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1. Introduction

In this work we make use of rotated complex lattices constructed through exten-
sion fields to develop a new algebraic methodology to perform a complex-valued
channel quantization in order to realize interference alignment (IA) [1] onto a
complex ideal lattice.

In a wireless network a transmission from a single node is heard not only by
the intended receiver, but also by all other nearby nodes. Each node, indexed
by m = 1, 2, . . . ,M , observes a noisy linear combination of the transmitted
signals through the channel

ym =
L
∑

l=1

hmlxl + zm, (1.1)

where hml ∈ C are complex-valued channel coefficients, xl is a complex lat-
tice point whose message space presents a uniform distribution and zm is an
i.i.d. circularly symmetric complex Gaussian noise. Figure 1 illustrates the
corresponding channel model.

Figure 1: A Gaussian Multiple-Access Channel

Calderbank and Sloane [2] made the important observations that the signal
constellation should be regarded as a finite set of points taken from an infinite
lattice and the partitioning of the constellation into subsets corresponds to the
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partitioning of that lattice into a sublattice and its cosets. We call this general
class of coded modulation schemes coset codes.

There is a great number of works based on coset codes and their applications
in communications. It is not possible to discuss all of them here, but the
references [3] and [4] are great indications for the interested reader.

In the literature we have that Z[ξ2r ] is the ring of integers of the binary
cyclotomic field Q(ξ2r), where ξ2r denotes the 2r-th root of unity and r ≥ 3.
Therefore, Giraud et al. [5] show that an algebraic lattice can be associated to
this ring of integers Z[ξ2r ] and this lattice is a scaled version of the Z[i]n-lattice,
where n = 2r−2.

In this work we develop a new algebraic methodology which quantizes
complex-valued channels in order to realize interference alignment (IA) [1] onto
a complex ideal lattice and our channel model is given by equation (1.1). The
coding scheme only requires that each relay knows the channel coefficients from
each transmitter to itself.

In this new methodology we make use of the binary cyclotomic field Q(ξ2r),
where r ≥ 3, to provide a doubly infinite nested lattice partition chain for any
dimension n = 2r−2, where r ≥ 3, in order to quantize complex-valued channels
onto these nested lattices. Such complex ideal lattices are described by their
corresponding construction A which furnishes us, in this case, nested lattice
codes (coset codes). It is very important that the channel gain does not remove
the lattice from the initial chain of nested lattices, then we show the existence
of periodicity in the corresponding nested lattice partition chains.

After developing such a methodology, we also develop a precoding to ensure
onto which lattice a given complex-valued channel must be quantized.

The concept of mean square error has assumed a central role in the theory
and practice of estimation since the time of Gauss and Legendre. In partic-
ular, minimization of mean square error underlies numerous methods in sta-
tistical sciences. In this paper, we make use of the minimum mean square
error (MMSE) criterion to estimate complex-valued channels contaminated by
additive Gaussian noise.

In the following section we provide a quick preview of the concepts related
to coset codes and complex ideal lattices that will figure in the rest of the paper.

2. Preliminaries

Lattices have been very useful in applications in communication theory and,
in this work, we use lattices in order to realize interference alignment. In this
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section we present basic concepts of the lattice theory.

Definition 1. Let v1, v2, . . . , vm be a set of linearly independent vectors
in Rn such that m ≤ n. The set of the points

Λ = {x =

m
∑

i=1

λivi, where λi ∈ Z} (2.1)

is called a lattice of rank m and {v1, v2, . . . , vm} is called a basis of the lattice.

So we have that a real lattice Λ is simply a discrete set of vectors (points
(n-tuples)) in real Euclidean n-space Rn that forms a group under ordinary
vector addition, i.e., the sum or difference of any two vectors in Λ is in Λ. Thus
Λ necessarily includes the all-zero n-tuple 0 and if λ is in Λ, then so is its
additive inverse −λ.

As an example, the set Z of all integers is the only one-dimensional real
lattice, up to scaling, and the prototype of all lattices. The set Zn of all integer
n-tuples is an n-dimensional real lattice, for any n, and its corresponding n

2 -

dimensional complex lattice is given by Z[i]
n
2 .

Lattices have only two principal structural characteristics. Algebraically, a
lattice is a group; this property leads to the study of subgroups (sublattices) and
partitions (coset decompositions) induced by such subgroups. Geometrically,
a lattice is endowed with the properties of the space in which it is embedded,
such as the Euclidean distance metric and the notion of volume in Rn [3].

A sublattice Λ′ of Λ is a subset of the points of Λ which is itself an n-
dimensional lattice. The sublattice induces a partition Λ/Λ′ of Λ into |Λ/Λ′|
cosets of Λ′, where |Λ/Λ′| is the order of the partition.

The coset code C(Λ/Λ′;C) is the set of all sequences of signal points that lie
within a sequence of cosets of Λ′ that could be specified by a sequence of coded
bits from C. Some lattices, including the most useful ones, can be generated as
lattice codes C(Λ/Λ′;C), where C is a binary block code. If C is a convolutional
encoder, then C(Λ/Λ′;C) is a trellis code [3].

A lattice code C(Λ/Λ′;C), where C is a binary block code, is defined as the
set of all coset leaders in Λ/Λ′, i.e.,

C(Λ/Λ′;C) = Λ mod Λ′ = {λ mod Λ′ : λ ∈ Λ}. (2.2)

Geometrically, C(Λ/Λ′;C) is the intersection of the lattice Λ with the funda-
mental region RΛ′ [3], i.e.,

C(Λ/Λ′;C) = Λ ∩RΛ′ . (2.3)
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For this reason, the fundamental region RΛ′ is often interpreted as the shap-
ing region. Note that there is a bijection between Λ/Λ′ and C(Λ/Λ′;C); in
particular,

|Λ/Λ′| = |C(Λ/Λ′;C)|. (2.4)

A lattice Λ is said to be nested in a lattice Λ′ if Λ ⊆ Λ′. We refer to Λ
as the coarse lattice and Λ′ as the fine lattice. More generally, a sequence of
lattices Λ,Λ1, . . . ,ΛP is nested if Λ ⊆ Λ1 ⊆ · · · ⊆ ΛP . Observe that nested
lattices induce nested lattice codes.

In [3] an n-dimensional real lattice Λ is a mod-2 binary lattice if and only
if it is the set of all integer n-tuples that are congruent modulo 2 to one of the
codewords c in a linear binary (n, k) block code C. Mod-2 binary lattices are
essentially isomorphic to linear binary block codes and this is “Construction
A” of Leech and Sloane [6].

We call complex lattice a Z[i]-lattice

Λc = {x = λM : λ ∈ Z[i]n}, (2.5)

where M is the lattice generator matrix and MMH is the Gram matrix, where
H denotes the transpose conjugate.

Complex algebraic lattices can be obtained by using the relative canonical
embedding of a number field. Let L be a Galois extension of degree n over Q(i).
We denote by Gal(L/Q(i)) = {σ1, σ2, . . . , σn} the Galois group of L over Q(i)
and define the relative canonical embedding of L into Cn as

σ : L → Cn, where σ(x) = (σ1(x), σ2(x), . . . , σn(x)). (2.6)

Let OL be the ring of integers of L. Since Z[i] is principal, there exists a Z[i]-
basis BL = {w1, w2, . . . , wn}. The generator matrix of the complex algebraic
lattice Λc(OL) is obtained by applying the relative canonical embedding to the
basis of OL

N =







σ1(w1) · · · σn(w1)
...

. . .
...

σ1(wn) · · · σn(wn)






. (2.7)

We now generalize the definition of ideal lattices to the complex case.

Definition 2. [7] Let L/Q(i) be a Galois extension of degree n over Q(i).
A complex ideal lattice is a Z[i]-lattice Λc = (I, q), where I is an OL-ideal and

q : I × I → Z[i], q(x, y) = TrL/Q(i)(xȳ), ∀ x, y ∈ I, (2.8)

where¯denotes the complex conjugation.
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When considering complex ideal lattices, the Gram matrix MMH must be
an Hermitian trace form.

Lemma 1. The matrix N defined, as in (2.7), by embedding the basis
BI = {ν1, ν2, . . . , νn} of the ideal I ⊆ OL

N =







σ1(ν1) · · · σn(ν1)
...

. . .
...

σ1(νn) · · · σn(νn)






(2.9)

is the generator matrix of a complex ideal lattice if and only if the complex
conjugation commutes with all the other embeddings.

Proof. See [7], page 323.

If L is a totally complex field containing a totally real field K such that
[L : K] = 2 (we say that L is a complex multiplication field-CM field), then
it can be shown that the complex conjugation commutes with all σi (see, for
example, [8]-Ch. 1).

3. Construction of Complex Nested Lattices from the Binary

Cyclotomic Field Q(ξ2r) in Order to Realize Interference

Alignment

In order to realize interference alignment onto a lattice we need to quantize the
channel coefficients hml. Thereby, in this section, we describe a way to find a
doubly infinite nested lattice partition chain for any dimension n = 2(r−2), with
r ≥ 3, in order to quantize the channel coefficients. For that, we make use of
the binary cyclotomic field Q(ξ2r), with r ≥ 3, [Q(ξ2r) : Q] = ϕ(2r) = 2(r−1),
where ϕ is the Euler function, and [Q(ξ2r) : Q(i)] = 2(r−2) = n. Hence we
provide a new algebraic methodology to quantize complex-valued channels.

Such lattices are complex ideal lattices that are described by their corre-
sponding construction A which furnishes us, in this case, nested lattice codes
(nested coset codes).

