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Non-coding RNA (ncRNA) plays important roles in many critical regulation processes.

Many ncRNAs perform their regulatory functions by the form of RNA-protein complexes.

Therefore, identifying the interaction between ncRNA and protein is fundamental to

understand functions of ncRNA. Under pressures from expensive cost of experimental

techniques, developing an accuracy computational predictive model has become an

indispensable way to identify ncRNA-protein interaction. A powerful predicting model of

ncRNA-protein interaction needs a good feature set of characterizing the interaction. In

this paper, a novel method is put forward to generate complex features for characterizing

ncRNA-protein interaction (named CFRP). To obtain a comprehensive description of

ncRNA-protein interaction, complex features are generated by non-linear transformations

from the traditional k-mer features of ncRNA and protein sequences. To further reduce

the dimensions of complex features, a group of discriminative features are selected

by random forest. To validate the performances of the proposed method, a series of

experiments are carried on several widely-used public datasets. Compared with the

traditional k-mer features, the CFRP complex features can boost the performances

of ncRNA-protein interaction prediction model. Meanwhile, the CFRP-based prediction

model is compared with several state-of-the-art methods, and the results show that

the proposed method achieves better performances than the others in term of the

evaluation metrics. In conclusion, the complex features generated by CFRP are beneficial

for building a powerful predicting model of ncRNA-protein interaction.

Keywords: ncRNA-protein interaction, complex feature, feature construction, feature selection, random forest

1. INTRODUCTION

The DNA component encyclopedia project (ENCODE) has revealed that most of RNAs in the
human transcriptome are non-coding RNAs (ncRNA), which are not involved in coding protein
(ENCODE Project Consortium, 2012). As a kind of critical regulatory molecules, ncRNA can
regulate gene expression in different stages, such as epigenetic inheritance, transcription and post-
transcription (Quan et al., 2015; Zeng et al., 2017). It participates in various cellular processes
such as chromatin modification, transcriptional regulation, translation and post-translational
modification (Yarmishyn and Kurochkin, 2015; Yotsukura et al., 2016). Increasing evidences show

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00018
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00018&domain=pdf&date_stamp=2019-02-01
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tengzhixia@nefu.edu.cn
https://doi.org/10.3389/fgene.2019.00018
https://www.frontiersin.org/articles/10.3389/fgene.2019.00018/full
http://loop.frontiersin.org/people/594642/overview


Dai et al. Complex Features for ncRNA-Protein Interaction

that ncRNA is closely related to many major diseases that
seriously endanger human health and life (Chen et al., 2013;
Tang et al., 2017). However, the functional mechanisms of most
ncRNAs remain to be further studied and determined. It is
worth noting thatmany ncRNAs often perform their functions by
forming RNA-protein complexes (Zhu et al., 2013). For examples,
as a scaffolding molecule, HOTAIR RNA combines with PRC2
and LSD1 protein complexes at its 5′ and 3′ ends, respectively,
to involve in histone methylation (Tsai et al., 2010). It has
been found that over-expression of HOTAIR could induce the
relocation of PRC2 protein complex in the whole genome, which
could silence tumor suppressor genes and thus promote the
development and metastasis of malignant tumors such as breast
cancer and liver cancer (Gupta et al., 2010). Xist RNA, which
regulates X chromosome inactivation, can interact with more
than 80 proteins in many biological processes (Chu et al., 2015).
It can be found that there are pervasive synergistic relationships
between ncRNAs and proteins, which play important roles in
cellular activities and disease regulations. Therefore, determining
the interactions between large amount of ncRNAs and proteins
is of great significance for revealing molecular mechanisms of
ncRNAs in human diseases and biological processes.

