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Introduction

The goal of this paper is to complete (after [M2]) the classification of irreducible square
integrable representations of classical p-adic groups, under the assumption that one basic
assumption holds (see below). This classification also implies a parameterization of irre-
ducible tempered representations of these groups. Therefore, it implies a classification of
the non-unitary duals of these groups.

The classical groups whose classification of irreducible square integrable representations
we give, are symplectic, orthogonal and unitary groups over a non-archimedean local field
F . For simplicity, in this introduction we shall explain the classification in the case of sym-
plectic and odd-orthogonal groups (in the case of unitary groups, the Galois interpretation
of the classification is substantially more complicated).

Denote by G a symplectic or odd-orthogonal group on the space (of the corresponding
type) of dimension 2n or 2n + 1 respectively. The classification of irreducible square
integrable representations is directly related to the Langland’s classification of irreducible
square integrable representations in terms of dual objects. These objects consist of two
parts. The first is a semi-simple morphism

φ : WF × SL(2,C) −→ LG,

where LG is the dual group of G (in the case that we consider, even for a non-split orthog-
onal group, we can replace LG by its connected component; see [M3]). The morphism φ
has to be algebraic and discrete (by discrete we mean that it does not factor through a
proper Levi factor). The second part is a morphism

ε : Cent
LG
φ→ {±1},

with the following restriction to the center of LG if G is odd-orthogonal: the restriction
of ε to the center of LG is trivial if the anisotropic kernel has dimension 1, and is −1 if
it has dimension 3. In fact, to take a complete care of the anisotropic kernel, we need to
require a condition on det (φ), which is not now important to us. It is explained in [M3]
in the even case. The condition on ε and det (φ) enables us to avoid to require in the
definition of being discrete, that the Levi factor is defined over F (the restrictions that
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we shall consider are restrictions of both φ and ε, and they must also to satisfy the above
properties, because the anisotropic kernel does not change.)

A simple form of the Langlands classification of irreducible square integrable representa-
tions would be a bijection between the set of (all isomorphism classes of) irreducible square
integrable representations of G and conjugacy classes of pairs (φ, ε) as above. This param-
eterization has to satisfy a number of properties to be unique (these properties concern
liftings and local harmonic analysis). Our elementary method does not give information in
that direction. Further, although our classification is on the line of the Langlands classifi-
cation of irreducible square integrable representations, it does not prove that such a simple
form of the Langlands classification of irreducible square integrable representations exists.
The problem is caused by the cuspidal representations, as we shall explain later. A pair
(φ, ε), which should correspond to a cuspidal representation, should have a description in
terms of cuspidal sheaves à la Lusztig. In our case, we can give a much more elementary
description of such a pair.

First of all, it is easy to describe CentLG(φ), specially in the discrete case. Consider
the decomposition of φ into irreducible components:

φ = ⊕
(ρ,a)

ρ⊗ Ea.

This decomposition must be multiplicity free (this follows from the property that φ is
discrete). In the above direct sum, ρ are irreducible representations of WF (necessarily
orthogonal or symplectic; this follows again from the property that φ is discrete) and Ea
is the irreducible (complex) algebraic representation of SL(2,C) of the dimension a ∈ N.
The parity of a is uniquely determined by ρ and G. Denote by

Jord(φ)

the set of all indexes (ρ, a) in the above direct sum decomposition. In particular, for
(ρ, a) ∈ Jord(φ), ρ⊗Ea factors through an orthogonal subgroup of LG if G is symplectic,
and symplectic subgroup if G is orthogonal. In any case, this subgroup has a center
isomorphic to Z/2Z, and further

Cent
LG

(φ) '
∏

(ρ,a)∈Jord(φ)

(Z/2Z),

where one needs to take elements of determinant one if G is symplectic (in the orthogonal
case, we have no restrictions).

Now we shall consider certain simple morphisms ε : Jord(φ) → {±1}. It is convenient
to define

Jord+(φ) := Jord(φ) ∪ {(ρ, 0); there exists a ∈ 2N such that (ρ, a) ∈ Jord(φ)}.

We shall extend ε as above to ε+ on Jord+(φ) by defining ε+(ρ, 0) = 1. We say that
(φ, ε) is cuspidal if and only if, for any (ρ, a) ∈ Jord+(φ) such that a ≥ 2, we have
(ρ, a− 2) ∈ Jord+(φ) and

ε(ρ, a) 6= ε+(ρ, a− 2).
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Cuspidal pairs should correspond to cuspidal representations. The problem with the cus-
pidal case is that we have not a lot of evidence that the set of all equivalence classes of
irreducible cuspidal representations is in a bijection with the set of all conjugacy classes
of the cuspidal pairs (φ, ε). A case which is well understood, is the case where all ρ in
Jord(φ) are quadratic characters (see [M3]). But we can expect progress in the level 0
case.

To avoid a hypothesis regarding the cuspidal case, we proceed in the following way. On
the side of the irreducible representations of G, we have the notion of the cuspidal support.
A weaker notion of the cuspidal support is the notion of a partial cuspidal support. The
definition is following. Let π be an irreducible representation of G. Denote by πcusp the
unique irreducible cuspidal representation of a subgroup H of G such that, for a suitable
integer k, GL(k, F )×H is a Levi factor of a parabolic subgroup P of G and there exists
a representation τ of GL(k, F ) such that π is a subquotient of the parabolically induced
representation τ o πcusp = IndGP (τ o πcusp).

The partial cuspidal support has an analogue for the pair (φ, ε). A combinatorial
exercise (see section 14) implies that for each fixed (φ, ε), there exists a unique cuspidal
pair (φφ,ε,cusp, εφ,ε,cusp) related to some subgroup H of G as above, which satisfies one of
the following conditions. We consider two possibilities.

We shall say that (φ, ε) is alternated if ε(ρ, a−) 6= ε(ρ, a) for each pair (ρ, a−), (ρ, a) ∈
Jord(φ), a− < a, which satisfies: (ρ, b) 6∈ Jord(φ) for any a− < b < a. If (φ, ε) is
alternated, the cuspidal support (φφ,ε,cusp, εφ,ε,cusp) needs to satisfy

(1) There exists a bijection

ψ : Jord(φ)→ Jord(φφ,ε,cusp) or Jord+(φφ,ε,cusp)

of the form:
ψ(ρ, a) = (ρ, ψρ(a)),

where each ψρ is monotone (i.e. preserves the ordering of Z+), and

ε(ρ, a) = εφ,ε,cusp(ρ, ψρ(a)).

(The cuspidal condition imposes the choice in ”or”.)

Suppose that (φ, ε) is not alternated. Then there exist (ρ, a−), (ρ, a) ∈ Jord(φ), a− < a,
satisfying the following two properties

if a− < b < a, then (ρ, b) 6∈ Jord(φ);

ε(ρ, a−) = ε(ρ, a).

Define
φ1 : = ⊕

(ρ′,a′)∈Jord(φ)\{(ρ,a−),(ρ,a)}
ρ′ × Ea′ .

This is a parameter for a subgroup G1 of G of the same type. There is an obvious way to
define a restriction ε1 of ε corresponding to a group G1. Applying this construction several
times, we shall come from (φ, ε) in a finitely many steps to some (φ′, ε′) of alternated type.

(2) We define (φφ,ε,cusp, εφ,ε,cusp) to be the cuspidal support of (φ′, ε′) (as it is defined
in (1)).
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The definition of φφ,ε,cusp depends on both φ and ε. The fibers of the mapping (φ, ε) 7→
(φφ,ε,cusp, εφ,ε,cusp) have a following simple property. To any (φ, ε), we can associate (φ,∆ε)
where ∆ε is the morphism:

Jord+(φ)× Jord+(φ)→ {±1},

defined only on the pairs (ρ, a), (ρ′, a′) for which ρ = ρ′. On such a pair, ∆ε is defined by

∆ε((ρ, a), (ρ, a′)) = ε(ρ, a)ε(ρ, a′)−1.

An easy combinatorial exercise (see section 14) shows that the fibers of the mapping

(φ, ε) 7→ (φ,∆ε)

are subsets of the fibers of the mapping

(φ, ε) 7→ φφ,ε,cusp.

Now we can explain our classification of (equivalence classes of) irreducible square inte-
grable representations of G. Recall that in [M2] is associated (using elementary techniques)
to each irreducible square integrable representation π of G a set Jord(π) (see section 2)
of a similar type as Jord(φ). We use the local Langlands correspondence for general lin-
ear groups to identify these two type of sets (Jord(π)’s and Jord(φ)’s). There is still a
problem with the parity: parity of a for (ρ, a) ∈ Jord(φ) depends on G, and on the fact
if ρ is orthogonal or symplectic. On the other side, the parity of a for (ρ, a) ∈ Jord(π)
depends on G, and on the pole of certain L-function. Conjecturaly, the pole (or holo-
morphy) reflects exactly the orthogonality or the symplecticity property. This is true on
the Galois side, but it is not yet proved that the Langlands correspondence preserves this
property. In this introduction, we shall assume this property. In the rest of the paper,
we don’t use the L-group explicitly, and therefore we do not (need to) assume this. In
[M2], to π is associated a mapping ∆π of the same type as the ∆ε’s which we considered
above (actually, in [M2] we use the notation επ instead of ∆π; it would be more consistent
if we had used ∆π there). With our elementary techniques, we are not able to prove the
dimension relation: ∑

(ρ,a)∈Jord(π)

adim ρ =
{

2n, G = SO(2n+ 1);
2n+ 1, G = Sp(2n);

(we do not use this equality in the paper, except here in the introduction). This dimension
property is proved only if we assume some Arthur’s conjectures to hold. Therefore, we
can take this dimension equality as a hypothesis (in the introduction).

The principal result of [M2] is the following: assuming the basic assumption (which will
be discussed later), the mapping

π 7→ (πcusp, Jord(π),∆π)
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which is defined on the set of all equivalence classes of irreducible square integrable repre-
sentations of G is injective, and it has the property that

Jord(πcusp) = Jord(φφ,ε,cusp)

for any (φ, ε) such that Jord(φ) = Jord(π) and ∆ε = ∆π (we use the identification of
Jord(φ)’s and Jord(π)’s resulting from the local Langlands correspondences for general
linear groups). The last assertion is the admissibility condition from the introduction of
[M2].

The aim of this paper, is to prove that the above mapping π 7→ (πcusp, Jord(π),∆π)
is surjective. This implies that we have proved that the equivalence classes of irreducible
square integrable representations of G are classified by the triples

(πcusp, φ,∆ε).

In a triple, πcusp is a cuspidal representation of a subgroup of G of the same type (sym-
plectic or orthogonal). Further, φ and ∆ε are coming in the way that we have explained
above, from a pair φ, ε which satisfies the following two conditions∑

(ρ,a)∈Jord(φ)

adim ρ =
{

2n, G = SO(2n+ 1);
2n+ 1, G = Sp(2n);

and
Jord(πcusp) = Jord(φφ,ε,cusp).

The property that φ is discrete has a simple translation: Jord(φ) is multiplicity free.
The surjectivity is proved under the basic assumption (BA) (see the second section),

which describes the reducibility points of a representation induced by an irreducible cus-
pidal representation, in terms of the Jordan bloc. This basic assumption was supposed
to hold in [M2]. In [M1] it is proved that (BA) follows from a weak form of the Arthur’s
conjectures. Our basic assumption provides us with a way to compute Plancherel measures
(modulo holomorphic invertible functions) in terms of Jordan blocs. This point of view
was already present in [Sh1]. There F. Shahidi proves (BA) for generic cuspidal represen-
tations. Therefore, if πcusp is generic, we do not need to assume in our paper (BA) that
holds (i.e. our paper has no hypothesis if πcusp is generic).

In fact, in this paper, we avoid to use the dual group in order to minimize the as-
sumptions. We proceed much more technically (and more directly). As it is explained
above, our classification starts from cuspidal representations. We classify all irreducible
square integrable subquotients of the (generalized) principal series (i.e. all non-cuspidal
irreducible square integrable representations). A generalized principal series is an induced
representation: (∏

k∈K

νzkρk

)
o πcusp,

where K is a set of indexes, and for each k ∈ K, ρk is an irreducible unitarizable represen-
tation of some general linear group, ν is |det|F and zk ∈ R. Further, πcusp is an irreducible
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cuspidal representation of some subgroup H of G of the same type (see the first section for
details regarding the notation). We do the classification using only a (natural) assumption
about reducibility points of parabolically induced representations of the following type:

νxρk o πcusp,

where k ∈ K and x ∈ R. Our basic assumption is that this induced representation is
irreducible except when one of the following two possibilities occur:

(i) x = 0 or ±1/2, (ρk, a) /∈ Jord(πcusp) for all a ∈ N and νxρk o 1 reduces (here we
assume for simplicity that the group is split);

(ii) |x| ≥ 1 and (ρk, 2|x| − 1) ∈ Jord(πcusp) but (ρk, 2|x|+ 1) /∈ Jord(πcusp)
(see section 2, and also section 12 for another interpretation). Moreover, we assume that
a reducibility point as above, for fixed ρk, is unique up to a sign. G. Muić and F. Shahidi
have explained us that this uniqueness follows from the work of Silberger [Si].

