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Abstract. Given a trivalent graph in the 3-dimensional Euclidean space, we call it a discrete
surface because it has a tangent space at each vertex determined by its neighbor vertices.
To abstract a continuum object hidden in the discrete surface, we introduce a subdivision
method by applying the Goldberg-Coxeter subdivision and discuss the convergence of a
sequence of discrete surfaces defined inductively by the subdivision. We also study the limit
set as the continuum geometric object associated with the given discrete surface.

1 Introduction

One of the important problems for discrete geometry in general, is to find a continuum
associated with a given discrete object and compare their geometries. For a triangulation of
a continuous surface, the continuum is the continuous surface itself (for example, see [4]). A
typical question is how geometric data of the triangulation converges to the corresponding
geometric data of the continuous surface when meshes get finer. What do we do with discrete
objects with no obvious underlying continuum? To address the issue, in the present paper,
we study a discrete surface, defined in [5] as a trivalent graph in R3. We introduce a method
to subdivide a given discrete surface M , discuss convergence of the sequence {Mi} of the
iteratively subdivided discrete surfaces, and find a continuous object as its limit when there
is no obvious underlying surface for M .

Let us state this more precisely. Let X = (V,E, F ) be a trivalent topological surface graph,
where V denotes the set of vertices, and E the set of edges. We often identify a graph X
with the set V of its vertices. Although X is a one-dimensional object, it is convenient to
consider a circuit, a closed simple curve without self-intersections, as a “face” of X. Since
we assume that X is a surface graph, the notion of faces is well-defined, and F denotes the
set of faces. An n-gonal face is f = {v0, . . . , vn−1} with the ordered vertices vi ∈ V in the
circuit of the length n. Let us denote by F the set of faces in X. Two faces are said to be
neighbored when they share a common edge. For later use, we also introduce the notion of
“leaf”. The set of a face f and its neighboring faces is called a leaf with a core face f and is
denoted by L(f).

Given a discrete surface Φ: X →M = Φ(X) ⊂ R3, where X is a trivalent graph and Φ is
a piecewise linear map, we let V , E , F be the image sets of V , E, F . Note that throughout
the paper we write X for a topological graph and M for a graph (discrete surface) realized
in R3.
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Let {Xi} be a sequence of the Goldberg-Coxeter construction (GC-construction, for details
see Section 3) iteratively constructed from X0 = X. For a given Mi = Φi(Xi), its subdivision
Mi+1 is constructed iteratively by the following two steps:

(1) Solving the Dirichlet energy minimizing equation for Xi+1 with the boundary condi-
tion Φi(Xi),

(2) Replace Φi(Xi) by the barycenter of its nearest neighbors, and rename it as Mi.

More precisely, we do the process leafwise. We call {Mi} a sequence of subdivisions of a
discrete surface M and prove {Mi} forms a Cauchy sequence in the Hausdorff topology
(Theorem 4.1) and show the energy monotonicity formula (Theorem 4.3). Note that the
above subdivision method is a modification of what was introduced in [15], and we call this
procedure the Goldberg-Coxeter subdivision (GC-subdivision).

The limit of this Cauchy sequence M∞ =
⋃
Mi is divided into three kinds of sets:

M∞ =MF ∪MV ∪MS .

The first two come from accumulating points of leafwise convergence and the third one
appears from global accumulation. Given a leaf with its center f (i), which is an n-gon in Mi,
its GC-subdivision is an n-gon f (i+1) in Mi+1 and its neighboring n hexagons (see Figure 2).
The first one is the setMF of accumulating points associated with each face in Mi. We prove

in Lemma 5.4, for a fixed face f (i) in Mi, {f (i)
k ∈ Mi+k} with f

(i)
0 = f (i) form a converging

sequence and all vertices of {f (i)
k } converge to the barycenter f

(i)
∞ of the original face f (i) and

also of all f
(i)
k . We call it an accumulating point associated with the face and put

MF :=
⋃

i

{f (i)
∞ | the barycenter of all faces f (i) ∈Mi}.

The second one is the set of all vertices, replaced as in the above step, i.e., MV =
⋃
iMi.

The regularity of the limit set is not trivial at all, although we have the energy monotonicity
formula (Theorem 4.3). It seems a balancing condition plays an important role. For example,
when we take a C60, a polygonal graph on the sphere, which does not satisfy the balancing
condition, we obtain a pathological shape as the limit of its subdivisions (Section 6).

We also prove the convergence to a point in MF is of C1 class in the sense that the
corresponding normal vectors converge to a unique unit vector independent of the choice of
converging sequence in MF .

The third one is the set MS consisting of the rest of the accumulating points. We know
little aboutMS in general, however, we prove an unbranched discrete surface does not have
such MS .

Theorem 1.1 (Theorem 4.1 and Theorem 5.1). A sequence {Mi} of iteratively subdivided
discrete surface constructed from a discrete surface M forms a Cauchy sequence in the Haus-
dorff topology. The limit set M∞ consists of MV , MF and MS . When M is unbranched,
MS is empty.

The first statement of the above theorem was proved by the last author with a slightly
different subdividing method in [15]. In the present paper, we propose a modified method to
further discuss regularity/singularity in the limit of the sequence. We explain how we improve
the original method for that purpose. The original subdividing method defined in [15] is given
by solving the Dirichlet energy minimizing equation. It works well with a network all of whose
vertices satisfy the balancing conditions but not with a network otherwise. This is because
in the original subdividing method, an original vertex not satisfying the balancing condition
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and the newly generated nearest vertices are not co-planar and are forming singular points
in the repeated process of subdivisions (see Figure 8). In the modified subdividing method
proposed in the present paper, we add a smoothing step after solving the Dirichlet equation.
Namely, we replace such a vertex by the barycenter of its nearest neighbor so that they
are co-planar and release tensions caused by the procedure. We also numerically calculate
subdivisions of the Mackay crystal of type P (satisfying the balancing condition) and C60

(does not satisfy it) by both methods (see Figures 8, 9, and 10).