Recently, experiment techniques such as CLIP-sep, RIP-seq
and fRIP-seq have been developed for uncovering ncRNA-
protein interactions (Ferrè et al., 2016). Many significant findings
have been obtained by using these methods. However, it still
remains some challenges such as expensive, time-consuming
and labor-intensive (Luo et al., 2017). Therefore, it is important
to develop an accurately computational method for predicting
ncRNA-protein interactions to provide valuable supports
and supplements for revealing functionalities of ncRNAs.
Computational prediction of ncRNA-protein relationship
has attracted much attention in the fields of ncRNA and
computational biology. It can be roughly divided into the
prediction of the interaction pairs and the prediction of
binding sites. The former refers to the method of predicting the
interacting relationship between ncRNA and protein. The latter
approach focuses on the interaction between amino residues in
protein and nucleic acid bases in RNA. In this paper, we focus
on the prediction methods of interaction between ncRNA and
protein molecules. Previous methods for predicting ncRNA-
protein interaction could be roughly divided into machine
learning based method and network based method. The machine
learning based predicts novel ncRNA-protein interactions
by training a machine learning model on available known
interaction data (Ferrè et al., 2016). The network based usually
constructs a heterogeneous network with known ncRNA-protein
interactions and predicts novel edges between ncRNA and
protein nodes within the network by using some link prediction
algorithm as in Zhang et al. (2018). In this study, we focus on
the machine learning based method, because it is able to predict
the interaction between molecules that are not present in the
training data.

Many machine learning based methods have been developed
for predicting ncRNA-protein interaction (Lu et al., 2013; Yang
et al., 2013) in the past decade. For example, catRAPID proposed
in Bellucci et al. (2011) is one of the earliest machine learning

based methods for predicting ncRNA-protein interactions. It
extracts sequential features from the primary sequences of a
ncRNA-protein pair and trains prediction model based on
support vector machine and random forest. Cheng et al. (2015)
proposed a method named PRIPU, which built a biased support
vector machine model to tackle the imbalance problem of
positive and negative samples in the dataset. Pan et al. (2016)
employs deep learning model with stacked ensemble technique.
Most of previous methods focused on using more powerful
machine learning algorithms. In fact, in addition to machine
learning model, how to extract a set of good features that could
appropriately characteristic the properties of samples is another
critical problem for improving the predicting performance (Zou
et al., 2016b). It is worth noting that developing a powerful
feature extraction method for a specific set of samples usually
needs to consider what field the sample comes from. It is
because that in different fields the properties of actual objects
corresponding to the samples may be very different. In other
words, the properties of the samples itself should be particularly
considered when generating features for training a prediction
model. With respect to the interaction between ncRNA and
protein, each sample in the dataset is composed of two primary
sequences that corresponds to a pair of ncRNA and protein
molecules, respectively.When characteristic ncRNA-protein pair,
most of existing methods typically extract the sequential feature
vectors from the two molecules separately, and then directly
concat the two feature vectors together into one vector that is
finally taken as the feature of the given pair. For example, as
in Figure 1A, for a pair of ncRNA and protein, their k-mer
feature vectors are first extracted, which we denoted as R and
P, respectively. Then, R and P are directly concatenated to the
feature vector of the ncRNA-protein pair. Obviously, it is an
easy way to characteristic the pair that is composed of two
distinct molecules. However, it is worth noting that this kind of
simple feature concatenation does not consider the correlation
between the two molecular features, which may be critical for
understanding the interactive properties of these molecules. In
fact, the interaction between a pair of RNA and protein is usually
formed by the physical contacts between the amino acid residues
and nucleotide bases at the interface (Hudson and Ortlund,
2014). Consequently, to characterize the interaction between the
two molecules, it should not only have to extract the separate
features from individual molecules, but also need to focus on the
complex relations between these features.

In this paper, we propose a framework for constructing
Complex Features to predict ncRNA-Protein interactions
(CFRP). The complex features are generated by employing some
fusion methods upon the traditional individual molecule features
(base features) of ncRNA and protein. The motivation behind
constructing the complex feature is to emphasize the complex
relations between the basic features of different molecules,
and thus to characterize the interactive activities between a
pair of RNA and protein. In particular, complex features are
constructed by using one or more non-linear operations on
the two base features. As in Figure 1B, let ri be an element in
RNA base feature and pj in protein base feature. A complex
feature fi,j is the result of conducting a specific non-linear
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FIGURE 1 | The schematic diagram of the traditional feature and the

proposed complex feature. (A) Traditional feature extraction.