We shall now briefly describe the content of the paper. First, let us recall that in the
paper we shall never use the L-group explicitly. Thus, there is no morphisms φ in the
paper. It is replaced by its Jordan blocs, i.e. by a set Jord satisfying a parity condition
(and a dimension condition). This explains why φ’s disappear in the rest of the paper.
There is also a significant difference between the use of the notation ε in this introduction,
and the use of this notation in the rest of the paper. In the rest, ε will denote the partial
function which we have denoted by ∆ε in this introduction. Nevertheless, in our description
of the content of the paper, we continue with the notation which we have used above.

The first section introduces the notation. To simplify the exposition of the paper, after
introducing notation for classical groups, we restrict ourselves until the end of section 14.
to the case of symplectic and odd-orthogonal groups. The necessary modifications and
comments regarding unitary and even-orthogonal groups are given in sections 15. and
16. The second section recalls in detail the basic assumption and the admissible triples.
Following three sections collect preliminary results that we shall use in the proof of the
square integrability. The sixth section states the main result of the paper. In the seventh
section, we prove surjectivity for triples (πcusp, φ,∆ε) in the case that φ, ε are alternated,
i.e. satisfy condition (1) with respect to its partial cuspidal support (this is clearly a
property of ∆ε, it does not depend on a choice of ε). We call this the alternated case. The
other case is called the mixed case. The proof in the mixed case proceeds by induction.

Suppose that πcusp, Jord (i.e. φ) and ε are fixed, and that

Jord(πcusp) = Jord(φφ,ε,cusp).

Let (ρ, a−), (ρ, a) ∈ Jord, a− < a, be such that ε(ρ, a−) = ε(ρ, a) and (ρ, b) 6∈ Jord
for a− < b < a. Define φ1, ε1 (and G1) in the same way as we did in the definition
of (φφ,ε,cusp, εφ,ε,cusp). By the inductive assumption, we know that there exists an irre-
ducible square integrable representation π1 of G1 corresponding to (πcusp, φ1,∆ε1). Denote
by δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) the irreducible essentially square integrable representation
of GL(dρ(a + a−)/2, F ) (where ρ is a representation of GL(dρ, F )), which is a unique
irreducible subrepresentation of the induced representation

ν(a−1)/2ρ× ν(a−1)/2−1 × · · · × ν−(a−−1)/2ρ.
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It is proved in [M2] (and recalled here), that the induced representation

δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π1

has exactly two irreducible subrepresentations, and that these subrepresentations are not
isomorphic. For the proof of the surjectivity of the mapping π 7→ (πcusp, Jord(π),∆π), it
is enough to prove that these two subrepresentation are square integrable. This is enough
for the following reason. If we know that these subrepresentations are square integrable,
then their parameters are computed in [M2]. They are extensions of φ1, ε1. Since there
exist exactly two parameters which extend φ1, ε1 for G in this case, we get that that they
correspond to these irreducible square integrable subrepresentations, and one of them must
correspond to φ, ε.

The square integrability of these irreducible subrepresentations is the most difficult part
of the paper. We solve first the case where π1 is cuspidal in the ninth section (before, in
the eighth section we prove a very useful lemma about tempered representations with the
same infinitesimal characters). In section 10, we prove the square integrability in a case
when all the Jacquet modules of π1 have good properties relatively to a and a− (this
includes for example the case when a is the greatest element such that (ρ, a) ∈ Jord).
Section 11 completes the proof, arguing with an inductive argument with respect to a.

In section 12, we discuss very briefly the basic assumption. Section 13 describes the
irreducible tempered representations. Tempered representations can be also classified with
triples as above. We have only to suppress the condition that Jord’s are multiplicity free.
We have not developed this point of view here, which is under our basic assumption, a
direct consequence of the Harish-Chandra’s result on the intertwining algebras. Section
14 proves two exercises which we have mentioned earlier in this introduction, and gives
simple examples of admissible triples. At the end, sections 15. and 16. give modifications
and comments which are necessary that the classifications obtained in previous sections,
also holds for unitary and even-orthogonal groups.

1. Notation

In this section, first we shall recall some notation for general linear groups (more details
can be found in [Z]).

We fix a local non-archimedean field F . We do not assume any restriction on the
characteristic, but the reader has to be aware that our basic assumption (BA) has only
been verified in [M]) under the assumption of some Arthur’s conjectures, which need the
hypothesis that the characteristic of the field is 0.

By F ′ we shall denote in this paper either F or a separable quadratic extension of F .
This will depend on the following: if we are working with symplectic or orthogonal groups,
then F ′ will denote F , and if we are working with unitary groups, then F ′ will denote the
separable quadratic extension which enters the definition of the unitary groups.

If F ′ is a separable quadratic extension, we shall denote by θ the non-trivial element of
the Galois group Gal(F ′/F ) of F ′ over F . Otherwise (i.e. if F ′ = F ), θ will denote the
identity mapping on F .

The modulus character of F ′ will be denoted by | |F ′ .
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By a representations of a reductive group G over F , we shall always mean in this paper
a smooth representation. We denote by R(G) the Grothendieck group of the category of
all representations of G of finite length. There is a natural ordering ≤ on R(G). These
orderings determine also natural ordering on a direct sums of Grothendieck groups of
categories, for different reductive groups. For a finite length representation π of G, we
shall denote its semi simplification by s.s.(τ), and consider it as an element of R(G). For
two finite length representations π1, π2 of G, the fact s.s.(π1) ≤ s.s.(π2) we shall write
shorter π1 ≤ π2.

For two representations π1, π2, of general linear groups over F ′, Bernstein and Zelevin-
sky defined a parabolically induced representation π1 × π2 in a natural way (see [Z]).
Denote R = ⊕n≥0R(GL(n, F ′)). Then × factors in a natural way to × : R×R −→ R. The
multiplication factors through R ⊗ R in a unique way by a map, which will be denoted
by m : R ×R −→ R. Recall that Bernstein and Zelevinsky defined also a comultiplication
m∗ : R −→ R⊗R using Jacquet modules. With these two operations, R is a Hopf algebra.

The character |det|F ′ of GL(n, F ′) will be denoted by ν. For an irreducible essen-
tially square integrable representation δ of GL(n, F ′), there exists unique e(δ) ∈ R and
irreducible unitarizable square integrable representation δu such that

δ = νe(δ)δu.

Let ρ be an irreducible cuspidal representation of a general linear group (over F ′). For
n ∈ Z+, denote

[ρ, νnρ] = {ρ, νρ, . . . , νnρ}

(Z+ denotes the set of all non-negative integers). We shall call ∆ = [ρ, νnρ] a segment (in
irreducible cuspidal representations of general linear groups). The representation ρ×νρ×
. . . × νnρ has a unique irreducible quotient (resp. irreducible subrepresentation), which
we denote by δ(∆) (resp. s(∆)). The representation δ(∆) is essentially square integrable.
For n < 0, we shall assume [ρ, νnρ] to be ∅. We take δ(∅) = 1 (identity in R, which is the
trivial representation of GL(0, F ′)).

We shall recall now some notations for classical p-adic groups. More details regarding
this notations can be found in [MViW] and [T5]. We shall consider the following series Sn
of classical groups over F (and we shall fix one of these series of classical groups).

Symplectic groups Sp(2n, F ) form a series of groups where n denotes the split semi-
simple rank of the group. The group Sp(2n, F ) will be denoted by Sn. We have here the
notion of the Witt tower (we shall denote by Vn the symplectic space of dimension 2n in
this tower; we shall denote V0 also by Y0 in the case of symplectic groups).

In the case of odd orthogonal groups, we also have Witt tower: this means that we fix
an anisotropic orthogonal vector space Y0 over F of odd dimension dimension (1 or 3),
and we look at the Witt tower based on Y0. For each n such that 2n+ 1 ≥ dimY0, there
is exactly one space Vn in the Witt tower whose dimension is 2n + 1. We denote by Sn
the special orthogonal group of this space (recall that in this case, the orthogonal group
of Vn is a product of its center and Sn).

In the case of even-orthogonal groups, we fix an anisotropic orthogonal space Y0 over
F of even dimension, and consider the Witt tower based on Y0. If 2n ≥ dimF (Y0), then
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there is exactly one space Vn in the Witt tower of dimension 2n. The orthogonal group of
Vn will be denoted by Sn.

In the case of symplectic or orthogonal series Sn of groups, F ′ will denote F .
In the case of unitary groups, F ′ will denote a separable quadratic extension of F . We

shall fix an anisotropic unitary space Y0 over F ′, and consider the Witt tower of unitary
spaces Vn based on Y0.

Suppose that dimF ′(Y0) is odd (i.e. 1). Then for each 2n+ 1 ≥ dimF ′(Y0), there exists
a unique space Vn in the Witt tower of dimension 2n+ 1. The unitary group of this space
will be denoted by Sn.

If dimF ′(Y0) is even, then for each 2n ≥ dimF ′(Y0) one takes a unique space Vn in the
Witt tower of dimension 2n, and denote its unitary group by Sn.

We fix a minimal parabolic subgroup in Sn. We shall consider in this paper only stan-
dard parabolic subgroups, i.e. the parabolic subgroups which contain the fixed minimal
parabolic subgroup. For more information regarding convenient matrix realizations of
groups Sn and description of their standard parabolic subgroups, one can consult [T5].

Fix one of the series Sn of groups that we have defined. Let n′ be the Witt index
of Vn (n′ is n − 1/2 dimF ′(Y0) if Vn is symplectic or even-orthogonal or even-unitary
group, otherwise n′ is n − 1/2(dimF ′(Y0) − 1). For each 0 ≤ k ≤ n′, there exists a
standard parabolic subgroup P(k) = M(k)N(k) of Sn, whose Levi subgroupM(k) is naturally
isomorphic to GL(k, F ′) × Sn−k (see [T5] and [B] for the series of symplectic and split
orthogonal groups; the isomorphism in the case of other series of groups is defined in
analogous way). This parabolic subgroup is the stabilizer of an isotropic space of dimension
k. For a representations π and σ of GL(k, F ′) and Sn−k respectively, the representation
parabolically induced by π ⊗ σ is denoted by

π o σ.

A simple but very useful property of o is that for two representations π1 and π2 of general
linear groups (over F ′) we have

π1 o (π2o) ∼= (π1 × π2)o σ

(see [T5]).
For π as above, denote by π̌

g 7→ π̃(θ(g)),

where π̃ denotes the contragredient representation of π. If π and σ are representations of
finite length, then

s.s.(π o σ) = s.s.(π̌ o σ).

In particular, if π o σ is irreducible, then π o σ ∼= π̌ o σ.
We shall say that a representation π of a general linear group over F ′ is F ′/F -selfdual

if
π ∼= π̌.

If F ′ = F , then we shall say also simply that π is selfdual.
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For a representation τ of Sn, we denote by s(k)(τ) the normalized Jacquet module of τ
with respect to P(k). All the Jacquet modules that we shall consider in this paper, will be
normalized Jacquet modules with respect to standard parabolic subgroups (and obvious
Levi decompositions).

Denote by R(S) = ⊕R(Sn), where the sum runs over all the groups from the series
Sn of the classical groups that we have fixed (in other words, the sum runs over all
integers n ≥ 1/2 (dimF ′(Y0) − 1) if we consider odd-orthogonal or odd-unitary groups,
and over all n ≥ 1/2 dimF ′(Y0) otherwise). Then o defines in a natural way a mapping
o : R×R(S) −→ R(S). Let

µ∗(τ) =
n′∑
k=0

s.s.
(
s(k)(τ

)
),

where τ is an irreducible representation of Sn (n′ is the Witt index of Vn). Extend µ∗

additively to µ∗ : R(S) −→ R⊗R(S).
Let M∗ = (m⊗1)◦(ˇ⊗m∗)◦κ◦m∗ : R −→ R⊗R, where ˇ : R −→ R is a homomorphism

defined by π 7→ π̌ on irreducible representations, and κ : R×R −→ R×R maps
∑
xi ⊗ yi

to
∑
yi ⊗ xi. Note that M∗(π) depends also on the series Sn of the groups that we have

fixed.
For a finite length representation π of GL(k, F ′), the component of M∗(π) which is in

R(GL(k, F ′))⊗R(GL(0, F ′)), will be denoted by

M∗GL(π)⊗ 1.

For a finite length representation τ of Sq, µ∗(τ) will denote µ∗(s.s.(τ)). The similar
convention we will be used for M∗ and M∗GL.

Let π be a representation of GL(k, F ′) of finite length, and let σ be an irreducible
cuspidal representation of Sn. Suppose that τ is a subquotient of π o σ. Then we shall
denote s(k)(τ) also by

sGL(τ).

In the sequel till the end of section 14., we shall assume that the series of groups Sn
consists of symplectic or odd-orthogonal groups. The main reason for this restriction, is
to simplify the exposition in these sections. In sections 15. and 16. we shall describe the
case of unitary and even-orthogonal groups respectively.