Theorem 1.2 (Theorem 4.3). The total Dirichlet energy ED(Mi) is bounded when it is
subjected to a finite domain at the initial stage M0. Moreover it monotonically decreases if
M0 contains no n-gonal faces with n > 6 and contains an n-gonal face with n < 6.

A trivalent graph is said to be “branched” when an edge is shared by more than two
faces. We note that the condition “unbranched” is necessary for a graph to be considered
as a “surface” is shown in Section 7. The K4-lattice is the triply periodic trivalent graph
in R3 discovered by T. Sunada [14], which is the one of the two structures that satisfy the
strong-isotropic property. The K4-lattice is branched. Actually each edge is shared by 10
faces. The numerical computation shows each leaf of the K4-lattice converges to a smooth
leaf, but does not converge to the same leaf (see Figure 7).

2 Preliminaries

There are many approaches to formulate “Discrete Surface Theory” based on different
motivations. In [5], a discrete surface is defined as a trivalent graph in R3 so that the tangent
space is assigned at each vertex as the unique plane determined by the three nearest neighbor
vertices. We briefly review their discussions and results.

2.1 Discrete surface in R3 and their curvatures

Let X = (V,E) be a trivalent topological graph, where V denotes the set of vertices, E
denotes the set of edges. The origin and the terminus of an edge e are denoted by o(e) and
t(e), respectively. For any v ∈ V , Ev refers to the set of edges that emerge from v.

It is convenient to introduce a notion of a “face” although X is a discrete object. For a
circuit, a closed simple curve without self-intersections, we define a face f as an ordered set
{v0, . . . , vn−1} of vertices in the circuit and the set F of faces.

Given a trivalent topological graph X, we define a discrete surface M in R3 by a piecewise
linear map Φ: X → R3 with M = Φ(X). Here by “piecewise linear”, we mean the image of
each edge e = (v0, v1) is given by the line segment connecting two vertices Φ(v0) and Φ(v1).

Definition 2.1 (Discrete Surface). An injective piecewise linear realization Φ: X → R3 of
a trivalent graph X = (V,E) is said to be a discrete surface in R3, if

(1) for all v ∈ V at least two elements of {Φ(e) | e ∈ Ev} are linearly independent in R3,
(2) Φ(X) is locally oriented, that is, the order of the three edges is assigned to each vertex

of X.

Let Φ: X →M = (V , E) ⊆ R3 be a discrete surface, in which V = Φ(V ) denotes the set of
vertices of M , E = Φ(E) denotes the set of edges of M and F denotes the set of polygonal
faces of M . In particular, we do not assume the image of a face lies on a plane or a continuous
surface.

As will be seen, we consider X and M as discrete sets and often identify them with the
sets of vertices V and V , respectively.
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Let v = Φ(v) and e = Φ(e) be the corresponding vertex and edge in M for v ∈ V and
e ∈ E. Let Ev = {e1, e2, e3} be the oriented edges at v and let vi be the tail vertex of each
ei. The tangent plane TvM is defined as the plane with n(v) as its unit normal vector n(v)
at v ∈M is given by

n(v) =
e1 × e2 + e2 × e3 + e3 × e1

|e1 × e2 + e2 × e3 + e3 × e1|
, (ei = Φ(ei)).

It is perpendicular to the triangle 4(v1,v2,v3) with vi = Φ(vi).
The first and second fundamental forms of v ∈M are given by, respectively

I(v) =

(
〈e2 − e1, e2 − e1〉, 〈e2 − e1, e3 − e1〉
〈e3 − e1, e2 − e1〉, 〈e3 − e1, e3 − e1〉

)
,

II(v) =

(
−〈e2 − e1,n2 − n1〉, −〈e2 − e1,n3 − n1〉
−〈e3 − e1,n2 − n1〉, −〈e3 − e1,n3 − n1〉

)
,

where ni = n(vi), i = 1, 2, 3. Note that II(v) is not necessarily symmetric.

Definition 2.2 (Curvatures). Let Φ: X → M be a discrete surface. Then for each vertex
v ∈ M , the Gauss curvature K(v) and mean curvature H(v) are represented as follows,
respectively

(2.1)
K(v) = det[I(v)−1 II(v)],

H(v) =
1

2
tr[I(v)−1 II(v)].

Definition 2.3 (Discrete Minimal Surface). A discrete surface Φ: X →M is called a discrete
minimal surface if its mean curvature vanishes at each vertex.

2.2 Discrete harmonic and minimal surfaces

Consider a trivalent graph X with weight m : E → R+, satisfying m(e) = m(ē), where ē
is the reverse edge of e.

Let Φ: X → M be a discrete surface in R3. For a finite subgraph X ′ = (V ′, E ′) ⊂ X, we
define the Dirichlet energy ED(Φ|X′) as the sum of square norm of all edges, i.e.,

ED(Φ|X′) =
∑

e∈E′
m(e)|Φ(e)|2.

A realization of a graph X that minimizes the Dirichlet energy defined above for arbitrary
finite subgraphs is called a harmonic realization [7] or an equilibrium placement [2].

Proposition 2.4 (Harmonic Discrete Surface ( [5, Definition 3.15])). A discrete surface
Φ: X → R3 is harmonic with respect to the weight m, when it satisfies

(2.2) m(ev,1)Φ(ev,1) +m(ev,2)Φ(ev,2) +m(ev,3)Φ(ev,3) = 0,

for any v ∈ V , and Ev = {ev,1, ev,2, ev,3}.

The equation (2.2) is called the balancing condition, and plays an important role later on.