In [9] and [10] we have two examples of channel quantization. For the
corresponding quantizations, we make use of the binary cyclotomic fields Q(ξ8)
and Q(ξ16), respectively. These examples are related to the complex dimensions
2 and 4, respectively.
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3.1. Quantization of complex-valued channels onto a lattice

Suppose that our interference channel is complex-valued, specifically hml ∈ C.
We also suppose that all lattices used by the legitimate user and the interferers
are one of a certain lattice partition chain which is extended by periodicity.

In this section we consider n-dimensional complex-valued vectors, where
n = 2r−2 and r ≥ 3. Now we show, for a given user, how its codeword can be
transformed so that we can perform the channel quantization and, for that, we
make use of the binary cyclotomic field Q(ξ2r), where r ≥ 3.

In fact, consider the following Galois extensions, where r ≥ 3:

Q(ξ2r)

2(r−2)

Q(i)

2

Q

(3.1)

As [Q(ξ2r ) : Q] = ϕ(2r) = 2(r−1), where ϕ is the Euler function, and
[Q(i) : Q] = 2, then we have [Q(ξ2r) : Q(i)] = 2(r−2) = n. We have that the
Galois groups of [Q(ξ2r) : Q(i)] and [Q(i) : Q] are given by

Gal(Q(ξ2r )/Q(i)) = {σ1 = id : Q(ξ2r) → Q(ξ2r), σ2, σ3, . . . , σ2(r−2)}

and

Gal(Q(i)/Q) = {σ1 = id : Q(i) → Q(i) and σ2 : Q(i) → Q(i),

where σ2(i) = −i, respectively}. (3.2)

By [7] we have that Q(ξ2r) = Q(ξ2r + ξ−1
2r )Q(i) and Z[ξ2r ], the ring of

integers of Q(ξ2r), is a free Z[i]-module of rank 2(r−2). Besides, the following
set

{1, ξ2r , ξ
2
2r , . . . , ξ

(2(r−2)−1)
2r } (3.3)

is a Z[i]-basis of Z[ξ2r ].

As {1, ξ2r , ξ
2
2r , . . . , ξ

(2(r−2)−1)
2r } is a Z[i]-basis of Z[ξ2r ], then the matrix

M =



















σ1(1) σ1(ξ2r ) σ1(ξ
2
2r ) . . . σ1(ξ

(2(r−2)
−1)

2r )

σ2(1) σ2(ξ2r ) σ2(ξ
2
2r ) . . . σ2(ξ

(2(r−2)
−1)

2r )

σ3(1) σ3(ξ2r ) σ3(ξ
2
2r ) . . . σ3(ξ

(2(r−2)
−1)

2r )
...

...
...

...
...

σ2r−2(1) σ2r−2 (ξ2r ) σ2r−2 (ξ22r ) . . . σ2r−2(ξ
(2(r−2)

−1)
2r )



















(3.4)
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is a generator matrix of the complex algebraic lattice σ(Z[ξ2r ]) [7].
Now sinceM0 =

1
2((r−2)/2)M is a unitary matrix, then σ(Z[ξ2r ]) is isomorphic

to the Z[i]2
(r−2)

-lattice [7].
At the receiver, suppose that we apply M0 to the received vector (1.1) to

obtain

ȳm = M0ym =

L
∑

l=1

hmlM0xl +M0zm. (3.5)

As zm is an i.i.d. circularly symmetric complex Gaussian noise and M0

is a unitary matrix, then the noise in (3.5) is also i.i.d. circularly symmetric
complex Gaussian. Now observe the vectors of the form hmlM0xl, then we can
rewrite it as











hml 0 · · · 0
0 hml · · · 0
...

...
. . .

...
0 0 · · · hml











·M0 · xl = Hml ·M0 · xl. (3.6)

The idea we want to develop is to quantize the diagonal matrix Hml by a
diagonal matrix whose elements are components of the canonical embedding of
the power (positive or negative) of an element of Z[ξ2r ] with absolute algebraic
norm equal to 2.

Observe that NQ(i)/Q(1+ i) = (1+ i)(1− i) = 2 and (1− i)2 = 2(−i). As −i
is a unit in Q(i), then 2Z[i] = (1− i)2 in Z[i]. So 2 is totally ramified in Q(i).

In [9] and [10] we have

NQ(ξ8)/Q(i)(1 + ξ8) = NQ(ξ16)/Q(i)(1 + ξ16) = 1− i. (3.7)

Now we can show, by induction over r, that NQ(ξ2r )/Q(i)(1 + ξ2r) = 1 − i.
In fact, consider the following Galois extensions:

Q(ξ2r+1)

2

Q(ξ2r)

2(r−2)

Q(i)

2

Q

(3.8)
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Notice that it is easy to verify that ξ22r+1 = ξ2r , for all r ≥ 3. Suppose, by
induction, that NQ(ξ2r )/Q(i)(1 + ξ2r) = 1− i and let us prove it for r+ 1. Then

NQ(ξ2r+1)/Q(i)(1 + ξ2r+1) = NQ(ξ2r )/Q(i)(NQ(ξ2r+1 )/Q(ξ2r )(1 + ξ2r+1))

= NQ(ξ2r )/Q(i)((1 + ξ2r+1)(1− ξ2r+1)) = NQ(ξ2r )/Q(i)(1− ξ22r+1)

= NQ(ξ2r )/Q(i)(1− ξ2r) = 1− i. (3.9)

Thus 2 is totally ramified in Q(ξ2r) and 2Z[ξ2r ] = (2) = ℑ2(r−1)
, where

ℑ = (1 + ξ2r).
We have that ℑ is the ideal in Z[ξ2r ] generated by 1 + ξ2r . Hence the ideal

ℑk is generated by (1 + ξ2r)
k, for all k ∈ Z. Observe that, for k = 0, we have

ℑ0 = Z[ξ2r ].
Now we approximate the matrix Hml with the canonical embedding of the

generator (1 + ξ2r)
k of ℑk, where k ∈ Z, and we make use of the following

proposition.

Proposition 1. We have that

{(1 + ξ2r)
k, (1 + ξ2r)

kξ2r , (1 + ξ2r)
kξ22r , . . . , (1 + ξ2r)

kξn−1
2r }

is a Z[i]-basis of (1 + ξ2r)
kZ[ξ2r ], where n = 2(r−2).

Proof. Let x ∈ (1 + ξ2r)
kZ[ξ2r ], then x = (1 + ξ2r)

kα, where α ∈ Z[ξ2r ].
Thus

x = (1 + ξ2r)
k(a0 + a1ξ2r + a2ξ

2
2r + . . .+ an−1ξ

n−1
2r ),

where ai ∈ Z[i], i = 0, 1, . . . , n− 1, if, and only if,

x = a0(1 + ξ2r)
k + a1(1 + ξ2r)

kξ2r + a2(1 + ξ2r)
kξ22r + . . .+ an−1(1 + ξ2r)

kξn−1
2r ,

where ai ∈ Z[i], i = 0, 1, . . . , n− 1.
Hence {(1+ξ2r )

k, (1+ξ2r)
kξ2r , . . . , (1+ξ2r)

kξn−1
2r } generates (1+ξ2r)

kZ[ξ2r ].
We prove now that

{(1 + ξ2r)
k, (1 + ξ2r)

kξ2r , . . . , (1 + ξ2r)
kξn−1

2r }

is linearly independent and we use the fact that the set

{1, ξ2r , ξ
2
2r , . . . , ξ

n−1
2r }

is a Z[i]-basis of Z[ξ2r ]. In fact, let ai ∈ Z[i], with i = 0, 1, . . . , n− 1, then
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a0(1 + ξ2r)
k + a1(1 + ξ2r)

kξ2r + . . . + an−1(1 + ξ2r)
kξn−1

2r = 0 ⇔

⇔ a0(1 + ξ2r)
k(1 + ξ2r)

−k + a1(1 + ξ2r)
k(1 + ξ2r)

−kξ2r

+ . . .+ an−1(1 + ξ2r)
k(1 + ξ2r)

−kξn−1
2r = 0 ⇔

⇔ a0 + a1ξ2r + . . .+ an−1ξ
n−1
2r = 0 ⇔ ai = 0, ∀ i = 0, 1, . . . , n− 1,

so {(1+ξ2r)
k, (1+ξ2r)

kξ2r , . . . , (1+ξ2r)
kξn−1

2r } is a Z[i]-basis of (1+ξ2r)
kZ[ξ2r ].

Then, by Proposition 1, we have that a generator matrix of the complex
algebraic lattice σ((1 + ξ2r)

kZ[ξ2r ]) is given by

Mk =









(1 + ξ2r )
k (1 + ξ2r )

kξ2r · · · (1 + ξ2r )
kξn−1

2r

σ2((1 + ξ2r )
k) σ2((1 + ξ2r )

kξ2r ) · · · σ2((1 + ξ2r )
kξn−1

2r )
...

...
...

...
σn((1 + ξ2r )

k) σn((1 + ξ2r )
kξ2r ) · · · σn((1 + ξ2r )

kξn−1
2r )









=











(1 + ξ2r )
k 0 · · · 0

0 σ2((1 + ξ2r )
k) · · · 0

...
...

...
...

0 0 · · · σn((1 + ξ2r )
k)











·M. (3.10)

Since M0 =
1

2((r−2)/2)M and M generate the same lattice and by comparing
the equations (3.10) and (3.6), then the conclusion is that the matrix Hml can
be approximated by

M ′

k =











(1 + ξ2r )
k 0 · · · 0

0 σ2((1 + ξ2r )
k) · · · 0

...
...

...
...