(B) Complex features construction.

operation on ri and pj. A variety of different non-linearities were
investigated for constructing the complex feature in this work,
in an attempt to comprehensively characterize the interactive
properties between the two molecules. Furthermore, a feature
selection based random forest (RF) are employed to reduce
the dimensions of constructed complex feature, which make
it concise and efficient for training predicting models. To
investigate the effectiveness of the proposed CFRP method, the
complex features constructed by the method are employed to
train a machine learning model (CFRP model) for predicting
ncRNA-protein interactions. We conducted extensive tests
against to CFRP model on several widely used public datasets.
The experimental results demonstrated that the complex feature
constructed by CFRP method is helpful to obtain a good
prediction model with better performance than the traditional
k-mer feature. Compared with other state-of-the-art methods,
CFRP model can achieve better prediction performance in terms
of many metrics. Especially, on the Summetric, CFRP method is
superior to other methods on all data sets. In conclusion, CFRP
can produce a set of discriminative features against to the task of
predicting ncRNA-protein interactions.

2. METHODS

In this section, a novel framework for constructing Complex
Feature that is used to characterize ncRNA-Protein interaction
(CFRP) is put forward, which generates complex feature
by employing a set of non-linear transformations upon the
traditional k-mer sequential feature (base feature). As shown in
Figure 2, the framework consists of several steps including base
feature extraction, complex feature generation, feature ranking
and selection. Specifically, CFRP firstly extracts traditional k-mer
features from a pair of RNA and protein as their base features,

respectively; then, a set of complex features are constructed
by employing different kinds of non-linear transformations
upon the extracted base features; finally, the generated complex
features are ranked by the feature importances that are induced
from a trained random forest model and then the top-k
important features of them are chosen as the final feature of
input ncRNA-protein pair. The generated complex feature could
be used to train a powerful prediction model for ncRNA-protein
interaction.

2.1. Base Feature Extraction
Given the sequences of a ncRNA-protein pair, we first extract
k-mer features from them, respectively, as their base features. For
the RNA, m-mer feature is extracted from its primary sequence,
wherem-mer represents the frequency of each kind of successive
m base combination in the sequence. As there are four kinds
of nucleotides (A, C, G, U) in RNA, a base feature vector Rbase

(Equation 1) has 4m dimensions.

Rbase = {r1, r2, ..., ri, ..., r4m} (1)

For the protein, there are 20 kinds of amino acid residues existing
in its primary sequence. Let n be the length of k-mer for protein.
If directly computing n-mer frequency, we will get a feature
vector with 20n dimensions. Such a number of dimensions is too
expensive for subsequent construction of complex feature. To
reduce the dimensions of protein base feature vector, we group
20 kinds of residues into several subsets as Shen et al. (2007).
They proposed a 7-group strategy to classify 20 amino residues
into 7 groups based on their physiochemical properties, as {A,
G, V}, {I, L, F, P}, {Y, M, T, S}, {H, N, Q, W}, {R, K}, {D, E},
and {C}. This grouping method could reduce the computational
cost without significantly performance reduce on characterizing
protein sequence. By this grouping, the original protein sequence
could be translated into a new string that is composed of 7
characters. Then, a 7n dimensional n-mer vector Pbase could be
extracted (Equation 2) from the new string as the base feature of
input protein. Each element pj in the vector is the frequency of a
certain n-mer in the translated string.

Pbase = {p1, p2, ..., pj, ..., p7n} (2)

The base feature vectors extracted from RNA and protein (Rbase

and Pbase) are normalized by the sequence lengths of RNA and
protein, respectively.