Proposition 2.5 ([5, Proposition 3.16]). Let F : X → R3 be a discrete harmonic surface
with respect to the weight m, for v ∈ V and Ev = {e1, e2, e3}, the Gauss curvature K(v) and
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the mean curvature H(v) are respectively given by

K(v) = −m1 +m2 +m3

2A(x)2

∑

i,j,k

〈ei,nj〉〈ej,ni〉
mj

,

H(v) =
m1 +m2 +m3

2A(x)2

∑

i,j,k

〈ei, ej〉(〈ei,nj〉+ 〈ej,ni〉)
mj

,

where mi = m(ei) and (i, j, k) are the permutations of (1, 2, 3).

By Proposition 2.5, we notice that a discrete harmonic surface may not be minimal. The
following theorem provides a sufficient condition for a discrete harmonic surface which has
vanishing mean curvature at each vertex.

Theorem 2.6 ([5, Theorem 3.17]). A discrete harmonic surface Φ: X → R3 is minimal if
for any v ∈ V and Ev = {e1, e2, e3}

〈Φ(e1),Φ(e2)〉+ 〈Φ(e2),Φ(e3)〉+ 〈Φ(e3),Φ(e1)〉 = 0.

In particular, if m : E → R+ is constant, the equation above is equivalent to

|Φ(e1)| = |Φ(e2)| = |Φ(e3)|.

In the present paper, we always use m ≡ 1 from now on.

3 Construction of subdivisions

The process of subdivision consists of two steps. The first step is a topological subdivision
Xi of X by using the GC-construction, and the second step is to construct subdivisions Mi

of M = Φ(X) in R3 with Mi = Φi(Xi) so that energy of Φi monotonically decreases and
converges to a natural continuum object.

3.1 Goldberg-Coxeter construction of trivalent topological graphs

The Goldberg-Coxeter construction (GC-construction) is a way to subdivide a trivalent
surface graph defined by M. Deza and M. Detour Sikirić [3] (see also Omori-Naito-Tate [10]).

Definition 3.1 (Goldberg-Coxeter construction). Let X = (V,E, F ) be a trivalent surface
graph. The graph GC(X) is built in the following steps (see Figure 1).

(1) Take the dual graph X∗ of X. Since X is trivalent, X∗ is a triangulation, namely, a
surface graph whose faces are all triangles.

(2) Every triangle in X∗ is subdivided into another set of faces. If we obtain a face which
is not a triangle, then it can be glued with other neighboring non-triangle faces to
form triangles.

(3) By duality, the triangulation of (2) is transformed into GC(X).

To apply the GC-construction for a surface graph to our case, we need a notion of “leaves”.
A leaf with an n-gonal face f as its core is the set

L(f) = {f, f1, . . . , fn}
of f and all its neighboring faces f1, . . . , fn in X (see Figure 2). A leaf can be considered as
a surface graph and thus be subdivided topologically by using the GC-construction (see [3]).
It should be noted, for a given leaf L embedded in the surface, the limit set ∪Li of iterated
subdivision Li of L forms a domain in the surface in the Hausdorff topology. Thus we have
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(a) (b) (c)

(d) (e) (f)

Figure 1. the GC subdivision of the hexagonal lattice: For a given trivalent
graph (a), its dual graph (c) is constructed as shown in (b). The subdivision
of (c) is obtained as in (d) and its dual graph, (f) is constructed as shown in
(e).

a sequence of topological subdivisions Xi of X leafwise. We denote the system of leafwise
GC-constructions by GC(X).

Remark 3.2.

(1) In the present paper we only use GC2,0 (GC-construction of type (2, 0)) to subdivide
the surface graph and denote it GC for simplicity. For more general cases, see [3].

(2) The construction of GC-subdivision increases the number of hexagons of the surface
graph only. It does not change the number of other types of polygons. More precisely,
on a leaf L with an n-gonal face f at the center we obtain an n-gonal face f ′ in it
surrounded by n hexagonal faces in GC(L) (see Figure 2).

(3) The limit metric on the domain is not the Euclidean metric but a similar metric
studied as the tangent cone at infinity in [6]. We do not study it in the present
paper because the metric concerned in our problem is the induced metric through the
realization in R3.

Next, we explain how to determine their configurations in R3 as a geometric subdivision
of a given discrete surface.

3.2 GC-subdivision of discrete surfaces

For a discrete surface Φ: X →M ⊂ R3, we first introduce the method of its subdivision and
then discuss the convergence of the sequence {Mi}∞i=0 inductively constructed with M0 = M
and Mi+1 as the subdivision of Mi.
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(a) (b) (c)

Figure 2. Application of the GC construction to a leaf with an octagon at the
center (a). (b) shows its dual graph. The result as is shown at (c) is a smaller
octagon (gray region) and 8 hexagons (light-gray region) around it.

Let X0 = (V0, E0, F0) be a trivalent topological surface graph and Xi+1 be the GC-
construction of Xi, i.e., Xi+1 := GC(Xi), for any i ∈ N.

Assume we have already obtained

Φi : Xi →Mi+1,

and define

Φ̃i+1 : Xi+1 → M̃i+1 ⊆ R3

as a minimizing map of the Dirichlet energy from Xi+1 with Mi = Φi(Xi) as the boundary
condition, namely it satisfies

1. Φ̃i+1(Vi) = Φi(Vi),

2. Φ̃i+1 takes the minimum of the Dirichlet energy locally, i.e., on any fixed face f (i) ∈ Fi,

ED(Φ̃i+1(Xi+1|f (i))) = min{ED(Φ̃ : Xi+1|f (i) → R3)}.

The vertex set of M̃i+1 is Ṽi+1 = Vi ∪ V ii+1, where Vi = Φi(Vi), V ii+1 is the set of solution
vertices of the boundary problem.

Define a projection

πi+1 : M̃i+1 →Mi+1

with Mi+1 as the image. For any v ∈ M̃i+1

πi+1(v) =

{
v v ∈ V ii+1

barycenter of its neighbors v ∈ Vi
.

Finally, let

Φi+1 = πi+1 ◦ Φ̃i+1 : Xi+1 →Mi+1.