0 0 · · · σn((1 + ξ2r )
k)











. (3.11)

Consequently the diagonal matrix Hml is quantized by the diagonal matrix
M ′

k whose elements are components of the canonical embedding of the power
(positive or negative) of an element of Z[ξ2r ] with absolute algebraic norm equal
to 2.

Now, by using the concept of equivalent lattices, observe that

M ′
kM =









(1 + ξ2r )
k 0 · · · 0

0 σ2((1 + ξ2r )
k) · · · 0

...
...

...
...

0 0 · · · σn((1 + ξ2r )
k)









·M
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= MM(1+ξ2r )k
, (3.12)

where M(1+ξ2r )k
is an n × n matrix whose entries belong to the ring Z[i]; this

means that if (1 + ξ2r)
k generates the ideal (1 + ξ2r)

kZ[ξ2r ], then the matrix
M(1+ξ2r )k

is a generator matrix of the lattice that is the canonical embedding

of the ideal ℑk whose position compared to the Z[i]n-lattice is equal to k.

Since for k = 1 we have










1 + ξ2r 0 · · · 0
0 σ2(1 + ξ2r ) · · · 0
...

...
...

...
0 0 · · · σn(1 + ξ2r )











·M = MM(1+ξ2r ), (3.13)

then we can see, by induction, that M ′
kM = M(M(1+ξ2r ))

k, for k ≥ 1; that is,

M(1+ξ2r )k
= (M(1+ξ2r ))

k, for k ≥ 1.

Now in the following section we present a method that describes for any
dimension n = 2r−2, with r ≥ 3, a doubly infinite nested lattice partition chain
in order to quantize complex-valued channels onto a lattice, that is, in order to
realize interference alignment onto a lattice and, for that, we make use of the
Pascal’s triangle modulo 2.

3.2. Construction of complex nested ideal lattices from the channel

quantization

In [9] and [10] we have that the lattice partition chains related to r = 3 (n = 2)
and r = 4 (n = 4) are given by

· · · ⊃ (1 + i)−1Z[i]2 ⊃ (1 + i)−1D4 ⊃ Z[i]2 ⊃ D4 ⊃ (1 + i)Z[i]2 ⊃

⊃ (1 + i)D4 ⊃ 2Z[i]2 ⊃ · · · (3.14)

and

· · · ⊃ ((1 + i)Z[i]4)∗ ⊃ (Λ′)∗ ⊃ Λ∗ ⊃ D∗
8 ⊃ Z[i]4 ⊃ D8 ⊃ Λ ⊃

⊃ Λ′ ⊃ (1 + i)Z[i]4 ⊃ · · · , (3.15)

respectively, where ∗ denotes the dual of a lattice.

Here we describe a way to find a doubly infinite nested lattice partition
chain for any dimension n = 2r−2, where r ≥ 3. For that, consider the following
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Galois extensions:
Q(ξ2r)

2

Q(ξ2r−1)

2(r−3)

Q(i)

2

Q

(3.16)

Let ℑ = (1+ξ2r) = (1+ξ2r )Z[ξ2r ] and J = (1+ξ2r−1) = (1+ξ2r−1)Z[ξ2r−1 ],
where Z[ξ2r ] and Z[ξ2r−1 ] are the rings of integers of Q(ξ2r) and Q(ξ2r−1), re-
spectively. Also, let σ and τ be the canonical embeddings of the ideals in Q(ξ2r)
and Q(ξ2r−1), respectively.

We have ξ22r = ξ2r−1 , ℑk = ((1 + ξ2r)
k) = (1 + ξ2r)

kZ[ξ2r ], J
k = ((1 +

ξ2r−1)k) = (1+ ξ2r−1)kZ[ξ2r−1 ], where k ∈ Z, and, due to the ideal ramification,
ℑ2 = J .

The following theorem shows us, for any r ≥ 3, that the lattice related to
the canonical embedding of the ideal ℑk, where k = 1, is given by the lattice
D2n, where n = 2(r−2).

Theorem 1. We have, for k = 1, that σ(ℑ) = D2n, where n = 2(r−2).

Proof. See Appendix 1.

From now on we explain how to obtain, for any r ≥ 3, the construction
A of the lattices related to the canonical embedding of the ideals ℑk, where
k = 1, 2, 3, . . . , n− 1. For that, we make use of the following proposition:

Proposition 2. Let Λ = ((1 + i)Z[i]n + C) ∪ (((1 + i)Z[i]n + C) + c),
where Λ is an n-dimensional lattice, C is a linear binary block code and c is
an n-dimensional binary vector. Then Λ = (1 + i)Z[i]n + C ′, where C ′ is a
linear binary block code, MC is a generator matrix of the code C and MC′ is a
generator matrix of the code C ′ whose rows are formed by the rows of MC by
adding the binary vector c.

Proof. Suppose that c1, c2, . . . , cl and c1, c2, . . . , cl, c are the rows of the
matrices MC and MC′ , respectively, that is, the sets
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{c1, c2, . . . , cl} and {c1, c2, . . . , cl, c}

are the basis of the linear binary block codes C and C ′, respectively.
We have to prove that

Λ = ((1 + i)Z[i]n + C) ∪ (((1 + i)Z[i]n + C) + c) = (1 + i)Z[i]n + C ′.

In fact, if x ∈ (1 + i)Z[i]n + C ′, then

x = λ+ (a1c1 + a2c2 + · · ·+ alcl + al+1c),

where λ ∈ (1 + i)Z[i]n and ai ∈ {0, 1}, for i = 1, 2, . . . , l + 1. So if al+1 = 0,
then x ∈ (1 + i)Z[i]n + C and if al+1 = 1, then x ∈ ((1 + i)Z[i]n + C) + c.
Hence, either x ∈ (1 + i)Z[i]n + C or x ∈ ((1 + i)Z[i]n + C) + c, that is,
x ∈ ((1 + i)Z[i]n + C) ∪ (((1 + i)Z[i]n + C) + c). Then we can conclude that

((1 + i)Z[i]n + C ′) ⊂ (((1 + i)Z[i]n + C) ∪ (((1 + i)Z[i]n + C) + c).

It is trivial that ((1+i)Z[i]n+C)∪(((1+i)Z[i]n+C)+c) ⊂ ((1+i)Z[i]n+C ′),
then Λ = ((1 + i)Z[i]n + C) ∪ (((1 + i)Z[i]n + C) + c) = (1 + i)Z[i]n +C ′.

Thereby, for each k = 1, 2, 3, . . . , n − 1, we find a binary vector related to
each k such that this binary vector is added to the generator matrix of the
code related to the construction A of the posterior lattice (we make use of the
proposition 2), that is, the lattice related to the position k + 1. Then, after
that, we have the construction A of these lattices.

We denote by ck such a binary vector with n coordinates related to the
position k, where 1 ≤ k ≤ n− 1.

Let r ≥ 3 and n = 2r−2, we have that ℑ2 = J , ξ22r = ξ2r−1 and, in section
3.1, we have that

{1, ξ2r , ξ2r−1 , ξ2rξ2r−1 , ξ22r−1 , ξ2rξ
2
2r−1 , . . . , ξ

2r−3−1
2r−1 , ξ2rξ

2r−3−1
2r−1 } (3.17)

is a Z[i]-basis of Z[ξ2r ] and the following matrix

M =

















1 ξ2r ξ2r−1 · · · ξ2
r−3

−1
2r−1 ξ2r

1 σ2(ξ2r ) σ2(ξ2r−1 ) · · · σ2(ξ
2r−3

−1
2r−1 ξ2r )

1 σ3(ξ2r ) σ3(ξ2r−1 ) · · · σ3(ξ
2r−3

−1
2r−1 ξ2r )

...
...

...
...

...

1 σn(ξ2r ) σn(ξ2r−1 ) · · · σn(ξ
2r−3

−1
2r−1 ξ2r )

















(3.18)

generates the complex algebraic lattice σ(Z[ξ2r ]).
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First we find the binary vectors related to the positions k, where k is odd.
In fact, let k = 2α+1, where 0 ≤ α ≤ (2r−3−1). Since ℑ = ℑ2∪(ℑ2+(1+ξ2r )),
we have

ℑk = ℑk−1ℑ = ℑk+1 ∪ (ℑk+1 + (1 + ξ2r−1)α(1 + ξ2r)). (3.19)

Then the lattice related to the canonical embedding of the ideal ℑk, where
k = 2α + 1, can be expressed, via an isomorphism, by

σ(ℑk) = σ(ℑk+1) ∪ (σ(ℑk+1) + σ((1 + ξ2r−1)α(1 + ξ2r))). (3.20)

As we want to provide the construction A of the lattices related to each k,
then we must have the element σ((1 + ξ2r−1)α(1 + ξ2r)) modulo 2 ≡ 1 + i.

By using the fact that HmlM = M(M(1+ξ2r ))
k, since the matrices M and

M0 provide the same lattice, the Z[i]n-lattice, and the fact that (M(1+ξ2r ))
k is a

generator matrix of the lattice related to the canonical embedding of the ideal
(1 + ξ2r)

kZ[ξ2r ] whose position in the nested lattice partition chain compared
to the Z[i]n-lattice is equal to k, we have that

σ((1 + ξ2r−1)α(1 + ξ2r)) ≡ M · ck (modulo (1 + i) ≡ 2) (3.21)

and, thus, σ(ℑk) = σ(ℑk+1) ∪ (σ(ℑk+1) + ck).

In [11] observe that the row α from the Pascal’s triangle modulo 2 indicates
the coefficients of (1 + ξ2r−1)α modulo 2 (coefficients equal to 0 or 1).