Recall that for symplectic and orthogonal groups we have F ′ = F and π̌ = π̃. Neverthe-
less, we shall use also in sections 2.–14. the notations F ′ and π̌ (instead of F and π, which
we could also use). The reason to do it, is that with such choice of the notation, sections
2.–14. will apply after a few comments also to unitary groups without any significant
changes.

For π ∈ R and σ ∈ R(S) we have

(1-1) µ∗(π o σ) = M∗(π)o µ∗(σ).

For split groups Sn, this follows from Theorems 5.4 and 6.5 of [T5]. For a non-split odd-
orthogonal series of groups Sn, we have the same root system of type B as in the split case,
and the same Weyl group. Now in the same way as in section 6. of [T5], follows the above
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formula for non-split odd-orthogonal groups. More precisely, the calculations in section 4.
of [T5] are independent of the groups (but depend on the root systems), and they imply
(an analogue) of Lemma 5.1 for non-split odd-orthogonal groups. Now the formula (1-1)
follows from this lemma in a completely same way as in [T5] Theorem 5.2 follows from
Lemma 5.1, by a formal computations.*

Let π be a finite length representation of a general linear group, and let τ be a similar
representation of Sn. Then (1-1) implies
(1-2) s.s.(sGL(π o τ)) = M∗GL(π)× s.s.(sGL(τ))
(× in the above formula denotes multiplication in R of M∗(π) with the factors on the left
hand side of ⊗ in s.s.(sGL(τ))).

In this paper, we shall several times use formulas for M∗(δ(∆)) and M∗GL(δ(∆)). This is
the reason that we shall write these formulas here for the segments that we shall consider
most often. Let a−, a ∈ N (N denotes the positive integers). Suppose a − a− ∈ 2N. Let
ρ be an irreducible F ′/F -selfdual cuspidal representation of a general linear group. Then
the formula for m∗(δ(∆)) implies

(1-3) M∗
(
δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])

)
=

(a−1)/2∑
i=−(a−−1)/2−1

(a−1)/2∑
j=i

δ([ν−iρ, ν(a−−1)/2ρ])× δ([νj+1ρ, ν(a−1)/2ρ])⊗ δ([νi+1ρ, νjρ]).

To get M∗GL, we need to take j = i in the above formula. Thus

(1-4) M∗GL

(
δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])

)
=

(a−1)/2∑
i=−(a−−1)/2−1

δ([ν−iρ, ν(a−−1)/2ρ])× δ([νi+1ρ, ν(a−1)/2ρ]).

Denote by γ the part of the sum (1-4) corresponding to indexes

−(a− − 1)/2− 1 ≤ i ≤ (a− − 1)/2(1-5) (
resp.− (a− − 1)/2− 1 ≤ i ≤ (a− − 1)/2− 1

)
.(1-6)

Then γ satisfies the condition (3-9) (resp. (3-10)) of Lemma 3.5.
At the end, we have

(1-7) M∗
(
δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])

)
=

(a−−1)/2∑
i′=−(a−−1)/2−1

(a−−1)/2∑
j′=i′

δ([ν−i
′
ρ, ν(a−−1)/2ρ])×δ([νj

′+1ρ, ν(a−−1)/2ρ])⊗δ([νi
′+1ρ, νj

′
ρ]).

Clearly, M∗GL
(
δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])

)
satisfies the condition (3-9) of Lemma 3.5.

*The second author is thankful to T. Springer who informed him in 1997. about the paper ”An
application of Hopf-algebra techniques to representations of finite classical groups” of Marc A. A. van
Leeuwen (Journal of Algebra 140(1991), 210-246). In this paper is computed formula (1-1) in the case
of finite classical groups (Theorem 3.2.1). Note that the formula is simpler in the finite field case. The

reason for it is the cocommutativity of the Hopf algebra attached to representations of finite general linear
groups.
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2. Invariants of square integrable representations

of classical groups

In this section we shall recall of the invariants attached in [M2] to square integrable
representations, and some of their properties.

Let y ∈ N. If we are considering the series of groups Sp(2n) (resp. SO(2n + 1)), then
Ry will denote the representation of GL(y,C) on ∧2

C
y (resp. Sym2

C
y).

To any irreducible square integrable representation π of Sn, [M2] associates three ob-
jects:

Jord(π), πcusp and επ.

By definition, (ρ, a) ∈ Jord(π0) if and only if ρ is an irreducible F ′/F -selfdual cuspidal
representation of a general linear group GL(dρ, F ′) (this defines dρ) and a ∈ N such that

(J-1) a is even if L(ρ,Rdρ , s) has a pole at s = 0, and odd otherwise,

and

(J-2) δ(ρ, a)o π0 is irreducible,

where δ(ρ, a) denotes δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]).
For an irreducible F ′/F -selfdual cuspidal representation of a general linear group ρ,

denote
Jordρ(π) = {a; (ρ, a) ∈ Jord(π)}.

Let πcusp be an irreducible cuspidal representation of some Sq and let ρ be an irreducible
F ′/F -selfdual cuspidal representation of a general linear group. In this paper we shall
assume that the following basic assumption holds:

ν±(aρ+1)/2ρo πcusp reduces for(BA)

aρ =


maxJordρ(πcusp) if Jordρ(πcusp) 6= ∅,
0 if L(ρ,Rdρ , s) has a pole at s = 0 and Jordρ(πcusp) = ∅,
−1 otherwise;

moreover, there are no other reducibility points in R.

Note that a part of the assumption (BA) is that Jordρ(πcusp) are finite sets. An
additional comment regarding this conjecture can be found in the section 12.

The partial cuspidal support, πcusp of π is defined to be the cuspidal irreducible rep-
resentation of Sn′ , with n′ ≤ n, such that there exists an irreducible representation σ of
GL(n− n′, F ′) and an embedding

π ↪→ σ × πcusp.

Note that the notion of partial cuspidal support is well defined in this way for any irre-
ducible representation of Sn.
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Let π be a an irreducible square integrable representation of Sn and let πcusp be the
partial support of π, where πcusp is a cuspidal representation of some Sn′ (n′ ≤ n). We
shall assume that the following formula holds:

(A)
∑

(ρ,a)∈Jord(πcusp)

a dρ =
{

2n′ if Sn′ = SO(2n′ + 1);
2n′ + 1 if Sn′ = Sp(2n).

This assumption is introduced only to have a simpler and more natural exposition in
the paper. The main results of this paper does not depend on (A) (see Remark 14.5 for
interpretations of the classification of irreducible square integrable representations without
assuming that (A) holds). It is proved in [M2] (see [M2] 4.1 and 4.2) that

(2-1)
∑

(ρ,a)∈Jord(π)

a dρ −
∑

(ρ′,a′)∈Jord(πcusp)

a′dρ′ = 2(n− n′).

At the end, [M2] associates to π a partially defined function επ from Jord(π0) into
{±1} (we shall explain below precisely what we mean by partially defined function). The
definition of επ is in terms of Jacquet modules of π, except in one case, in which normalized
intertwining operators are used (see [M2] for the definition of επ).

The first author proved in [M2] that Jord(π0), πcusp, επ0 form an admissible triple. A
general definition of an admissible triple will be recalled below. The fundamental result
of [M2] is that the mapping

(2-2) π 7→ (Jord(π), πcusp, επ)

is an injective mapping from the set of all equivalence classes of irreducible square inte-
grable representations of groups Sn into the set of all admissible triples (assuming that
(BA) holds). Before we give the definition of an admissible triple, we shall give two remarks
which are related to the admissibility condition.

The first one is a result which we shall use later, which tells that for an irreducible
cuspidal representation πcusp of Sn holds:

(2-3) (ρ, a) ∈ Jord(πcusp) and a > 2 ⇒ (ρ, a− 2) ∈ Jord(πcusp).

In [M1], this assertion and (BA) are obtained simultaneously as consequences of some
Arthur’s conjectures. One can check easily that (BA) implies (2-3) (one can find the proof
of this implication in section 12). In fact, (2-3) follows from the fact that there is only one
reducibility point in {x ∈ R;x ≥ 0} in the case of the parabolic induction from a maximal
parabolic subgroup by an irreducible cuspidal representation. We are sure that a proof of
(BA) will give directly (2-3).

For an irreducible square integrable representation π of Sn define the multiset

Supp(Jord(π)) =
∑

(ρ,a)∈Jord(π)

[ν−(a−1)/2ρ, ν(a−1)/2ρ]
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(multiset means that elements are counted with multiplicity; see [Z]). It is evident how to
reconstruct Jord(π) from the multiset Supp(Jord(π)). Now

(2-4) Supp(Jord(πcusp)) ⊆ Supp(Jord(π)).

The above inclusion follows from the admissibility of the triple (Jord(π), πcusp, επ).
Now we shall define the notion of an admissible triple.
Fix an irreducible cuspidal representation πcusp of some Sq. Let Jord be a finite set

of pairs (ρ, a), where ρ are F ′/F -selfdual irreducible cuspidal representations of general
linear groups and a ∈ N is such that condition (J-1) holds for each of these pairs. We
shall say that Jord has degree n if (2-1) holds (the sum in (2-1) runs over Jord instead
of Jord(π)). We define the multiset Supp(Jord) in the same way as we did for Jord(π).
For an F ′/F -selfdual irreducible cuspidal representations ρ of a general linear group, one
defines Jordρ = {a; (ρ, a) ∈ Jord}. For a ∈ Jordρ we denote by

a− = max {b ∈ Jordρ; b < a},

if {b ∈ Jordρ; b < a} 6= ∅ (and then we say that a− exists, or that it is defined). Otherwise,
we shall say that a does not have a−, or that a is minimal in Jordρ.

Let ε be a partially defined function from a subset of Jord ∪ (Jord× Jord) into {±1}
in the following sense. For (ρ, a) ∈ Jord, ε(ρ, a) is not defined if and only if a is odd and
(ρ, a′) ∈ Jord(πcusp) for some a′ ∈ N. Further ε is defined on a pair (ρ, a), (ρ′, a′) ∈ Jord
if and only if ρ = ρ′ and a 6= a′.

We shall require that ε satisfies the following properties. Let (ρ, a), (ρ, a′) ∈ Jord, a 6= a′.
If ε(ρ, a) is defined, then ε on this pair has the value

ε(ρ, a)ε(ρ, a′)−1.

If ε(ρ, a) is not defined, then the value of ε on this pair we shall denote also formally by
ε(ρ, a)ε(ρ, a′)−1 (although ε(ρ, a) and ε(ρ, a′) are not defined). In this case (when ε(ρ, a)
is not defined), for different a, a′, a′′ ∈ Jordρ we require that

ε(ρ, a)ε(ρ, a′′)−1 =
(
ε(ρ, a)ε(ρ, a′)−1

) (
ε(ρ, a′)ε(ρ, a′′)−1

)
(recall that the notation in the above formula is formal). In this case, we also require for
different a, a′ ∈ Jordρ:

ε(ρ, a)ε(ρ, a′)−1 = ε(ρ, a′)ε(ρ, a)−1.

In the case that ε(ρ, a)ε(ρ, a′)−1 6= 1 (resp. ε(ρ, a)ε(ρ, a′)−1 = 1), we shall write formally

ε(ρ, a) 6= ε(ρ, a′) (resp. ε(ρ, a) = ε(ρ, a′)),

even if ε(ρ, a) and ε(ρ, a′) are not defined.
Suppose that we have triple Jord, πcusp, ε as above. Let (ρ, a) ∈ Jord be such that

a− ∈ Jordρ is defined and
ε(ρ, a) = ε(ρ, a−).
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Denote Jord′ = Jord \ {a, a−}. Let ε′ be the partially define function on Jord′ which we
get by restricting ε to Jord′. Then ε′ again satisfies the above requirements with respect
to Jord′ and πcusp. If we have two triples Jord, πcusp, ε and Jord′, πcusp, ε′ as above, then
we shall say that Jord′, πcusp, ε′ is subordinated to Jord, πcusp, ε.

Let Jord, πcusp, ε be a triple as above. For (ρ, a) ∈ Jord denote

Jord′ρ(πcusp) =
{
Jordρ(πcusp) ∪ {0} if a is even and ε(ρ,minJordρ) = 1;
Jordρ(πcusp) otherwise.

The two notations Jord′ and Jord′(πcusp) will not be used simultaneously, to avoid con-
fusion.

Now we shall define the admissible triple. Let Jord, πcusp, ε be a triple as above. First
we have the following definition.

We shall say that Jord, πcusp, ε is an admissible triple of the alternated type if for each
(ρ, a) ∈ Jord the following two conditions hold:

ε(ρ, a) 6= ε(ρ, a−) if a− is defined, and(2-5)

cardJord′ρ(πcusp) = cardJordρ.(2-6)

We shall say that a triple Jord, πcusp, ε is admissible, if there exists a sequence of triples
Jordi, πcusp, εi, 1 ≤ i ≤ k such that

(Jord, πcusp, ε) = (Jord1, πcusp, ε1),
Jordi+1, πcusp, εi+1 is subordinated to Jordi, πcusp, εi for 1 ≤ i ≤ k − 1, and
Jordk, πcusp, εk is an admissible triple of the alternated type.