Then we define a sequence of {Mi}i step by step as in the following diagram:
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Mi M̃i+1

Mi+1

πi

GC2,0

πi+1

GC2,0

It is clear there exists such Φi+1 and it is unique. We call the Goldberg-Coxeter subdivision
(GC-subdivision) Φi+1(Xi+1).

In [15], M̃i was used as the subdivision but here we have found that the modified subdivision
composing with the projection π works better.

3.3 Estimate of distance

To discuss its convergence in the Hausdorff topology, we use the following energy estimate
on a face:

Proposition 3.3 ( [15]). For any fixed n-gonal face f (i) ∈ Fi, there exists a constant number
λ(n) < 1 such that

(3.1) ED(Φ̃i+1(Xi+1|f(i))) ≤ λ(n)ED(Φi(Xi|f (i))).

We make a quick review of the proof in our setting for the reader’s convenience.

Proof. It is sufficient to prove the assertion for the case i = 0.
For fixed f (0), the vertices of Φ0(X0|f (0)) are denoted by {v01 , v02 , . . . ,v0n−1}, and the

inner vertices of Φ̃1(X1|f (0)) ∈M1 are denoted by {v11 , v12 , . . . ,v1n−1}, where v0i and v1i are
connected by a single edge.

Let f (0) = (v01 , v02 , . . . ,v0n−1)
t, f (1) = (v11 , v12 , . . . ,v1n−1)

t,

T :=

(
O In−1
1 OT

)
∈M(n),

where O = (0, 0, . . . , 0)t ∈ Rn−1. Then

ED(Φ̃1(X1|f (0))) =
n−1∑

i=0

|v0i − v1i |2 +
n−1∑

i=0

|v1i − v1i+1
|2 = ‖f (0) − f (1)‖2 + ‖f (1) − Tf (1)‖2,

ED(Φ0(X0|f (0))) =
n−1∑

i=0

|v0i − v0i+1
|2 = ‖f (0) − Tf (0)‖2,

where | · | is the vector norm and ‖ · ‖ is the Hilbert-Schmidt norm of the square matrix.
The minimizer of Dirichlet energy infers that

∂ED(Φ̃1(X1|f (0)))
∂v1i

= 0, for i = 0, 1, . . . , n− 1,

which is
−v1i−1

+ 3v1i − v1i+1
= v0i , for i = 0, 1, . . . , n− 1,

Then we obtain

(3.2) f (1) = A(n)f (0),
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where

(3.3) A(n) := (3In − T − T t)−1 =




3 −1 0 . . . 0 −1
−1 3 −1 . . . 0 0
0 −1 3 . . . 0 0
0 0 −1 . . . 0 0

. . .
0 0 0 . . . 3 −1
−1 0 0 . . . −1 3




−1

∈M(n),

and In is the identity matrix of size n.
Direct computation shows the eigenvalues of A(n) to be

(3.4) λk(n) =
1

1 + 4 sin2(kπ/n)
, k = 0, 1, . . . , n− 1.

On the other hand, since A(n) is symmetric, we have

A(n)(f (0) − Tf (0)) = A(n)f (0) − A(n)Tf (0) = A(n)f (0) − TA(n)f (0) = f (1) − Tf (1).

Here we claim that

(3.5) f (0) − Tf (0) ⊥ φ0, f (1) − Tf (1) ⊥ φ0,

where φ0 = (1, . . . , 1)T is the eigenvector of λ0 = 1.

In fact, if we let f (0) = c0φ0 +f
(0)
⊥ , where f

(0)
⊥ ⊥ φ0, then by noticing that Tφ0 = φ0, we have

〈f (0) − Tf (0), φ0〉 = 〈f (0)
⊥ − Tf

(0)
⊥ , φ0〉 = 〈f (0)

⊥ , φ0〉 − 〈Tf (0)
⊥ , φ0〉

= −〈Tf (0)
⊥ , Tφ0〉 = −T 〈f (0)

⊥ , φ0〉
= 0.

Similarly, we can also prove f (1) − Tf (1) ⊥ φ0 by noticing the fact that

A(n)φ0 = λ0(n)φ0 = φ0.

Letting σ̃(A(n)) be the second largest eigenvalue of A(n), by (3.5) we have

(3.6) ‖f (0) − Tf (1)‖2 ≤ σ̃(A(n))2‖f (0) − Tf (0)‖2 = λ21(n)‖f (0) − Tf (0)‖2.

Similarly,

‖f (0) − f (1)‖2 ≤ λ1(n)(1− λ1(n))‖f (0) − Tf (0)‖2.

Therefore

(3.7)

‖f (1) − Tf (1)‖2 + ‖f (0) − f (1)‖2

≤ λ21(n)‖f (0) − Tf (0)‖2 + λ1(n)(1− λ1(n))‖f (0) − Tf (0)‖2

= λ1(n)‖f (0) − Tf (0)‖2,

where λ1(n) = 1/(1 + 4 sin2(π/n)) < 1 as desired. �
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4 Convergence of subdivided discrete surfaces

4.1 Cauchy sequence

Firstly we prove the sequence of subdivided discrete surfaces forms a Cauchy sequence in
the Hausdorff topology.

Theorem 4.1. The sequence of discrete surfaces {Mi}∞i=0 that are constructed by the GC-
subdivisions as in Section 3 forms a Cauchy sequence in the Hausdorff topology.

Proof. Let f (i) be a fixed n-gonal face in Xi, and f (i+1) be the face defined by the inner
vertices of Xi+1|f (i) . Consider the Hausdorff distance

(4.1)

dH(Φi(∂f
(i)), Φ̃i+1(∂f

(i+1))) ≤
∑

e∈Xi+1|f(i)

|Φ̃i+1(e)|

≤
√

2nED(Φ̃i+1(Xi+1|f (i))) ≤ E0(n)

√
λi+1
1 (n),

where E0(n) :=
√

2nED(Φ0(∂f (0))) is constant and is determined by Φ0 : X0 → M0 and
λ1(n) = 1/(1 + 4 sin2(π/n)). Since each face of a fixed 3-valent graph has finitely many
edges, the number of vertices of each face (n of n-gonal face) in X0 is bounded from above.
Letting λ1 = max{λ1(n)}, E = max{E0(n)}, we have

(4.2) dH(Mi, M̃i+1) = sup
f (i)∈Fi

{dH(Φi(∂f
(i)), Φ̃i+1(∂f

(i+1)))} ≤ E

√
λi+1
1 .

