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Abstract We study a class of Linear Feedback Shift Registers (LFSRs) with characteristic
polynomial f (x) = p(x)q(x) where p(x) and q(x) are distinct irreducible polynomials in
F2[x]. Important properties of the LFSRs, such as the cycle structure and the adjacency
graph, are derived. A method to determine a state belonging to each cycle and a generic
algorithm to find all conjugate pairs shared by any pair of cycles are given. The process
explicitly determines the edges and their labels in the adjacency graph. The results are then
combined with the cycle joining method to efficiently construct a new class of de Bruijn
sequences. An estimate of the number of resulting sequencesis given. In some cases, using
cyclotomic numbers, we can determine the number exactly.
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1 Introduction

A binary de Bruijn sequenceof ordern is a binary sequence with periodN = 2n in which
eachn-tuple occurs exactly once in one period of the sequence. There are 22

n−1−n such
sequences [2].

De Bruijn sequences have been studied for a long time using diverse mathematical tools
and often show up in multiple disguises [21]. They have many applications in communi-
cation systems, coding theory, and cryptography due to their attractive characteristics, such
as having long period and large linear complexity, and beingbalanced [3, 9]. Fredricksen’s
survey [8] discusses their various properties and constructions.
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A well-known construction approach called thecycle joining (CJ) method(seee.g., [8]
and [9]) joins all cycles produced by a given Feedback Shift Register (FSR) into a single
cycle. Since the cycle structure of a Linear FSR (LFSR) has been well-studied, it is natural to
construct de Bruijn sequences by applying the cycle joiningmethod to LFSRs. Some LFSRs
with simple cycle structure, such as the maximal length LFSRs, pure cycling registers, and
pure summing registers, have been used to generate de Bruijnsequences using the said
method in [6–8].

Hauge and Helleseth established a connection between the cycles generated by LFSRs
and irreducible cyclic codes in [11]. The number of de Bruijnsequences obtained from these
LFSRs is related to cyclotomic numbers. The cycle structureand the adjacency graph of
LFSRs with simple reducible polynomials are then studied and several classes of de Bruijn
sequences are constructed from these LFSRs.

Recent studies have considered cases where the characteristic polynomials are products
of some simple or primitive polynomials. In [14], a class of de Bruijn sequences was derived
from LFSRs with characteristic polynomials(1+x)3p(x) with p(x) a primitive polynomial
of degreen> 2. In [15] the focus was on characteristic polynomials(1+x3)p(x). The char-
acteristic polynomials studied in [16] are products of primitive polynomials whose degrees
are pairwise coprime. Hence, the sequences forming the cycle structure have coprime pe-
riods. Although this set up leads to a structure that can be nicely studied and described,
in most cases the number of de Bruijn sequences that the construction yields is small when
compared with the construction that we are proposing in thispaper. An example in Section 7
will highlight this fact.

In this paper, we construct new de Bruijn sequences based on LFSRs with characteristic
polynomials f (x) = p(x)q(x), wherep(x) andq(x) are distinct irreducible polynomials. We
study the corresponding cycle structure and construct the adjacency graph. We propose a
method to find a set of representatives of the states, one belonging to each cycle, and design
an algorithm to find all conjugate pairs shared by any two cycles. Deploying the cycle joining
method, we construct the de Bruijn sequences and estimate their number. In some instances,
the estimates are made exact.

This work contributes to the large literature on de Bruijn sequences on several fronts. We
generalize the choices of characteristic polynomials to products of irreducible polynomials,
instead of those of primitive polynomials. The structure ofthe resulting LFSRs is thoroughly
studied. Our step-by-step construction of de Bruijn sequences from the LFSRs remains ef-
ficient to perform while handling more complex cycle structure, yielding a large number
of de Bruijn sequences. The resulting class contains many known ones as special cases.
In particular, the class derived from product of two primitive polynomials is a subclass of
our construction. Finally, most of the methods developed inthis paper generalize naturally
to LFSRs with product ofs> 2 pairwise distinct irreducible polynomials as characteristic
polynomials.

The paper is organized as follows. After this introduction come preliminary notions
and known results in Section 2. Section 3 presents the cycle structure. The main results
are presented in Section 4 in two parts. The first part determines the adjacency graph. The
second part provides an algorithm to find all conjugate pairsbetween any two cycles and
gives a rough estimate of the number of constructed de Bruijnsequences. A detailed example
in Section 5 showcases how the theoretical results fit together nicely in practice. Section 6
examines three special cases where the characteristic polynomial has certain simplifying
properties. Section 7 briefly treats a more general case where the characteristic polynomial
is the product of more than two irreducible polynomials. Thelast section contains a brief
conclusion and some future directions.
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2 Preliminaries

We use [10, Chapter 4] as a main reference for this section.
An n-stage shift registeris a circuit consisting ofn consecutive storage units, each con-

taining a bit, regulated by a clock. As the clock pulses, the bit in each storage unit is shifted
to the next stage in line. A shift register becomes a binary code generator when one adds
a feedback loop which outputs a new bitsn based on then bits s0 = (s0, . . . ,sn−1) called
an initial state of the register. The correspondingfeedback function f(x0, . . . ,xn−1) is the
Boolean function that outputssn on inputs0.

A feedback shift register (FSR) outputs a binary sequences= s0,s1, . . . ,sn, . . . satisfying
the recursive relationsn+ℓ = f (sℓ,sℓ+1, . . . ,sℓ+n−1) for ℓ= 0,1,2, . . .. ForN ∈N, if si+N = si

for all i ≥ 0, thens is N-periodicor with period Nand one writess= (s0,s1,s2, . . . ,sN−1).
We callsi = (si ,si+1, . . . ,si+n−1) the i-th stateof s and statessi−1 andsi+1 thepredecessor
andsuccessorof si , respectively.

Given two sequencesu = u0,u1, . . . and v = v0,v1, . . ., the sumu+ v and the scalar
multiple cu areu+v = u0+v0,u1+v1, . . . andcu = cu0,cu1, . . .. A period of the sum is the
least common multiple (lcm) of the periods of the given sequences.

For an FSR, distinct initial states generate distinct sequences. We collect all these se-
quences to form a setΩ ( f ) of cardinality 2n. All sequences inΩ ( f ) are periodic if and only
if the feedback functionf is nonsingular, i.e., f can be written as

f (x0,x1, . . . ,xn−1) = x0+g(x1, . . . ,xn−1),

whereg(x1, . . . ,xn−1) is some Boolean function with domainFn−1
2 [9, page 116]. In this

paper, the feedback functions are all nonsingular. An FSR iscalledlinear or an LFSR if its
feedback function is linear, andnonlinearor an NLFSR otherwise.

Thecharacteristic polynomialof ann-stage LFSR with feedback function

f (x0,x1, . . . ,xn−1) =
n−1

∑
i=0

cixi

is the polynomialf (x) = xn +∑n−1
i=0 cixi ∈ F2[x]. A sequences may have many character-

istic polynomials. We call the monic characteristic polynomial with the lowest degree the
minimal polynomialof s. It represents the LFSR of shortest length that generatess. More
properties of the minimal polynomial can be found in [10, Sections 4.2 and 4.3]. For an
LFSR with characteristic polynomialf (x), the setΩ ( f ) is also denoted byΩ ( f (x)).

Example 1A 3-stage NLFSR with initial state(110) and feedback functionf (x0,x1,x2) =
x0+x1x2+x2+1 outputs(1100 0101), a de Bruijn sequence with period 8.

For a sequences, the(left) shift operator Lis given by

Ls= L(s0,s1, . . . ,sN−1) = (s1,s2, . . . ,sN−1,s0)

with the convention thatL0s= s. The set[s] := {s,Ls,L2s, . . . ,LN−1s} is ashift equivalent
classor acyclein Ω ( f ). The set of sequences inΩ ( f ) can be partitioned into cycles.

If Ω ( f (x)) consists of exactlyr cycles[s1], [s2], . . . , [sr ] for somer ∈ N, then thecycle
structureof Ω ( f (x)) is

Ω ( f (x)) = [s1]∪ [s2]∪ . . .∪ [sr ].
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Whenr = 1, the corresponding FSR is ofmaximal lengthand its output sequences are de
Bruijn sequences of ordern. A nonzero output sequence of a maximal lengthn-stage LFSR
is said to be anm-sequence of order nor amaximal length sequence(MLS).

A statev=(v0,v1, . . . ,vn−1) and itsconjugatêv=(v0+1,v1, . . . ,vn−1) form aconjugate
pair. CyclesC1 andC2 are adjacent if they are disjoint and there existsv in C1 whose
conjugatêv is in C2.

Adjacent cyclesC1 andC2 with the same feedback functiong(x0,x1, . . . ,xn−1) can be
joined into a single cycle by interchanging the successors of v and v̂. The corresponding
feedback function of the resulting cycle is

h(x0,x1, . . . ,xn−1) = g(x0,x1, . . . ,xn−1)+
n−1

∏
i=1

(xi +vi +1).

The basic idea in the cycle joining method is to provide the feedback functions of the
new de Bruijn sequences by finding the corresponding conjugate pairs. Determining the con-
jugate pairs between cycles is, therefore, a crucial step inconstructing de Bruijn sequences.

Definition 1 [12] For an FSR with feedback functionf , its adjacency graph Gis an undi-
rected multigraph whose vertices correspond to the cycles in Ω ( f ). There exists an edge
between two vertices if and only if they share a conjugate pair. The number of shared con-
jugate pairs labels the edge.

When the edges connecting two vertices are considered pairwise distinct, there is a one-
to-one correspondence between the spanning trees of the adjacency graphG and the de
Bruijn sequences constructed by the CJ method. The details can be found in [11] and [12].
The following result, a variant of the BEST (deBruijn, Ehrenfest,Smith, andTutte) Theo-
rem adapted from [1, Section 7], provides the counting formula.

Theorem 1 (BEST) Let G be the adjacency graph of an FSR with vertex set{v1,v2, . . . ,vℓ}.
Let G′ be the graph obtained by removing all loops in G. LetM = (mi, j) be theℓ×ℓ matrix
derived from G′ in which mi,i is the sum of the labels on the edges incident to vi and mi, j is
the negative of the label of edge(vi ,v j) for i 6= j. Then the number of the spanning trees of
G is the cofactor of any entry ofM .