We can see that the elements 1, ξ2r−1 , ξ22r−1 , . . . , ξ
2r−3−1
2r−1 are located at the

odd positions of the basis (3.17) and the elements

ξ2r , ξ2rξ2r−1 , . . . , ξ2rξ
2r−3−1
2r−1

are located at the even positions of the basis (3.17) and are posterior to the

elements 1, ξ2r−1 , ξ22r−1 , . . . , ξ
2r−3−1
2r−1 , respectively.

Hence, for k = 2α + 1, let the row α from the Pascal’s triangle modulo 2
be filled by zeros to obtain n

2 coefficients. Thus, by observing the position of
the elements of the basis (3.17) and the fact that, for all k = 2α + 1, where
0 ≤ α ≤ (2r−3 − 1), we have (1 + ξ2r−1)α(1 + ξ2r), we can conclude that each
coefficient of the row α filled by zeros must be repeated twice and, after that,
this new vector has n coefficients (coordinates).

Then, with this construction, we can find, for any r ≥ 3, all the binary
vectors ck with n coordinates related to the positions k = 2α + 1, where 0 ≤
α ≤ (2r−3 − 1).
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Besides, through the procedure of such a construction and basic properties
given in [11], we can show, for any r ≥ 3 (n = 2r−2) and k = 2α + 1, where
0 ≤ α ≤ (2r−3− 1), that the binary vector ck related to the position k = 2α+1
is simply the row k = 2α+1 from the Pascal’s triangle modulo 2 filled by zeros
to obtain n coefficients modulo 2.

Now, without loss of generality, we find the binary vectors related to the
positions k, where k is even. In fact, let k = 2α, where 1 ≤ α ≤ (2r−3 − 1).
Since ℑ = ℑ2 ∪ (ℑ2 + (1 + ξ2r)), we have

σ(ℑk) = σ(ℑk+1) ∪ (σ(ℑk+1) + σ((1 + ξ2r−1)α)). (3.22)

As we want to provide the construction A of the lattices related to each k,
then we must have the element σ((1 + ξ2r−1)α) modulo 2 ≡ 1 + i.

Since HmlM = M(M(1+ξ2r ))
k and (M(1+ξ2r ))

k is a generator matrix of the

lattice related to the canonical embedding of the ideal (1 + ξ2r)
kZ[ξ2r ] whose

position in the nested lattice partition chain compared to the Z[i]n-lattice is
equal to k, we have that

σ((1 + ξ2r−1)α) ≡ M · ck (modulo (1 + i) ≡ 2) (3.23)

and, consequently, σ(ℑk) = σ(ℑk+1) ∪ (σ(ℑk+1) + ck).
The row α from the Pascal’s triangle modulo 2 indicates the coefficients of

(1 + ξ2r−1)α modulo 2 (coefficients equal to 0 or 1).

We can see that the elements 1, ξ2r−1 , ξ22r−1 , . . . , ξ
2r−3−1
2r−1 are located at the

odd positions of the basis (3.17) and the elements

ξ2r , ξ2rξ2r−1 , . . . , ξ2rξ
2r−3−1
2r−1

are located at the even positions of the basis (3.17) and are posterior to the

elements 1, ξ2r−1 , ξ22r−1 , . . . , ξ
2r−3−1
2r−1 , respectively.

Then, for k = 2α, let the row α from the Pascal’s triangle modulo 2 be filled
by zeros to obtain n

2 coefficients. Thus, by observing the position of the elements
of the basis (3.17) and the fact that, for all k = 2α, where 1 ≤ α ≤ (2r−3 − 1),
we have (1+ξ2r−1)α, we can conclude that the coefficients of the row α filled by
zeros are put at the odd positions, with the same order, and the even positions
are equal to zero. After that, this new vector has n coefficients (coordinates).

Thereby, with this construction, we can find, for any r ≥ 3, all the binary
vectors ck with n coordinates related to the positions k = 2α, where 1 ≤ α ≤
(2r−3 − 1).

Besides, through the procedure of such a construction and basic properties
given in [11], we can show, for any r ≥ 3 (n = 2r−2) and k = 2α, where
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1 ≤ α ≤ (2r−3 − 1), that the binary vector ck related to the position k = 2α
is simply the row k = 2α from the Pascal’s triangle modulo 2 filled by zeros to
obtain n coefficients modulo 2.

As we have seen, the binary vector ck is found through the constructions
above for the cases where k is either odd or even and, in both cases, the binary
vector ck is the row k from the Pascal’s triangle modulo 2 filled by zeros to
obtain n coefficients modulo 2; that is, for k = 1, . . . , n − 1, the binary vector
ck is the row k from the Pascal’s triangle modulo 2 filled by zeros to obtain n
coefficients modulo 2.

Then, for obtaining the construction A of the lattice related to the canonical
embedding of the ideal ℑk, where k = 1, 2, . . . , n− 1, we have

σ(ℑk) = σ(ℑk−1ℑ) = σ(ℑk+1) ∪ (σ(ℑk+1) + ck) =

= ((1 + i)Z[i]n + Ck+1) ∪ (((1 + i)Z[i]n + Ck+1) + ck), (3.24)

where σ(ℑk+1) = (1+ i)Z[i]n+Ck+1 is the complex code formula (Construction
A) for the lattice related to the canonical embedding of the ideal ℑk+1.

Therefore, by using Proposition 2, we can conclude that σ(ℑk) = (1 +
i)Z[i]n + Ck, where Ck is a linear binary block code and MCk

is a generator
matrix of the code Ck whose rows are formed by the rows of MCk+1

by adding
the binary vector ck, where MCk+1

is a generator matrix of the code Ck+1.

Let M(1+ξ2r ) represent a generator matrix of the lattice related to the po-
sition k = 1 calculated by using (3.13). Hence the following theorem gives us
the extension by periodicity of the nested lattice partition chain for the positive
positions, that is, k ≥ 0.

Theorem 2. For k = nβ + j, where β ∈ N and 0 ≤ j ≤ n − 1, we have
that M(1+ξ2r )(nβ+j) = (M(1+ξ2r ))

k=(nβ+j) is a generator matrix of the lattice

(1 + i)βΛj seen as a Z[i]-lattice, where Λj is the lattice found previously in
this section, by the construction A, related to the position k compared to the
Z[i]n-lattice.

Proof. See Appendix 2.

Consequently, by Theorem 2, we can conclude that the periodicity of the
nested lattice partition chain for the positive positions is equal to k = n be-
cause σ(ℑn) = (1+ i)Z[i]n, that is, σ(ℑn) is a scaled version of the Z[i]n-lattice.
Therefore, we can obtain the construction A of the lattices related to the canon-
ical embedding of the ideals ℑk, where k = 1, 2, . . . , n− 1, that is, we can find
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the construction A of these lattices by starting the calculations from the last
position (k = n− 1) to the first (k = 1) by using Proposition 2.

We know that the lattice related to the canonical embedding of the ideal
when k = 0 is isomorphic to the Z[i]n-lattice and we have Z[i]n = D2n ∪ (D2n+
(1, 0, 0, . . . , 0)), where Λ1 = D2n = Z[i]n+C1. Thereby, by using Proposition 2,
we have Z[i]n = (1 + i)Z[i]n + C0, where C0 = (n, n) is the linear binary block
code generated by the matrix MC0 whose rows are formed by the rows of MC1

by adding the vector (1, 0, 0, . . . , 0), whereMC1 is a generator matrix of the code
C1. Then we obtain the construction A of the lattice related to the canonical
embedding of the ideal when k = 0, that is, we obtain the construction A of
the Z[i]n-lattice.

The following proposition shows us that the minimum Hamming distance
dk of the code Ck, where k = 1, 2, . . . , n − 1 = 2r−2 − 1, is even and dk ≥ 2.

Proposition 3. Let Ck be the linear binary block code related to the
construction A at the position k, where k = 1, 2, . . . , n − 1 = 2r−2 − 1. Then
dk is even and dk ≥ 2, where dk is the minimum Hamming distance of the code
Ck.

Proof. See Appendix 3.

Now the following theorem gives us the extension by periodicity of the
nested lattice partition chain for the negative positions, that is, k ≤ −1.

Theorem 3. For all k ∈ N∗, we have σ(ℑ−k) = σ(ℑk)∗, where σ(ℑk)∗

indicates the dual lattice of σ(ℑk).

Proof. Let −→x and −→y be arbitrary elements of σ(ℑk) and σ(ℑ−k), respec-
tively, where k ∈ N∗. Then we have

〈−→x ,−→y 〉 = TrQ(ξ2r )/Q(i)(x · y),

where x ∈ ℑk and y ∈ ℑ−k. So x = (1 + ξ2r)
kx0, where x0 ∈ Z[ξ2r ], and

y = (1 + ξ2r)
−ky0, where y0 ∈ Z[ξ2r ].

It is easy to see that

TrQ(ξ2r )/Q(i)(x · y) =
n
∑

i=1

σi(x · y) =
n
∑

i=1

σi(x)σi(y)
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=

n
∑

i=1

σi(x0)σi(y0) = TrQ(ξ2r )/Q(i)(x0 · y0).

We have that TrQ(ξ2r )/Q(i)(x0 · y0) ∈ Z ⊂ Z[i], then

〈−→x ,−→y 〉 = TrQ(ξ2r )/Q(i)(x · y) ∈ Z[i].

Thus, σ(ℑ−k) ⊂ σ(ℑk)∗, for all k ∈ N∗. We also have that

V ol[σ(ℑk)∗] =
1

V ol[σ(ℑk)]
= V ol[σ(ℑ−k)].

So the index |σ(ℑk)∗/σ(ℑ−k)| is equal to 1 and, then, σ(ℑ−k) = σ(ℑk)∗.