2.2. Complex Feature Construction
To represent the complex relation between ncRNA and protein,
a set of complex features is generated by introducing non-linear
transformations upon the base features of individual RNA and
protein sequences. In particular, some non-linear operations such
as geometric mean, harmonic mean and power operation are
introduced. As shown in Figure 2, given base features Rbase and
Pbase of a pair of RNA and protein, a set of complex features such
as GM, HM, PowRP, and PowPR is generated. The details are as
follows:
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FIGURE 2 | The flowchart of constructing interactive complex features.

the GM feature,

GM = {gmij|1 ≤ i ≤ 4m, 1 ≤ j ≤ 7n} (3)

where gmij is the geometric mean of ri and pj as

gmij =
√

ri × pj,

the HM feature,

HM = {hmij|1 ≤ i ≤ 4m, 1 ≤ j ≤ 7n} (4)

where hmij is the harmonic mean of ri and pj as

hmij = 2(ri × pj)/(ri + pj),

and power operation features,

PowRP = {prij = log r
pj
i |1 ≤ i ≤ 4m, 1 ≤ j ≤ 7n} (5)

PowPR = {ppij = log p
ri
j |1 ≤ i ≤ 4m, 1 ≤ j ≤ 7n} (6)

By means of above different non-linear operations, we could get
a 4× 4m× 7n-dimensional feature vector that consists four kinds
of complex features. These raw CFRP features could be used to
describe the interactive activities between RNA and protein in a
more comprehensive view.

2.3. Feature Selection
Complex features with thousands of dimensions might arise the
problem of dimensionality curse. The high dimensional feature
space will yield several problems such as data sparseness, over-

fitting of prediction model and high computational cost (Li
et al., 2016). In order to reduce the adverse effect, a feature

selection method should be conducted on the high dimensional

space to select the features with more information values and
to remove those ones with less importances. It has been proven

to be effective and efficient for solving variety machine learning
problems on high-dimensional data (Zou et al., 2016a). In this

work, the strategy of feature selection against to the complex
features constructed above is a two-step process: the first step
is to rank all features in descending order with respect to the

importance according to their contribution to the classification,
and then the top-k important features is selected as the final
features. To get the importance of feature, we employed a random

forest model (RF) based model. As known, in a decision tree,
features used at the top of a decision tree are considered to

be contribute to a larger fraction of the input samples for the

prediction task. Consequently, we could estimate the importance
of the feature based on its contribution to the prediction in the

tree. Random forest are composed of a set of decision trees. By

estimating the average value of feature importance on multiple
trees in a forest, we could get the importance of features with

lower variance for a given prediction task (Zhou et al., 2016).
After the estimation of feature importance, we could get top-k
features according the importance as the final features used for
characterizing RNA-protein interactions.
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2.4. Training a CFRP Model
The CFRP complex features could be used to train a predicting
model for ncRNA-protein interaction on a certain dataset.
In general, a common procedure for training a CFRP-based
predicting model is as:

• Extracting m-mer and n-mer features from RNA and protein
primary sequences, respectively, as their base features;

• Generating complex features based on the base features as
section 2.2;

• Selecting the top-k complex features with respect to the feature
importances yielded by a trained random forest model;

• Training a machine learning model with the selected complex
features on a dataset.

In accordance with this framework, we trained a CFRP-based
model using random forest for the follow experimental testing
and performance evaluation.

3. EXPERIMENTAL RESULTS

In order to validate the proposed method of constructing
complex feature for ncRNA-protein interaction, CFRP model
was tested on a set of high-quality public datasets. Several
metrics widely used in the field were employed to measure the
performance of a prediction model. A series of experimental
tests were carried out: (1) the properties of CFRP feature using
different k-mer length; (2) the effectiveness of the proposed CFRP
feature; (3) comparison of CFRP model with other state-of-the-
art methods. CFRP source code and other related resources can
be download on the website (http://www.dailab.cn/CFRP/index.
html).