Thecofactorof the entrymi, j in M is (−1)i+ j times the determinant of the matrix obtained
by deleting thei-th row andj-th column ofM . Relevant concepts and results on finite fields,
such as the definitions and properties of minimal, irreducible, and primitive polynomials, can
be found in [17].

With the preparatory notions in place, we proceed to determining the cycle structure.

3 The Cycle Structure ofΩ ( f (x))

We start by recalling some useful properties and results.
Let g(x)∈ F2[x] be an irreducible polynomial of degreen havingβ ∈ F2n as a root. Then

there exists a primitive elementα ∈ F2n such thatβ = α t for somet ∈ N, ande= 2n−1
t is

the order ofβ . Using theZech logarithmic representation(see.e.g., [10, page 39]), we write

1+αℓ = ατn(ℓ)

whereτn(ℓ) is the Zech logarithm relative toα that induces a permutation on{1,2, . . . ,2n−
2}. For completeness,τn(ℓ) := ∞ for ℓ≡ 0 (mod 2n−1) andα∞ := 0.
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Thecyclotomic classes Ci ⊆ F2n for 0≤ i < t are

Ci = {α i+s·t | 0≤ s< e}= {α iβ s | 0≤ s< e}= α iC0. (1)

Thecyclotomic numbers(i, j)t , for 0≤ i, j < t are given by

(i, j)t =
∣∣{(ξ ,ξ +1) | ξ ∈Ci ,ξ +1∈Cj}

∣∣=
∣∣{ξ | ξ ∈Ci ,ξ +1∈Cj}

∣∣ . (2)

Requiringξ ∈ Ci and ξ + 1 ∈ Cj is equivalent to requiring that there exists ands′ with
0≤ s,s′ < e such that

1+α i+s·t = α j+s′·t ⇐⇒ τn(i +s· t) = j +s′ · t ⇐⇒ τn(i +s· t)≡ j (modt).

Thus, an equivalent expression to (2) is

(i, j)t = |{s | τn(i +s· t)≡ j (modt)}| . (3)

Remark 1In general, it is hard to determine the cyclotomic numbers for all parameter sets.
They are known for small parameters or under certain conditions. Some useful facts can be
found in [23] and [5, Section 1.4]. The cyclotomic numbers used in this paper are all known.

Using{1,β , . . . ,β n−1} as a basis forF2n as anF2-vector space, for 0≤ j < 2n−1, one
can uniquely expressα j as

α j =
n−1

∑
i=0

a j,iβ i with a j,i ∈ F2.

Define the mappingϕ : F2n → F
n
2 by

ϕ(0) = 0, ϕ(α j) = (a j,0,a j+t,0, . . . ,a j+(n−1)t,0),

where the subscripts are reduced modulo 2n−1. Let

ui = (ai,0,ai+t,0, . . . ,ai+(e−1)t,0). (4)

It is shown in [11, Theorem 3] that the classCi corresponds to the cycle[ui ] under the
mappingϕ . In other words,ui and the sequence of states((ui)0,(ui)1, . . . ,(ui)e−1) of ui

where, for 0≤ j < e,

(ui) j = (ai+ jt ,0,ai+( j+1)t,0, . . . ,ai+( j+n−1)t,0) = ϕ(α iβ j),

are equivalent. Hence,ui ←→Ci .
The theory of LFSRs in [10, Chapter 4] tells us that

Ω (g(x)) = [0]∪ [u0]∪ [u1]∪ . . .∪ [ut−1]. (5)

If g(x) is a primitive polynomial, thene= 2n−1 and there exists only one cyclotomic
class. Hence,Ω (g(x)) = [0]∪ [u], whereu is them-sequence with period 2n− 1. The se-
quenceu has the followingshift-and-add property.

Lemma 1 [10, Theorem 5.3] Letu be an m-sequence with period2n−1. Then, for0< i <
2n−1, there exists0< j < 2n−1 such thatu+Liu = L ju with j = τn(i).

Wheng(x) is not primitive, the situation is more involved.
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Lemma 2 Let g(x) ∈ F2[x] be an irreducible polynomial of degree n and order e (making
t = (2n−1)/e) with Ω (g(x)) as presented in (5). Then, for each triple(i, j,k)with 0≤ i, j,k< t,
we have

( j− i,k− i)t =
∣∣∣{a |ui +Lau j = Lbuk;0≤ a,b< e}

∣∣∣ . (6)

Proof Using the correspondence

ui ←→ (ϕ(α iβ 0),ϕ(α iβ 1), . . . ,ϕ(α iβ e−1)) = ϕ(α iC0),

we have

ui +Lau j ←→ ϕ(α iC0)+ϕ(α jβ aC0) = ϕ((α i +α jβ a)C0) = ϕ((1+α j−iβ a)α iC0).

Observe that asa runs through{0,1, . . . ,e−1} there are( j− i,k− i)t sucha, each of which
satisfies(1+α j−iβ a) = αk−iβ b for someb. In each occasion,

ϕ((1+α j−iβ a)α iC0) = ϕ(αk−iβ bα iC0) = ϕ(αkβ bC0).

Note that the corresponding sequences are shifts ofuk and the proof is now complete. ⊓⊔

Lemma 3 [10, Lemma 4.2] Let g(x),h(x) ∈ F2[x] be two nonzero polynomials. Denote by
Ω (g(x))+Ω (h(x)) the set of sequences{g+h | g∈Ω (g(x)),h ∈Ω (h(x))}. Then

1. Ω (g(x))⊆Ω (h(x)) if and only if g(x) | h(x).
2. Ω (g(x))+Ω (h(x)) = Ω (lcm(g(x),h(x))).
3. Ω (g(x))∩Ω (h(x)) = Ω (gcd(g(x),h(x))).

Lemma 4 Let f(x) = p(x)q(x) where p(x) and q(x) are two distinct irreducible polynomi-
als inF2[x] of degree m and n and order e1 and e2, respectively. Let t1 =

2m−1
e1

and t2 = 2n−1
e2

.
The cycle structure ofΩ ( f (x)) is

[0] ∪
t1−1⋃

i=0

[ui ] ∪
t2−1⋃

j=0

[sj ] ∪




t1−1⋃

i=0

t2−1⋃

j=0

gcd(e1,e2)−1⋃

k=0

[Lkui +sj ]


 . (7)

Proof Based on (5), we have

Ω (p(x)) = [0]∪ [u0]∪ [u1]∪ . . .∪ [ut1−1] andΩ (q(x)) = [0]∪ [s0]∪ [s1]∪ . . .∪ [st2−1].

By Lemma 3,Ω ( f (x)) containsΩ (p(x)) andΩ (q(x)) as subsets. Hence,

[0] ∪
t1−1⋃

i=0

[ui ] ∪
t2−1⋃

j=0

[sj ]⊆Ω ( f (x)).

The minimal polynomial of all other sequences inΩ ( f (x)) must be f (x). The period of
these sequences is the order off (x), which is lcm(e1,e2). The sequences are of the form

Lkui +Lℓsj = Lℓ(Lk−ℓui +sj)

for somei, j,k, andℓ, wherek− ℓ is computed moduloe1. They can be partitioned into

2m+n− (2m+2n−1)
lcm(e1,e2)

=
(2m−1)(2n−1)

lcm(e1,e2)
=

(e1 · t1)(e2 · t2)
lcm(e1,e2)

= t1 · t2 ·gcd(e1,e2) (8)
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shift inequivalent classes.
Next, we show thatLkui + sj andLk+t·gcd(e1,e2)ui + sj are shift equivalent for 0≤ k <

gcd(e1,e2) and 0< t < e1/gcd(e1,e2). Sincee1/gcd(e1,e2) ande2/gcd(e1,e2) are coprime, there exist
v,w∈ Z such that

v
e1

gcd(e1,e2)
+w

e2

gcd(e1,e2)
= 1 ⇐⇒ t (gcd(e1,e2)−v ·e1) = t ·w ·e2.

Since the periods ofui andsj are, respectively,e1 ande2,

Lk+t·gcd(e1,e2)ui +sj = Lk+t·gcd(e1,e2)−t·v·e1ui +Lt·w·e2sj = Lt·w·e2(Lkui +sj).

Because 0≤ i < t1, 0≤ j < t2, and 0≤ k< gcd(e1,e2), there are at mostt1 ·t2 ·gcd(e1,e2)
shift inequivalent cycles[Lkui + sj ] for which the period of each sequence is lcm(e1,e2).
Combined with (8), we conclude that there are exactlyt1 · t2 ·gcd(e1,e2) shift inequivalent
classes and[Lkui +sj ] with 0≤ i < t1, 0≤ j < t2, and 0≤ k< gcd(e1,e2) are the cycles. ⊓⊔

4 The Main Results

This most technical section contains two subsections. The first one studies the adjacency
graph ofΩ ( f (x)). The second one begins with a method to find a state belonging to a
particular cycle and incorporates the results to design an algorithm that finds all conjugate
pairs shared by any two cycles. It ends with a heuristic estimate of the number of de Bruijn
sequences constructed.

4.1 The Adjacency Graph ofΩ ( f (x))

Suppose that the special stateS := (1,0, . . . ,0) ∈ Fm+n
2 is in a given cycle[a]. Cycles[b] and

[c] share a conjugate pair if and only if, for somei, j,k∈ Z,

Lib+L jc= Lka ⇐⇒ b+L j−ic= Lk−ia.

This is the basic rule of finding the conjugate pairs shared bythe cycles inΩ ( f (x)).
Since the degrees of the minimal polynomials ofui andsj are all< m+n, neitherui nor

sj can containm+n−1 consecutive 0s. Thus, for alli and j, S /∈ [ui ] andS /∈ [sj ]. Hence,
S∈ [Lcua+sb] for some nonnegative integersa,b, andc. From hereon, we usea,b, andc
specifically to refer to the cycle[Lcua+sb] that contains the special stateS.

Proposition 1 There exist some a,b,c∈ Z such that[0] and [Lcua+ sb] are adjacent. For
arbitrary i and j, there is no conjugate pair between[ui ] and [u j ] and between[si ] and [sj ].

The next result determines the number of conjugate pairs between[ui ] and[sj ].

Proposition 2 Let0≤ i < t1 and0≤ j < t2. Then[ui ] and[sj ] share a conjugate pair if and
only if i = a and j= b. When this is the case, the conjugate pair is unique.

Proof Lkui +sj is a shift ofLcua+sb if and only if i = a, j = b, andk≡ c (mod gcd(e1,e2)).
By the proof of Lemma 4, for anyℓ ∈ Z, [Lcua + sb] and [Lc+ℓ·gcd(e1,e2)ua + sb] are shift
equivalent. Thus,[ua] and[sb] share a unique conjugate pair. ⊓⊔

We now consider the number of conjugate pairs between[ui ] and[Lℓu j +sk].
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Proposition 3 Let 0≤ i, j < t1 and 0≤ ℓ < gcd(e1,e2). For a given(i, j), the following
properties hold.

1. [ui ] and [Lℓu j +sk] share no conjugate pair when k6= b.
2. The sum of the numbers of conjugate pairs between[ui ] and [Lℓu j + sb] from ℓ = 0 to

ℓ= gcd(e1,e2)−1 is the cyclotomic numberδ1 := (i− j,a− j)t1.
3. Suppose that after determiningu j +Lwui , for 0≤w< e1, we have found theδ1 distinct

shifts ofua, say
Lk0ua,L

k1ua, . . . ,L
kδ1−1ua.

The exact number of conjugate pairs between[ui ] and [Lℓu j +sb] is

|{kv | c−kv ≡ ℓ (mod gcd(e1,e2)) with v= 0,1, . . . ,δ1−1}| . (9)

Proof The first statement is clear.
Let k= b. Consider, for 0≤w< e1 and 0≤ ℓ < gcd(e1,e2), the equation

Lℓu j +sb+Lwui = Lℓ(u j +Lw−ℓui)+sb.

By Lemma 2, for a givenℓ, asw runs through{0,1, . . . ,e1−1}, there areδ1 many(w−ℓ)’s
such thatu j +Lw−ℓui is a shift ofua. By choosing an appropriateℓ, we ensure thatLℓ(u j +
Lw−ℓui)+sb is a shift ofLcua+sb. Thus, for a given pair(i, j) with 0≤ i, j < t1, the sum of
the numbers of conjugate pairs between[ui ] and[Lℓu j +sb] from ℓ= 0 toℓ= gcd(e1,e2)−1
is the cyclotomic numberδ1. This proves Statement 2.

Each ofLk0ua,Lk1ua, . . . ,L
kδ1−1ua corresponds to anℓv≡ c−kv (mod gcd(e1,e2)) with

0≤ v< δ1. Hence,LℓvLkvua = Lc′ua wherec′ ≡ c (mod gcd(e1,e2)). Thus, the number of
conjugate pairs between[ui ] and[Lℓu j +sb] for a givenℓ is indeed as given in (9). ⊓⊔

In an analogous way, we can obtain similar results on the number of conjugate pairs
between[si ] and[Lℓuk+sj ] for 0≤ i, j < t2.

Proposition 4 Let 0≤ i, j < t2 and 0≤ ℓ < gcd(e1,e2). For a given(i, j), the following
properties hold.

1. [si ] and [Lℓuk+sj ] share no conjugate pair when k6= a.
2. The sum of the numbers of conjugate pairs between[si ] and [Lℓua+ sj ] from ℓ = 0 to

ℓ= gcd(e1,e2)−1 is the cyclotomic numberδ2 := (i− j,b− j)t2.
3. Suppose that after computing(sj +Lwsi), for 0≤ w < e2, we have determined theδ2

distinct shifts ofsb, say
Lk0sb,L

k1sb, . . . ,L
kδ2−1sb.

The exact number of conjugate pairs between[si ] and [Lℓua+sj ] is

|{kv | c+kv ≡ ℓ (mod gcd(e1,e2)) with v= 0,1, . . . ,δ2−1}| . (10)

Let 0≤ i1, i2 < t1, 0≤ j1, j2 < t2, and 0≤ ℓ1, ℓ2 < gcd(e1,e2). We determine the number
of conjugate pairs between[Lℓ1ui1 +sj1] and[Lℓ2ui2 +sj2], usingλ := ( j2− j1,b− j1)t2 and
µ := (i2− i1,a− i1)t1 for brevity. Based on Lemma 2, we know of the following facts.

Fact 1: Lk0sb,Lk1sb, . . . ,Lkλ−1sb are theλ distinct shifts ofsb generated fromsj1 + Lℓsj2.
We denote the correspondingℓ’s moduloe2 by c0,c1, . . . ,cλ−1.

Fact 2: Lk′0ua,Lk′1ua, . . . ,L
k′µ−1ua are theµ distinct shifts ofua generated fromui1 +Lℓui2.

We denote the correspondingℓ’s moduloe1 by d0,d1, . . . ,dµ−1.
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Proposition 5 With λ and µ as given above, let0≤ i1, i2 < t1, 0≤ j1, j2 < t2, and 0≤
ℓ1, ℓ2 < gcd(e1,e2). For a given(i1, i2, j1, j2)-tuple, the following properties hold.

1. The sum of the numbers of conjugate pairs between cycles[Lℓ1ui1+sj1] and[Lℓ2ui2+sj2]
over all possibleℓ1 andℓ2 is λ ·µ.

2. The exact number of conjugate pairs between two distinctcycles [Lℓ1ui1 + sj1] and
[Lℓ2ui2 +sj2] is

|{(di ,k
′
i ,c j ,k j) | ℓ1≡ c+k j −k′i (mod gcd(e1,e2)) and

ℓ2≡ c+k j −k′i +di −c j (mod gcd(e1,e2)), with

0≤ i < µ and0≤ j < λ}|. (11)

Let0≤ i < t1, 0≤ j < t2, and0≤ ℓ < gcd(e1,e2). The exact number of conjugate pairs
between[Lℓui +sj ] and itself is

1
2
|{(di ,k

′
i ,c j ,k j) | di ≡ c j (mod gcd(e1,e2)) andℓ≡ c+k j −k′i (mod gcd(e1,e2))

with 0≤ i < (0,a− i)t1 and0≤ j < (0,b− j)t2}|. (12)

Proof LetC1 = [Lℓ1ui1 +sj1] andC2 = [Lℓ2ui2 +sj2]. Let 0≤ ℓ < lcm(e1,e2) and consider

Lℓ1ui1 +sj1 +Lℓ(Lℓ2ui2 +sj2) = (Lℓ1ui1 +Lℓ+ℓ2ui2)+(sj1 +Lℓsj2)

= Lℓ1(ui1 +Lℓ+ℓ2−ℓ1ui2)+(sj1 +Lℓsj2). (13)

To guarantee that this sequence is a shift ofLcua+sb, we must ensure thatui1 +Lℓ+ℓ2−ℓ1ui2
is a shift of ua and sj1 + Lℓsj2 is a shift of ub. By Fact 1,ℓ must satisfy the system of
congruences {

ℓ≡ di + ℓ1− ℓ2 (mode1) | 0≤ i < µ ,
ℓ≡ c j (mode2) | 0≤ j < λ .

(14)

By the Chinese Remainder Theorem [18, Theorem 2.9], the system has a unique solution
if and only if, modulo gcd(e1,e2),

c j ≡ di + ℓ1− ℓ2 ⇐⇒ ℓ2− ℓ1 ≡ di−c j . (15)

If ℓ1 andℓ2 satisfy (15) andℓ satisfies (14), then (13) can be expressed as

Lℓ1Lk′i ua+Lk j sb = Lk j (Lℓ1+k′i−k j ua+sb). (16)

Computing modulo gcd(e1,e2) and taking

ℓ1 ≡ c+k j −k′i andℓ2 ≡ c+k j −k′i +di −c j , (17)

the sequence in (16) is indeed the required shift ofLcua+sb. Thus, we get a conjugate pair
between[Lℓ1ui1 + sj1] and [Lℓ2ui2 + sj2]. Note that, asℓ1 andℓ2 range through all of their
respective values, it may happen thatC1 = C2 for some(ℓ1, ℓ2) combination. When this is
the case, we count the conjugate pairs(v, v̂) and(v̂,v) separately even though they are the
same. There areµ ·λ choices for the tuple(di ,k′i ,c j ,k j), proving Statement 1.

To verify Statement 2, notice that the exact number of conjugate pairs between two dis-
tinct cycles[Lℓ1ui1 +sj1] and[Lℓ2ui2 +sj2] is equal to the number of the tuples(di ,k′i ,c j ,k j)
that satisfy (17).

It remains to count the exact number of conjugate pairs between [Lℓui + sj ] and itself.
By (15) and (17), computing modulo gcd(e1,e2), we havedi ≡ c j andℓ≡ c+k j −k′i . When
considering the conjugate pairs between a cycle and itself,every conjugate pair is double
counted. To get the correct number we halve the count. ⊓⊔
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Theorem 2 The adjacency graph ofΩ ( f (x)) can be constructed based on the results in
Propositions 1 to 5.

In the earlier process of computing the number of conjugate pairs, we emphasize the
ordering of the cyclesby specifying the parametersi, j and ℓ in [Lℓui + sj ]. The main
reason is to benefit from the notions of cyclotomic classes and numbers. We also require
S= (1,0, . . . ,0) ∈ [Lcua+sb]. In practice, however, the order of the cycles does not matter.
For two distinct orderings of the cycles, the correspondingmatrices constructed based on
Theorem 1 can be obtained from each other by properly permuting the rows and columns,
which does not affect the cofactor.

4.2 Finding Conjugate Pairs

Recall the definition ofsi and its successorsi+1 of ann-stage FSR sequenceswith feedback
function f (x0, . . . ,xn−1) from Section 2. Astate operator Tturnssi into si+1 with si+n =
f (si, . . . ,si+n−1). Hence, if the statesi belongs to cycle[s], then all the states of[s] are
si ,Tsi ,T2si , . . .. If e is the period ofs, then the distinct states are

si ,Tsi = si+1, . . . ,T
e−1si = si+e−1.

Thus, finding one state in a given cycle is sufficient to generate all distinct states. To reduce
clutters,T may be used to denote the state operator for distinct cycles with distinct stages and
0 is used to denote zero vectors and sequences with arbitrary lengths. The context provides
enough information to avoid confusion.

For any irreducible polynomial of degreen and ordereoverF2, the corresponding cycle
structure is given in (5). For each cycle, there are several ways to find one of its states. One
can perform an exhaustive search or use the correspondence between cycles and cyclotomic
classes defined in the Section 3 to accomplish the task.