An admissible triple which is not of the alternated type, will be called an admissible triple
of the mixed type.

Suppose that Jord, πcusp, ε is an admissible triple of the alternated type. Then (2-6)
implies that for each (ρ, a) ∈ Jord there exists a unique monotone bijection

(2-7) φρ : Jordρ −→ Jord′ρ(πcusp).

We shall prove that to each admissible triple Jord, πcusp, ε of degree n is attached
an irreducible square integrable representation π of Sn with that invariants, i.e. that
(Jord(π), πcusp, επ) = (Jord, πcusp, ε) (where πcusp is the partial cuspidal support of π).

To illustrate the notion of Jord(π), we shall give now a proposition which is the basic
method for computing Jord(π) from Jord(πcusp). This result is already contained in [M2].
It will be used several times in the sequel.

2.1. Proposition. Let π′ be an irreducible square integrable representation of Sq and
let x, y ∈ (1/2)Z such that x − y ∈ Z+. Let ρ be an F ′/F -selfdual cuspidal unitarizable
representation of GL(dρ). We assume that x, y ∈ Z if and only if L(ρ,Rdρ , s) has not a
pole at s = 0 (see the beginning of this section for definition of Rdρ). Further, suppose
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that there is an irreducible square integrable representation π embedded in the induced
representation

(2-8) π ↪→ νxρ× · · · × νx−i+1ρ× · · · × νyρ× π′.

Then:
(i) If y > 0, then 2y − 1 ∈ Jordρ(π′) and

Jordρ(π) = (Jordρ(π′) \ {(ρ, 2y − 1)}) ∪ {(ρ, 2x+ 1)}.

(ii) If y ≤ 0 , then

Jordρ(π) = Jordρ(π′) ∪ {(ρ, 2x+ 1), (ρ,−2y + 1)}.

In particular, 2x+ 1 and −2y + 1 are not in Jordρ(π′).

2.2. Remark. If x does not satisfy the condition regarding the holomorphy of the L-
function of the proposition, then (ρ, 2x + 1) and (ρ, 2y + 1) are not in Jordρ(π) and
Jordρ(π′) by the definition of the Jordan blocks. Further, in this case, the embedding
(2-8) cannot happen (recall that π′ and π are square integrable).

Proof. To compute Jordρ(π) in terms of Jordρ(π′), we have to compare Plancherel mea-
sures. For z ∈ (1/2)N, we denote by µ(z, π)(s) the meromorphic function (in s ∈ C),
which is the composite of two standard intertwining operators:

νsδ(ρ, z)o π′ → ν−sδ(ρ, z)o π′ → νsδ(ρ, z)o π′

(here δ(ρ, z) denotes δ([ν−(z−1)/2ρ, ν(z−1)/2ρ]), as before). We are interested in µ(z, π)(s)
modulo holomorphic invertible functions of s only. We define µ(z, π′)(s) in an analogous
way for π′. By the results of Shahidi, the computation of the standard intertwining
operators for GL(d) is very well known for with arbitrary d. This gives the following
equality modulo a holomorphic invertible function of s

µ(z, π)(s) = µ(z, π′)

L(δ(ρ, z)× ρ, s− x) L(δ(ρ, z)× ρ, s− y + 1)−1(2-9)

L(δ(ρ, z)× ρ, y + s) L(δ(ρ, z)× ρ, x+ s+ 1)−1

L(δ(ρ, z)× ρ,−s− x) L(δ(ρ, z)× ρ,−s− y + 1)−1(2-10)

L(δ(ρ, z)× ρ, y − s) L(δ(ρ, z)× ρ, x− s+ 1)−1.

The product of L-functions is just the product of the normalizing factors in the intertwining
operator corresponding to the GL’s factors. Usual simplifications are used to get this
formula (see [MW], I). By a general result of Harish-Chandra ([W1]) we know that at
s = 0, µ(z, π) has order 0 or 2. Moreover, by the definition of Jordρ(π):

z ∈ Jordρ(π)⇔ ords=0(µ(z, π)) = 2.
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We need to look at the different L-factors using a general result of [JPSS] (Theorem 8.2
there):

L(δ(ρ, z)× ρ, s′) = L(ρ× ρ, s′ + (z − 1)/2).

For s′′ ∈ R, the function L(ρ× ρ, s′′) is non-zero and the only pole here is at s′′ = 0. The
pole is simple. It is obvious that at s = 0, (2-9) and (2-10) above have the same order.

Now s = 0 is a pole for µ(z, π)(s) if and only if either it is a pole of µ(z, π′)(s) and not
a zero of the factor (2-9) or it is a pole of the factor (2-9). Moreover, if s = 0 is a pole of
the factor (2-9), it cannot be a pole for µ(z, π′)(s) by the result of Harish-Chandra.

To prove the lemma, we first need to observe the following facts:

L(δ(ρ, z)× ρ, s− x)

has a (simple) pole at s = 0 if and only if x = (z − 1)/2;

L(δ(ρ, z)× ρ, s− y + 1)−1

has a (simple) zero at s = 0 if and only if y − 1 = (z − 1)/2;

L(δ(ρ, z)× ρ, y + s)

has a (simple) pole at s = 0 if and only if y = −(z − 1)/2;

L(δ(ρ, z)× ρ, x+ s+ 1)−1

has a (simple) zero at s = 0 if and only if x + 1 = −(z − 1)/2 (this cannot happen since
x+ 1 = −(z − 1)/2 implies z = −2x− 1 ≤ −2, which is impossible).

These observations imply that 2x + 1 ∈ Jordρ(π) and 2x + 1 /∈ Jordρ(π′). Further,
a′ 6= 2x+ 1 is an element of Jordρ(π′) if and only if it is an element of Jordρ(π), except
if a′ = −2y + 1 (which implies y ≤ 0) or a′ = 2y − 1 (which implies y > 0). In the case
a′ = −2y + 1, we have a′ /∈ Jordρ(π′) but a′ ∈ Jordρ(π). The case a′ = −2y + 1 gives
that a′ /∈ Jordρ(π) and a′ ∈ Jordρ(π′), to avoid a zero of µ(a′, π)(s) at s = 0. �

2.3. Remark. In this remark we shall suppose that Sn are split groups.

(i) By [Sh1], the condition (J-1) is equivalent to

(J-1’) a is even if ν1/2ρo 1 reduces and odd otherwise

(i.e. if ρo 1 or νρo 1 reduces).

(ii) If a > 1, then by the fourth section of [T2], (J-1) is equivalent to the fact that

δ(ρ, a)o 1 reduces

(here, 1 denotes the trivial representation of S0).
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3. General technical lemmas

In this section we shall collect some facts from the representation theory. Most of the
results are for classical groups. Some of them are very simple and well-known. First we
shall recall of the following simple fact.

3.1. Lemma. Let σ be an irreducible cuspidal subquotient of a Jacquet module rGM (π) of
an irreducible representation π of a connected reductive p-adic group G with respect to a
parabolic subgroup P = MN of G. Then

π ↪→ IndGP (σ).

Proof. Decompose rGM (π) into a direct sum with respect to the action of the Bernstein
center of M (into generalized eigenspaces for the action; it means that all irreducible sub-
quotients in one component have the same infinitesimal characters, and that for different
components we have different infinitesimal characters). Consider the component whose
infinitesimal character is equal to the infinitesimal character of σ. The assumption that σ
is a subquotient of the Jacquet module implies that this component is non-zero. Further,
since σ is irreducible cuspidal, σ must be also (isomorphic to) a quotient of this component.
Now the Frobenius reciprocity implies the lemma. �

3.2. Lemma. Let π be an irreducible representation of a reductive p-adic group and
let P = MN be a parabolic subgroup of G. Suppose that M is a direct product of two
reductive subgroups M1 and M2. Let τ1 be an irreducible representation of M1, and let τ2
be a representation of M2. Suppose

π ↪→ IndGP (τ1 ⊗ τ2).

Then there exists an irreducible representation τ ′2 such that

π ↪→ IndGP (τ1 ⊗ τ ′2).

Proof. First note that there is a non-zero intertwining from the Jacquet module rGM (π)
of π (with respect to P = MN) into τ1 ⊗ τ2. The image X has a finite length as a
representation of M . Therefore, X has an irreducible quotient, say τ ′1 ⊗ τ ′2. To see the
lemma, it is enough to show τ ′1

∼= τ1.
Now τ1 ⊗ τ2 (resp. τ ′1 ⊗ τ ′2) is, as a representation of M1, a sum of copies of τ1 (resp.

τ ′1). From the existence of a non-zero M1-intertwining from the subspace X of τ1⊗ τ2 into
τ ′1 ⊗ τ ′2, we get τ ′1 ∼= τ1 (since X is semi simple representation of M1, and it is isomorphic
to a direct sum of copies of τ1). �

3.3. Lemma. Let π be an irreducible representation of Sq. The following three sets of
irreducible cuspidal representations τ of general linear groups coincide

(1) The set of all τ for which there exists an irreducible subquotient σ ⊗ πcusp of sGL(π),
such that τ is in the support of σ (the support is defined in Proposition 1.10 of [Z]).
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(2) The set of all τ such that there exists an irreducible cuspidal subquotient ρ1⊗. . .⊗ρk⊗σ
of a standard Jacquet module of π and index i such that τ ∼= ρi (standard Jacquet module
means that it is a Jacquet module with respect to a standard parabolic subgroup).

(3) The set of all τ such that there exist irreducible cuspidal representations ρ1, . . . , ρk and
σ of general linear groups and of some Sq′ respectively, and an index i such that:

(3-1) π ↪→ ρ1 × . . .× ρk o σ

and τ ∼= ρi.

Irreducible cuspidal representations of general linear groups characterized by one of the
above descriptions will be called factors of π.

Proof. For i = 1, 2, 3, denote the set described in (i) by Xi. Proposition 1.10 of [Z]
and induction in stages implies X1 ⊆ X2. The transitivity of Jacquet modules and the
definition of the support in Proposition 1.10 of [Z] imply X2 ⊆ X1. Frobenius reciprocity
implies X3 ⊆ X2. At the end, X2 ⊆ X1 follows from Lemma 3.1. �

The following lemma is essentially claim about the representations of general linear
groups.

3.4. Lemma. Let π be an irreducible representation of Sq and let τ be a factor of π such
that ν−1τ is not a factor of π.
(i) Then there exists z ∈ Z+ and an irreducible representation σ of some Sq′ , q′ < q, such
that

π ↪→ δ([τ, νzτ ])o σ.

(ii) Let ρ′1⊗ρ′2⊗ . . .⊗ρ′l⊗πcusp be an irreducible cuspidal subquotient of a Jacquet module
of π, such that τ ∼= ρ′j′ . Suppose that there exists j ∈ Z+ such that νj+1τ 6∼= ρ′i for all
i < j′. Then one can find an embedding in (i) for which z ≤ j.
(iii) Let ρ′1 ⊗ ρ′2 ⊗ . . . ⊗ ρ′l ⊗ πcusp be an irreducible cuspidal subquotient of a Jacquet
module of π. Suppose that τ ∼= ρ′m for some m. Then there exists k ∈ Z+, k ≤ m− 1, and
irreducible cuspidal representations ρi, k + 2 ≤ i ≤ l, such that

(1) π ↪→ δ([τ, νkτ ])× ρk+2 × . . .× ρl o πcusp;
(2) ρ′i

∼= ρi for m+ 1 ≤ i ≤ l;
(3) νkτ, νk−1τ, . . . , τ, ρk+2, ρk+3, . . . , ρm is a permutation of ρ′1, ρ

′
2, . . . , ρ

′
m.

Proof. Obviously, (ii) implies (i). Now we shall show that (iii) implies (ii). Suppose that
we have proved (iii). Applying (iii) to (ii) for m = j′, we get π ↪→ δ([τ, νkτ ]) × ρk+2 ×
. . .× ρl o πcusp, where (ii) and (iii) imply k ≤ j. Now Lemma 3.2 imply (ii).

It remains to prove (iii). We shall do it now.
Look at all possible embeddings like

(3-2) π ↪→

 l∏
j=1

ρj

o πcusp,
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such that (2) and (3) hold. By Lemma 3.1, there exists at least one such embedding.
For such an embedding, we know that ρi ∼= τ for at least one i ≤ j. Among all such
embeddings, chose one with minimal possible index i such that ρi ∼= τ . Clearly, i ≤ m
The condition of the lemma implies

(3-3) ρj 6∼= ν−1ρi for 1 ≤ j ≤ i− 1.

Denote

π′ =

 l∏
j=i+1

ρj

o πcusp and τ =
(
⊗lj=i+1ρj

)
⊗ πcusp.