3.1. Datasets
Three datasets were adopted to test the CFRP method proposed
in the experiments, including RPI369 (Muppirala et al., 2011),
RPI488 (Pan et al., 2016) and RPI2241 (Muppirala et al.,
2011), all of which are widely used in the field of predicting
ncRNA-protein interaction (Muppirala et al., 2011; Lu et al.,
2013; Pan et al., 2016). All of these datasets consist of non-
redundant experimentally-validated ncRNA-protein interaction
pairs that are extracted from the three-dimensional structures
of RNA-protein complexes within the Protein Data Bank
(PDB) (Westbrook et al., 2002). The summary information of
these datasets is listed in Table 1. In detail, RPI369 consists
of 369 experimentally-validated RNA-protein interactions as
positive samples and the same number of negative RNA-protein
interactions, in which the negative samples are generated with
the randomly pairs of proteins and RNAs that does not present
in positive sample set. RPI488 is obtained by Pan et al. (2016),
which is extracted from 18 ncRNA-protein complexes also in
PDB. It consists of 488 samples including 243 RNA-protein
interactions and 245 non-interactions. RPI2241 includes 2,241
experimental-validated RNA-protein interactions and negative
ones, respectively, where the method for generating negative
samples is same as RPI369.

TABLE 1 | ncRNA-protein datasets used in this study.

Dataset # of interaction

pairs

# of RNAs # of proteins References

RPI369 369 332 338 Muppirala et al., 2011

RPI488 488 25 247 Pan et al., 2016

RPI2241 2241 842 2043 Muppirala et al., 2011

3.2. Performance Metrics
Several metrics are employed for measuring the performance
on predicting ncRNA-protein interaction, including Accuracy
(Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre),Matthews
correlation coefficient (Mcc) and area under curve (AUC) of the
receiver operation Characteristic (ROC). The details of these
metrics are as follows,

Acc =
TP + TN

TP + TN + FP + FN
(7)

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

TN + FP
(9)

Precision =
TP

TP + FP
(10)

Mcc =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(11)

where TP, TN represent the number of correctly predicted
positive and negative samples, respectively, and FP, FN represent
the number of samples wrongly predicted as positive and
negative, respectively. These metrics are widely used for
measuring the performance of a predicting model in the field
(Bellucci et al., 2011; Cheng et al., 2015; Pan et al., 2016) and other
related fields (Su et al., 2018; Wei et al., 2018) in Bioinformatics.
In addition, since none of the abovemetrics is a gold standard, we
also investigate the sum of above 6 metrics to measure the overall
performance of the prediction model (Sum). In order to reduce
the variance of performance, all experimental results about CFRP
model are obtained by means of k-fold cross-validation (Arlot
and Celisse, 2010). In detail, the sample set is divided into k sub-
sets with equal size. For each model training, one sub-set is taken
as the testing sample set and the rest ones as the training set. The
average performance metrics of these k models are taken as the
final result of performance evaluation of the model.

3.3. CFRP Feature With Different Length of
K-mer
As described, CFRP generates complex feature on the basis
of base feature of RNA and protein. That is to say that
using different length of k-mer in the base feature will
definitely affect the performance and computing efficiency of
CFRP method. Therefore, we study some properties of CFRP
feature, such as effects on computing cost and discriminative
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TABLE 2 | The effects of different k-mer lengths on the prediction performance (3-fold cross-validation).

Dataset Methods
m = 2 m = 3 m = 4

n =2 n = 3 n = 4 n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

RPI369

CFRP-RF 4.121 4.046 4.001 4.075 4.142 4.169 4.029 4.158 4.035

CFRP-SVM 3.960 3.917 3.839 3.873 3.916 3.835 3.965 3.804 3.552

CFRP-LR 3.988 3.845 3.932 3.765 3.805 3.824 3.745 3.732 3.395

RPI488

CFRP-RF 5.249 5.164 5.179 5.311 5.336 5.234 5.367 5.297 5.259

CFRP-SVM 5.079 5.123 5.142 5.290 5.067 5.285 5.293 5.266 5.262

CFRP-LR 5.062 4.927 4.932 5.118 5.009 5.148 5.122 4.909 5.021

RPI2241

CFRP-RF 3.556 3.518 3.561 3.706 3.682 3.653 3.753 3.759 –

CFRP-SVM 3.158 3.155 3.043 3.513 3.447 3.449 3.630 3.612 –

CFRP-LR 3.143 3.137 3.017 3.331 3.273 3.397 3.461 3.456 –

The values in bold represent the best values obtained by the three methods with different k-mer lengths on a certain dataset.