Now, assume that a state belonging to each of the cycles inΩ (p(x)) and inΩ (q(x))
has been found. We propose an efficient way to determine a state belonging to each of
the cycles inΩ ( f (x) = p(x)q(x)). Let [Lℓui +sj ] with i, j, ℓ ∈ Z be a cycle inΩ ( f (x)). If
ui = u0,u1,u2, . . . andsj = s0,s1,s2, . . ., then we have

Lℓui +sj = uℓ+s0,uℓ+1+s1,uℓ+2+s2, . . .

and thek-th statevk = (v0,v1, . . . ,vm+n−1) of [Lℓui +sj ] satisfies

vk = (uℓ+k+sk, . . . ,uℓ+k+m+n−1+sk+m+n−1)

= (uℓ+k, . . . ,uℓ+k+m+n−1)+(sk, . . . ,sk+m+n−1). (18)

Note that(uℓ+k, . . . ,uℓ+k+m+n−1) and (sk, . . . ,sk+m+n−1) are uniquely and linearly deter-
mined by, respectively,(uℓ+k, . . . ,uℓ+k+m−1) and (sk, . . . ,sk+n−1). These last two are, re-
spectively, them-stage(ℓ+k)-th state ofui and then-stagek-th state ofsj . Thus, once the
states ofui andsj are known, we can determine the corresponding state inLℓui +sj .

Now, letvk be known. Since(uℓ+k, . . . ,uℓ+k+m+n−1) and(sk, . . . ,sk+m+n−1) are uniquely
and linearly determined by(uℓ+k, . . . ,uℓ+k+m−1) and(sk, . . . ,sk+n−1), respectively, one can
use (18) to construct nonhomogeneous linear equations whose unique solution is, by the
properties of LFSR,(uℓ+k, . . . ,uℓ+k+m−1,sk, . . . ,sk+n−1). Thus, fromvk, them-stage(ℓ+k)-
th state ofui and then-stagek-th state ofsj can be uniquely determined.
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We construct an(m+n)× (m+n) matrix P from two matrices, namely anm× (m+n)
matrix P1 built from p(x) and ann× (m+n) matrix P2 based onq(x). P1 is the firstm rows
of P while P2 is the lastn rows. Thei-th row of P1 is the firstm+n bits of the sequence
generated by the LFSR with characteristic polynomialp(x) whosem-stage initial state has 1
in the i-th position and 0 elsewhere. Similarly, thej-th row ofP2 is the firstm+n bits of the
sequence generated by the LFSR with characteristic polynomial q(x) whosen-stage initial
state has 1 in thej-th position and 0 elsewhere. Hence, the firstm columns ofP1 is theIm
identity matrix and the firstn columns ofP2 is theIn identity matrix. Sincep(x) andq(x) are
distinct irreducible polynomials,P is full-rank.

Let v ∈ F
m+n
2 , a∈ F

m
2 , andb ∈ F

n
2 be, respectively, the initial(m+n)-, m-, andn-stage

states ofLℓui +sj , ui , andsj . We denote by(a,b) ∈ Fm+n
2 the simple concatenation ofa and

b. There is a one-to-one correspondence betweenv and(Tℓa,b) through the mappingP

v = (Tℓa,b)P and(Tℓa,b) = vP−1. (19)

Notice that ifv is the(m+n)-stage state of[ui ], thenv= (a,0)P and, ifv is the(m+n)-stage
state of[sj ], thenv = (0,b)P. Clearly,

(Tkv)P−1 = Tk(vP−1) = (Tℓ+ka,Tkb) and(v1+v2)P
−1 = v1P−1+v2P−1.

We view(Tℓa,b) as a state of[Lℓui +sj ], keeping in mind that the actual state is(Tℓa,b)P.
Let p0,p1, . . . ,pt1−1 be arbitrarym-stage states of[u0], [u1], . . . , [ut1−1]. Similarly, let

q0,q1, . . . ,qt2−1 be arbitraryn-stage states of[s0], [s1], . . . , [st2−1]. Then(pi ,q j) must be a
state of[Lℓui +sj ] for some 0≤ ℓ< gcd(e1,e2). Similarly,(Tkpi ,q j), for 0≤ k< gcd(e1,e2),
must be a state of[Lℓ+kui +sj ], whereℓ+k is reduced modulo gcd(e1,e2). Since the exact
value ofℓ does not affect the final result, we letℓ be any integer. Thus, we obtain one state
of each cycle.

We now use this new representation of the states via the mappingP to construct a generic
algorithm to find all conjugate pairs between any two cycles in Ω ( f (x)). For C1,C2 ∈
Ω ( f (x)), let v1 = (Tx1a1,Tx2b1)P be a state ofC1 and v2 = (Tx3a2,Tx4b2)P a state of
C2 wherex1,x2,x3,x4 ∈ Z. Let e1 ande2 be the respective period of the sequences contain-
ing statesa1, a2 andb1, b2. We assume that the period of(0) is 1. Algorithm 1 outputs all
conjugate pairs betweenC1 andC2. If C1 = C2, then each conjugate pair appears twice in
the output, first as(v, v̂) and then as(v̂,v).

Theorem 3 Algorithm 1 is correct.

Proof If counter1 = 0 orcounter2 = 0, then there does not exist a conjugate pair.
Let (a3,b3)P= S be the initial state of[Lcua+sb]. Without loss of generality, letC1 =

[s1] andC2 = [s2] with initial statesv1 = (Tx1a1,Tx2b1)P andv2 = (Tx3a2,Tx4b2)P, respec-
tively. If C1 andC2 share a conjugate pair, then there must exist an integer 0≤ ℓ< lcm(e1,e2)
such thatLℓs1+s2 is a shift ofLcua+sb or Lℓs1+Lcua+sb is a shift ofs2.

Suppose that none ofa1, a2, b1, andb2 is 0. Then there exist 0≤ ℓ, ℓ′ < lcm(e1,e2) such
that [Tℓ(Tx1a1,Tx2b1)+ (a3,b3)]P= Tℓ′ [(Tx3a2,Tx4b2)P] = [Tℓ′(Tx3a2,Tx4b2)]P. Hence,
Tℓ(Tx1a1,Tx2b1)+(a3,b3) = Tℓ′(Tx3a2,Tx4b2). Splitting the expression into two separate
components, consider

Tℓ+x1a1+a3 = Tℓ′+x3a2 andTℓ+x2b1+b3 = Tℓ′+x4b2. (20)
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Algorithm 1 Finding All Conjugate Pairs between Two Cycles
Input: P,v1 = (a1,b1)P, v2 = (a2,b2)P, states ofC1 and ofC2, ande1, e2.
Output: All conjugate pairs betweenC1 andC2. If C1 =C2, each pair appears twice.
1: procedure PRECOMPUTATION(P,S) ⊲ Determininga3,b3
2: return (a3,b3) = SP−1

3: end procedure
4: procedure SUBALGORITHM 1 (a1, a2, a3, e1)
5: counter1← 0
6: for i from 0 toe1−1 do ⊲ If a1 = 0, thene1 = 1
7: temp1← a1+a3
8: for i′ from 0 toe1−1 do ⊲ If a2 = 0, thene1 = 1
9: if temp1= a2 then

10: counter1← counter1 +1
11: Store and index(i, i′); break from this inner loop
12: else
13: temp1← T(temp1)
14: end if
15: end for
16: a1← Ta1
17: end for
18: end procedure
19: procedure SUBALGORITHM 2 (b1, b2, b3, e2)
20: counter2← 0
21: for j from 0 toe2−1 do ⊲ If b1 = 0, thene2 = 1
22: temp2← b1+b3
23: for j ′ from 0 toe2−1 do ⊲ If b2 = 0, thene2 = 1
24: if temp2= b2 then
25: counter2← counter2 +1
26: Store and index( j, j ′); break from this inner loop
27: else
28: temp2← T(temp2)
29: end if
30: end for
31: b1← Tb1
32: end for
33: end procedure
34: procedure MAIN (v1 = (Tx1a1,Tx2b1)P, v2 = (Tx3a2,Tx4b2)P, counter1, counter2)
35: if counter1 = 0 or counter2 = 0 then
36: return there is no conjugate pair ⊲ Propositions 1 and 2
37: end if
38: for y from 1 tocounter1 do
39: Take(i, i′) in order
40: for z from 1 tocounter2 do
41: Take( j, j ′) in order
42: if Two elements amonga1, a2, b1, b2 are0 then
43: v← (T ia1,T j b1)P; output (v, v̂); break ⊲ Propositions 1 and 2
44: end if
45: if One element amonga1, a2, b1, b2 is 0 then
46: if a1 = 0 or b1 = 0 then
47: if i′+x3 ≡ j ′+x4 (mod gcd(e1,e2)) then
48: v← (T ia1,T jb1)P; output (v, v̂) ⊲ Propositions 3 and 4
49: end if
50: else
51: if i−x1 ≡ j−x2 (mod gcd(e1,e2)) then
52: v← (T ia1,T jb1)P; output (v, v̂) ⊲ Propositions 3 and 4
53: end if
54: end if
55: end if
56: if i−x1 ≡ j−x2 andi′+x3 ≡ j ′+x4 modulo gcd(e1,e2) then
57: v← (T ia1,T j b1)P; output (v, v̂) ⊲ Proposition 5
58: end if
59: end for
60: end for
61: end procedure
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We have(i, i′) and( j, j ′) satisfyingT ia1+a3 = T−i′a2 andT jb1+b3 = T−i′b2 from the
two subalgorithms. To ensure that (20) holds, it must be the case that

{
ℓ≡ i−x1 (mode1)

ℓ≡ j−x2 (mode2)
and

{
ℓ′ ≡−i′−x3 (mode1)

ℓ′ ≡− j ′−x4 (mode2)
.

To satisfy the requirements, we know from the Chinese Remainder Theorem that the con-
gruencesi−x1≡ j−x2 andi′+x3≡ j ′+x4 modulo gcd(e1,e2) must be simultaneously sat-
isfied. When(i, i′) and( j, j ′) satisfy the congruences,(T ia1,T jb1)P and(T−i′a2,T− j ′b2)P
form a conjugate pair.

If a1 = 0 or a2 = 0 but b1,b2 are not0, we assumea1 = 0. Hence,(i, i′) = (0, i′) and
(20) becomesa3 = Tℓ′+x3a2 andTℓ+x2b1 + b3 = Tℓ′+x4b2. If there exists( j, j ′) such that
T jb1+b3 = T−i′b2, then there is anℓ with the required properties. It now suffices to check
thatℓ′ satisfiesℓ′ ≡ −i′−x3 (mode1) andℓ′ ≡ − j ′−x4 (mode2) to ensurei′+x3 ≡ j ′+
x4 (mod gcd(e1,e2)).

The other cases can be similarly proved. ⊓⊔

We gain significantly from using the new representation of the states. Algorithm 1 relies
on the representation to transform the problem of finding conjugate pairs between any two
cycles inΩ ( f (x)) into the analogous problem in the smaller sets of cyclesΩ (p(x)) and
Ω (q(x)) whose characteristic polynomials are irreducible. The twosubalgorithms ensure
that the sum of the two states is equal to the indicated part inthe new representation ofS.
Finding a conjugate pair between any two cycles inΩ ( f (x)) by exhaustive search can be
done in(lcm(e1,e2))

2 times. Algorithm 1 requires at moste2
1 + e2

2 times to complete the
same task.

In particular, ifa1,a2,a3 are states of cycles inΩ (p(x)) wherep(x) is primitive, then
the connection can be made simpler by using the Zech logarithm τn(ℓ). Recall that for a
primitive elementα ∈ F2n, 1+αℓ = ατn(ℓ) for 1≤ ℓ < 2n− 1. If a is ann-stage state of
anm-sequence, then Lemma 1 says thata+Tℓa= Tτn(ℓ)a. Suppose it has been established
that a := a1 = a2 and a3 = Tka. Then the output(i, i′) in the first subalgorithm implies
T ia1+a3 = T−i′a2. Hence,

T ia+Tka= Tk(a+T i−ka) = Tk+τn(i−k)a= T−i′a,

with i ∈ {0,1, . . . ,2n− 2} \ {k}. Thus, asi ranges over the set{0,1, . . . ,2n− 2} \ {k}, all
possible values for(i, i′) are given by{(i,−k− τn(i − k))}. In this special case, knowing
τn(ℓ) is sufficient to deduce all possible(i, i′)s.

Remark 2Several remarks regarding Algorithm 1 are in order.

1. The choice of a state belonging to a cycle affects neither the number of conjugate pairs
nor the states being paired in each conjugate pair.

2. The ordering ofa1 anda2 matters in Subalgorithm 1. If the output on input(a1,a2,a3,e1)
is (i, i′), then that on input(a2,a1,a3,e1) is (−i′,−i).

3. Each subalgorithm finds ”conjugate pairs” between two cycles constructed from one
irreducible minimal polynomial by exhaustive searching. An improvement on this ap-
proach may give a significant speed up. InΩ (p(x)), suppose thata1, a2, anda3 are
the respective states of cycles[ui ], [u j ], and [uk]. Then Subalgorithm 1 should output
(i−k, j−k)t1 tuples and can be stopped once all of them have been found. If it has been
established that the cyclotomic number is 0, then there is noneed to run the algorithm
on this particular input case. Knowing the cyclotomic numbers allows us to truncate the
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running of the algorithm. Equivalently, up to some values ofm andn, the two subalgo-
rithms can determine the exact cyclotomic numbers computationally by usingcounter1
andcounter2.

4. Let us consider the running time. The precomputation gives usSP−1 = (a3,b3). Hence,
we immediately infer which cycle shares a conjugate pair with [0] without having to run
the subalgorithms. By Item 2 above, the outputs of Subalgorithm 1(a2,a1,a3,e1) follow
directly from the outputs of Subalgorithm 1(a1,a2,a3,e1). Thus, Subalgorithm 1 needs

to perform at mostt1(t1−1)
2 + t1 =

t1(t1+1)
2 operations. The total for the two subalgorithms

is thereforet1(t1+1)
2 + t2(t2+1)

2 . The main procedure needs to be performed at moste1 ·e2

times. The total number one needs to repeat Algorithm 1 to complete the adjacency
matrix is bounded above by the square of the number of cycles in Ω ( f (x)).

To end this subsection, we provide a rough estimate on the number of de Bruijn se-
quences generated by our method. LetG be the adjacency graph ofΩ (p(x)q(x)). The num-
ber is the cofactor of any entry of the symmetric and positivedefinite matrixM in Theo-
rem 1. With[0] as the first vertex, we use the cofactor of the entryM1,1 = 1. The product of
the (remaining) entries in the main diagonal ofM is a reasonably good heuristic to approx-
imate the number.

In the main diagonal, 1 occurs once,e1 appearst1 times,e2 appearst2 times, and there
areχ := (2n−1)(2m−1)

lcm(e1,e2)
= t1 · t2 ·gcd(e1,e2) other entries, each is approximately lcm(e1,e2).

The product of theseχ entries is

E ≈ (lcm(e1,e2))
χ =

(
e1 ·e2

gcd(e1,e2)

)χ
=

(
(2m−1)(2n−1)

χ

)χ
≈

(
2m+n

χ

)χ
. (21)

We use the last expression as a rough estimate on the number ofde Bruijn sequences con-
structed in this work.

5 A Detailed Example

This section demonstrates how the general techniques developed above fit together nicely
by way of a worked-out example. Letp(x) = x4 + x3 + x2 + x+ 1 andq(x) = x4 + x+ 1.
Note thatp(x) is not primitive. Letα be a root ofq(x). Thenβ = α3 and the order ofβ is
5. Given 0≤ j < 15, Table 1 provides the representation(a j,0,a j,1,a j,2,a j,3) of α j in theβ
basis{1,β ,β 2,β 3} andϕ(α j) =

(
a j,0,a j+3,0,a j+6,0,a j+9,0

)
.

Table 1 List of ϕ(α j ) for 0≤ j < 15

j in β basis ϕ(α j ) j in β basis ϕ(α j) j in β basis ϕ(α j)

0 (1,0,0,0) (1,0,0,0) 5 (0,0,1,1) (0,1,0,1) 10 (1,0,1,1) (1,1,0,1)
1 (0,1,0,1) (0,1,1,1) 6 (0,0,1,0) (0,0,1,1) 11 (0,1,1,1) (0,1,0,0)
2 (0,1,1,0) (0,0,1,0) 7 (1,0,0,1) (1,1,1,0) 12 (1,1,1,1) (1,1,0,0)
3 (0,1,0,0) (0,0,0,1) 8 (1,1,1,0) (1,0,1,0) 13 (1,0,1,0) (1,0,1,1)
4 (1,1,0,1) (1,1,1,1) 9 (0,0,0,1) (0,1,1,0) 14 (1,1,0,0) (1,0,0,1)

By (4), ui = (ai,0,ai+3,0,ai+6,0,ai+9,0,ai+12,0). Therefore,u0 = (10001), u1 = (01111),
u2 = (00101), ands= (10001 00110 10111). We haveΩ (p(x)) = [0]∪ [u0]∪ [u1]∪ [u2] and
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Ω (q(x)) = [0]∪ [s]. Thus, there are 20 disjoint cycles inΩ ( f (x)). Writing explicitly,

Ω ( f (x)) = [0] ∪ [s] ∪
2⋃

i=0

[ui ] ∪

(
2⋃

i=0

4⋃

j=0

[L jui +s]

)
.

The ordering of the 20 cycles in use is

[0], [u0], [u1], [u2], [s], [u0+s], . . . , [L4u0+s], [u1+s], . . . , [L4u1+s], [u2+s], . . . , [L4u2+s].

We show how to implement Algorithm 1, work on the adjacency graph of Ω ( f (x)), and
construct the associated matrixM1.

The 4-stage states ofu0,u1,u2, andsare, respectively,p0 = (1000), p1 = (0111), p2 =
(0010), andq = (1000). The cycles inΩ ( f (x)) can be represented by their 8-stage states

(0,0) ∈ [0], (pi ,0) ∈ [ui ] for i ∈ {0,1,2},

(0,q) ∈ [s], (T jpi ,b) ∈ [L jui +s] for i ∈ {0,1,2,3,4}.

Using sequencesu0,u2,u2, ands= (10001 00110 10111),

P=

(
P1

P2

)
=




1 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 1 0 0 1
0 0 0 1 1 0 0 0
1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1




.

We computeSP−1 = ((1101),(0101)) = (T3p1,T
9q) = T9(T4p1,q) ∈ [L4u1 + s] to con-

clude that[0] and[L4u1+s] are adjacent and the unique conjugate pair shared by[u1] and
[s] is (v = (T3p1,0)P, v̂). In Algorithm 1, usea3 = (1101) = T3p1 andb3 = (0101) = T9q.

Running Subalgorithm 1, we have

(a1,a2) = (p0,p0) (p0,p1) (p0,p2) (p1,p2) (p2,p2) (0,p1)

{(i, i′)}= {(1,1),(4,4)} {(2,3),(3,1)} {(0,4)} {(0,3),(1,0)} {(3,1),(4,2)} {(0,2)}
.

(22)
There is no output corresponding to(p1,p1). The rest of the outputs can be directly ob-
tained by invoking Item 2 in Remark 2. Hence, for(a1,a2) ∈ {(p1,p0),(p2,p0),(p2,p1)},
the respective outputs{(i, i′)} are{(2,3),(4,2)},{(1,0)}, and{(2,0),(0,4)}.

On input (0,q,T9q,15), Subalgorithm 2 outputs( j, j ′) = (0,6). On (q,q,T9q,15), it
outputs{( j, j ′ = −9− τ4( j−9))} with j 6= 9. The values ofτ4(y) for 1≤ y< 15 is repro-
duced here from [10, p. 39]

y 1 2 3 4 5 6 7 8 9 10 11 12 13 14

τ4(y) 4 8 14 1 10 13 9 2 7 5 12 11 6 3
.

The conjugate pair(s) shared by any two cycles inΩ ( f (x)) can now be determined. We
consider three cases in details.
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Table 2 Values obtained for Case 1

k (i, i′) ℓ C2 v (i, i′) ℓ C2 v

0 (1,1) 0 [u0+s] (Tp0,0)P (4,4) 2 [L2u0+s] (T4p0,0)P
1 (2,3) 3 [L3u1+s] (T2p0,0)P (3,1) 0 [u1+s] (T3p0,0)P
2 (0,4) 2 [L2u2+s] (p0,0)P

Case 1: The state(p0,0)P belongs toC1 = [u0].
We have(i, i′) ∈ {(1,1),(4,4),(2,3),(3,1),(0,4)} and( j, j ′) = (0,6). Sincea1 =
p0 anda3 = T3p1, a2 6= 0. Sinceb3 6= 0 andb1 = 0, b2 6= 0. Hence,C2 that shares
at least a conjugate pair with[u0] must be of the form[Lℓuk+s] for 0≤ k< 3. The
if loop to consider starts from Line 45 in Algorithm 1. Note thatx3 = ℓ andx4 = 0,
so i′+ ℓ≡ j ′ (mod 5). Table 2 provides the relevant results. The statev in C1 and
the statêv in C2 form a conjugate pair.

Case 2:C1 = [Lu0+s] with (a1 = Tp0,b1 = q)P as a state andC2 ∈ {[0], [s], [uk]}.
Subalgorithm 1 does not output any(i, i′) on input(p0,0,T

3p1,5). Thus, there is
no conjugate pair between[Lu0+s] and either[0] or [s].
Let [uk] have (a2 = pk,b2 = 0)P as a state. On input(q,0,T9q,15), ( j, j ′) =
(−6,0) = (9,0). Refer to Line 51 in Algorithm 1. Sincex1 = 1 andx2 = x3 =
x4 = 0, there exists a conjugate pair between[Lu0 + s] and [uk] if and only if
i ≡ 0 (mod 5). From (22), this holds only ifk= 2, i.e., a2 = p2. Thus, only[Lu0+s]
and[u2] share a conjugate pair withv = (T ip0,T

jq)P= (p0,T
9q)P.

Case 3:C1 = [Lu0+s] with v1 = (Tp0,q)P andC2 = [Lℓuk+s] with v2 = (Tℓpk,q)P.
It is clear thatx1 = 1, x2 = x4 = 0, andx3 = ℓ. Since none ofa1,a2,b1, andb2 is 0,
refer to Line 56 in the algorithm. There exists a conjugate pair between[Lu0+s]
and [Lℓuk + s] if and only if i − 1≡ j (mod 5) and i′+ ℓ ≡ j ′ (mod 5). Table 3
summarizes our computation withj = 9 excluded from consideration. The statev
in C1 and the statêv in C2 form a conjugate pair.

Table 3 Values obtained for Case 3

k (i, i′) Requirement(mod 5) ( j,ℓ) C2 v

0 (1,1) ℓ≡−τ4( j−9) (0,2) [L2u0+s] (Tp0,q)P
(5,3) [L3u0+s] (Tp0,T

5q)P
(10,1) [Lu0+s] (Tp0,T

10q)P
(4,4) ℓ≡ 2− τ4( j−9) (3,0) [u0+s] (T4p0,T

3q)P
(8,4) [L4u0+s] (T4p0,T

8q)P
(13,1) [Lu0+s] (T4p0,T

13q)P
1 (2,3) ℓ≡ 3− τ4( j−9) (1,4) [L4u1+s] (T2p0,Tq)P

(6,2) [L2u1+s] (T2p0,T
6q)P

(11,0) [u1+s] (T2p0,T
11q)P

(3,1) ℓ≡−τ4( j−9) (2,3) [L3u1+s] (T3p0,T
2q)P

(7,4) [L4u1+s] (T3p0,T
7q)P

(12,1) [Lu1+s] (T3p0,T
12q)P

2 (0,4) ℓ≡ 2− τ4( j−9) (4,2) [L2u2+s] (p0,T
4q)P

(14,2) [L2u2+s] (p0,T
14q)P

The rest of the cases can be analyzed in a similar manner. Onceall possible cases have
been examined, the completed adjacency matrix is given in (23).



Construction of de Bruijn Sequences from Product of Two Irreducible Polynomials 17

The last step is to compute the cofactor of any of the matrix’sentries. Our approach
constructs 2,003,859,941,621,760,000≈ 260.797 de Bruijn sequences. Our approximation
in (21) gives(28/15)15≈ 261.397.

M1 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0−1 0 0 0 0 0

0 5 0 0 0−1 0 −1 0 0 −1 0 0 −1 0 0 0 −1 0 0

0 0 5 0 −1 0 0 0 −1 −1 0 0 0 0 0 0−1 0 −1 0

0 0 0 5 0 0−1 0 0 0 0−1 −1 0 0 −1 0 0 0 −1

0 0 −1 0 15 0 0 0 0 0−3 −3 −3 −3 −2 0 0 0 0 0

0 −1 0 0 0 15−1 −3 0 −1 0 −1 −2 −1 −2 −1 0 0 −1 −1

0 0 0 −1 0 −1 13 −1 −1 −1 −1 −1 −1 −1 −2 0 0 −2 0 0

0 −1 0 0 0 −3 −1 15 −1 0 −1 −2 −1 0 −2 −1 −1 0 0 −1

0 0 −1 0 0 0 −1 −1 13 −2 0 −1 −1 −3 0 −1 −1 0 −1 0

0 0 −1 0 0 −1 −1 0 −2 13 −3 −1 −1 0 0 0 −1 0 −1 −1

0 −1 0 0 −3 0 −1 −1 0 −3 15 0 0 0 0−2 −1 −1 −1 −1

0 0 0 −1 −3 −1 −1 −2 −1 −1 0 15 0 0 0 0 0−1 −3 −1

0 0 0 −1 −3 −2 −1 −1 −1 −1 0 0 15 0 0−1 −3 −1 0 0

0 −1 0 0 −3 −1 −1 0 −3 0 0 0 0 15 0−1 −1 −1 −1 −2

−1 0 0 0 −2 −2 −2 −2 0 0 0 0 0 0 15−2 0 −2 0 −2

0 0 0 −1 0 −1 0 −1 −1 0 −2 0 −1 −1 −2 15 0 −1 −1 −3

0 0 −1 0 0 0 0−1 −1 −1 −1 0 −3 −1 0 0 13−1 −2 −1

0 −1 0 0 0 0−2 0 0 0 −1 −1 −1 −1 −2 −1 −1 13 −1 −1

0 0 −1 0 0 −1 0 0 −1 −1 −1 −3 0 −1 0 −1 −2 −1 13 0

0 0 0 −1 0 −1 0 −1 0 −1 −1 −1 0 −2 −2 −3 −1 −1 0 15




. (23)

6 Some Special Cases

Theorem 2 makes clear that, for general irreducible polynomials p(x) andq(x), determining
all conjugate pairs between any two cycles can be quite complicated. This section highlights
three special cases for which the process is much simpler.

6.1 The orders ofp(x) andq(x) are relatively prime

Based on Lemma 4, when gcd(e1,e2) = 1,

Ω ( f (x)) = [0] ∪
t1−1⋃

i=0

[ui ] ∪
t2−1⋃

j=0

[sj ] ∪

(
t1−1⋃

i=0

t2−1⋃

j=0

[ui +sj ]

)
. (24)

Directly applying Propositions 1 to 5 leads to the next result.

Proposition 6 Let S∈ [ua+sb] for some a and b. The following properties hold.

1. [0] and [ua+sb] are adjacent.
2. Let 0≤ i < t1 and 0≤ j < t2. There is no conjugate pair between[ui ] and [u j ] and

between[si ] and[sj ]. There is a conjugate pair shared by[ui ] and[sj ] if and only if i= a
and j= b, in which case the pair is unique.



18 Chang et al.

3. There is no conjugate pair between[ui ] and[u j +sk] if k 6= b. For0≤ i, j < t1, the number
of conjugate pairs between[ui ] and [u j +sb] is the cyclotomic number(i− j,a− j)t1.

4. There is no conjugate pair between[si ] and[uk+sj ] if k 6= a. For0≤ i, j < t2, the number
of conjugate pairs between[si ] and [ua+sj ] is the cyclotomic number(i− j,b− j)t2.

5. For0≤ i1, i2 < t1 and0≤ j1, j2< t2, the number of conjugate pairs between twodistinct
cycles[ui1 +sj1] and [ui2 +sj2] is (i2− i1,a− i1)t1 · ( j2− j1,b− j1)t2.

6. The number of conjugate pairs between[ui +sj ] and itself is1
2(0,a− i)t1 · (0,b− j)t2.

6.2 Bothp(x) andq(x) are primitive polynomials

Let p(x) andq(x) be distinct primitive polynomials. Then,t1 = t2 = 1 andr := gcd(e1,e2) =
gcd(2m−1,2n−1) = 2gcd(m,n)−1. Consulting (7),

Ω ( f (x)) = [0] ∪ [u] ∪ [s] ∪
r−1⋃

i=0

[Liu+s]. (25)

Proposition 7 Let a be such thatS∈ [Lau+s] and r= gcd(e1,e2) = 2gcd(m,n)−1. Then

1. [0] and [Lau+s] are adjacent.
2. [u] and [s] share a unique conjugate pair.
3. There aree1/r − 1 conjugate pairs between[u] and [Lau+ s] and e1/r conjugate pairs

between[u] and [Liu+s] when0≤ i < r and i 6= a.
4. There aree2/r − 1 conjugate pairs between[s] and [Lau+ s] and e2/r conjugate pairs

between[s] and [Liu+s] when0≤ i < r and i 6= a.
5. Let0≤ i 6= j < r. The number of conjugate pairs between[Liu+s] and [L ju+s] is

N(i, j) = N( j, i) := |{0≤ k< lcm(e1,e2)}| where

τn(k)≡ τm(k+ i− j)+ j−a (modr), k 6≡ 0 (mode1), and k6≡ j− i (mode2). (26)

If i = j, we halve the count in (26).

Proof SinceS∈ [Lau+s], [0] and [Lau+s] are adjacent. So are[u] and[s], which share a
unique conjugate pair.

Consider[u] and[Liu+s] for 0≤ i < r . By Lemma 1, for 0≤ k< e1,

Lku+Liu+s= Li(Lk−iu+u)+s= LiLτm(k−i)u+s= Li+τm(k−i)u+s

is shift equivalent toLau+s if and only if

i + τm(k− i) ≡ a (modr) ⇐⇒ τm(k− i)≡ a− i (modr). (27)

Sinceτm is a permutation, (27) hase1/r − 1 solutions wheni = a and e1/r solutions when
i 6= a.

Consider[s] and[Liu+s] for 0≤ i < r . For 0≤ k< e2, Lemma 1 says that

Lks+Liu+s= Liu+s+Lks= Liu+Lτn(k)s= Lτn(k)(Li−τn(k)u+s)

is shift equivalent toLau+s if and only if

i− τn(k) ≡ a (modr) ⇐⇒ τn(k)≡ i−a (modr). (28)
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Thus, (28) hase2/r−1 solutions fori = a ande2/r solutions fori 6= a.
For the last assertion, we count the number of conjugate pairs between[Liu+ s] and

[L ju+s] for 0≤ i, j < r . By Lemma 1, for 0≤ k< lcm(e1,e2),

Lk(Liu+s)+L ju+s= Lk+iu+L ju+Lks+s= L j(Lk+i− ju+u)+Lτn(k)s

= Lτn(k)(L j−τn(k)Lτm(k+i− j)u+s) = Lτn(k)(L j−τn(k)+τm(k+i− j)u+s)

is shift equivalent toLau+s if and only if j−τn(k)+τm(k+ i− j)≡ a (modr). Equivalently,
the condition can be written as

τn(k)≡ τm(k+ i− j)+ j−a (modr). (29)

Thus, if i 6= j, the number of conjugate pairs is indeed given by (26), and wehalve the
number wheni = j. ⊓⊔

When gcd(e1,e2) = 1, Item 5 in Proposition 7 is a special case of [15, Theorem 2].We
present it here as a corollary.

Corollary 1 Adding gcd(e1,e2) = 1 to the assumptions of Proposition 7, the number of
conjugate pairs between[u+s] and itself is

1/2 · |{0≤ k< e1e2 | k 6≡ 0 (mode1); k 6≡ 0 (mode2)}|= 1/2 · (e1−1)(e2−1). (30)

If e1 | e2, that is when gcd(e1,e2) = e1, we can derive an explicit formula.

Corollary 2 If e1 | e2, the number of conjugate pairs between[Liu+ s] and [L ju+ s], for
0≤ i 6= j < e1, is

N(i, j) =
e1−1

∑
ℓ=0

ℓ6≡ j−i (mod e1)

(ℓ,τm(ℓ+ i− j)+ j−a)e1. (31)

If i = j, we halve the count in (31).

Proof Since gcd(e1,e2) = e1, rewrite (26) as

N(i, j) = |{0< k< e2}| satisfyingk 6≡ j− i (mode1)

andτn(k)≡ τm(k+ i− j)+ j−a (mode1). (32)

More explicitly, we compute for

e1−1

∑
ℓ=0,
ℓ6= j−i

|{ℓ+ t ·e1}| with 0≤ t <
e2

e1
andτn(ℓ+ t ·e1)≡ τm(ℓ+ i− j)+ j−a (mode1). (33)

Based on the equivalence of (2) and (3), we confirm that (33) and (31) are the same. ⊓⊔
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6.3 De Bruijn Sequences of ordern+2

Let p(x) be a primitive polynomial of degreen > 2. We look into the construction from
LFSRs with characteristic polynomial(x2+x+1)p(x). The exact number of de Bruijn se-
quences constructed can be determined.

It is clear thatΩ (p(x)) = [0]∪ [s] and Ω (x2 + x+ 1) = [0]∪ [u], wheres and u are
maximal length sequences with period 2n−1 and 3, respectively. In fact,u must be a shift
of (110). By Lemma 4 and the fact that gcd(3,2n−1) is 1 if n is odd and is 3 ifn is even,

Ω ( f (x)) =

{
[0]∪ [u]∪ [s]∪ [u+s] if n is odd,

[0]∪ [u]∪ [s]∪
⋃2

i=0[L
iu+s] if n is even.

The next proposition follows from Proposition 7 and Corollary 1.

Proposition 8 Let n≥ 3 be odd. Figure 1 shows the adjacency graph, based on the follow-
ing facts.

1. There is a unique conjugate pair each between[0] and [u+s] and between[u] and [s].
2. [u] and [u+s] share2 conjugate pairs.
3. [s] and [u+s] share2n−2 conjugate pairs.
4. [u+s] shares2n−2 conjugate pairs with itself.

[u] [s] [u+s] [0]
1

2

12n−2

2n−2

Fig. 1 The adjacency graph ofΩ ((x2+x+1) p(x)) for oddn≥ 3.

Whenn is even, we need some results on cyclotomic numbers.

Lemma 5 (See [23] or [11, Section 4]) Let n be even. Then

A : = (0,0)3 =
1
9
·
(

2n+(−2)
n
2+1−8

)
, C := (1,2)3 =

1
9
·
(

2n+(−2)
n
2+1+1

)
, and

B : = (0,1)3 = (1,1)3 = (0,2)3 = (2,2)3 =
1
9
·
(

2n+(−2)
n
2 −2

)
.

For i > j, we have(i, j)3 = ( j, i)3.

The next result follows from Proposition 7 and Corollary 2.

Proposition 9 Let n≥ 4 be even. Without loss of generality, suppose thatS∈ [u+s]. Then

1. [0] and [u+s] share a unique conjugate pair.
2. [u] shares a unique conjugate pair each with[s], [Lu+s] and [L2u+s].

There is no conjugate pair between[u] and [u+s].
3. [s] and [u+s] share2n−1

3 −1 conjugate pairs.

4. For ℓ ∈ {1,2}, [s] and [Lℓu+s] share2n−1
3 conjugate pairs.

5. Let N(i, j) = N( j, i), for 0≤ i, j < 3, be the number of conjugate pairs between[Liu+s]
and[L ju+s]. Based on Lemma 5, N(0,0) =C, N(0,1) = 2B, N(0,2) = 2B, N(1,1) =B,
N(1,2) = A+C, and N(2,2) = B.
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[0]

[u+s]

[Lu+s]

[s]

[u]

[L2u+s]

1

Z−1

2B

C 2B

B
1

Z
A+C

1

Z

1

B

Fig. 2 The adjacency graph ofΩ ((x2+x+1) p(x)) for evenn≥ 4.

The adjacency graph is shown in Figure 2 with Z:= 2n−1
3 .

Proof The first four items follow directly from Proposition 7. The last item is deduced from
(31) usingτ2(1) = 2 andτ2(2) = 1.

N(0,0) =
1
2

3−1

∑
ℓ=1

(ℓ,τm(ℓ+0−0)+0−0)3 =
1
2
((1,2)3+(2,1)3) = (1,2)3 =C,

N(0,1) = N(1,0) = (0,τ2(0−1)+1)3+(2,τ2(2−1)+1)3 = (0,2)3+(2,0)3 = 2B.

The other values can be obtained in a similar way. ⊓⊔

Theorem 4 LetAn be the set of all primitive polynomial of degree n> 2 overF2. Let p(x)∈
An. The total number of de Bruijn sequences constructed from LFSRs with characteristic
polynomials(x2+x+1) p(x) is




(3·2n−4) · φ(2n−1)

n if n≥ 3 is odd[
23n− 9·22n+4−(−2)3n/2+4−3·2n+6+26

27

]
φ(2n−1)

n if n≥ 4 is even.
.

Proof We count the number of spanning trees in the adjacency graph.
Let n≥ 3 be odd. Label the verticesv1 = [0], v2 = [u], v3 = [s], andv4 = [u+s] to derive

M =




1 0 0 −1
0 3 −1 −2
0 −1 2n−1 2−2n

−1 −2 2−2n 2n+1




with cofactorM (3,3) = 3·2n−4.
Letn≥4 be even. Label the verticesv1= [0], v2 = [u], v3 = [s], v4 = [u+s], v5 = [Lu+s],

andv6 = [L2u+s] to derive

M
′ =




1 0 0 −1 0 0

0 3 −1 0 −1 −1

0 −1 2n−1 4−2n

3
1−2n

3
1−2n

3

−1 0 4−2n

3 4B+ 2n−1
3 −2B −2B

0 −1 1−2n

3 −2B A+2B+C+ 2n+2
3 −(A+C)

0 −1 1−2n

3 −2B −(A+C) A+2B+C+ 2n+2
3
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with cofactorM ′(5,5) = 23n−
1
27

(
9·22n+4− (−2)

3n
2 +4−3·2n+6+26

)
.

By [13, Theorem 5], applying the cycle joining method to two distinct LFSRs results in
distinct de Bruijn sequences. Since there areφ(2n−1)/n choices for the primitive polynomial
p(x) (seee.g.[10, page 70]), the desired conclusion follows. ⊓⊔

Table 4 provides the number for 3≤ n≤ 10 based on Theorem 4.

Table 4 Number of de Bruijn sequences of ordern+2 in Theorem 4 for 3≤ n≤ 10.

deg(p(x)) = n 3 4 5 6 7 8 9 10
Order= n+2 5 6 7 8 9 10 11 12

# perp(x) 20 2,880 92 240,448 380 16,431,936 1,532 1,068,137,280
|An| 2 2 6 6 18 16 48 60

Remark 3One can also derive Theorem 4 by applying [16, Proposition 5]on relevant results
in [15]. The latter reference uses(1+x3)p(x) as the characteristic polynomial. Hence, proper
modifications are needed before the count can be established. In our present work, properties
of cyclotomic numbers play a crucial role in establishing the count directly.

Example 2Let n= 3 andp(x) = x3+x+1, making f (x) = x5+x4+1. This produces 20
distinct 32-periodic de Bruijn sequences.

Ω ( f (x)) = {[0], [u = (110)], [s= (0010111)], [u+s= (1111010 1001100 0100001)]}.

Cycles[0] and[u+s] share the pair(X1 = (00000), X̂1). Cycles[u] and[s] are adjacent with
a shared pair(X2 = (11011), X̂2). Cycles[u] and [u+ s] share 2 conjugate pairs, namely
(X3 = (10110), X̂3) and(X4 = (01101), X̂4). To derive one de Bruijn sequence, select the
spanning tree

[s] [u] [u+s] [0]
X2 X3 or X4 X1

.

Applying the CJ method on[0] and[u+s] using the conjugate pairs defined byX1 yields
( 1000001111101010011000); on [u] and[s] usingX2 results in( 11011 1001011 0). We
now chooseX3 to combine the two larger cycles to get the de Bruijn sequence

(0000011111010100110 1110010110 001)

whose feedback function ish(x0,x1,x2,x3,x4) =

x0+x4+(x1+1)(x2+1)(x3+1)(x4+1)+x1(x2+1)x3x4+(x1+1)x2x3(x4+1) =

x1x2x3x4+x1x2x4+x1x2+x1x3+x1x4+x2x4+x3x4+x0+x1+x2+x3+1.

One can opt to useX4 instead ofX3. The derivation is an easy exercise for the reader.

Example 3Let n= 4 andp(x) = x4+x+1. Hence,f (x) = x6+x5+x4+x3+1, from which
2880 distinct de Bruijn sequences with period 64 can be constructed.

Ω ( f (x)) = {[0], [u = (110)], [s= (00010 01101 01111)], [u+s= (11001 00000 11001)],

[Lu+s= (10100 10110 00010)], [L2u+s= (01111 11011 10100)]}.
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[0]

[u+s] [s] [u] [L2u+s]

[Lu+s]

X1

X5 X2 X4

X3

.

Cycles[0] and[u+s] share the pair(X1 = (000000), X̂1). Cycles[u] and[s] share the pair
(X2 = (101101), X̂2). The pair(X3 = (110110), X̂3) is shared by[u] and [Lu+ s]. Cycles
[u] and[L2u+s] share the pair(X4 = (011011), X̂4). Finally, the pair(X5 = (100110), X̂5)
is between[s] and[u+s]. To construct one de Bruijn sequence, use the spanning tree

Table 5 lists down the joined cycles using the pairs defined by, in order,X1, X5, X2, X4,
andX3. The one in the last row is de Bruijn with feedback functionh(x0,x1,x2,x3,x4,x5) =

x0+x3+x4+x5+(x1+1)(x2+1)(x3+1)(x4+1)(x5+1)+(x1+1)x2x3(x4+1)x5+

x1(x2+1)x3x4(x5+1)+x1x2(x3+1)x4x5+(x1+1)(x2+1)x3x4(x5+1).

Table 5 Applying the cycle joining method on the spanning tree.

Link Resulting Cycle

X1 (1 000 000 1 1001 1100)

X5 (1000 0001 10 10 1111 0001 0011 0 011 100)

X2 (1000 0001 1011 0101 1110 0010 0110 0111 00)

X4 (1000 0001 1011 1010 0011 1111 011 0 1011 1100 0100 1100 1110 0)

X3 (1000 0001 1011 1010 0011 1111 0110 0001 0101 0010 110 1 0111 1000 1001 1001 1100)

7 More General Characteristic Polynomials

This section briefly touches upon the construction of de Bruijn sequences based on LFSRs
with characteristic polynomials other than those discussed above.

When the characteristic polynomial takes a certain form, the adjacency graph contains
no loops (see,e.g., [15, Proposition 2]). The same holds for a much larger classof poly-
nomials. Since 1+ x3 = (1+ x)(1+ x+ x2), [15, Proposition 2] is subsumed by the next
result.

Proposition 10 Let 1+ x, p1(x), p2(x), . . . , ps(x) ∈ F2[x] be pairwise distinct irreducible
polynomials and f(x) = (1+ x) ∏s

i=1 pi(x). The adjacency graph ofΩ ( f (x)) contains no
loops.

Proof LetC be a cycle inΩ ( f (x)) that shares a conjugate pair with itself. Then the minimal
polynomial ofC must bef (x). Hence,C= [1+Li1u1+ . . .+Lis−1us−1+us] for some integers
i1, i2, . . . , is−1 with pi(x) being the minimal polynomial ofui for 1≤ i ≤ s. Thus, for some
ℓ ∈ Z, we get(1+ Li1u1 + · · ·+ Lis−1us−1 + us) + Lℓ(1+ Li1u1 + · · ·+ Lis−1us−1 + us) =

Li′1u′1+ · · ·+Li′s−1u′s−1+Li′su′s, where the characteristic polynomial ofu′i is pi(x). Now, the
degree of the minimal polynomial of the resulting sequence must be< deg( f (x)). Thus, it
cannot containS. ⊓⊔
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Consider the characteristic polynomialh(x) = (1+x) f (x) with f (x) given in Lemma 4.
The only nonzero sequence having 1+ x as its characteristic polynomial is1. The cycle
structure ofΩ (h(x)) follows directly from Lemmas 3 and 4.

Lemma 6 The cycle structure ofΩ (h(x)) is

[0] ∪ [1] ∪
t1−1⋃

i=0

[ui ] ∪
t1−1⋃

i=0

[1+ui ] ∪
t2−1⋃

j=0

[sj ] ∪
t2−1⋃

j=0

[1+sj ] ∪




t1−1⋃

i=0

t2−1⋃

j=0

gcd(e1,e2)−1⋃

k=0

[Lkui +sj ]


 ∪




t1−1⋃

i=0

t2−1⋃

j=0

gcd(e1,e2)−1⋃

k=0

[1+Lkui +sj ]


 .

Any cycle in Ω (h(x)) can be described as[a01+ a1Lkui + a2sj ] with i, j,k ∈ Z and
a0,a1,a2 ∈ F2. Lemma 6 leads us directly to the next result.

Proposition 11 If [a01+a1Lkui +a2sj ] and [a′01+a′1Lk′ui′ +a′2sj ′ ] share a conjugate pair,
then a0+a′0 = 1 and, for i∈ {1,2}, ai and a′i must never be simultaneously0.

Combining the main results in Section 4 with Propositions 10and 11, the adjacency
graph ofΩ (h(x)) can be constructed.

Proposition 12 Ω (h(x)) has the following properties.

1. The adjacency graph ofΩ (h(x)) contains no loops.
2. The number of conjugate pairs between[a1Lkui +a2sj ] and[1+a′1Lk′ui′+a′2sj ′ ] is equal

to the number of conjugate pairs between[1+a1Lkui +a2sj ] and [a′1Lk′ui′ +a′2sj ′ ].

3. LetS∈ [1+Lcua+sb] for some a,b,c∈Z. Then[1+a1Lkui +a2sj ] and[a′1Lk′ui′+a′2sj ′ ]

share a conjugate pair if and only if1+a1Lkui +a2sj +Lℓ(a′1Lk′ui′ +a′2sj ′) is a shift of

1+Lcua+sb for someℓ or, equivalently, a1Lkui +a2sj +Lℓ(a′1Lk′ui′ +a′2sj ′) is a shift
of (0,1) ∈ Lcua+sb with 1 of length m+n.

4. The number of conjugate pairs between any two cycles inΩ (h(x)) can be determined
completely based on Propositions 1 to 5 and Algorithm 1 aftersmall modifications.

Propositions 1 to 5 form a good foundation to study and derivethe adjacency graph for
Ω (h(x)). Since the required modifications mentioned in the last itemof Proposition 12 are
straightforward, the details are omitted here.

Once we have determined how the conjugate pairs are shared, we can perform steps
analogous to those detailed in Section 4 to determine the states in a given cycle, to find
conjugate pairs between any two cycles, and to estimate the number of de Bruijn sequences
constructed. The non existence of loops in the adjacency graph is an advantage.

In particular, we can construct a(1+m+n)×(1+m+n) matrixP′. Any state belonging
to the cycles inΩ (h(x)) can then be described as(v1,v2,v3)P′ with v1 ∈ F

1
2, v2 ∈ F

m
2 , and

v3 ∈ F
n
2. Let S= (1,a3,b3)P′ and let(1,a1,b1)P′ and(0,a2,b2)P′ be the respective states

of cyclesC1 andC2 in Ω (h(x)). Run Algorithm 1 on(a1,b1), (a2,b2), and(a3,b3). If Algo-
rithm 1 yields a conjugate pair(v, v̂) with v = (a′,b′)P∈ F

m+n
2 , then(v′ = (1,a′,b′)P′, v̂′)

is the conjugate pair betweenC1 andC2.
To conclude this section, we show some advantages of our moregeneral approach of

using product of irreducible polynomials over that of [16] which is limited to using primitive
polynomials.
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LetI2(n) andP2(n) denote, respectively, the number of irreducible and primitive poly-
nomials of degreen in F2[x]. We know thatP2(n) = |An| = φ(2n−1)/n. Let µ(n) be the
Möbius function. From Gauss’ general formula [17, Theorem3.25]

I2(n) =
1
n ∑

d|n

µ(d)2
n
d .

Let Nn = I2(n)−P2(n). Consulting Sequences A001037 and A011260 in [19] that list
downI2(n) andP2(n), respectively, one gets

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Nn 1 0 3 0 14 8 39 10 191 0 405 382 2032 0 6756 0 28377 15186

.

Nn = 0 if and only if 2n−1 is a (Mersenne) prime. Asn grows larger, primes of the form
2n−1 appear to grow increasingly sparse. Hence, for mostn, our method draws polynomials
from a larger pool of choices than the one used in [16].

Another advantage is that we get more de Bruijn sequences by using irreducible but non-
primitive polynomial. The three irreducible polynomials of degree 4 inF2[x] are f1(x) =
x4+x+1, f2(x) = x4+x3+1, and f3(x) = x4+x3+x2+x+1. The first two are primitive
while f3(x) is not.

Let Ω ((1+ x) f1(x)) = {[0], [1], [s], [s+ 1]}. Then [0] and [s+ 1] as well as[1] and [s]
each share a unique conjugate pair. There are 14 conjugate pairs shared by[s] and [s+1].
The number of sequences constructed is only 14.

ConsiderΩ ((1+x) f3(x)) = {[0], [1], [s0], [s1], [s2], [s0+1], [s1+1], [s2+1]}. Lemma 5
helps us compute the number of conjugate pairs shared by any two cycles. The adjacency
graph is shown in Figure 3. By Theorem 1, the number of de Bruijn sequences constructed
is 576.

[0]

[1]

[s1]

[s1+1]

[s0]

[s0+1]

[s2]

[s2+1]

1 1
2

22

22
1

1 2

Fig. 3 The adjacency graph ofΩ ((1+x)(x4+x3+x2+x+1)).

8 Conclusion and Future Directions

This paper constructs new de Bruijn sequences by the cycle joining method using products
of two distinct irreducible polynomials as characteristicpolynomials. We present results on
the cycle structure, provide the corresponding adjacency graph, and exhibit a connection
between relevant cyclotomic numbers and the new de Bruijn sequences. Many of the results
naturally extend to the case wheref (x) = p1(x) · · ·ps(x), wherepi(x) ∈ F2[x] are pairwise
distinct irreducible polynomials for 1≤ i ≤ s.

Possible applications of de Bruijn sequences merit deeper investigation. The large num-
ber of de Bruijn sequences that can be efficiently constructed based on specific choices of
polynomials may be beneficial for implementations in spreadspectrum, more specifically
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in the design of control systems for autonomous vehicles. Crucial aspects to look at in this
direction are the auto and cross correlation properties of the sequences as discussed in [22].
Various modifications of de Bruijn sequences have been knownto result in powerful tools
in DNA analysis [20] and DNA-based data storage systems [4].
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