By using Theorems 2 and 3 we can conclude that we have n (k = 0, 1, 2, . . . , n−
1) different lattices in the doubly infinite nested lattice partition chain.

Hence, in this section, we have constructed a doubly infinite nested lattice
partition chain related to any dimension n = 2r−2, where r ≥ 3, in order to
realize interference alignment onto a lattice. Then, for the complex case, we
have a generalization to obtain a doubly infinite nested lattice partition chain
in order to quantize complex channel coefficients in order to realize interference
alignment onto a lattice.

Besides, consequently, we have constructed nested lattice codes (nested
coset codes) with (1 + i)Z[i]n being the corresponding sublattice.

4. Precoder

In Section 3 we show that complex-valued channels can be quantized onto a
lattice. Therefore, precoding is essential to ensure onto which lattice a given
complex-valued channel coefficient must be quantized. Hence, in this section,
we provide the details of such a precoding which is related to the dimension
n = 2r−2, where r ≥ 3.

Observe that ξn2r = i ∈ Z[i], where n = 2r−2. A generator of an ideal of
a ring of integers multiplied by a unit of this ring of integers also generates
such an ideal. Thus we must analyse all the possible generators and, for each
case, utilize a precoding for that the respective channel approximations be
aligned onto one of the n different lattices related to the doubly infinite nested
lattice partition chain constructed in Section 3.2. As generators, note that
(1 + ξ2r)

n = (1 + i) ∈ Z[i].
In Section 3.2 we have n different lattices related to the doubly infinite

nested lattice partition chain, the other lattices are equivalent to one of these n
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different lattices. Observe that these n different lattices are the lattices related
to the positions 0, 1, 2, 3, . . . , n−1 of the doubly infinite nested lattice partition
chain.

Remember that the position of the lattices in the doubly infinite nested lat-
tice partition chain is related to the power of the principal ideal (1+ξ2r )Z[ξ2r ] =
ℑ, that is, let (1 + ξ2r)

k and by computing k modulo n, we have that k ∈
{0, 1, 2, 3, . . . , n− 1} and the ideal (1 + ξ2r)

kZ[ξ2r ] = ℑk furnishes us, by using
the Galois embedding, the lattice related to the position k of the doubly infinite
nested lattice partition chain.

We have that all the possible generators are (ξ2r)
k′(1 + ξ2r)

kλ [12], where
λ ∈ Z[i] and k, k′ ∈ Z. Then we have to analyse the product (ξ2r)

k′(1 + ξ2r)
k,

since λ 6= 1 removes the element (ξ2r)
k′(1 + ξ2r)

k from the origin. Therefore,
all the possible generators of the ideals are the elements (ξ2r)

k′(1+ ξ2r)
k, where

k, k′ ∈ Z.

We also have that k and k′, for the dimension n = 2r−2 (r ≥ 3), each of them
has n possibilities of values, since ξn2r = i ∈ Z[i] and k ∈ {0, 1, 2, 3, . . . , n − 1}.
So, by analysing the element (ξ2r)

k′(1+ ξ2r)
k, we have a total of n2 possibilities

of values for it.

Now as it is not possible to discuss all the cases for k and k′ in order
to precode the complex-valued channel coefficients hml, then we explain the
process to realize the precoding in each case, i.e., for each case, we ensure that
the complex-valued channel coefficient belongs to a corresponding lattice (one
of the n different lattices). For that, we observe the form of the generator in
each case.

For the case k ≡ 0 modulo n and k′ ≡ 0 modulo n, we have no precoding
because hml is approximated by an element that belongs in Z[i].

For the other cases we fix a particular one, then hml is approximated by
(ξ2r)

k′(1 + ξ2r)
k, that is,

hml → (ξ2r)
k′(1 + ξ2r)

k, (4.1)

for some fixed k and k′.

Thereby, for each i such that 1 ≤ i ≤ n, the element (ξ2r)
k′(1+ξ2r)

k must be
multiplied by a constant ζi such that (ξ2r )

k′(1+ ξ2r )
k · ζi = σi((ξ2r)

k′(1+ ξ2r )
k)

(for i = 1, we have ζi = 1). We need this kind of multiplication to ensure the
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precoding which is given as it follows:













hml 0 0 0 · · · 0
0 hml · ζ2 0 0 · · · 0
0 0 hml · ζ3 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · hml · ζn













→

→











σ1((ξ2r )
k′

(µ)k) 0 0 · · · 0

0 σ2((ξ2r )
k′

(µ)k) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · σn((ξ2r )
k′

(µ)k)











∼ M ′

k, (4.2)

where µ = 1 + ξ2r .

Consequently, we ensure onto which lattice a given complex-valued channel
coefficient must be quantized.

Now we need to argue how we can find, given an arbitrary hml ∈ C, the
appropriate k and k′, that is, given an arbitrary hml ∈ C, we find k and k′

such that hml → (ξ2r)
k′(1+ ξ2r )

k. Hence, after finding the appropriate integers
k and k′, we compute them modulo n and then we use one of the n2 possible
cases in order to realize the complex-valued channel quantization for dimension
n.

So let hml ∈ C. From the new algebraic methodology described in Section
3 in order to realize interference alignment onto a lattice, it is natural the
approximation ‖ hml ‖→‖ 1 + ξ2r ‖k, where k ∈ Z. Consequently, to find the

appropriate k, we have log‖hml‖
log‖1+ξ2r‖

→ k ∈ Z, that is, we choose k as being the

closest integer value to the value log‖hml‖
log‖1+ξ2r ‖

.

Now, after finding k, finally we can find k′ by using the argument function.
In fact, we have that hml → (ξ2r)

k′(1 + ξ2r)
k (note that we already know k),

then, to find k′, we have arg(hml)−narg(1+ξ2r )
π/2r−1 → k′ ∈ Z, that is, we choose k′ as

being the closest integer value to the value arg(hml)−narg(1+ξ2r )
π/2r−1 .

Then, by knowing k and k′, we can realize for dimension n the correspond-
ing complex-valued channel quantization described in Section 3.1 by using the
process of precoding for dimension n described in this section.
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5. Minimum Mean Square Error Criterion for the Complex-Valued

Channel Quantization

In Section 3.1 we introduce a new algebraic methodology to quantize complex-
valued channel coefficients. The purpose of this section is to minimize the mean
square error related to the quantization of this work, consequently, it provides
us the best estimation for such a quantization.

In Section 3.1, for fixed m and l, we have that the matrix Hml is quantized
by M ′

k, where Section 3.2 guarantees that k ∈ {0, 1, . . . , n− 1}.

In this section we have l = 1, 2, . . . , L, then for the sake of simplicity we
denote M ′

k by M ′
kl

and M(1+ξ2r )k
by M(1+ξ2r )

kl , where kl ∈ {0, 1, . . . , n− 1}.

The following theorem furnishes us the computation of the corresponding
mean square error.

Theorem 4. The n× n matrix B = 1
η

∑L
l=1 hml(M0M(1+ξ2r )

klM
H
0 ) mini-

mizes the mean square error E[−→υ H
m
−→υ m], where

η = (‖h‖2 +
1

ρ
), h = (hm1, hm2, . . . , hmL),

ρ is the signal-to-noise ratio (SNR),

−→υ m =

L
∑

l=1

(

hml

(

MH
0 BM0

)

−M(1+ξ2r )
kl

)

−→vl +MH
0 B−→z m, (5.1)

−→v l ∈ Z[i]n and M ′
kl
M0 = M0M(1+ξ2r )

kl , for l = 1, . . . , L, with M(1+ξ2r )
kl ∈

Mn(Z[i]) and H denotes the transpose conjugate of a matrix, where Mn(Z[i])
denotes the set of the n×n matrices with integer complex entries. The equality
M ′

kl
M0 = M0M(1+ξ2r )

kl means that the matrices M ′
kl

and M(1+ξ2r )
kl generate

the same lattice. In addition, the mean square error is given by

Ps
1

η
(η

L
∑

l=1

TrQ(ξ2r )/Q(i)(((1 + ξ2r)
kl)2)

−
L
∑

l,j=1

hmlhmjTrQ(ξ2r )/Q(i)((1 + ξ2r)
kl(1 + ξ2r)

kj)), (5.2)

where Ps is the signal power.
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Proof. See Appendix 4.

Equation (5.2) is an expression of the mean square error and, by minimizing
such an equation, the minimum solution of the mean square error is obtained.

Thereby, for finding the corresponding minimum solution, we have to min-
imize the following expression:

η
L
∑

l=1

TrQ(ξ2r )/Q(i)(((1 + ξ2r)
kl)2)

−

L
∑

l,j=1

hmlhmjTrQ(ξ2r )/Q(i)((1 + ξ2r)
kl(1 + ξ2r)

kj ). (5.3)

Equation (5.3) is a quadratic form whose variables are

al0, al1, . . . , al(n−1) ∈ Z[i],

where l = 1, . . . , L, and

(1 + ξ2r)
kl = al0 + al1ξ2r + al2ξ

2
2r + · · ·+ al(n−1)ξ

n−1
2r . (5.4)

We can associate the quadratic form (5.3) to the following functional

F (a) = η
L
∑

l=1

TrQ(ξ2r )/Q(i)(((1 + ξ2r)
kl)2)

−
L
∑

l,j=1

hmlhmjTrQ(ξ2r )/Q(i)((1 + ξ2r)
kl(1 + ξ2r)

kj ) = atQa, (5.5)

where a = (a10, a11, . . . , a1(n−1), . . . , aL0, aL1, . . . , aL(n−1)) ∈ Z[i]Ln and Q is the
corresponding Ln× Ln symmetric matrix.

Since Q is a complex symmetric square matrix, we apply the Takagi de-
composition of the matrix Q = V DV t, where D is a real nonnegative diagonal
matrix and V is unitary.

The goal is to find a ∈ (Z[i]Ln − {0}) such that a is the vector which
minimizes F (a). Hence

min
a∈(Z[i]Ln−{0})

F (a) = min
a∈(Z[i]Ln−{0})

atQa
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= min
a∈(Z[i]Ln−{0})

atV DV ta = min
b∈Λ′

btDb, (5.6)

where b = V ta and Λ′ is the corresponding lattice.
Thereby, given complex-valued channels hml, where l = 1, 2, . . . , L, we find

a ∈ Z[i]Ln which gives us the best estimation for the respective equations in
(5.4), therefore, we obtain the best estimation for the corresponding quantiza-
tions M ′

kl
∼ (M(1+ξ2r ))

kl . Notice that by applying the stipulated value for the
complex-valued channels hml, where l = 1, 2, . . . , L, we have the value of η by
conditioning a value for ρ and, through Section 4, we can find the value of the
corresponding powers kl, where l = 1, 2, . . . , L.

As we perform the complex-valued channel quantization described in Sec-
tion 3.1, the corresponding codewords xl, where l = 1, 2, . . . , L, are transformed
in lattice points which belong to one of the n lattices constructed in Section 3.2.
By using the minimum mean square error criterion, the corresponding estima-
tion for hmlxl is a point of the lattice related to the power kl which is associated
to a coset of this lattice with (1+i)Z[i]n being the corresponding sublattice and,
consequently, we have an efficient decoder for such a complex-valued channel
quantization and the corresponding achievable computation rate at each node
is maximized.

5.1. Minimum mean square error criterion for the two-complex

dimensional quantization

In [9], for the two-complex dimensional case and L = 2, we have the corre-
sponding complex-valued channel quantization and the construction of complex
nested ideal lattices from such a channel quantization.

By (5.5) the functional related to such a minimization is given by

F (a) = η
2
∑

l=1

TrQ(ξ8)/Q(i)(((1 + ξ8)
kl)2)

−
2
∑

l,j=1

hmlhmjTrQ(ξ8)/Q(i)((1 + ξ8)
kl(1 + ξ8)

kj ) = atQa, (5.7)

where a ∈ Z[i]4, η = (‖h‖2 + 1
ρ), h = (hm1, hm2), ρ is the signal-to-noise ratio

(SNR) and Q is the corresponding 4× 4 symmetric complex matrix.

Since Q is a complex symmetric square matrix, we apply the Takagi de-
composition of the matrix Q = V DV t, where D is a real nonnegative diagonal
matrix and V is unitary.
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The goal is to find a ∈ (Z[i]4−{0}) such that a is the vector which minimizes
F (a). Hence

min
a∈(Z[i]4−{0})

F (a) = min
a∈(Z[i]4−{0})

atQa

= min
a∈(Z[i]4−{0})

atV DV ta = min
b∈Λ′

btDb, (5.8)

where b = V ta and Λ′ is the corresponding lattice.
Following the theoretical construction developed in Section 5, for the two-

complex dimensional case and L = 2, the input elements hm1, hm2 of the func-
tional (5.7) are uniformly distributed random numbers. Also we randomly
generate the values of the SNR ρ for each computational experiment i, where
i = 1, 2, . . . , 10. Thereby we compute the values of η in the second column of
Table ??. Therefrom the functional (5.7) and its respective quadratic form is
obtained. The minimum of the equation (5.8) corresponds to a b ∈ Λ′ such that
b is the closest lattice point to the origin.

For each computational experiment i, we find the vector a ∈ (Z[i]4 − {0})
which gives us the best estimation for the respective equations in (5.4). In (5.4)
we have

{

(1 + ξ8)
k1 = a10 + a11ξ8 (a)

(1 + ξ8)
k2 = a20 + a21ξ8 (b)

, (5.9)

where (a) and (b) correspond, respectively, to the best estimation of the quan-
tizations M ′

k1
and M ′

k2
. Each kl, where l = 1, 2, is computed by taking the

closest integer of the following value

log ‖hml‖

log ‖1 + ξ8‖
(5.10)

and, after that, we compute such an integer value mod 2 to obtain kl. In Figure
2 each lattice is represented by either Λ0 = Z[i]2 (blue dots) or Λ1 = D4 (red
crosses).

The corresponding estimations for hm1x1 and hm2x2 are represented in Ta-
ble ?? by the vectors P1i and P2i, respectively, for the computational experi-
ments i = 1, . . . , 10. These estimations are points of the lattices related to the
powers k1 and k2, respectively, and are associated to a coset of such lattices
with (1 + i)Z[i]2 being the corresponding sublattice. Consequently, we have an
efficient decoder for such a two-complex dimensional channel quantization and
the corresponding achievable computation rate at each node is maximized.

In Figure 2, for the sake of ilustration, 5 computational experiments from
Table ?? (i = 4, 6, 7, 8, 10) are used for the representation of the correspond-
ing estimations (for the other ones such a representation is analogous). The
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points P1i (continous) and P2i (dashed) are estimations for hm1x1 and hm2x2,
respectively.

From the computational experiments, we observe that we obtain a two-
dimensional hyperplane by taking the values of hm1 and hm2 such that ||hm1|| =
||hm2|| = 1. We can generate such a two-dimensional hyperplane through the
projection of the last complex coordinate.

i-th η k1 k2 P1i (Cont.) P2i (Dashed) Color

1 3.4781 1 1 (0, 22+26i) (0, 7+35i) -

2 4.5525 0 0 (0, -72-72i) (0, -90-90i) -

3 336.0012 0 0 (0, -18-98i) (0, -18-162i) -

4 2.5855 0 1 (0, -4-2i) (0, -2-4i) Blue

5 300.7523 1 0 (0, -12-16i) (0, -3-13i) -

6 3.6555 1 0 (0, 2-18i) (0, 3-22i) Magenta

7 2.5852 1 0 (0, 20+4i) (0, 6+8i) Red

8 3.1153 0 0 (0, -12-16i) (0, -3-13i) Black

9 2.7803 0 0 (0, -50-66i) (0, -25-70i) -

10 2.9633 1 0 (0, -4i) (0, 2-3i) Green

Table 1: Data from the Computational Experiments

6. Conclusion

This work presents a new algebraic methodology to quantize complex-valued
channels in order to realize interference alignment (IA) [1] onto a complex ideal
lattice. Such a methodology makes use of the binary cyclotomic field Q(ξ2r),
where r ≥ 3, to provide a doubly infinite nested lattice partition chain for any
dimension n = 2r−2, where r ≥ 3, in order to quantize complex-valued channels
onto these nested lattices.

We prove the existence of periodicity in the corresponding nested lattice
partition chains to guarantee that the channel gain does not remove the lattice
from the initial chain of nested complex ideal lattices.

Precoding is essential to ensure onto which lattice a given complex-valued
channel must be quantized. Therefore Section 4 provides us such a precoder.

In this work we minimize the mean square error related to the corresponding
quantization to providing us the best estimation for such a quantization. Con-
sequently, we obtain an efficient decoder. In Section 5.1 we exemplify this new
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Figure 2: Representation of the Vectors P1i and P2i from Table I.
Note that Λ1 = D4 ⊆ Λ0 = Z[i]2.

algebraic methodology through the two-complex dimensional channel quantiza-
tion and show all the corresponding computational experiments.

The proposed algebraic methodology is original and can be approached to
applications such as compute-and-forward [13] and homomorphic encryption
schemes.

7. Appendix 1: The lattice related to the canonical embedding of

the ideal ℑk, where k = 1, is given by the lattice D2n, where

n = 2(r−2)

We have Z[i]n/σ(ℑ)/D2
n and

Z[i]n = D2
n ∪ (Dn ⊕ (Dn + (1, 0, 0, . . . , 0)))∪

∪((Dn + (1, 0, 0, . . . , 0))⊕Dn) ∪ ((Dn + (1, 0, 0, . . . , 0))⊕

⊕(Dn + (1, 0, 0, . . . , 0))) = D2
n ∪ (D2

n + (0, 1, 0, 0, . . . , 0))∪

∪(D2
n + (1, 0, 0, . . . , 0)) ∪ (D2

n + (1, 1, 0, 0, . . . , 0)).
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Then σ(ℑ) is the union of D2
n with either

(Dn ⊕ (Dn + (1, 0, 0, . . . , 0))),

or ((Dn+(1, 0, 0, . . . , 0))⊕Dn) or ((Dn+(1, 0, 0, . . . , 0))⊕(Dn+(1, 0, 0, . . . , 0))).

Observe that ℑ = ℑ2 ∪ (ℑ2 + (1 + ξ2r)), then σ(ℑ) = σ(ℑ2) ∪ σ(ℑ2 + (1 +
ξ2r)) = D2

n ∪ σ(ℑ2 + (1 + ξ2r)) and we can conclude that σ(ℑ2 + (1 + ξ2r)) is
equal to either (Dn ⊕ (Dn+(1, 0, 0, . . . , 0))), or ((Dn +(1, 0, 0, . . . , 0))⊕Dn) or
((Dn + (1, 0, 0, . . . , 0)) ⊕ (Dn + (1, 0, 0, . . . , 0))).

We have σ(ℑ2 + (1 + ξ2r)) = σ(ℑ2) + σ(1 + ξ2r) = D2
n + σ(1 + ξ2r), where

σ(1 + ξ2r) = (1 + ξ2r , σ2(1 + ξ2r), . . . , σn(1 + ξ2r)) =

= (1 + ξ2r , 1 + σ2(ξ2r ), . . . , 1 + σn(ξ2r)),

where, in section 3.1, we have that {id = σ1, σ2, σ3, . . . , σn} is the Galois group
of the field extension Q(ξ2r)/Q(i) and id is the identity map.

Also, in section 3.1, we have that a Z[i]-basis of Z[ξ2r ] is given by

{1, ξ2r , ξ
2
2r , ξ

3
2r , . . . , ξ

n−1
2r } =

= {1, ξ2r , ξ2r−1 , ξ2r−1ξ2r , ξ
2
2r−1 , . . . , ξ

2r−3−1
2r−1 , ξ2

r−3−1
2r−1 ξ2r}

and the following matrix

M =















1 ξ2r ξ2r−1 · · · ξ2
r−3

−1
2r−1 ξ2r

1 σ2(ξ2r ) σ2(ξ2r−1) · · · σ2(ξ
2r−3

−1
2r−1 ξ2r )

1 σ3(ξ2r ) σ3(ξ2r−1) · · · σ3(ξ
2r−3

−1
2r−1 ξ2r )

...
...

...
...

...

1 σn(ξ2r ) σn(ξ2r−1) · · · σn(ξ
2r−3

−1
2r−1 ξ2r )















generates the complex algebraic lattice σ(Z[ξ2r ]).

Thus, we have

σ(1 + ξ2r) = M





















1
1
0
0
0
...
0





















=





















1 + ξ2r

1 + σ2(ξ2r )
1 + σ3(ξ2r )
1 + σ4(ξ2r )
1 + σ5(ξ2r )

...
1 + σn(ξ2r )





















.
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Then we can conclude that

σ(ℑ2 + (1 + ξ2r)) = D2
n + (1, 1, 0, 0, . . . , 0) =

= (Dn + (1, 0, 0, . . . , 0)) ⊕ (Dn + (1, 0, 0, . . . , 0))

and

σ(ℑ) = D2
n ∪ ((Dn + (1, 0, 0, . . . , 0)) ⊕ (Dn + (1, 0, 0, . . . , 0))) = D2n.

Therefore, for r ≥ 3 and k = 1, we have the lattice D2n whose position
compared to the Z[i]n-lattice is equal to k = 1.

8. Appendix 2: Extension by periodicity of the nested lattice

partition chain for the positive positions, that is, k ≥ 0

In section 3.2, we have the lattices Λj , where 0 ≤ j ≤ n − 1 and Λj is the
lattice related to the position j. Also we have that M(1+ξ2r )j

= (M(1+ξ2r ))
j is a

generator matrix of the lattice Λj and we know that the matrices (M(1+ξ2r ))
n

and (1+i)In×n are equivalent matrices, where In×n is the n×n identity matrix.

Then, for k = n, the matrix (M(1+ξ2r ))
n generates the lattice (1+i)Z[i]n; for

k = n+j, we haveM(1+ξ2r )(n+j) = (M(1+ξ2r ))
(n+j) = ((M(1+ξ2r ))

n)(M(1+ξ2r ))
j =

(1+i)(M(1+ξ2r ))
j as being a generator matrix of the lattice (1+i)Λj and, for k =

2n+j, we have M(1+ξ2r )(2n+j) = (M(1+ξ2r ))
(2n+j) = ((M(1+ξ2r ))

2n)(M(1+ξ2r ))
j =

(1 + i)2(M(1+ξ2r ))
j = 2(M(1+ξ2r ))

j as being a generator matrix of the lattice
2Λj , since the matrices (M(1+ξ2r ))

n and (1 + i)In×n are equivalent.

Then we suppose, by hypothesis of induction, that (M(1+ξ2r ))
nβ+j, where

β ∈ N and 0 ≤ j ≤ n− 1, is a generator matrix of the lattice (1 + i)βΛj .

We show, for k = n(β+1)+ j, that the lattice (1+ i)β+1Λj has a generator
matrix as being the matrix (M(1+ξ2r ))

(n(β+1)+j). In fact, (M(1+ξ2r ))
n(β+1)+j =

((M(1+ξ2r ))
n)((M(1+ξ2r ))

(nβ+j)), by using the hypothesis of induction and the
fact that (1 + i)In×n and (M(1+ξ2r ))

n are equivalent matrices, we have

(M(1+ξ2r ))
n(β+1)+j as a generator matrix of the lattice (1 + i)β+1Λj .

Hence, we show, for k = nβ + j, where β ∈ N and 0 ≤ j ≤ n− 1, that the
matrix (M(1+ξ2r ))

nβ+j is a generator matrix of the lattice (1 + i)βΛj.

Therefore, if β is even, we have β = 2ǫ, where ǫ ∈ N, and (1 + i)βΛj =
2β/2Λj , for β 6= 0; for β = 0, we have the lattice Λj . Now if β is odd, we have
β = 2ǫ+ 1, where ǫ ∈ N, and (1 + i)βΛj = 2(β−1)/2(1 + i)Λj .
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9. Appendix 3: The minimum Hamming distance dk of the code Ck,

where k = 1, 2, . . . , n− 1 = 2r−2 − 1, is even and dk ≥ 2

We have that C0 is the universal code Fn
2 = {0, 1}n and its generator matrix is

given by the matrix MC0 whose rows are the rows 0, 1, 2, . . . , n−1 of the Pascal’s
triangle modulo 2 [11] filled by zeros to obtain n coefficients. We also know that
the matrix MC1 generates the code C1 whose rows are the rows 1, 2, . . . , n − 1
of the Pascal’s triangle modulo 2 filled by zeros to obtain n coefficients, that is,
are the rows from MC0 by removing the first one (row 0 of the Pascal’s triangle).

We show, for any r ≥ 3 (n = 2r−2 and k = 1, 2, . . . , n− 1), that the rows of
the matrix MC1 have an even number of 1’s and, at least, two 1’s. In fact, for
r = 3 (n = 2 and k = 1), the rows of the matrix MC1 are given by the rows 1,2
of the Pascal’s triangle modulo 2 filled by zeros to obtain 2 coefficients and we
can see that these rows have an even number of 1’s and, at least, two 1’s. So
dk ≥ 2 and is even.

For r = 4 (n = 4 and k = 1, 2, 3), the rows of the matrix MC1 are given
by the rows 1,2,3 of the Pascal’s triangle modulo 2 filled by zeros to obtain 4
coefficients and we can see that these rows have an even number of 1’s and, at
least, two 1’s. So dk ≥ 2 and is even.

In [11] we have the following basic properties of the Pascal’s triangle modulo
2:

1) Row 2ϑ − 1 consists of 2ϑ ones: 111...111 (2ϑ 1’s);

2) Row 2ϑ consists of two ones separated by 2ϑ − 1 zeros: 100...001 ((2ϑ − 1)
0’s);

3) More generally, row 2ϑ + u, where 0 ≤ u < 2ϑ, consists of two copies of the
row u separated by (2ϑ − 1− u) zeros.

For r = 4 we already know that the rows 1,2,3 have an even number of 1’s
and, at least, two 1’s. Observe that r = ϑ+ 3 and then ϑ = 2. By Property 2)
we have that the row 4 consists of two 1’s separated by 3 zeros and, by Property
3), we have that the rows 4+u, where 1 ≤ u ≤ 3, consist of 2 copies of the row
u (u = 1, 2, 3) separated by 3− u zeros.

Since the rows u = 1, 2, 3 have an even number of 1’s and, at least, two 1’s,
by Property 3) the rows 5,6,7 have an even number of 1’s and, at least, four
1’s. So the rows 1,2,3,4,5,6,7 have an even number of 1’s and, at least, two 1’s
(row 4).

Hence, by using these three properties, we prove it by induction. Let r ≥ 3,
r = ϑ + 3, k = 1, 2, 3, . . . , n − 1 = 2r−2 − 1 and the rows 2ϑ + u, where
0 ≤ u ≤ 2ϑ−1, which consist of two copies of the row u separated by 2ϑ−1−u
zeros. Suppose that the rows 1, 2, 3, . . . , 2ϑ, 2ϑ + 1, . . . , 2ϑ+1 − 1 have an even
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number of 1’s and, at least, two 1’s.
Now we show, by induction, that this is valid for r+1 = ϑ+4 = (ϑ+1)+3.

So, for r + 1, we have Property 3) given by the rows 2ϑ+1 + u, where 0 ≤ u ≤
2ϑ+1 − 1, which consist of two copies of the row u separated by 2ϑ+1 − 1 − u
zeros and we have the rows 1, 2, 3, . . . , 2ϑ+1−1, 2ϑ+1, 2ϑ+1+1, . . . , 2ϑ+2−1 that
generate the code C1 related to r + 1.

However, by hypothesis of induction, we have that the rows 1, 2, 3, . . . , 2ϑ, 2ϑ+
1, . . . , 2ϑ+1 − 1 have an even number of 1’s and, at least, two 1’s and since the
rows 2ϑ+1 + u, where 0 ≤ u ≤ 2ϑ+1 − 1, consist of two copies of the row u
separated by 2ϑ+1 − 1 − u zeros, it follows that the rows 1, 2, 3, . . . , 2ϑ+1 −
1, 2ϑ+1, 2ϑ+1 +1, . . . , 2ϑ+2 − 1 have an even number of 1’s and, at least, two 1’s
(row 2ϑ+1).

Then we prove, by induction, that dk is even and dk ≥ 2.

10. Appendix 4: Providing an expression for the corresponding

mean square error

From equation (1.1), we have

B−→y m =

L
∑

l=1

B(hmlI)
−→x l +B−→z m =

=

L
∑

l=1

M ′
kl
−→x l +

L
∑

l=1

(B(hmlI)−M ′
kl
)−→x l +B−→z m,

where M ′
kl
−→x l = M ′

kl
(M0

−→v l) = M0(M(1+ξ2r )
kl
−→v l), with M(1+ξ2r )

kl ∈ Mn(Z[i]).
Hence

L
∑

l=1

M ′
kl
−→x l =

L
∑

l=1

M0(M(1+ξ2r )
kl
−→v l) = M0

L
∑

l=1

(M(1+ξ2r )
kl
−→v l).

We also have that

L
∑

l=1

(B(hmlI)−M ′
kl
)−→x l =

L
∑

l=1

((M0M
H
0 )hmlB −M ′

kl
)−→x l =

=

L
∑

l=1

((M0M
H
0 )hmlB)−→x l −

L
∑

l=1

M ′
kl
−→x l =
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=

L
∑

l=1

(M0M
H
0 )hmlB(M0M

H
0 )−→x l −

L
∑

l=1

M0(M(1+ξ2r )
kl
−→v l) =

=
L
∑

l=1

(M0M
H
0 )hmlBM0

−→v l −
L
∑

l=1

M0(M(1+ξ2r )
kl
−→v l) =

= M0

(

L
∑

l=1

(MH
0 hmlBM0)

−→v l

)

−M0

L
∑

l=1

M(1+ξ2r )
kl
−→v l =

= M0

L
∑

l=1

(hml(M
H
0 BM0)−M(1+ξ2r )

kl )
−→v l

and B−→z m = M0(M
H
0 B−→z m).

Then we conclude that

−→y ′
m = MH

0 B−→y m =
L
∑

l=1

M(1+ξ2r )
kl
−→v l+

+

L
∑

l=1

(hml(M
H
0 BM0)−M(1+ξ2r )

kl )
−→v l +MH

0 B−→z m,

where −→υ m =
∑L

l=1(hml(M
H
0 BM0) − M(1+ξ2r )

kl )
−→v l + MH

0 B−→z m is the noise

term (−→υ m is an n× 1 column vector). Thus the mean square error is given by

E[−→υ H
m
−→υ m] = Tr(E[−→υ H

m
−→υ m]) =

= E[Tr(−→υ H
m
−→υ m)] = E[Tr(−→υ m

−→υ H
m)] = Tr(E[−→υ m

−→υ H
m]) and

Tr(E[−→υ m
−→υ H

m]) =

= Tr(E[(
L
∑

l=1

(hml(M
H
0 BM0)−M(1+ξ2r )

kl )
−→v l +MH

0 B−→z m)·
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·(

L
∑

l=1

(hml(M
H
0 BM0)−M(1+ξ2r )

kl )
−→v l +MH

0 B−→z m)H ]).

Since the variables −→v l and
−→z m are uncorrelated, for l = 1, . . . , L, we have

E[−→υ m
−→υ H

m] =
L
∑

l=1

(hml(M
H
0 BM0)−M(1+ξ2r )

kl ) ·E[−→v l
−→v H

l ]·

·(hml(M
H
0 BHM0)−MH

(1+ξ2r )
kl
)+

+MH
0 BE[−→z m

−→z H
m]BHM0.

Hence

E[−→υ H
m
−→υ m] = Tr(

L
∑

l=1

(hml(M
H
0 BM0)−M(1+ξ2r )

kl ) ·E[−→v l
−→v H

l ]·

·(hml(M
H
0 BHM0)−MH

(1+ξ2r )
kl
)+

+MH
0 BE[−→z m

−→z H
m]BHM0).

Let E[−→v l
−→v H

l ] = Ps, for all l = 1, . . . , L, and E[−→z m
−→z H

m] = σ2
N , where Ps

is the signal power, σ2
N is the noise variance and ρ = Ps

σ2
N

is the signal-to-noise

ratio (SNR). Then

E[−→υ H
m
−→υ m] = PsTr(

L
∑

l=1

(hml(M
H
0 BM0)−M(1+ξ2r )

kl )·

·(hml(M
H
0 BHM0)−MH

(1+ξ2r )
kl
) +

1

ρ
MH

0 BBHM0) =

= PsTr(
L
∑

l=1

h2ml(M
H
0 BBHM0)−
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−

L
∑

l=1

hml[(M
H
0 BM0)M

H
(1+ξ2r )

kl
+M(1+ξ2r )

kl (M
H
0 BHM0)]+

+
L
∑

l=1

M(1+ξ2r )
klM

H
(1+ξ2r )

kl
+

1

ρ
MH

0 BBHM0).

Thereby we have

E[−→υ H
m
−→υ m] = PsTr((‖h‖

2 +
1

ρ
)MH

0 BBHM0−

−
L
∑

l=1

hml(M
H
0 BM0)M

H
(1+ξ2r )

kl
−

L
∑

l=1

hmlM(1+ξ2r )
kl (M

H
0 BHM0)+

+

L
∑

l=1

M(1+ξ2r )
klM

H
(1+ξ2r )

kl
),

where h = (hm1, hm2, . . . , hmL).

Let F = MH
0 BM0 (FH = MH

0 BHM0) and η = (‖h‖2 + 1
ρ). Then

E[−→υ H
m
−→υ m] = PsηTr(F · FH −

1

η
F

L
∑

l=1

hmlM
H
(1+ξ2r )

kl
−

−
1

η
FH

L
∑

l=1

hmlM(1+ξ2r )
kl +

1

η

L
∑

l=1

M(1+ξ2r )
klM

H
(1+ξ2r )

kl
) =

= PsηTr((F −
1

η

L
∑

l=1

hmlM(1+ξ2r )
kl )(F −

1

η

L
∑

l=1

hmlM(1+ξ2r )
kl )

H+

+
1

η

L
∑

l=1

M(1+ξ2r )
klM

H
(1+ξ2r )

kl
−
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−
1

η2
(

L
∑

l=1

hmlM(1+ξ2r )
kl )(

L
∑

l=1

hmlM(1+ξ2r )
kl )

H).

Observe that F = 1
η

∑L
l=1 hmlM(1+ξ2r )

kl minimizes E[−→υ H
m
−→υ m]. Since F =

MH
0 BM0, it follows that

BM0 =
1

η
M0

L
∑

l=1

hmlM(1+ξ2r )
kl ⇔

⇔ B =
1

η
M0(

L
∑

l=1

hmlM(1+ξ2r )
kl )M

H
0 =

=
1

η

L
∑

l=1

hml(M0M(1+ξ2r )
klM

H
0 ).

Hence B = 1
η

∑L
l=1 hml(M0M(1+ξ2r )

klM
H
0 ) minimizes E[−→υ H

m
−→υ m] and the

mean square error is given by

PsTr(
L
∑

l=1

M(1+ξ2r )
klM

H
(1+ξ2r )

kl
−

−
1

η
(

L
∑

l=1

hmlM(1+ξ2r )
kl )(

L
∑

l=1

hmlM(1+ξ2r )
kl )

H) =

= Ps(
L
∑

l=1

Tr(M(1+ξ2r )
klM

H
(1+ξ2r )

kl
)−

1

η
‖

L
∑

l=1

hmlM(1+ξ2r )
kl ‖

2
F ) =

= Ps(

L
∑

l=1

‖ M(1+ξ2r )
kl ‖

2
F −

1

η
‖

L
∑

l=1

hmlM(1+ξ2r )
kl ‖

2
F ),

with ‖ A ‖F=
√

Tr(AAt), where A is an m × n complex matrix. The norm
‖ · ‖F is called Frobenius norm.

Since

‖ M(1+ξ2r )
kl ‖

2
F= Tr(M(1+ξ2r )

klM
H
(1+ξ2r )

kl
) =
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= Tr(M(1+ξ2r )
klM

H
(1+ξ2r )

kl
MH

0 M0) =

= Tr(M0M(1+ξ2r )
klM

H
(1+ξ2r )

kl
MH

0 ) =

=
n
∑

i=1

σi((1 + ξ2r)
kl)2 =

n
∑

i=1

σi(((1 + ξ2r)
kl)2) =

= TrQ(ξ2r )/Q(i)(((1 + ξ2r)
kl)2) and

‖

L
∑

l=1

hmlM(1+ξ2r )
kl ‖

2
F= Tr((

L
∑

l=1

hmlM(1+ξ2r )
kl )(

L
∑

l=1

hmlM(1+ξ2r )
kl )

H) =

= Tr(M0(

L
∑

l=1

hmlM(1+ξ2r )
kl )(

L
∑

l=1

hmlM(1+ξ2r )
kl )

HMH
0 ) =

= Tr((

L
∑

l=1

hmlM0M(1+ξ2r )
kl )(

L
∑

l=1

hmlM
H
(1+ξ2r )

kl
MH

0 )) =

=
L
∑

l,j=1

hmlhmjTrQ(ξ2r )/Q(i)((1 + ξ2r)
kl(1 + ξ2r)

kj ),

the mean square error is given by

Ps(
L
∑

l=1

TrQ(ξ2r )/Q(i)(((1 + ξ2r)
kl)2)−

−
1

η

L
∑

l,j=1

hmlhmjTrQ(ξ2r )/Q(i)((1 + ξ2r)
kl(1 + ξ2r)

kj)) =

= Ps
1

η
(η

L
∑

l=1

TrQ(ξ2r )/Q(i)(((1 + ξ2r)
kl)2)−

−

L
∑

l,j=1

hmlhmjTrQ(ξ2r )/Q(i)((1 + ξ2r)
kl(1 + ξ2r)

kj)).
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