TABLE 3 | The effects of different k-mer lengths on the prediction performance (10-fold cross-validation).

Dataset Methods
m = 2 m = 3 m = 4

n=2 n = 3 n = 4 n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

RPI369

CFRP-RF 4.066 4.102 4.070 4.092 4.094 4.112 4.165 4.075 4.173

CFRP-SVM 3.983 3.773 3.764 3.869 3.702 3.729 3.994 3.756 3.746

CFRP-LR 3.938 3.762 3.741 3.844 3.627 3.701 3.942 3.640 3.666

RPI488

CFRP-RF 5.209 5.157 5.170 5.250 5.228 5.209 5.214 5.280 5.201

CFRP-SVM 5.107 5.139 5.157 5.166 5.191 5.179 5.192 5.181 5.189

CFRP-LR 4.816 4.962 5.003 5.121 5.003 5.080 5.148 5.051 4.995

RPI2241

CFRP-RF 3.612 3.575 3.598 3.728 3.687 3.767 3.846 3.725 –

CFRP-SVM 3.408 3.260 3.195 3.493 3.418 3.455 3.692 3.414 –

CFRP-LR 3.373 3.165 3.163 3.376 3.296 3.382 3.476 3.291 –

The values in bold represent the best values obtained by the three methods with different k-mer lengths on a certain dataset.

performance, when using different k-mer lengths in base
feature.

3.3.1. Time and Memory Consumptions for

Constructing CFRP
Letm, n be the length of k-mer in RNA and protein, respectively.
m = 2, 3, 4 and n = 2, 3, 4 were tested. Complex feature was
constructed by CFRP for each setting of m, n. The computer
used for conducting the experiments was equipped with an E7-
4809 v4 CPU, 64G memory, and Ubuntu 16.04 system. Python
3.6.7 and scikit-learn 0.19.1 (Pedregosa et al., 2013) were adopted
for algorithm implement. The running time and memory space
occupied by CFRP for building complex features on different data
sets under different values ofm and nwere shown in Figures 4, 5,
respectively. As can be seen from the tables, running time and
memory size were significantly positively correlated with the
values of m and n. For example, on RPI369 dataset, when m = 2
and n = 2, only about 6 seconds and 0.1G of memory were
consumed; whenm, n = 4, it consumed about 3,562 s of running
time and 20.2 grams of memory. Due to the limited memory size

of our computer, we were not able to successfully obtain CFRP
feature and train a model on RPI2241 dataset.

3.3.2. Comparison of CFRP-Model Using Different

Classifiers
Several classic machine learning techniques such as random
forest (RF), support vector machine (SVM) and logistics
regression (LR) were employed for training CFRP models. The
models were denoted as CFRP-RF, CFRP-SVM and CFRP-LR
depending on which learning technique it used. These models
were trained on RPI369, RPI488, and RPI2241 datasets under
different values of m, n. And 3-fold, 10-fold cross-validations
were both used for evaluating the performance of models, and the
results were shown in Tables 2, 3, respectively. Each value in the
tables represents the Sum performance value obtained by amodel
under specific m and n values on a certain dataset, and the value
in bold denotes the best one yielded on each dataset. As shown in
the tables, CFRP-RF can achieve better prediction performance
than the other two models, suggesting that random forest is an
appropriate machine learning technique for the task of predicting
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ncRNA-protein interaction. It also can be found that the best
performance on each dataset is mostly obtained when m = 4,
except for 3-fold on RPI369 dataset. Therefore, we can infer that
the 4-mer RNA sequence pattern is more conducive than that
of 2-mer to the characterization of the interactive properties of
ncRNA against to protein. Considering that most of the relevant
works adopted 10-fold cross-validation, the CFRP-RF running
results with the best Sum performance on each dataset in the
above 10-fold test were used for subsequent experiments, named
CFRP model.

3.4. Study on the Effectiveness of CFRP
Feature
In CFRP, there are four kinds of non-linear transformations
that are used to produce GM, PowRP, PowPR and HM complex
features. In order to study the effectiveness of different complex
features, we analyze the top 100 features generated by CFRP on
RPI2241, which are composed of 19 GM, 38 HM, 12 PowRP,
and 31 PowPR features in Figure 3. It means that the four non-
linear operations introduced for generating complex features are
all effective, and HM is more discriminative for the accurate
prediction of ncRNA-protein interactions than other kinds of
features.

Furthermore, in order to validate the discriminative ability of
CFRP feature, we further trained amodel that just uses traditional
k-mer feature (base feature) and a model using complex features
generated by CFRP but without using any feature selection. These
models are also trained with random forest model and denoted
as CFRP-raw and BaseFeat, respectively. To investigate different
features, we tested CFRP, CFRP-raw and BaseFeat models on
RPI369, RPI488, and RPI2241 datasets, the experimental results
are shown in Table 4. In the table, the value in bold denotes the
best one in the tested models on a certain dataset. As shown,
the performance of CFRP-raw on Sum is weaker than CFRP
model on three datasets and better than the traditional k-mer
feature on RPI2241. It suggests that the ability of generated
raw complex features for describing ncRNA-protein interaction
could be boosted with an appropriate feature selection.Moreover,
CFRP model is superior to other two tested models on three
datasets for all of performance metrics. For example, the AUC
indicators of CFRP model on RPI369, RPI488, and RPI2241
are 0.788, 0.938, and 0.744, exceeding 0.028, 0.024, and 0.043
than Basefeat, respectively. In terms of Accuracy, CFRP also
obtained 0.024, 0.016, and 0.027 improvements over BaseFeat
on three datasets. The significant improvements of CFRP-model
demonstrate that the proposed CFRP complex feature has a more
powerful ability for describing ncRNA-protein interaction than
the base feature.

3.5. Comparison of CFRP Model With
Other Methods
In this section, CFRP model is compared with other state-of-
the-art methods, including RPISeq (Muppirala et al., 2011) and
lncPro (Lu et al., 2013). Similar to CFRP model, these two
methods also take primary sequences of RNA and protein as
inputs. RPISeq adopts the framework combining traditional k-
mer features and random forest, while lncPro predicts ncRNA-
protein interaction through scoring the pair by encoding

FIGURE 3 | Analysis of the distribution of complex features generated from

RPI2241 dataset.

sequences into numeric vectors. The performance of CFRP
model is compared with those of RPISeq and lncPro on RPI369,
RPI488, and RPI2241 datasets. As illustrated in Table 5, CFRP
model performs better than RPISeq and lncPro on three datasets
with respect to most of the tested metrics, especially in terms of
Sum and AUC metrics. CFRP model achieves more than 0.179,
0.055, and 0.188 Sum improvements than other two methods
on three datasets, respectively. In addition, it performs better
than other two methods on RPI369 for all of the tested metrics.
Also, CFRP gets 0.761, 0.942, and 0.684 Accuracy on three tested
datasets, which exceeds 0.057, 0.062, and 0.030 at least than
other methods, respectively. As a whole, although it is inferior to
the other methods on a few indicators, CFRP method performs
better than the other two methods in general. It suggests that the
method for generating complex features presented in this work
is an effective and efficient way to predict ncRNA and protein
interaction.

To sum up, the above series of experiments show that
the CFRP method proposed in this work is effective, and it
could produce complex features with better descriptive ability
for ncRNA-protein interaction. The main reasons include two
aspects. On the one hand, CFRP introduces a variety of complex
relations about k-mer base feature, which can characterize
the properties of ncRNA and protein interaction from a
more comprehensive and higher level. On the other hand, by
introducing the feature selectionmethod based on random forest,
the dimension of generated complex feature can be significantly
reduced, so that the problem of dimensional disaster is avoided.
And thus the CFRP feature can be more concise and efficient for
training a powerful predicting model.

4. CONCLUSION

The interaction between ncRNA and protein is significant for
many critical biological processes and diseases. Developing a
powerful computational method for predicting the interaction
could provide a important assistance for understanding the
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FIGURE 4 | Time consumption (Seconds) of CFRP-models with different k-mer length on three datasets.

FIGURE 5 | Memory consumption (G) of CFRP-models with different k-mer length on three datasets.

TABLE 4 | Performance evaluation of CFRP-model on RPI369, RPI488, and RPI2241.

Dataset Methods Accuracy Sensitivity Specificity Precision MCC AUC Sum

BaseFeat 0.737 0.692 0.708 0.703 0.401 0.760 4.001

RPI369 CFRP-raw 0.728 0.700 0.682 0.688 0.382 0.758 3.937

CFRP 0.761 0.743 0.710 0.719 0.452 0.788 4.173

BaseFeat 0.926 0.800 0.915 0.905 0.720 0.914 5.180

RPI488 CFRP-raw 0.924 0.794 0.912 0.901 0.712 0.900 5.143

CFRP 0.942 0.813 0.927 0.917 0.743 0.938 5.280

BaseFeat 0.657 0.618 0.684 0.661 0.302 0.701 3.623

RPI2241 CFRP-raw 0.659 0.597 0.709 0.672 0.308 0.725 3.670

CFRP 0.684 0.621 0.736 0.702 0.359 0.744 3.846

The values in bold represent the best values obtained by the three methods on a certain dataset.

TABLE 5 | Comparison between CFRP and other methods on RPI369, RPI488, and RPI2241.

Dataset Method Accuracy Sensitivity Specificity Precision MCC AUC Sum

RPISeq 0.704 0.705 0.702 0.707 0.409 0.767 3.994

RPI369 lncPro 0.704 0.708 0.696 0.713 0.409 0.740 3.970

CFRP 0.761 0.743 0.710 0.719 0.452 0.788 4.173

RPISeq 0.880 0.926 0.822 0.932 0.762 0.903 5.225

RPI488 lncPro 0.870 0.900 0.827 0.910 0.740 0.901 5.148

CFRP 0.942 0.813 0.927 0.917 0.743 0.938 5.280

RPISeq 0.646 0.652 0.630 0.663 0.293 0.690 3.574

RPI2241 lncPro 0.654 0.659 0.640 0.669 0.310 0.722 3.654

CFRP 0.684 0.621 0.736 0.702 0.359 0.744 3.846

The values in bold represent the best values obtained by the three methods on a certain dataset.

Frontiers in Genetics | www.frontiersin.org 8 February 2019 | Volume 10 | Article 18

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Dai et al. Complex Features for ncRNA-Protein Interaction

molecular mechanism within variety biological activities. When
building a prediction model, it is very important to employ a
set of features that could effectively characterize the interaction
between ncRNA and protein. In this work, we presented
a novel framework named CFRP for constructing a set of
complex features, which tries to comprehensively characterize
interactive activities of a ncRNA-protein interaction. Firstly,
k-mer features (base features) are extracted from primary
sequences of ncRNA and protein, respectively; secondly, a set
of complex features are generated by employing several non-
linear transformations upon the base features of RNA and
protein; finally, a feature selection based on random forest are
employed to reduce the dimensions of the generated features.
A series of experimental results on several widely used public
datasets show that the prediction model using CFRP features is
superior to the one using traditional k-mer features. It suggests
that complex features generated by the CFRP framework are
more descriptive than traditional k-mer features. The CFRP
model is also compared with other state-of-the-art methods, and
the results show that it could achieve better performance in
terms of most of the tested metrics. In conclusion, the propose
CFRP method could generate a set of complex features that is

more informative that k-mer features. It would be conducive
to build a prediction model of ncRNA-protein interaction with
more powerful performance. The idea of constructing complex
features might be extended to predicting other kinds of molecular
interactions such as protein-protein interaction in the field of
bioinformatics.
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