Let j′ ∈ {0, 1, . . . , i− 1} be maximal such that

(3-4) ρi−j = νjρi, for j = 0, 1, . . . , j′,

and

(3-5) π ↪→

i−j′−1∏
j=1

ρj

× δ([ρi, νj′ρi])o π′.
Clearly, there is at least one such j′ ≥ 0 satisfying (3-4) and (3-5) (it is j′ = 0). We shall
prove j′ = i− 1. This will complete the proof of the lemma.

Suppose j′ < i − 1. Look at ρi−j′−1. If ρi−j′−1 × δ([ρi, νj
′
ρi]) is irreducible, then

ρi−j′−1 × δ([ρi, νj
′
ρi]) ∼= δ([ρi, νj

′
ρi]) × ρi−j′−1. This would imply the existence of an

embedding of π like in (3-2), with ρi at the (i−1)-th place. Therefore, ρi−j′−1×δ([ρi, νj
′
ρi])

reduces. There are two possibility for that. The possibility ρi−j′−1
∼= ν−1ρi cannot happen

by the assumption of the lemma. Thus,

(3-6) ρi−j′−1 = νj
′+1ρi.

This implies that (3-4) holds for j′+ 1. Further, (3-5), (3-6) and the Frobenius reciprocity
imply that we have a non-zero intertwining φ from the corresponding Jacquet module
r
Sq
M (π) of π into

(3-7)
(
⊗i−j

′−2
j=1 ρj

)
⊗ νj

′+1ρi × δ([ρi, νj
′
ρi])⊗ τ.

Note that (3-7) is a length two representation with a unique irreducible subrepresentation,
which is

(
⊗i−j

′−2
j=1 ρj

)
⊗ δ([ρi, νj

′+1ρi])⊗ τ . Since j′ is maximal, the image of φ can not be
this irreducible subrepresentation (otherwise, the Frobenius reciprocity would imply that
(3-5) holds also for j′+ 1, and this would contradict to the assumption that j′ is maximal,
since we have seen already that (3-4) holds for j′ + 1). Therefore, the image is the whole
(3-7). From this (and transitivity of Jacquet modules) we conclude that(

⊗i−j
′−2

j=1 ρj

)
⊗ δ([ρi, νj

′
ρi])⊗ νj

′+1ρi ⊗ τ
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is a subquotient of a corresponding Jacquet module of π. Now Lemma 3.1 implies that ρi
can show up in embeddings like (3-2) at (i − 1)-th place, which contradicts our choice of
i. This contradiction ends the proof that j′ = i− 1. �

Now we shall recall of a notion of a strongly positive (or strictly positive) irreducible
representation of Sq, defined in [M2]. One says that π is strongly positive if for any factor
τ of π we have

e(τ) > 0.

The Casselman’s square integrability criterion implies that each strongly positive irre-
ducible representation is square integrable.

In this paper, we shall use several times the following

3.5. Lemma. Let π and τ be irreducible representations of Sq and Sq′ respectively.
Suppose that τ is tempered (resp. square integrable) and q > q′. Let γ be a representation
of GL(q − q′, F ′) of finite length. Suppose

(3-8) sGL(π) ≤ γ × sGL(τ),

and suppose that for each irreducible cuspidal subquotient ρ1⊗. . .⊗ρk of a standard Jacquet
module (with respect to the subgroup of upper triangular matrices; see [Z]) of γ, we have

j∑
i=1

e(ρi)dρi ≥ 0(3-9)

(
resp.

j∑
i=1

e(ρi)dρi > 0
)

(3-10)

for all j = 1, . . . , k (recall that dρi is defined by the condition that ρi is a representation
of GL(dρi , F

′)). Then π is tempered (resp. square integrable).

Proof. First note πcusp = τcusp. Further, (3-8) implies that for each irreducible cuspidal
subquotient

(3-11) ρ1 ⊗ . . .⊗ ρn ⊗ πcusp

of a standard Jacquet module of π, there exists a partition of {1, . . . , n} into two subsets

i1 < i2 < · · · < il and j1 < j2 < · · · < jm,

such that
ρi1 ⊗ . . .⊗ ρil

is a subquotient of a standard Jacquet module of γ and

ρj1 ⊗ . . .⊗ ρim ⊗ πcusp

is a subquotient of a standard Jacquet module of τ . Then transitivity of Jacquet modules
implies that ρj1⊗. . .⊗ρim⊗πcusp is a subquotient of a standard Jacquet module of sGL(τ).
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By the Casselman’s square integrability criterion, π is square integrable if and only if
for each subquotient (3-11) we have

(3-12)
j∑
i=1

e(ρi) dρi > 0 for every j = 1, . . . , n.

Suppose that τ is square integrable and γ satisfies (3-10). Then (3-10), square integrability
criterion (3-12) applied to τ , and the above description of the subquotients (3-11) in terms
of Jacquet modules of γ and τ , imply that π is square integrable. In the same way one
proves the claim of the lemma in the tempered case. �

Now we shall write a direct consequence of 5.1.2 from [M2].

3.6. Lemma. Suppose that π is an irreducible square integrable representation of Sq.
Let νxρ ⊗ τ be an irreducible subquotient of a standard Jacquet module of π, where ρ is
an irreducible F ′/F -selfdual cuspidal representation of GL(p, F ′), x ∈ R, and τ is an
irreducible representation of Sq′ . Then

(ρ, 2x+ 1) ∈ Jord(π).

Proof. Take irreducible cuspidal representations ρ1, . . . , ρl and σ of general linear groups
and (some) Sq′′ respectively, such that

τ ↪→ ρ1 × . . .× ρl o σ.

By the transitivity of Jacquet modules (and the Frobenius reciprocity), νxρ⊗ρ1×. . .⊗ρl⊗σ
is (an irreducible cuspidal) subquotient of a standard Jacquet module of π. Lemma 3.1
implies

π ↪→ νxρ× ρ1 × . . .× ρl o σ.

Lemma 3.2 implies the existence of an irreducible representation τ ′ such that

π ↪→ νxρo τ ′.

Now 5.1.2 of [M2] implies the lemma. �

4. On irreducible subrepresentations

In this section we shall present some facts related to irreducible subrepresentations and
their uniqueness. These facts shall be used frequently later.

4.1. Lemma. Let n ∈ N, let ρ be an irreducible cuspidal F ′/F -selfdual representation
of a general linear group and let πcusp be an irreducible cuspidal representation of Sq.
Suppose that α, β : {1, . . . , n} −→ R are functions which satisfy

β(i)− α(i) ∈ Z+ for all i,(4-1)

α(i) > 0 for all i, and(4-2)

β(1) < β(2) < · · · < β(n).(4-3)
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Then the representation (
n∏
i=1

δ([να(i)ρ, νβ(i)ρ])

)
o πcusp

has a unique irreducible subrepresentation.

Proof. For the proof of the lemma it is enough to show that the multiplicity of

(4-4)
(
⊗ni=1δ([ν

α(i)ρ, νβ(i)ρ])
)
⊗ πcusp

in the corresponding standard Jacquet module of
(∏n

i=1 δ([ν
α(i)ρ, νβ(i)ρ])

)
o πcusp is one.

First note

sGL

((
n∏
i=1

δ([να(i)ρ, νβ(i)ρ])

)
o πcusp

)

=

 n∏
i=1

 β(i)+1∑
ji=α(i)

δ([νjiρ, νβ(i)ρ])× δ([ν−ji+1ρ, ν−α(i)ρ])

⊗ πcusp.
Now (4-2) and the above formula imply that it is enough to see that the multiplicity of
(4-4) in a corresponding Jacquet module of

(∏n
i=1 δ([ν

α(i)ρ, νβ(i)ρ])
)
⊗ πcusp is one (since

to get (4-4) for a subquotient of a corresponding Jacquet module of a term in the above
formula, one needs to take ji = α(i) for all i, by (4-2)). To see this, it is enough to show
that the multiplicity of

(4-5) ⊗ni=1δ([ν
α(i)ρ, νβ(i)ρ])

in a corresponding Jacquet module of

n∏
i=1

δ([να(i)ρ, νβ(i)ρ])

is one.
Note that

(4-6) m∗

(
n∏
i=1

δ([να(i)ρ, νβ(i)ρ])

)

=
n∏
i=1

 β(i)∑
ji=α(i)−1

δ([νji+1ρ, νβ(i)ρ])⊗ δ([να(i)ρ, νjiρ])

 .

Let
∏n
i=1 δ([ν

α(i)ρ, νβ(i)ρ]) and δ([να(i)ρ, νβ(i)ρ]) be representations of GL(p′, F ′) and
GL(ki, F ′) respectively.
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Now we shall show that the multiplicity of ⊗ni=1δ([ν
α(i)ρ, νβ(i)ρ]) in a corresponding

Jacquet module of
∏n
i=1 δ([ν

α(i)ρ, νβ(i)ρ]) is one, by induction with respect to n. For
n = 1 the claim obviously holds. Suppose n > 1.

We shall compute the multiplicity of ⊗ni=1δ([ν
α(i)ρ, νβ(i)ρ]) in a corresponding Jacquet

module of
∏n
i=1 δ([ν

α(i)ρ, νβ(i)ρ]) using the formula (4-6) and transitivity of Jacquet mod-
ules. First we consider the Jacquet module with respect to GL(p′ − kn, F ′)×GL(kn, F ′).
To get ⊗ni=1δ([ν

α(i)ρ, νβ(i)ρ]) for a subquotient of corresponding Jacquet module of a term
in (4-6), we must take jn = β(n) (note that νβ(n)ρ shows up in the support of the last
tensor factors of ⊗ni=1δ([ν

α(i)ρ, νβ(i)ρ]), and then use (4-3)). Therefore, δ([να(n)ρ, νβ(n)ρ])
shows up on the right hand side of ⊗. Since we are considering the Jacquet module with
respect to GL(p′ − kn, F ′) × GL(kn, F ′), we must have ji = α(i) − 1 for 1 ≤ i ≤ n − 1.
Now applying the inductive assumption in the case of n− 1, one get the claim for n. �

The following evident fact we shall use a number of times.

4.2. Remark. Let π and π′ be representations of finite length. Suppose that π has at
most n irreducible subrepresentations. Let π′ ↪→ π. Then π′ has also at most n irreducible
subrepresentations.

The following lemma holds in a much bigger generality.

4.3. Lemma. Let π be an irreducible square integrable representation of Sq and let ρ
be an irreducible F ′/F -selfdual cuspidal representation of GL(p, F ′). Let α, β ∈ (1/2)Z+.
Then:
(i) The multiplicity of δ([ν−αρ, ναρ])⊗ π in µ∗(δ([ν−αρ, ναρ])o π) is 2.
(ii) Suppose β > α. Then the multiplicity of δ([ν−βρ, νβρ]) ⊗ δ([ν−αρ, ναρ]) ⊗ π in a
corresponding Jacquet module of δ([ν−βρ, νβρ])× δ([ν−αρ, ναρ])o π is 4.

Proof. We have

(4-7) µ∗
(
δ([ν−αρ, ναρ])o π

)
=
( α∑
i=−α−1

α∑
j=i

δ([ν−iρ, ναρ])× δ([νj+1ρ, ναρ])⊗ δ([νi+1ρ, νjρ])
)
o µ∗(π).

If i = j, then one gets directly that δ([ν−αρ, ναρ])⊗π can be a subquotient of corresponding
term only if i = −α − 1 and α. In each term the multiplicity is one (each of these terms
is just δ([ν−αρ, ναρ])⊗ π).

Suppose that we can get δ([ν−αρ, ναρ])⊗ π from a term corresponding to i < j. Then
−α − 1 ≤ i < j implies j + 1 > −α. Also −i > −α (if −i = −α, then i = α and thus
j = i = α what contradicts to i < j). Thus ν−αρ must come from µ∗(π). From the above
discussion and (4-7) we get that δ([ν−αρ, να−kρ]) ⊗ τ ≤ µ∗(π) for some k ∈ Z+, k ≤ 2α.
The Casselman’s square integrability criterion implies that π is not square integrable. This
contradiction completes the proof of (i).
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Suppose α < β. Write

(4-8) µ∗
(
δ([ν−βρ, νβρ])× δ([ν−αρ, ναρ])o π

)
=
( β∑
i=−β−1

β∑
j=i

δ([ν−iρ, νβρ])× δ([νj+1ρ, νβρ])⊗ δ([νi+1ρ, νjρ])
)

×M∗(δ([ν−αρ, ναρ]))o µ∗(π).

We analyze when one can get δ([ν−βρ, νβρ]) ⊗ τ for a subquotient of (4-8) (where τ is
arbitrary irreducible representation). One can get it for i = j = −β−1 or β, and these are
the only cases when one can get it if i = j. Then the corresponding term in the above sum is
δ([ν−βρ, νβρ])⊗M∗(δ([ν−αρ, ναρ]))oµ∗(π) = δ([ν−βρ, νβρ])⊗µ∗(δ([ν−αρ, ναρ])oπ). Now
(i) tells that the multiplicity of δ([ν−βρ, νβρ])⊗δ([ν−αρ, ναρ])⊗π in each of these two terms
is two. Therefore, to prove (ii), one needs to show that one can not get δ([ν−βρ, νβρ])⊗ τ
for a subquotient of (4-8) if i < j.

Suppose that we can get it for some i < j. We shall have now similar arguments as
in the proof of (i). To get δ([ν−βρ, νβρ]) ⊗ τ , one needs to get ν−βρ on the left hand
side of ⊗. Note that ν−βρ can not come from M∗(δ([ν−αρ, ναρ])) since α < β. Suppose
now that M∗(δ([ν−αρ, ναρ])) gives a non-trivial contribution to the left hand side of ⊗
of the term where δ([ν−βρ, νβρ]) ⊗ τ is a subquotient. Then a short discussion gives
δ([ν−βρ, νβ−kρ]) ⊗ τ ≤ µ∗(π) for some k ∈ N, k ≤ 2β. This contradicts to the square
integrability of π. Thus, M∗(δ([ν−αρ, ναρ])) does not give a non-trivial contribution to
the left hand side of ⊗. Now one can repeat the argument from (i) without change, and
get that we cannot get δ([ν−βρ, νβρ]) ⊗ τ for for a subquotient if i < j. This completes
the proof. �

The following lemma (which holds in a much bigger generality) points out a well-known
property of the Langlands classification. We state it in the setting in which we shall use
the property later.

4.4. Lemma. Suppose that τ is an irreducible tempered representation of Sq and suppose
that ρ is an irreducible cuspidal F ′/F -selfdual representation of a general linear group
GL(p). Let x, y ∈ R be such that y − x ∈ Z+ and x+ y > 0. Then the representation

δ([νxρ, νyρ])o τ

has a unique irreducible quotient. Denote it by π. The multiplicity of δ([ν−yρ, ν−xρ])⊗ τ
in µ∗(δ([νxρ, νyρ])o τ) and µ∗(π) is one.

Proof. It is a well-known property of the Langlands classification that the multiplicity
of δ([ν−yρ, ν−xρ]) ⊗ τ in µ∗(δ([νxρ, νyρ]) o τ) is one (this implies the uniqueness of the
irreducible quotient). One can also get this fact easily using the formula (1-1) (and (1-
3), where we allow a− in (1-3) also to be negative). Further, π ↪→ δ([ν−yρ, ν−xρ]) o τ
(this follows from the fact that π is an image of the long intertwining operator in the
Langlands classification). The Frobenius reciprocity now implies that the multiplicity of
δ([ν−yρ, ν−xρ])⊗ τ in µ∗(π) is one. �
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4.5. Lemma. Let π be an irreducible square integrable representation of Sq and let ρ
be an irreducible F ′/F -selfdual cuspidal representation of GL(p, F ′). Fix a ∈ Z+ and fix
positive numbers α1, . . . , αk. Suppose

(i) αi > (a− 1)/2 for all i = 1, . . . , k, or αi < (a− 1)/2 for all i = 1, . . . , k;
(ii) αi 6= αj for i 6= j in {1, . . . , k};
(iii) (ρ, 2αi + 1) 6∈ Jord(π) for i = 1, . . . , k.

Let T be any irreducible subrepresentation of δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])oπ (this is a unita-
rizable representation). Then the multiplicity of

(
⊗ki=1ν

αiρ
)
⊗T in corresponding standard

Jacquet modules of
(∏k

i=1 ν
αiρ
)
o T and

(∏k
i=1 ν

αiρ
)
× δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π is

one. In particular,
(∏k

i=1 ν
αiρ
)
o T contains a unique irreducible subrepresentation.

Further, the multiplicity of
(
⊗ki=1ν

αiρ
)
⊗δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])⊗π in a corresponding

standard Jacquet module of
(∏k

i=1 ν
αiρ
)
×δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])oπ is two, and the last

representation has at most two irreducible subrepresentations. If we have two irreducible
subrepresentations, they are not isomorphic.

Proof. The Frobenius reciprocity implies that the multiplicity of
(

k
⊗
i=1
ναiρ

)
⊗ T in a

corresponding Jacquet module of
(

k∏
i=1

ναiρ

)
o T is at least one. Now write

µ∗

((
k∏
i=1

ναiρ

)
× δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π

)
(4-9)

=
( k∏
i=1

(
1⊗ ναiρ+ ναiρ⊗ 1 + ν−αiρ⊗ 1

))
(4-10)

×
( (a−1)/2∑
i′=−(a−1)/2−1

(a−1)/2∑
j′=i′

δ([ν−i
′
ρ, ν(a−1)/2ρ])× δ([νj

′+1ρ, ν(a−1)/2ρ])(4-11)

⊗δ([νi
′+1ρ, νj

′
ρ])
)
o µ∗(π).(4-11)

Denote Ψ =
(∏k

i=1 ν
αiρ
)
× δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π.

Let τ be an irreducible representation of GL(kp, F ′) such that ⊗ki=1ν
αiρ is a subquotient

of a corresponding Jacquet module of τ . Then the support of τ is να1ρ, να2ρ, . . . , ναkρ.
Let σ be an irreducible representation of Sq−kp. Each of

(
⊗ki=1ν

αiρ
)
⊗ T ,

(
⊗ki=1ν

αiρ
)
⊗

δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]) ⊗ π, which is a subquotient of a corresponding Jacquet module
of Ψ, is a subquotient of some τ ⊗σ as above (we use the transitivity of Jacquet modules).

First we shall analyze which terms in the above sum (4-10) – (4-11) can give (after
further multiplication) τ ⊗ σ as above, for a subquotient. We shall first discuss how
one can chose terms in the sum in (4-11). Suppose that for some indexes i′, j′ we have
−i′ ≤ (a − 1)/2 or j′ + 1 ≤ (a − 1)/2. Then we would have ν(a−1)/2ρ in the support of
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τ , which contradict (i). Thus we always have i′ = −(a − 1)/2 − 1 and j′ = (a − 1)/2.
Therefore, there is only one possibility for the term in the sum in (4-11). This term is

1⊗ δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]).

Now we shall discuss how one can chose the terms in the product (4-10) . First of all,
since αi > 0 for all i, we must not take ν−αiρ ⊗ 1, since ν−αiρ are not in the support of
τ . Thus, we must take either 1⊗ ναiρ or ναiρ⊗ 1.

Suppose that for some index i, we have chosen 1 ⊗ ναiρ (which gives τ ⊗ σ for a
subquotient after further multiplication). Since ναiρ is in the support of τ , and we have
seen that in (4-11) we must take the term 1⊗ δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]), to be able to get
τ ⊗ σ for a subquotient, we must have an irreducible representation τ ′ ⊗ σ′ such that

τ ′ ⊗ σ′ ≤ µ∗(π), Supp(τ ′) ⊆ {να1ρ, . . . , ναkρ} and ναiρ ∈ Supp(τ ′)

((ii) implies that Supp(τ) and Supp(τ ′) are actually sets). The above discussion and
Lemma 3.2 imply that ναjρ⊗ σ′′ ≤ µ∗(π) for some ναjρ ∈ Supp(τ ′) and some irreducible
representation σ′′. Lemma 3.6 implies (ρ, 2αj + 1) ∈ Jord(π). This contradicts (iii).
Therefore, we must always take terms ναiρ⊗ 1 in the product.

Thus, τ ⊗ σ must be a subquotient
(∏k

i=1 ν
αiρ
)
⊗ δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π. Note

that
∏k
i=1 ν

αiρ is a regular representation of GL(kp, F ′). Since δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o
π is a multiplicity one representation by (i) of Lemma 4.3 and the Frobenius reciprocity, the
multiplicity one of

(
⊗ki=1ν

αiρ
)
⊗T claimed in the lemma directly follows. Further, the claim

of the lemma about multiplicity two of
(
⊗ki=1ν

αiρ
)
⊗ δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])⊗π follows

from (i) of Lemma 4.3. The claims about the number of irreducible subrepresentations
follow from the Frobenius reciprocity and the above multiplicities which we have calculated.

The previous part of the proof implies that if
(∏k

i=1 ν
αiρ
)
×δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o

π has two irreducible subrepresentations, say π1 and π−1, then δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o
π reduces into a sum of irreducible representations T1⊕T−1. Further, πi ↪→

(∏k
i=1 ν

αiρ
)
o

Ti for i = ±1, or πi ↪→
(∏k

i=1 ν
αiρ
)
o T−i for i = ±1. This implies that

(
⊗ki=1ν

αiρ
)
⊗ Ti

is a subquotient of a corresponding Jacquet module of πi for i = ±1, or
(
⊗ki=1ν

αiρ
)
⊗ T−i

is a subquotient of a corresponding Jacquet module of πi for i = ±1. Now the first part
of the proof implies π1 6∼= π−1. �

Note that for the proof of the above lemma we could suppose instead (i) a weaker
condition: (a − 1)/2 6∈ {a1, α2, . . . , αk}. Actually, the lemma holds in a much bigger
generality, but we prove a version which is adapted for our most often applications.

4.6. Lemma. Let ρ be an irreducible cuspidal F ′/F -selfdual representations of GL(p, F ′)
and let π be an irreducible square integrable representation of Sq. Let a−, a ∈ N, a− < a.
Suppose that δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π reduces. Write

δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π = T1 ⊕ T−1,
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where Tη are irreducible and T1 6∼= T−1 (we can do this by (i) of Lemma 4.3). Suppose that
(ρ, b) 6∈ Jord(π) for a− ≤ b ≤ a. For η ∈ {±1} denote

ση =
(

(a−1)/2−((a−−1)/2+1)

⊗
i=0

ν(a−1)/2−iρ

)
⊗ Tη,

π0 = δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π,

πη =

(a−1)/2−((a−−1)/2+1)∏
i=0

ν(a−1)/2−iρ

o Tη,
π′η = δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])o Tη.

Then:
(i) The multiplicity of ση in corresponding Jacquet modules of π0, πη and π′η is one.
(ii) The multiplicity of ση in corresponding Jacquet modules of π−η and π′−η is zero.

Proof. Let k ∈ Z+. For an irreducible representation γ of Sq and τ ⊗ σ of M(p′)
∼=

GL(p′, F ′)× Sq−p′ we shall write

m(τ ⊗ σ, µ∗(γ)) = k

if k(τ ⊗ σ) ≤ µ∗(γ) and (k + 1)(τ ⊗ σ) 6≤ µ∗(γ).
Denote

σ′η = δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])⊗ Tη.

Then the multiplicity of σ′η in corresponding Jacquet modules of π0, πη, π−η, π′η and π′−η is
equal to multiplicity of ση in corresponding Jacquet modules of π0, πη, π−η, π′η and π′−η re-
spectively (this follows from the well-known characterization of δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])
in terms of Jacquet modules).

We have

(4-13) µ∗
(
δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π

)
=
( (a−1)/2∑
i=−(a−−1)/2−1

(a−1)/2∑
j=i

δ([ν−iρ, ν(a−−1)/2ρ])× δ([νj+1ρ, ν(a−1)/2ρ])⊗ δ([νi+1ρ, νjρ])
)

o µ∗(π).

Note

(4-14) π′η ≤ πη.

Since

δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])⊗ δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])

≤M∗(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]))



DISCRETE SERIES 29

(take in (4-13) indexes i = −(a− − 1)/2− 1, j = (a− − 1)/2), we get

(4-15) 1 ≤ m(σ′η : µ∗(π0)).

The Frobenius reciprocity implies

(4-16) 1 ≤ m(σ′η : µ∗(π′η)).

Now (4-14) implies

(4-17) 1 ≤ m(σ′η : µ∗(πη)).

Note

(4-18) π0 ≤ π′1 + π′−1 ≤ π1 + π−1.

Lemma 4.5 implies

(4-19) m(ση, µ∗(π1 + π−1)) = m(ση, µ∗(πη)) = 1.

Now from (4-14) - (4-19) we can conclude all the claims of the lemma. �

From the above lemma follows directly the following corollary, which is already proved
in [M2] (Remark 5.1.1).

4.7. Corollary. Let the notation and the assumptions be the same as in the above lemma.
Then

(i) The representation π0 has exactly two irreducible subrepresentations. They are not
isomorphic.

(ii) The representation πη has a unique irreducible subrepresentation. This subrepresen-
tation is a unique irreducible subrepresentation of π′η. The corresponding two irreducible
subrepresentations, for η = ±1, are irreducible subrepresentations of π0.

(iii) The representations π′η are reducible.

Proof. We get directly (i) and (ii) from π0 ↪→ π1⊕π−1 and the multiplicities in the above
lemma. Namely, π1 and π−1 have unique irreducible subrepresentations and they are not
isomorphic (this follows from the above lemma). Further, these irreducible subrepresenta-
tions must show up in π0 because of the multiplicities calculated in the above lemma. It
remains to prove (iii).

Suppose that π′η is irreducible. Then π′η ≤ π0 by (ii). This implies µ∗(π′η) ≤ µ∗(π0).
Therefore, δ([ν−(a−1)/2ρ, ν−(a−−1)/2−1ρ])⊗Tη is a subquotient of (4-13) (see Lemma 4.4).
Since a, a− > 0, to be able to get δ([ν−(a−1)/2ρ, ν−(a−−1)/2−1ρ])⊗ Tη for a subquotient of
a term in the sum (4-13), we need to have −i > (a− − 1)/2 and j + 1 > (a − 1)/2. This
implies i = −(a− − 1)/2− 1 and j = (a− 1)/2. Thus, δ([ν−(a−1)/2ρ, ν−(a−−1)/2−1ρ])⊗ Tη
must be a subquotient of 1⊗ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])oµ∗(π). Therefore, we must have
δ([ν−(a−1)/2ρ, ν−(a−−1)/2−1ρ]) ⊗ τ ≤ µ∗(π) for some irreducible τ . This contradicts the
square integrability of π. The proof is now complete. �
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5. Factors of square integrable representations and Jord

We shall use very often the following lemma, which follows from Remark 5.1.3 of [M2].

5.1. Lemma. Let π be an irreducible square integrable representation of Sq and let ρ be
an irreducible F ′/F -selfdual cuspidal representation of GL(p, F ′). Suppose that we have
a ∈ Jordρ(π) such that a− is defined and that holds

επ(ρ, a) = επ(ρ, a−).

Denote Jord′ = Jord(π) \ {(ρ, a), (ρ, a−)}. Let Jord′, πcusp, ε′ be the subordinated triple
to Jord(π), πcusp, επ. Then there exists an irreducible square integrable representation π′

of Sq−p(a+a−)/2 such that (Jord(π′), π′cusp, επ′) = (Jord′, πcusp, ε′). Further

(5-1) π ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′.

Proof. Since επ(ρ, a) = επ(ρ, a−), we have π ↪→ δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ]) o τ for some
irreducible τ . The first lemma in the fifth section of [M2] implies

τ ↪→ δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′

for the irreducible square integrable representation π′ satisfying (Jord(π′), (π′)cusp, επ′) =
(Jord′, πcusp, ε′). Thus

(5-2) π ↪→ δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′.

Note that

(5-3) δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′

↪→ δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′.

By Lemma 4.5 (and Remark 4.2), the representation

δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′

has exactly two irreducible subrepresentations. Since Corollary 4.7 implies that the rep-
resentation δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) o π′ has also exactly two irreducible subrepresen-
tations, (5-2) and (5-3) imply (5-1). �

Let π be an irreducible square integrable representation of Sq. If π is strongly positive,
then by definition

e(τ) > 0

for each factor τ of π. Further, the admissible triple Jord(π), πcusp, επ is of alternated
type. Suppose that π is not strongly positive. Then Jord(π), πcusp, επ is of mixed type.
The the following lemma gives us a general information about factors of square integrable
representations which are not strongly positive.
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To simplify discussion in some cases, we shall often in the sequel restrict us to the case
where the admissible triple Jord, πcusp, ε satisfies the following condition: there exists an
irreducible cuspidal F ′/F -selfdual representation ρ of GL(p, F ′) such that

(L) Jord \ {(ρ, a); a ∈ Jordρ} ⊆ Jord(πcusp).

This means that we are looking only at the irreducible square integrable representations
which are subquotients of the parabolically induced representations of the following type:(∏

x∈R
νxρ

)
o πcusp,

where R is a finite subset of R.
We shall say that an irreducible square integrable representation π of Sq satisfies (L),

if Jord(π), πcusp, επ satisfies (L). The representation ρ in the condition (L) will be always
fixed in such a way, that it is clear which ρ is considered.

5.2. Lemma. Suppose that π is an irreducible square integrable representation of Sq
which is not strongly positive. Take any (ρ, a) ∈ Jord(π) such that a− ∈ Jordρ(π) is
defined, and that επ(ρ, a) = επ(ρ, a−). Suppose that (L) holds. Define aρ(π) ∈ Jordρ(π)
to be maximal such a in Jordρ(π) (then aρ(π)− ∈ Jordρ(π) is defined and επ(ρ, aρ(π)) =
επ(ρ, aρ(π)−)). Now if τ = νkρ, k ∈ R, is a factor of π, then

(5-4) k = e(τ) ≥ −(aρ(π)− − 1)/2.

Proof. The proof proceeds by induction with respect to q. Denote

a = aρ(π).

By the above lemma, there exists an irreducible square integrable representation π′ such
that

(5-5) π ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′

where

(5-6) Jordρ(π′) = Jordρ(π) \ {a, a−}

and Jord(π′), π′cusp, επ′ is subordinated to Jord(π), πcusp, επ. Note that (5-6) and the
inductive assumption imply

(5-7) either π′ is strongly positive, or aρ(π′) is defined and aρ(π′)− < a− = aρ(π)−.

Thus, the by inductive assumption by the fact that π′ is strongly positive if it is strongly
positive, imply that ναρ is not a factor of π′ if α ≤ −(a− − 1)/2.
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Suppose that (5-4) does not hold. Let τ = νkρ be a factor for which (5-4) does not
hold. Fix such a factor τ = νkρ with minimal possible k. Note that (5-5), the fact that
ναρ is not a factor of π′ if α ≤ −(a− − 1)/2, (1-2) and (1-4) imply that

(5-8) k ∈ [−(a− 1)/2,−(a− − 1)/2− 1]

(and k + (a − 1)/2 ∈ Z). Clearly k ≤ −1. By the choice of k, τ = νkρ satisfies the
assumption of Lemma 3.4 (and also (5-8)). Let c = −2k + 1 (then k = −(c − 1)/2 and
c ≥ 3). Now (5-8) implies −(a− 1)/2 ≤ −(c− 1)/2 < −(a− − 1)/2. Thus

(5-9) a− < c ≤ a.

Lemma 3.4 implies

(5-10) π ↪→ δ([ν−(c−1)/2ρ, ν(b−1)/2ρ])o π′′

for some b ∈ c+ 2Z which satisfies −(c− 1)/2 ≤ (b− 1)/2 (i.e. b+ c− 2 ≥ 0). The square
integrability of π and (5-10) (and the Frobenius reciprocity), imply

(5-11) c < b.

Since (by our choice) k is minimal such that νkρ is a factor of π, there is no embedding
π ↪→ δ([ν−(c′−1)/2ρ, ν(b−1)/2ρ])oπ′′′, for some irreducible π′′′ with −(c′−1)/2 < (c−1)/2.
Therefore, Remark 3.2 of [M2] implies that π′′ is square integrable. Proposition 2.1 now
implies

(5-12) b, c ∈ Jordρ(π).

From (5-9), (5-11) and (5-12) we get

(5-13) a ≤ c < b.

This implies that b− ∈ Jordρ(π) is defined and (5-13) implies b− ≥ c. Now (5-10), Lemma
3.2 and the definition of επ imply

(5-14) επ(ρ, b) = επ(ρ, b−)

(see also Lemma 5.2 in [M2]).
Note that (5-14) implies b ≤ a = aρ(π). This contradicts to (5-13). This contradiction

completes the proof. �

We shall include here the following lemma, although we shall not use the lemma in this
paper. This lemma complements Lemma 5.4.1 of [M2].
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5.3. Lemma. Let π be an irreducible square integrable representation. Suppose a ∈
Jordρ(π) and a+ 2 6∈ Jordρ(π). Then

(10-1) ν(a+1)/2ρo π

reduces. Further, it contains a unique irreducible subrepresentation

Proof. Suppose that ν(a+1)/2ρoπ is irreducible. Let τ be an irreducible subrepresentation
of δ([ν−(a+1)/2ρ, ν(a+1)/2ρ])o π. Then

τ ↪→ δ([ν−(a+1)/2ρ, ν(a+1)/2ρ])o π

↪→ δ([ν−(a+1)/2+1ρ+ 1, ν(a+1)/2ρ])× ν−(a+1)/2ρo π

∼= δ([ν−(a+1)/2+1ρ+ 1, ν(a+1)/2ρ])× ν(a+1)/2ρo π

∼= ν(a+1)/2ρ× δ([ν−(a+1)/2+1ρ+ 1, ν(a+1)/2ρ])o π

↪→ ν(a+1)/2ρ× ν(a+1)/2ρ× δ([ν−(a+1)/2+1ρ+ 1, ν(a+1)/2−1ρ])o π.

Now Frobenius reciprocity implies that

τ ′ = ν(a+1)/2ρ× ν(a+1)/2ρ⊗ δ([ν−(a−1)/2ρ+ 1, ν(a−1)/2ρ])o π

is a subquotient of a corresponding Jacquet module of π (note that τ ′ is irreducible).
Now we get directly that the multiplicity of τ ′ in µ∗(δ([ν−(a+1)/2ρ, ν(a+1)/2ρ]) o π) is

one (one uses a+2 6∈ Jordρ(π)). This proves irreducibility of δ([ν−(a+1)/2ρ, ν(a+1)/2ρ])oπ,
which contradicts our assumption a+ 2 6∈ Jordρ(π) (note that a ∈ Jordρ(π) and therefore
a and also a+2 satisfy (J-1)). Thus, we have proved reducibility. From Lemma 4.5 follows
the uniqueness of irreducible subrepresentation. �

Having in mind Lemma 5.4.1 of [M2] and the above (simple) lemma, it remains to
describe a criterion for reducibility of ν(a+1)/2ρ o π when a ∈ Jordρ(π) and a + 2 ∈
Jordρ(π). The criterion is the following: we have irreducibility if and only if

επ(ρ, a+ 2) 6= επ(ρ, a).

This is proved using intertwining operators. The composition of the two standard inter-
twining operators:

ν(a+1)/2+sρo π → ν−(a+1)/2−sρo π → ν(a+1)/2+sρo π

is holomorphic and non-zero at s = 0 under the hypothesis that (ρ, a) and (ρ, a + 2) are
in Jord(π). Moreover the first one is holomorphic at s = 0 by a general result of Harish-
Chandra. Therefore, we need to prove that the second one is also holomorphic. This can
be done by an inductive argument with respect to π (since the argument is longer for
writing, and we shall not use this result in this paper, we shall not write it down here).
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6. Theorem

In [M2] is proved that the mapping π −→ (Jord(π), πcusp, επ) is an injective mapping
from the set of all equivalence classes of irreducible square integrable representation of Sn
into the set of all admissible triples of degree n. In this paper we shall prove that this
mapping is surjective. In this way we shall prove the following

6.1. Theorem. Assume that (BA) and (A) hold. Then the map π −→ (Jord(π), πcusp, επ)
defines a bijection of the set of all equivalence classes of irreducible square integrable rep-
resentation of Sn onto the set of all admissible triples of degree n.

This classification theorem can be formulated without assuming (A). For such formu-
lations, see Remark 14.5.

In the next five sections we shall prove this theorem.

7. Strongly positive irreducible representations

Let Jord, πcusp, ε be an admissible triple of alternated type. In the first part of this
section we shall assume that (L) holds for this triple. When we shall work with Jord
which satisfies (L), then for a ∈ Jordρ we shall usually denote ε(ρ, a) simply by ε(a). Also
the function φρ will be denoted simply by φ. Note that if ρ′ 6∼= ρ, then φρ′(b) = b for
b ∈ Jordρ′ = Jordρ′(πcusp).

Write the elements of Jordρ as

(7-1) a1 < a2 < · · · < ak

(the possibility k = 0 is not excluded). Recall that Jordρ ⊆ 2N or 1 + 2Z+. We shall say
that we are in the even case if Jordρ ⊆ 2N, and in the odd case if Jordρ ⊆ 1 + 2Z+.

If we are in the odd case, then from (2-3) and (2-6) follows

Jord′ρ(πcusp) = {1, 3, . . . , 2k − 1},(7-2)

φ : {a1, a2, . . . , ak} −→ {1, 3, . . . , 2k − 1}, ai 7→ 2i− 1.(7-3)

In the even case we have two possibilities.
Suppose ε(a1) = −1. Then

Jord′ρ(πcusp) = {2, 4, . . . , 2k},(7-4)

φ : {a1, a2, . . . , ak} −→ {2, 4, . . . , 2k}, ai 7→ 2i.(7-5)

If ε(a1) = 1, then

Jord′ρ(πcusp) = {0, 2, 4, . . . , 2(k − 1)},(7-6)

φ : {a1, a2, . . . , ak} −→ {0, 2, 4, . . . , 2(k − 1)}, ai 7→ 2(i− 1).(7-7)

Suppose that we have some Jord and πcusp (we do not assume that they form an
admissible triple in the moment). Assume that they satisfy (L). Write Jordρ as in (7-1).
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Let Jordρ ⊆ 1 + 2Z. Suppose we have a function φ as in (7-3). Then it is easy to
see that there is a unique partially defined function ε such that Jord, πcusp, ε form an
admissible triple of alternated type, and that the corresponding function φρ is φ.

suppose Jordρ ⊆ 2Z and suppose that a function φ as in (7-5) (resp. (7-7)), is given.
Then again there exists a unique partially defined function ε such that Jord, πcusp, ε form
an admissible triple of alternated type such that the corresponding function φρ is φ. One
need to take ε(a1) = −1 (resp. ε(a1) = 1).

Therefore, we do not need to work with ε’s. Instead we can work directly with functions
φ.

Note that (7-1) – (7-7) imply

ai ≥ φ(ai)(7-8)

ai′ > φ(ai′) ⇒ ai ≥ φ(ai) + 2 for all i ≥ i′.(7-9)

Lemma 4.1 implies that the representation

(7-10) σ0 =

(
k∏
i=1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

)
o πcusp

has a unique irreducible subrepresentation. We shall denote this subrepresentation by

(7-11) π = π(Jord,πcusp,ε) = π(Jord,πcusp,φ).

In this section we shall prove

7.1. Proposition. The representation π is strongly positive (square integrable represen-
tation).

If φ(ai) = ai for all i, then π = πcusp and the proposition holds. If this is not the case,
then ak ≥ φ(ak) + 2. Therefore, we shall assume

ak ≥ φ(ak) + 2.

We shall prove the proposition by induction with respect to the degree of Jord.
Let

j = min{i ; 1 ≤ i ≤ k and ai > φ(ai)}.

In the proof of the proposition we shall need the following

7.2. Lemma. (i) The multiplicity of

ν(aj−1)/2ρ⊗δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−1ρ])⊗
(
⊗ki=j+1δ([ν

(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])
)
⊗πcusp

in a corresponding standard Jacquet module of

(7-12) σ1 = ν(aj−1)/2ρ× δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−1ρ])

×

 k∏
i=j+1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
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is one.
(ii) Suppose aj ≥ φ(aj) + 4. Then the multiplicity of

δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])⊗ δ([ν(φ(aj)+1)/2ρ, ν(aj−2)/2−2ρ])

⊗
(
⊗ki=j+1δ([ν

(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])
)
⊗ πcusp

in a corresponding standard Jacquet module of

(7-13) σ2 = δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])× δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−2ρ])

×

 k∏
i=j+1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
is one.
(iii) Suppose aj = φ(aj) + 2 and j < n. Then the multiplicity of

ν(aj−1)/2ρ⊗ ν(aj+1−1)/2ρ⊗ δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ])

⊗
(
⊗ki=j+2δ([ν

(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])
)
⊗ πcusp

in a corresponding standard Jacquet module of

(7-14) σ3 = ν(aj−1)/2ρ× ν(aj+1−1)/2ρ× δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ])

×

 k∏
i=j+2

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
is one.

Proof. (i) In the same way as in Lemma 4.1, the proof of (i) reduces to the fact that
the multiplicity of ν(aj−1)/2ρ⊗ δ([ν(φ(aj)+1)/2ρ, ν(aj−2)/2−1ρ]) in a corresponding Jacquet
module of ν(aj−1)/2ρ× δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−1ρ]) is one. This is true, since we are in
the regular situation.

(ii) Again, as in the proof of Lemma 4.1, the proof of (ii) reduces to the fact that the mul-
tiplicity of δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ]) ⊗ δ([ν(φ(aj)+1)/2ρ, ν(aj−2)/2−2ρ]) in a correspond-
ing Jacquet module of δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])×δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−2ρ]) is one.
This again follow from the regularity.

(iii) The proof of (iii) proceeds in a similar way. The proof reduces to the fact that the
multiplicity of ν(aj−1)/2ρ ⊗ ν(aj+1−1)/2ρ ⊗ δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ]) in a corre-
sponding Jacquet module of ν(aj−1)/2ρ×ν(aj+1−1)/2ρ×δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ])
is one.

Note that aj = φ(aj) + 2 < φ(aj+1) + 2. This implies (aj − 1)/2 < (φ(aj+1) + 1)/2.
Thus, we are again in the regular situation. Therefore, the above multiplicity one holds
and further, the multiplicity one claimed in (iii) holds. �
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Proof of Proposition 7.1. We use the notation from the beginning of this section and after
Proposition 7.1. Recall that σ0 is defined in (7-10).

First we shall define a new triple with the same πcusp.
Denote Jord′ = (Jord \ {(ρ, aj)}) ∪ {(ρ, aj − 2)} if aj 6= 2. Let φ′ be the function on

Jord′ρ defined by φ′(aj − 2) = φ(aj) and φ′(ai) = φ(ai) otherwise.
Suppose aj = 2 (then j = 1 and we are in the setting of (7-6) and (7-7)). Denote

Jord′ = Jord \ {(ρ, 2)}. In this case take φ′ to be the restriction of φ.
Now the representation

σ′1 = δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−1ρ])×

 k∏
i=j+1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
contains by Lemma 4.1 a unique irreducible subrepresentation π′ = π(Jord′,πcusp,φ′). By
the inductive assumption, π′ is strongly positive (square integrable representation).

Note that σ1 = ν(aj−1)/2ρoσ′1, and that this representation by (i) of Lemma 7.2 contains
a unique irreducible subrepresentation. Clearly ν(aj−1)/2ρ o π′ ↪→ ν(aj−1)/2ρ o σ′1. Since
σ0 ↪→ ν(aj−1)/2ρo σ′1 and π ↪→ σ0, we get

(7-15) π ↪→ ν(aj−1)/2ρo π′.

This implies

(7-16) sGL(π) ≤ (ν(aj−1)/2ρ+ ν−(aj−1)/2ρ)× sGL(π′).

Suppose that π′ is cuspidal. Then

(7-17) φ(aj) = aj − 2 and j = k.

Thus, π ↪→ ν(ak−1)/2ρ o πcusp. Suppose that we are in the even case. If ε(a1) = 1, then
k must be 1, and then a1 = 2. The reducibility is at 1/2 by (BA). This implies that the
irreducible subrepresentation of ν1/2ρ o πcusp is square integrable and strongly positive.
Suppose ε(a1) = −1. Then ak = 2k + 2. Now we have reducibility at (2k + 1)/2 =
(ak − 1)/2. Therefore, we get again that π is strongly positive. Suppose that we are
in the odd case. Now (7-16) and the definition of j imply that we have reducibility at
((2k − 1) + 1)/2 = k = (ak − 1)/2. Thus, π is again strongly positive.

It remains to consider the case of non-cuspidal π′. There are two possibilities.
Assume aj > φ(j)+2. Thus aj ≥ φ(j)+4 (note that aj−1 = φ(aj−1) if j > 1). If aj > 4,

define Jord′′ = (Jord \ {(ρ, aj)}) ∪ {(ρ, aj − 4)}, and define φ′′) by φ′′(aj − 4) = φ(aj)
and φ′′(ai) = φ(ai) otherwise. If aj = φ(j) + 4, define Jord′′ = Jord \ {(ρ, aj)} and take
φ′′ to be the restriction of φ.

Now the representation

σ′2 = δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−2ρ])×

 k∏
i=j+1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
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contains a unique irreducible subrepresentation π′′ = π(Jord′′,πcusp,φ′′). By the induc-
tive assumption, π′′ is strongly positive. Since σ0 ↪→ δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ]) o σ′2,
δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ]) o π′′ ↪→ δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ]) o σ′2, π ↪→ σ0 and σ2 =
δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])o σ′2 contains a unique irreducible subrepresentation, we get

(7-18) π ↪→ δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])o π′′.

This implies

(7-19) sGL(π) ≤ (δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ]) + ν−(aj−1)/2−1ρ× ν(aj−1)/2ρ

+ δ([ν−(aj−1)/2ρ, ν−(aj−1)/2+1ρ]))× sGL(π′′).

Since π′ and π′′ are strongly positive, (7-19) applied to (7-16) gives

(7-20) sGL(π) ≤ ν(aj−1)/2ρ× sGL(π′).

Since π′ is strongly positive, (7-20) implies that π is strongly positive.
It remains to consider the case aj = φ(aj) + 2. Since π′ is not cuspidal, we have j < k.
Suppose aj+1 = φ(aj+1) + 2. Note that aj+1 = φ(aj+1) + 2 = φ(aj) + 4 = aj + 2. Then

in the same way as we defined strongly positive representation π′ from π, we can repeat
that construction and get that there exists an irreducible subrepresentation π′′′ of

σ′3 =

 k∏
i=j+2

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp,
which is by the inductive assumption strongly positive, and that

(7-21) π′ ↪→ ν(aj+1)/2ρo π′′′,

which implies

(7-22) π ↪→ ν(aj−1)/2ρoπ′ ↪→ ν(aj−1)/2ρ×ν(aj+1)/2ρoπ′′′ ↪→ ν(aj−1)/2ρ×ν(aj+1)/2ρoσ′3.

Since
s([ν(aj−1)/2ρ, ν(aj−1)/2+1ρ])o π′′′ ↪→ ν(aj−1)/2ρ× ν(aj−1)/2+1ρo σ′3

and σ3 = ν(aj−1)/2ρ × ν(aj+1)/2ρ o σ′3 has a unique irreducible subrepresentation by (iii)
of Lemma 7.2, we get

π ↪→ s([ν(aj−1)/2ρ, ν(aj−1)/2+1ρ])o π′′′.

This implies

sGL(π) ≤
(

s([ν(aj−1)/2ρ, ν(aj−1)/2+1ρ]) + ν−(aj−1)/2−1ρ× ν(aj−1)/2ρ+

s([ν−(aj−1)/2−1ρ, ν−(aj−1)/2ρ])
)
o sGL(π′′′).
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From this and (7-16) we get again (7-20) (using that π′′′ is strongly positive). Thus, that
π is strongly positive.

It remains to consider the case of aj+1 > φ(aj+1) + 2 = φ(aj) + 4 = aj + 2. Note that
π embeds into σ3, which is isomorphic to

(7-23) ν(aj+1−1)/2ρ× ν(aj−1)/2ρ× δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ])

×

 k∏
i=j+2

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
(since aj+1 > aj+2). Recall that σ3 (and also the above representation) has a unique irre-
ducible subrepresentation by (iii) of Lemma 7.2. Consider Jord′′′′ = (Jord \ {(ρ, aj+1)})∪
{(ρ, aj+1−2)} and φ′′′′ defined by φ′′′′(aj+1−2) = φ(aj+1) and φ′′′′(ai) = φ(ai) otherwise.
By Lemma 4.1 we know that the representation

σ′′3 = ν(aj−1)/2ρ× δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ])

×

 k∏
i=j+2

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
has a unique irreducible subrepresentation, which we denote by π′′′′. Further, the inductive
assumption implies that π′′′′ is strongly positive. Since ν(aj−1)/2ρ o π′′′′ ↪→ ν(aj−1)/2ρ o
σ′′3
∼= σ3, π ↪→ σ0 ↪→ σ3 and σ3 has a unique irreducible subrepresentation, we get

π ↪→ ν(aj+1−1)/2ρo π′′′′.

This implies
sGL(π) ≤ (ν(aj+1−1)/2ρ+ ν−(aj+1−1)/2ρ)× sGL(π′′′′).

Since (aj+1 − 1)/2 6= (aj − 1)/2, the above inequality and (7-16) imply (7-20) (using
that π′′′′ is strongly positive). Thus, π is strongly positive. Now the proof of the square
integrability claimed in the proposition is complete. �

At the end of this section, we shall not assume more that (L) holds for our admissible
triple. Denote

σ =

∏
ρ

 ∏
a∈Jordρ

δ([ν(φρ(a)+1)/2ρ, ν(a−1)/2ρ])

o πcusp,
where the first product runs over all ρ for which (ρ, a) ∈ Jord for some a ∈ N, and the
second product is taken in an order which follows the ordering of Jordρ. Then in a similar
way as in Lemma 4.1 follows that σ has a unique irreducible subrepresentation. Denote it
by π = π(Jord,πcusp,ε). Now Proposition 7.1 imply that π is square integrable. There are
several arguments for that. Maybe the most elementary is a simple elementary Lemma
4.7 of [T4].
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7.3. Lemma. Let Jord, πcusp, ε be an admissible triple of the alternated type. We have
(π(Jord,πcusp,ε))cusp = πcusp. Denote π = π(Jord,πcusp,ε). Then

(Jord(π), πcusp, επ) = (Jord, πcusp, ε).

Proof. It is easy to see from the proof that the partial cuspidal support of π is πcusp. The
fact that Jord(π) coincides with Jord is proved using 2.1 (i). Now the representation π
coincides with the strongly positive representation in 4.1 of [M2]. The strongly positive
property is equivalent (see 5.3 of [M2]) to the fact that επ is the alternated. One easily
sees that alternated partially defined function on Jord, if exists, is unique. This implies
επ = ε. �

This ends the proof that each admissible triple of the alternated type comes from a
(strongly positive) square integrable representation. Therefore, for a proof of Theorem 6.1
we need to settle the case of admissible triples of the mixed type. Before we go to the
proof in this case, we shall prove a useful (essentially combinatorial) result in the following
section.

The simplest examples of the strongly positive irreducible square integrable representa-
tions are Steinberg representations. Further simple examples of such representations can
be found in [T1]. Let π be a strongly positive irreducible square integrable representa-
tion. