
Construction of Differential Equations from Experimental Data

J. Cremers and A. Hübler*

Physik-Department, Technische Universität München, D-8046 Garching

Z. Naturforsch. 42 a, 797-802 (1987); received September 15, 1986

A new algorithm to determine the number of degrees of freedom of dynamic systems is 
presented. To obtain a concise description of an observed chaotic time sequence, an approxi­
mation of the flow in a state space representation by series is shown to be useful.

1. Introduction 2. Geometric Reconstruction of the Flow Vector Field

Oscillators with marked nonlinearity and chaotic 

solutions provide good mathematical models in 

various fields of physics, as in mechanics [1]. 

electrodynamics [2], medical physics [3], chemical 

thermodynamics [4], geophysics [5], etc. [6]. Haken 

and others [7-9] have shown that problems of the 

classical field theory can often be well described by 

low dimensional systems of ordinary differential 

equations.

Generalized dimensions [10, 11], Kolmogorow 

entropy [12], Lyapunov exponents and diffusion 

coefficients [1] are used to describe state space 

representations of periodic and chaotic solutions 

resulting from numerical simulations and measure­

ments [13-15]. These quantities do not give infor­

mation, though, about the global structure of the 

flow vector field, which possesses in many cases a 

high symmetry and can be described by a series 

expansion with few terms only. Examples for this 

are Duffing’s oscillator [15-18] and the overturning 

pendulum [2],

The purpose of this paper is to estimate the 

parameters (for example the coefficient of a power 

expansion of the flow vector field) of the differ­

ential equations leading to an observed chaotic time 

sequence and, in order to get smooth flow vector 

fields, to estimate an embedding dimension of 

strange attractors in continuous time flows. This 

embedding dimension can be substantially smaller 

than the embedding dimension estimated from the 

Hausdorff dimension [19-21].
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If an observed time sequence originates from a 

system whose dynamics can be described by an 

«-dimensional system of differential equations of 

first order x := d/d t x = f{x ) (x e S  =  «-dimensional 

state space, t = time) with a continuous, time- 

independent flow vector field /  the difference of the 

two flow vectors /(r ,), f(r2) at neighbouring points 

r , , r2 g  S must vanish, if the distance of r, and r2 

vanishes:

lim / ( r ,)- / ( r 2) = 0 .
r  l -» r2

( 1)

The usage of a time-independent flow vector field is 

no essential restriction because methods exist to 

change time-dependent flow vector fields into time- 

independent ones [22].

We proceed as follows in order to obtain a con­

tinuous flow vector field:

The data set is geometrically represented by a 

trajectory xD (t) in a state space of dimension D [11], 

The flow vectors f ,  i = l , . . . , K  are numerically 

calculated by differentiation f = x D(tj) at K posi­

tions r, = xD(tj) (/j <  t2 <  *" <  â:) at the trajectory. 

If possible, the positions r, should be equally dis­

tributed in the state space, i.e. the region of interest. 

In order to check whether the flow vectors f  are 

consistant with a continuous flow vector field, it is 

investigated whether (1) holds. As (1) is very 

sensitive to numeric errors it is investigated whether

(1) holds on an average. The average is taken over 

all flow vectors f ,  fj with

Ar Ar
r ---- , r -I----

2 2
i 4= /, / = 1 ,..., K, 

j =  1

W {D ,r)=  lim f- f, = r* const + O (r2) .
Ar  -  0

(2)
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W(D, r) is called crossover probability. If  (2) does 

not hold, the dimension of the state space will be 

enlarged. The minimal dimension D where (2) holds 

is called crossover dimension Dc.

Due to averaging, this does not give exactly 

Whitney’s embedding dimension [19]. If a flow 

vector field is continuous, W (D,r) for r -*■ 0 

vanishes in contrast to statistical data where 

W(D, r = 0) >  0, as the flow vectors are not corre­

lated at neighbouring points in the state space.