On the other hand, taking v ∈ f (i), also we have v ∈ Vi. Since πi+1(v) is the barycenter of
its nearest neighbors, it is easy to see

(4.3) dH(v, πi+1(v)) < sup
f (i)∈Fi

{dH(Φi(∂f
(i)), Φ̃i+1(∂f

(i+1)))} ≤ E

√
λi+1
1 .

That is,

(4.4) dH(Mi, πi+1(M̃i+1)) = dH(Mi,Mi+1) = sup{dH(v, πi+1(v))} ≤ E

√
λi+1
1 .

Thus for any ε > 0, let N = d2 log1/λ1(Λ/ε)e. Then for any i, j > N (j > i), we have

dH(Mi,Mj) ≤ dH(Mi,Mi+1) + dH(Mi+1,Mi+2) + · · ·+ dH(Mj−1,Mj)

≤ E
(√

λi+1
1 +

√
λi+2
1 + · · ·+

√
λj1

)

< ΛE

√
λi+1
1

< ε,

where Λ = (1 +
√
λ1)/(1− λ1) is a constant determined by Φ0 : X0 →M0 as well. �

4.2 Monotonicity of the Dirichlet energy

Let {Mi}∞i be the sequence of discrete surfaces, and Φi : Xi → Mi = (Vi, Ei,Fi) be a
discrete surface at the i-th step constructed from an unbranched bounded domain in a discrete
surface. In this subsection, we show the monotonicity of the Dirichlet energy. It is sufficient
to prove it on the energy of the subdivision sequence constructed from a leaf in M = M0.
The core idea is simple. When we take a subdivision, the size of each face gets smaller and
smaller, but the number of faces increases. Fortunately, however, the number of n-gonal faces
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with n 6= 6 does not change in the subdivision process, but the number of hexagonal faces
only increases. We study the sum of the energy of hexagonal faces to find it well balanced.

For any fixed i, Fi consists of two parts as

(4.5) Fi = Fn<6
i ∪ F=6

i ∪ Fn>6
i ,

where Fn=6
i is the set of hexagonal faces in Mi and Fn<6

i and Fn>6
i are the sets of n-gonal

faces in Mi with n < 6 and n > 6, respectively. Note firstly there is the largest n, which we
denote N , because we are working with a bounded domain, and secondly we have

(4.6) ]Fn<6
i = ]Fn<6

0 , ]Fn>6
i = ]Fn>6

0 ,

since the GC-subdivision increases the number of hexagonal faces only.
Let

ED(f) =
∑

v∼w∈f

|v −w|2.

Lemma 4.2. Let f be an n-gonal face in Mi, and f ′ be a face in Mi+1 as a solution of
the Dirichlet problem with the boundary f , and f̃ be the solution of the Dirichlet problem
with the boundary f and edges connecting the corresponding vertices (see Figure 3). Then
we obtain

ED(f ′) ≤ λ21(n)ED(f),(4.7)

ED(f̃) ≤ λ1(n)ED(f),(4.8)

where λ21(n) is the spectrum radius of A(n) computed in the previous section.

Proof. The inequalities (4.7) and (4.8) are equivalent to (3.6) and (3.7), respectively. �

Figure 3. Assume f ∈ Fi consists of thin edges, then f ′ ∈ Fi+1 consists
of thick edges, and f̃ consists of thick dashed edges. Here black vertices are
vertices in Vi and white vertices are in Vi+1.

Theorem 4.3 (monotonicity of the Dirichlet energy). Let {Mi}∞i be the sequence of dis-
crete surfaces constructed from a leaf or a bounded domain. The Dirichlet energy of Mi is
bounded from above by a constant independent of n. Moreover it monotonically decreases if
M0 contains no n-gonal faces with n > 6 and contains an n-gonal face with n < 6.

Proof. Since each edge is shared by two faces, we obtain

ED(Mi) =
∑

e∈Ei

|e|2 =
1

2

∑

f (i)∈Fi

ED(f (i)).

For any f (i) ∈ Fi, let f̃ (i) be the set of vertices of f i and f (i+1) ∈ Mi+1, the solution of
the Dirichlet problem with the boundary f (i), and the edges connecting the corresponding
vertices as in Lemma 4.2. Then,

ED(Mi+1) ≤ ED(M̃i+1) =
∑

f (i)∈Fi

ED(f̃ (i)).



12 MOTOKO KOTANI, HISASHI NAITO AND CHEN TAO

By using Lemma 4.2, now we compute the Dirichlet energy of Mi+1 as

(4.9)

ED(Mi+1) ≤ ED(M̃i+1) =
∑

f∈Fi

ED(f̃) ≤
∑

f∈Fi

λ1(n)ED(f)

=
∑

f∈Fn<6
i

λ1(n)ED(f) +
1

2

∑

f∈Fn=6
i

ED(f) +
∑

f∈Fn>6
i

λ1(n)ED(f)

=
1

2


 ∑

f∈Fn<6
i

ED(f) +
∑

f∈Fn=6
i

ED(f) +
∑

f∈Fn>6
i

ED(f)




+
∑

f∈Fn<6
i

(
λ1(n)− 1

2

)
ED(f) +

∑

f∈Fn>6
i

(
λ1(n)− 1

2

)
ED(f)

= ED(Mi) +
∑

f∈Fn<6
i

(
λ1(n)− 1

2

)
ED(f) +

∑

f∈Fn>6
i

(
λ1(n)− 1

2

)
ED(f).

We also have

(4.10)

λ1(n) < 1/2 for n < 6,

λ1(6) = 1/2,

λ1(n) < 1 for 6 < n.

If there are no n-gonal faces (n > 6) and at least one n-gonal face (n < 6), then, by (4.9),
we obtain

ED(Mi+1) ≤ ED(Mi) +
∑

Fn<6
i

(
λ1(n)− 1

2

)
ED(f).

Since λ1(n) < 1/2 (n < 6), we obtain

(4.11) ED(Mi+1) < ED(Mi).

Inequality (4.11) implies that the Dirichlet energy of Mi is monotonically decreasing.
On the other hand, by (4.9), we also obtain

(4.12)

ED(Mi+1) ≤ ED(Mi) +
∑

f∈Fn<6
0

(
λ1(n)− 1

2

)
λ1(n)2iED(f)

+
∑

f∈Fn<6
0

(
λ1(n)− 1

2

)
λ1(n)2iED(f).

Hence, we obtain

(4.13) ED(Mi+1) ≤ ED(Mi) +
5∑

n=3

Cnλ1(n)2i +
N∑

n=7

Cnλ1(n)2i,

where Cn = (λ1(n) − 1/2)NnEn, Nn is the number of n-gonal faces in M0, and En =
max{ED(f) : f ∈ M0, f is an n-gonal face}. Note that, for n 6= 6, Cn are independent
of i. Finally, we obtain

(4.14) ED(Mi) ≤ ED(M0) +
5∑

n=3

Cn
1− λ1(n)2i−2

1− λ1(n)2
+

N∑

n=7

Cn
1− λ1(n)2i−2

1− λ1(n)2
,
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and (4.14) implies the boundedness of ED(Mi). �

5 The limit set M∞

Let M0 = {V0, E0,F0} be a 3-valent graph in R3 and {Mi = {Vi, Ei,Fi}}∞i=0 be the sequence
constructed by the GC-subdivision. The limit set in the Hausdorff topology is divided into
three kinds:

M∞ =MF ∪MV ∪MS .

The first two come from accumulating points of the leafwise convergence and the third one
emerges as a global accumulation.

5.1 unbranched surfaces

For a general discrete surface M , we know little aboutMS in general, but under a natural
condition, we prove MS is empty.

When every edge of M is shared by two faces only, we say M is unbranched.

Theorem 5.1. Let M0 = {V0, E0,F0} be a 3-valent graph in R3 which satisfies

(1) Each edge of M0 is shared by at most two faces.
(2) Any two faces intersect at one edge or not at all.
(3) The convex hulls conv(L(f1)) of leaves L(f1) and the convex hull conv(L(f2)) of

L(f2) intersect when either f1 ∼ f2 (f1 and f2 share a common edge) or there is a
connecting face f1 � f2 of f1 and f2.

Then M∞ =MV ∪MF .

In the following, we prove Theorem 5.1. A leaf with an n-gonal face f as its core is a set

L(f) = {f ,f1, · · · ,fn}
of f and the neighboring faces fα, α = 1, . . . , n of f . The set of vertices of faces belonging
to L(f) is denoted by V(L(f)).

Lemma 5.2. ⋃

F∈F(Mi+1)

conv(L(F )) ⊂
⋃

f∈F(Mi)

conv(L(f)),

where conv(Ω) is the convex hull of the set Ω.

Proof. In the subdividing process, we have two kinds of faces; the first kind is obtained as
a solution f ′ of the Dirichlet problem with the boundary condition f by the equation (3.2).
Let us denote f ′ = Af . Note that

V(f ′) = AV(f),

and the leaf with f ′ as its core is

L(f ′) = {f ′, f ′ � f ′1, · · · ,f ′ � f ′n}.
The second kind is a face connecting two faces f ′ = A(f) and f ′α = A(fα) (α ∈ {1, · · ·n})

of the first kind. We denote it f ′ � f ′α. The set of its vertices is

V(f ′ � f ′α) ⊂ V(f ′) ∪ V(f ′α) ∪ V(f) = AV(f) ∪ AV(fα) ∪ ΠV(f),

and the leaf with f ′ � f ′α as its core is

L(f ′ � f ′α) = {f ′ � f ′α,f ′,f ′α,f ′ � f ′α−1,f ′ � f ′α+1,f
′
α � f ′α−1,f ′α � f ′α+1}.
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Let F(Mi) be the set of all faces in Mi and notice that for a given F ∈ F(Mi+1), there is
a face f ∈ F(Mi) such that F ∈ L(f). More precisely F is either a solution face f ′ = Af
or a connecting face f ′ � f ′α.

L(f)

fn f1

f

f2

f3

(a)

L(f ′)

f ′
α−1 f ′

α

f ′

f ′
α+1

f ′ ⋄ f ′
α

♠
♠

♠ ♠

♠

♠ projection

(b)

L(f ′ ⋄ f ′
α)

f ′ ⋄ f ′
α

f ′
α−1

f ′
α+1

f ′
α

f ′

♠
♠

♠

♠

♠
♠

♠ projection

(c)

Figure 4. (a) L(f) = {f ,f1, . . . ,fn}, (b) L(f ′) consists of the gray face and
light-gray faces, (c) L(f ′ � f ′α) consists of the gray face and light-gray faces.

For the first case, namely for F = f ′ = Af in F(Mi+1) with f ∈ F(Mi), we have
conv(L(F )) ⊂ conv(L(f)). Since we have the relation

V(L(f)) ⊂ AV(f) ∪ (∪αAV(fα)) ∪ πV(f),

where π is the action of taking the barycenter of the three nearest neighboring vertices. They
are all combination of elements of V(L(f)), and this relation yields the claim.

For the second case, namely for F = f ′�f ′α in F(Mi+1) with f ∈ F(Mi) and a neighboring
face fα of f ,

conv(L(F )) ⊂ conv(L(f)) ∪ conv(L(fα)).

