z̄2j−1dz2j − z2j−1dz̄2j − z̄2j dz2j−1 + z2j dz̄2j−1

)
.

With the Fubini-Study metric g , we find that this complex contact metric structure
(u, v,U, V,G,H, J, g) is I-K normal and satisfies Proposition 3.6.

By modifying the C∗ action on C4\{0}, we can give another example of a normal com-
plex contact metric manifold.

EXAMPLES 6.2. We consider another C∗ action on C4\{z1z2z3z4 = 0} by

λ · (z1, z2, z3, z4) = (λz1, λz2, λ
−1z3, λ

−1z4) ,

which also acts freely and commutes with J1. This orbit space has tangent spaces at z spanned
by the vectors

ν = 1

2‖z‖
(

z1
∂

∂z1
+ z̄1

∂

∂z̄1
+ z2

∂

∂z2
+ z̄2

∂

∂z̄2

−z3
∂

∂z3
− z̄3

∂

∂z̄3
− z4

∂

∂z4
− z̄4

∂

∂z̄4

)
,

J1ν = i

2‖z‖
(

z1
∂

∂z1
− z̄1

∂

∂z̄1
+ z2

∂

∂z2
− z̄2

∂

∂z̄2

−z3
∂

∂z3
+ z̄3

∂

∂z̄3
− z4

∂

∂z4
+ z̄4

∂

∂z̄4

)
.
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We check that the quotient space M = (C4\{z1z2z3z4 = 0})/C∗ is a complex manifold. We
define a biholomorphic map F on M by

F([z1, z2, z3, z4]) =
(

z2

z1
, z1z3, z1z4

)
.

This map shows that M is diffeomorphic to C3\{w1w2w3 = 0}. By a direct computation of
the standard inner product 〈, 〉, u and v are given by

u = −i

2‖z‖ (−z1dz4 + z̄1dz̄4 + z2dz3 − z̄2dz̄3

−z3dz2 + z̄3dz̄2 − z4dz1 + z̄4dz̄1) ,

v = 1

2‖z‖ (−z1dz4 − z̄1dz̄4 + z2dz3 + z̄2dz̄3

+z3dz2 + z̄3dz̄2 − z4dz1 − z̄4dz̄1) .

Then in complex coordinates G and H are given as follows:

G = 1

‖z‖2

(
O A

Ā O

)
, H = 1

‖z‖2

(
O iA

−iĀ O

)
,

where

A = i

⎛
⎜⎜⎝

z1z̄4 −z1z̄3 −z1z̄2 −‖z‖2 + z1z̄1

z2z̄4 −z2z̄3 ‖z‖2 − z2z̄2 z2z̄1

−z3z̄4 −‖z‖2 + z3z̄3 z3z̄2 −z3z̄1

‖z‖2 − z4z̄4 z4z̄3 z4z̄2 −z4z̄1

⎞
⎟⎟⎠ .

Finally, the two vector fields U and V are given by

U = i

2‖z‖
(

z1
∂

∂z̄4
− z̄1

∂

∂z4
− z2

∂

∂z̄3
+ z̄2

∂

∂z3

−z3
∂

∂z̄2
+ z̄3

∂

∂z2
+ z4

∂

∂z̄1
− z̄4

∂

∂z1

)
,

V = −1

2‖z‖
(

z1
∂

∂z̄4
+ z̄1

∂

∂z4
− z2

∂

∂z̄3
− z̄2

∂

∂z3

−z3
∂

∂z̄2
− z̄3

∂

∂z2
+ z4

∂

∂z̄1
+ z̄4

∂

∂z1

)
.

With the induced metric g from the standard inner product 〈, 〉 on C4, we can check that this
complex almost contact metric structure (u, v,U, V,G,H, J, g) is I-K normal. Thus we get
a new example of a normal complex almost contact metric manifold.
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7. A complex almost contact metric structure on S4m+3 × S4n+3

We recall the 3-Sasakian structures on M4p+3.

DEFINITION 7.1. Let M4n+3 be a real (4n+3)-dimensional manifold. The 3-Sasakian
structure on M4n+3 is a triple of Sasakian structures {Φi, ξi , ηi}i=1,2,3 on M4n+3 satisfying

Φk = ΦiΦj − ηj ⊗ ξi = −ΦjΦi + ηi ⊗ ξj ,

ηi ◦ Φj = ηk , ηi(ξj ) = δij ,

where {i, j, k} is one of the cyclic permutations of {1, 2, 3}. Define M4n+3 is called the 3-
Sasakian manifold if there exists a 3-Sasakian structure on it.

The typical example of 3-Sasakian manifold is S4n+3 obtained by taking as a hypersur-

face in the quaternion vector space Hn+1. Each of three almost complex structures on Hn+1

applied to the outer normal vector of the sphere gives a vector field ξi , i = 1, 2, 3, on S4n+3.
These three vector fields are orthogonal each other and give rise to the standard 3-Sasakian

structure on S4n+3.

We show that 3-Sasakian structures on S4m+3 and S4n+3 induce a complex almost contact

metric structure on S4m+3 × S4n+3. Let {Φm
i , ξm

i , ηm
i }i=1,2,3 and {Φn

i , ξn
i , ηn

i }i=1,2,3 be 3-

Sasakian structures on S4m+3 and S4n+3, respectively. We first define an almost complex
structure on S4m+3 × S4n+3 by

Jm,n(X, Y ) = (Φm
1 X − ηn

1(Y )ξm
1 ,Φn

1 Y + ηm
1 (X)ξm

1 ) ,(15)

where (X, Y ) ∈ T
(
S4m+3 × S4n+3

)
. Since Jm,n is integrable [16] (see also [6]), then

(S4m+3 × S4n+3, Jm,n) is a complex manifold. Moreover, it is also proved that the product
space of two normal almost contact metric manifolds is a complex manifold with the above
Jm,n. Next, we define a metric gm,n on S4m+3 × S4n+3 by

gm,n

(
(X, Y ), (X′, Y ′)

) = gm(X,X′) + ηm
1 (X)ηm

1 (X′)(16)

+ gn(Y, Y ′) + ηn
1(Y )ηn

1(Y ′) ,

where gm and gn are the associated metrics to 3-Sasakian structures on S4m+3 and S4n+3

respectively. It is easily checked that gm,n is a Hermitian metric with respect to Jm,n.

X ∈ T M4m+3 and Y ∈ T M4n+3 are decomposed to the subspace spanned by
{ξm

1 , ξm
2 , ξm

3 }, {ξn
1 , ξn

2 , ξn
3 } and their orthogonal complements uniquely as follows.

{
X = X0 + ηm

1 (X)ξm
1 + ηm

2 (X)ξm
2 + ηm

3 (X)ξm
3 ,

Y = Y0 + ηn
1(X)ξn

1 + ηn
2 (X)ξn

2 + ηn
3(X)ξn

3 ,
(17)
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where X0 ∈ Span{ξm
1 , ξm

2 , ξm
3 }⊥, Y0 ∈ Span{ξn

1 , ξn
2 , ξn

3 }⊥. With this decomposition, we
define the two type-(1, 1) tensors Gm,n and Hm,n by

Gm,n(X, Y ) =
(

Φm
2 X0 − ηm

3 (X) − ηn
3(Y )

2
ξm

1 + ηn
1 (Y )ξm

2 + ηm
1 (X)ξm

3 ,(18)

Φn
2 Y0 − ηm

2 (X) − ηn
2(Y )

2
ξn

1 − ηm
1 (Y )ξn

2 − ηm
1 (X)ξn

3

)
,

Hm,n(X, Y ) = Jm,n Gm,n(X, Y ) ,(19)

where (X, Y ) ∈ T
(
S4m+3 × S4n+3

)
. We can check that G and H satisfy the condition to be

a complex almost contact metric structure. Using the formula (18), we get

G2
m,n(X, Y )(20)

=
(

(Φm
2 )2X0 − ηm

1 (X)ξm
1 + ηm

2 (X) − ηn
2 (Y )

2
ξm

2 − ηm
3 (X) − ηn

3 (Y )

2
ξm

3 ,

(Φn
2 )2Y0 − ηn

1(Y )ξn
1 + ηm

2 (X) − ηn
2 (Y )

2
ξn

2 + ηm
3 (X) − ηn

3 (Y )

2
ξn

3

)

= ( − X0 − ηm
1 (X)ξm

1 − ηm
2 (X)ξm

2 − ηm
3 (X)ξm

3 ,

−Y0 − ηn
1 (Y )ξn

1 − ηn
2 (Y )ξn

2 − ηn
3 (Y )ξn

3

)

+ηm
2 (X) + ηn

2 (Y )

2
(ξm

2 , ξn
2 ) + ηm

3 (X) + ηn
3 (Y )

2
(ξm

3 , ξn
3 ) ,

where (X, Y ) ∈ T
(
S4m+3 × S4n+3

)
. Here we define 1-forms um,n, vm,n and dual orthonor-

mal vector fields Um,n, Vm,n which satisfy Definition 2.2. by
{

um,n = 1√
2
(ηm

3 + ηn
3 ), vm,n = 1√

2
(ηm

2 + ηn
2) ,

Um,n = 1√
2
(ξm

3 , ξn
3 ), Vm,n = 1√

2
(ξm

2 , ξn
2 ) .

(21)

With these elements, we get

G2
m,n(X, Y ) = −(X, Y ) + um,n(X, Y ) ⊗ U + vm,n(X, Y ) ⊗ V .(22)

Moreover, by (17), (18) and (20), we have

Jm,nGm,n(X, Y ) = −Gm,nJm,n(X, Y )(23)

=
(

Φm
3 X0 + ηm

2 (X) − ηn
2 (Y )

2
ξm

1 − ηm
1 (X)ξm

2 + ηn
1(Y )ξm

3 ,

Φn
3 Y0 − ηm

3 (X) − ηn
3(Y )

2
ξn

1 + ηm
1 (X)ξn

2 − ηn
1(Y )ξn

3

)
.

gm,n

(
Gm,n(X, Y ), (X′, Y ′)

) = −gm,n

(
(X, Y ),Gm,n(X

′, Y ′)
)

(24)
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= gm(Φm
2 X0,X

′
0) + gn(Φ

n
2 Y0, Y

′
0) + ηm

1 (X)
(
ηm

3 (X′) − ηn
3(Y ′)

)

−ηm
1 (X′)

(
ηm

3 (X′) − ηn
3(Y ′)

) + ηn
1 (Y )

(
ηm

2 (X′) − ηn
2(Y ′)

)

−ηn
1(Y ′)

(
ηm

2 (X) − ηn
3 (Y )

)
.

Note that the second Betti number of compact Kähler manifolds is not zero, and Künneth
formula shows [9]

H 2(S4m+3 × S4n+3) ∼=
⊕

i+j=2

Hi(S4m+3) ⊗ Hj(S4n+3) ∼= {0} .

Since S4m+3 × S4n+3 admits no Kähler structure, this structure is not I-K normal.

THEOREM 7.2. The complex almost contact metric structure on S4m+3 × S4n+3

(Gm,n,Hm,n, Jm,n, um,n, vm,n, Um,n, Vm,n, gm,n) given by (15), (16), (18), (19) and (21) is
not I-K normal.
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