In Fig. 1 the crossover probability W is plotted 

versus r for the chaotic dynamics of the Lorenz 

attractor [23, 11]. In order to calculate the crossover 

probability W, the attractor represented by N  states 

and N  flow vectors was examined at K  positions. A 

linear dependence on the radius r results for all 

dimensions D >  2 (Figure 1). As the extrapolation 

of W (D, r) for r -> 0 is not zero for D =  1 and D = 2 

but tends to zero within the numeric error bars for 

D >  2, the crossover dimension of the Lorenz 

attractor becomes Dc =  3. This result is consistent, 

because the Lorenz attractor is described by a 

system of differential equations with three vari­

ables. The embedding dimension estimated from 

the Hausdorff dimension of the Lorenz attractor 

[10] is 6 [11, 20 , 21],

A harmonic oscillator

x(t) =
x2

- w2*,
x(t =  0) =

w =  0.04 represented in a state space with the 

coordinates

yt{t) = xi (t + ( i-  1) dt), (3)

i = 0 , . . . ,D -  1, dt = —
2 w

(D is the dimension of the state space)

should be free of any crossover in 2 dimensions. The 

numerical estimates are shown in Figure 2. The 

numerical value of the inclination /  = 0.043 ± 0.003 

of the resulting straight line agrees with the analytic 

result W (2 , r) = w • r for small r.

The error bars of W(D,r) are estimated by the 

standard error function. An effect leading to errors 

takes place when r is smaller than the average 

distance between the trajectories. In this case, all the 

flow vectors in the neighbourhood of a state come

Fig. 1. The crossover probability versus the distance r for 
the Lorenz attractor. If the dimension D of the state space 
is three or higher, W(D, r = 0) = 0 results by extrapolation 
(dt = 0.3, te = 0.005, N = 15 000, K = 450).

Fig. 2. The crossover probability W of a harmonic oscil­
lator (amplitude 1, frequency 0.04) versus the distance r. If 
the dimension D of the state space is two or higher, 
H/ (r = 0) = 0 results by extrapolation (d/ = 30, te= 1.2, 
N=  10 000,/: = 50).

from the same trajectory. The correlation can lead 

to an incorrect result and to error bars which are too 

small. This effect can be observed in Fig. 1 at 

/ =0.05 (D = 2). The breakdown of W moves to 

smaller r as the density of the trajectories is in­

creased. In order to obtain reproducible results, at



J. Cremers and A. Hiibler • Construction of Differential Equations from Experimental Data 799

least 104 points in the state-space are required for 

the Lorenz attractor. For larger dimensions of the 

attractors (the fractal dimension of the Lorenz 

attractor [10] is 2.05), even more data are necessary. 

For the reconstruction of the attractor there are 

3 typical time scales (Figure 3) for a typical oscilla­

tion period T: (i) the time delay d/ = 0.25r, if  the 

coordinates of the state space are constructed by a 

delay [11], (ii) the small delay /e =  0.01 T in order 

to calculate the flow vectors by numerical differen­

tiation and (iii) tt >  T, the time between two data 

points where the neighbourhood of the trajectory is 

examined. In order to obtain a good survey of the 

attractor, tt must be chosen as large as possible. The 

large sets of data necessary for the reconstruction of 

the flow vector field of the attractor do not have to 

be measured continuously.

In a representation without any crossover the 

variation rate of the flow vectors as a function of the 

distance r is given by I= d W /d r . I  is therefore 

correlated with the average curvature of the trajec­

tories. The distinction between the average curva­

ture and I  is given by the way in which the averag­

ing process is performed. For the curvature only 

neighbouring positions on the same trajectory are 

included in the average. For /, however, the average 

is taken over the complete neighbourhood of the 

trajectory. Figure 4 represents the crossover prob­

abilities W (r) of a harmonic oscillator for different 

d t (3). A small average curvature implies that the 

attractor is unfolded. By a systematic variation of 

the geometrical representation of the attractor an 

optimal, i.e. unfolded representation can be found. 

When the elliptic trajectory of a harmonic oscillator 

in the state-space changes to a circular path, the 

slope of I  is minimal. For all dt =  40 + k* 80, 

k — 0 , 1, 2 , . . .  the state space is completely unfolded 

(Figure 5). Representations taking dr =  k* 80 are 

not continuous, because the harmonic system is 

represented as a straight double line in the state 

space.

3. The Influence of Noise

tef]W u 
dt dt

.te

t t

te.

.dt.dt

te

Fig. 3. Reconstruction of the flow vectors in a D-dimen- 
sional state space by a delay d/. a(t) is the experimental 
signal.

/ a(t0 + i ■ tt) \

r.= [ a(t0 + i-tt + dt) j

\ a (/q + i ■ tt + (D — 1) dt) i

i = 1, 2,..., N, N is the number of points in the state space. 
The corresponding flow vectors are in a first order 
approximation.

f
a(t0 +i ■ tt + te) - a (t0 + i ■ 1 1)
a(t0 + i ■ tt + dt + te) - a(t0 + i- tt + d?)

a(t0 + i - tt + (D - 1) dt+ te)- a (f0 + / • tt

+ {D-\)dt)

Fig. 4. The crossover probability W of a harmonic oscil­
lator (amplitude 1, frequency 0.04) versus r and the delay 
d/ for (3).

It is of interest to study the change of the 

crossover probability W  (D , r) when a time depen­

dent random noise contribution p(t) is added to the 

deterministic system,

*= f(x )+ p(t) . (4)

When for a deterministic system the crossover 

probability of the flow vectors f  vanishes for r -* 0 , 

for the same data the crossover probability is not 

equal to zero when a random noise contribution is 

added at each flow vector / - > /  + Pi according to
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(4) (P i  = noise contribution of the flow vector / )

dt

Fig. 5. / = dW(2, r)/dr of a harmonic oscillator (ampli­
tude 1, frequency 0.04) versus the delay d/. For dt = 
40 + k* 80, i.e. a phaseshift of n/2 + kn, k = 0,1,2,..., 
the geometrical reconstruction of the trajectories is un­
folded for (3).

Fig. 6. The normalized crossover probability of a noisy 
harmonic oscillator ((4), amplitude 1, frequency 0.04). The 
length of the noise contributions /?, is randomly chosen 
from the interval [0, tnp/2]. The directions of /?, are 
randomly chosen. For W (r -* 0) the noise contribution p 
results by extrapolation. N W := W!tn.

W{D,r = V )=p* tN, (5)

with

P '•= lim \ P i-P j\ /tN
Ar-* 0 J

The average is taken over all the noise contributions 

Pi,Pj of the flow vectors f , f j  with

r - r  \ e
i + j , i= \ ,...,K , 

j =  1

tN is the average length of the flow vectors. For 

small noise contributions, p <  1, and large r, results

Wp+0(D ,r)* t Wp=0(D,r) for D ^ D C. ( 6 )

This means that for a small noise contribution and 

large r the crossover probabilities with and without 

noise are nearly equal. For D = 2 the probability W 

as a function of the noise p for a harmonic oscilla­

tion is shown in Figure 6 . In this case the following 

scalar product is used:

I u
b = - Yj ai

D

a i

b ,, a — | b =

a,, bj e R

\ aD> 

for /'= 1.

If all coordinates of the flow have the same random 

noise contribution (e.g. due to the sampling method) 

the modified scalar product (7) should be used in 

order to make the effects of the noise independent 

of the dimension of the state space.

The deterministic terms in the differential 

equation are responsible for the extrapolated 

straight line passing through the origin. For r -> 0, 

the crossover-probability represents the random 

noise contribution.

4. Estimation of the Parameters of the Differential 

Equation

The complete reconstruction of the differential 

equation is based on a fit of the flow vector field by 

an ansatz. If nothing is known about the properties of 

the flow vector field, a fit by a polynom series is 

frequently favourable. The flow vector field of nearly 

all investigated chaotic oscillators, like e.g. the
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Table 1. Reconstruction of the differential equation of a 
van der Pol oscillator (8) after the coordinate transfor­
mation (9). - An approximation of the flow vector field by 
a series of Legendre polynomials Pk (x) of order k in x

l+m< 4

*j=  I  cjJ<mP,(xl)P m(x2), j  = 1,2,
I, m= 0

by a least squares fit yields to the following coefficients:

j  I m cj, /, m j I m cj, 1, m

1 0 0 -.00 2 0 0 .00
1 0 1 -.69 2 0 1 -.40
1 0 2 -.00 2 0 2 -.00
1 0 3 .18 2 0 3 -.17
1 1 0 -.23 2 1 0 1.52
1 1 1 -.00 2 1 1 -.00
1 1 2 -.23 2 1 2 .51
1 2 0 -.00 2 2 0 .00
1 2 1 .33 2 2 1 -.39
1 3 0 -.15 2 3 0 .30

Error bars ± .005.

Fig. 7. A state space representation of the trajectories of 
the reconstructed differential equation. Again a limit cycle 
with radius 0.5 results.

Lorenz attractor, the driven Duffing oscillator or the 

Henon-Heiles system, can be described by a power 

series with only a few non zero coefficients. The 

mathematical condition for such an ansatz is that 

the flow vector field is an analytic function. To verify 

this, the w-fold differentiability (m = 1, 2 , . . . )  has to 

be examined in addition to the check for continuity

(Chapter 2). Differentiability is difficult to check with 

experimentally investigated data. Anyway, in many 

cases the flow vector field is already analytic when 

the representation is continuous, and an ansatz for 

the flow vector field is justified (within the experi­

mental uncertainties) if the statistical controls of a 

fit allow for it. The parameters of a successfully 

fitted ansatz are the parameters of the differential 

equation. The obtained differential equations possess 

naturally only validity in the range of values of the 

experimental data. The flow vector field of the 

Lorenz attractor

.X] =  -  1 0  -V j +  1 0 * 2 ,

*2 = - * l  *3+ 28 * 3 - * 2 ,

* 3  =  x ,  * 2 -  T  * 3

and of a van der Pol oscillator

Xi = x2,

x2 = mcx2 — co2 X] — wi co2 x\ x2 — mx\

with

m = 0.1, co = 3, c = 1,

has been fitted with a polynom of 4-th order. All 

coefficients of the original differential equation are 

reproduced to better than l%o. The other coeffi­

cients are zero within 0 ± 0.0005. In order to inves­

tigate the efficiency of the algorithm we apply the 

following test: 

jc- and j'-values are generated by using numerical 

integration of the differential equations

x =y,

y =  m(c2 — y2 — w2 x2) y — w2 x (8)

with m = 0.8, w =  1 ,c  =  0.25.

The radius of the resulting limit cycle is 0.5. The 

next step is a transformation of the coordinate-

system:

* i ( 0  =  * ( 0 ,

x2(t) = x (t-  d t), (9)

where dt is approximately n/2w.

These new variables X\ and x2 serve for a new 

differential equation, for which the coefficients of a 

power expansion up to the 3rd order are given in 

Table 1. Legendre polynoms were used for fitting. 

When the flow vectors are fitted by a polynom up to



802 J. Cremers and A. Hiibler • Construction of Differential Equations from Experimental Data

the 4th order, all coefficients of the 4th order vanish 

and the coefficients determined by an approxima­

tion up to the 3rd order only vary within their error 

bars. This new differential equation shall now be 

numerically integrated. Again a limit cycle with 

radius 0.5 results (Figure 7).
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