We also have the relation

V(L(F )) ⊂ πV(f) ∪ πV(fα) ∪ AV(f) ∪ AV(fα) ∪ AV(fα−1) ∪ AV(fα+1),

where π is the action of taking the barycenter of the three nearest neighboring vertices,
and here we use the vertices of L(fα) only. Therefore elements in V(L(F )) are again all
combination of elements of V(L(f)) and V(L(fα)).

Putting those two cases together, we have
⋃

F∈F(Mi+1)

conv(L(F )) ⊂
⋃

f∈F(Mi)

conv(L(f)).

�

We define
Ci :=

⋃

f∈F(Mi)

conv(L(f)).

The lemma gives
M∞ ⊂ · · · ⊂ Ci+1 ⊂ Ci ⊂ · · · ⊂ C0.

For any x∞ ∈ M∞, assume that x∞ /∈ MV and take a sequence of vertices xk such that
limxk = x∞. Because x∞ /∈ MV , we can assume no two xk and xj are in the same stage,
i.e., there is a unique xi ∈ F(Mi) for every i without loss of generality.
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Let xi ∈ fi and xi+1 ∈ fi+1, then we have

fi+1 = Afi
or

fi+1 = Afi � Afi,α, f ∼ fi,α ∈ F(Mi),

since we assume the two convex hulls of leaves L(f) and L(fα) intersect only when f ∼ fα
or there is a connecting face f � fα.

In the latter case, xi+1 ∈ fi∩fi,α, which contradicts the choice of the sequence. Therefore

xi+1 ∈ Afi, xi ∈ fi.

That implies x∞ is an accumulation point of a face, that is, x∞ ∈MF , completing the proof
of Theorem 5.1.

5.2 The limit sets associated with faces.

The MF is the set of accumulating points associated with each face in Mi. We have the
following

Proposition 5.3.

MF :=
⋃

i

{f (i)
∞ | the barycenter of all faces f (i) ∈Mi}.

Recall for a leaf with its center f (i), which is an n-gon in Mi, its GC-subdivision is an
n-gon f (i+1) in Mi+1 and its neighboring n hexagons (see Figure 2).

Lemma 5.4. For any f (i) ∈ Fi, let f (i+1) = Af (i). Then in the sense of vertices of a face,

f (i+1) ⊂ conv(f (i)).

Proof. Let A = (alm) (l, m = 0, 1, . . . , n− 1), f (i) = (vi0 ,vi1 , . . . ,vin−1)
t.

Noticing that A · 1 = 1, then for any l,

(5.1)
n−1∑

m=0

almvim = v(i+1)l ,

where

(5.2)
n−1∑

m=0

alm = 1, alm ≥ 0.

That is,

f (i+1) ⊂ conv(f (i)).

�

It also shows f (i) and f (i+1) share the same barycenter f b. Furthermore, since f (i+k) =
Akf (i), by Proposition 3.3,

(5.3) ED(f (i+k)) < λk1ED(f (i))→ 0 as k →∞,

which means f (i) degenerates to a single point as i goes to ∞. We call this point f∞ the
accumulation point associated with f (i). It is easy to see for any k, f∞ and f b are lying in
the convex hull of f (i+k). Therefore f∞ = f b.
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5.3 The limit sets associated with vertices

MV is the set of all vertices, i.e.,

(5.4) MV =
⋃

i

Mi.

The convergence to a point inMV is pathological, although we have the energy monotonicity
formula (Theorem 4.3). It seems a balancing condition plays an important role.

For example, when we take the atomic configuration of the fullerene C60, a polygonal graph
on the sphere, which does not satisfy the balancing condition, we obtain a pathological shape
as the limit of its subdivisions. It seems the modified method gives a better convergence
than the original method proposed earlier [15]. For numerical calculations for C60, Mackay
crystal of type P and their subdivisions, see Section 6.

6 Examples: C60 and Mackay crystals of type P

We include the numerical tests on both C60 and the Mackay crystal (Figure 5). Figures 8-10
and Tables 1-2 are at the end of this paper.

(a) (b)

Figure 5. (a) C60, (b) Mackay crystal of type P.

The Mackay crystal is a carbon network introduced by Mackay and Terrones [8] as a
discrete triply periodic minimal surface (Schwarz P surface). In [5], its geometry is carefully
studied.

C60 is the atomic structure of the famous fullerene and is studied as a carbon network on
the sphere. Because each carbon atom has three bonds, we can apply our method to study
its subdivisions. C60 is a good test to illustrate difficulties in Discrete Surface Theory as it
has “positive curvature” and does not satisfy the balancing condition.

Firstly we point out the Mackay crystal satisfies the balancing condition (as it is a discrete
minimal surface) while C60 is not. In the present paper, we modify the original subdivision
method we used in [15]. Numerical computations (Figure 8) show we have smooth conver-
gence to the Mackay crystal in both the original and modified subdivisions, while a better
situation appears in the modified rather than the original method with C60. We observe sin-
gularities appearing at the vertices of the given discrete surface and that of the subdivided
discrete surfaces and therefore modify the original subdivision method so that vertices at
each step satisfy the balancing conditions (see the first row in Figure 8).

Now we exhibit numerical tests of curvatures. The Gauss curvature and mean curvature
of the sequence of subdivisions constructed from the Mackay crystal (Figure 10 and Table 2)
are computed and showed their convergence. The Gauss curvature remains negative and the
mean curvature goes to zero. In particular, the limit surface exactly is the Schwarz P surface
(minimal surface). The Gauss curvature and mean curvature of the sequence of subdivisions
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constructed from the C60 (Figure 9 and Table 1) are also computed. The convergence is
better in the modified version. Curvature seems to concentrate at the barycenter of the
pentagons in the modified version and at all vertices in the original version.

Lastly, we include the graph of the Dirichlet energy (Figure 6, cf. Theorem 4.3). C60 has
hexagonal faces and pentagonal faces. The energy monotonically decreases since it has no
face with n-gons (n > 6). On the other hand, the Mackay has hexagonal faces and octagonal
faces. The energy monotonically increases since it has no face with n-gons (n < 6) but we
have an upper bound for the energy. It would be interesting to study the regularity of the
convergence.

 12

 12.5

 13

 13.5

 14

 14.5

 15

 1  2  3  4  5  6  7
 2.58

 2.6

 2.62

 2.64

 2.66

 2.68

 2.7

 2.72

 2.74

 1  2  3  4  5  6  7

C60 Mackay crystal

Figure 6. The Dirichlet energies for subdivision of C60 and Mackay crystal.
Dashed line: original subdivisions. Solid line: modified subdivisions.

7 Branched surface: the K4-lattice

In this section, we study an example of a branched surface whose limit surface is branched.
When a face f has a branched edge, i.e., an edge which is shared with more than two faces,
the Goldberg-Coxeter construction cannot be done for the whole graph but only for the leaf
with the central face f . For each leaf, we take the subdivision process and obtain its limit
surface as we proved in the previous section.

Now we see such an example. The K4-lattices is a triply periodic trivalent graph in R3

discovered by Sunada [14], as one of the two structures satisfy the strong-isotropic property.
The K4-lattice is branched, actually, as each edge is shared by 10 faces. The numerical
computation shows each leaf of K4 converges to a smooth leaf. Two leaves, however, can
have all common neighboring faces but still not converge to the same leaf.
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(a) (b) (c) (d) (e)

Figure 7. (a) K4 lattice: triply periodic lattice. (b) and (c) Leaves with a
central face f0 (drawn by bold lines), f0 has 10 different leaves and each leaf
has f0 as its center and ten neighboring faces. (b) and (c) have 9 common
faces (f2, . . . ,f9) (drawn by red thin lines) and a different face (drawn by
blue thin lines) (f1a in (b), f1b in (c)), respectively. (d) limit set constructed
from the leaf La = {f0,f1a,f2, . . . ,f9}. (e) limit set constructed from the leaf
Lb = {f0,f1b,f2, . . . ,f9}, (d) and (e) are the results of five-time subdivisions
and the mesh is showing three-time subdivisions. The blue areas are different
parts of two limit sets.

3 4 5 6

original
C60

modified
C60

original
Mackay

modified
Mackay

Figure 8. Numerical computations of subdivisions (from three times up
through six times) of C60 and Mackay crystal. Red points in original sub-
divisions of C60 are angled, which are located at original vertices of it (see
Figure 5(a)).
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3 4 5 6

original
Gauss
curvature

modified
Gauss
curvature

original
mean
curvature

modified
mean
curvature

100-10

Figure 9. Gauss and mean curvatures of subdivisions for C60.
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3 4 5 6

original
Gauss
curvature

modified
Gauss
curvature

original
mean
curvature

modified
mean
curvature

100-10

Figure 10. Gauss and mean curvatures of subdivisions for Mackay crystal.
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Gauss curvature for C60 and its subdivisions
original modified

min max min max
0 +1.000000000000 +1.000000000000 +1.000000000000 +1.000000000000
1 +0.000000000000 +4.252873545461 +0.525777056286 +1.984363480318
2 +0.000000000000 +23.710805396918 +0.121201828300 +4.635544466166
3 +0.000000000000 +144.213543580835 +0.019088250650 +11.471725490635
4 +0.000000000000 +796.106165831539 +0.004795736307 +29.519631805770
5 +0.000000000000 +4158.979312625750 +0.001553719365 +77.844026602244
6 +0.000000000002 +20183.584874378899 +0.001513497809 +208.379943586661

Absolute values of mean curvature for C60 and its subdivisions
original modified

min max min max
0 +1.000000000000 +1.000000000000 +1.000000000000 +1.000000000000
1 +0.632214023392 +2.065746461116 +0.736142329795 +1.445952675469
2 +0.301253084257 +4.870995934069 +0.378978641299 +2.226705188612
3 +0.147387759935 +12.016186135011 +0.208167970265 +3.522259721963
4 +0.073257722208 +28.216464341791 +0.140779306392 +5.670917251952
5 +0.036573409537 +64.514723533582 +0.086133053358 +9.230418205413
6 +0.001203528409 +142.071641599498 +0.057571796752 +15.123897080553

Table 1. Numerical results of maximum and minimum of Gauss and (absolute
values of) mean curvatures of subdivisions for C60.

Gauss curvature for Mackay crystals and its subdivisions
original modified

min max min max
0 +3.771349862259 +17.666681446413 +3.771349862259 +17.666681446413
1 +0.000000000021 +14.397226459450 +0.000000000021 +13.119488293420
2 +0.000000000000 +16.656461806495 +0.000000000071 +15.066544032947
3 +0.000000000014 +23.082901682419 +0.000000000142 +16.641060037832
4 +0.000000000000 +85.143362076065 +0.000000000330 +17.437385717505
5 +0.000000000000 +601.064421328300 +0.000000000016 +18.086560932206
6 +0.000000000000 +4088.346117693280 +0.000000001469 +18.572122871784

Absolute values of mean curvature for Mackay crystals and its subdivisions
original modified

min max min max
0 +0.029880403429 +0.586577778209 +0.029880403429 +0.586577778209
1 +0.063943067848 +0.802761087825 +0.059318491199 +0.833555289165
2 +0.014255956693 +1.673683654486 +0.002132925185 +1.075287177741
3 +0.000713636661 +3.949630889326 +0.000262137958 +1.215025924198
4 +0.001540074493 +9.607278290803 +0.001724570423 +1.350175041239
5 +0.000037916564 +24.956905972599 +0.000114955116 +1.509305677441
6 +0.000052056290 +64.679724464465 +0.000116955793 +1.681630672170

Table 2. Numerical results of maximum and minimum of Gauss and (absolute
values of) mean curvatures of subdivisions for Mackay crystal.
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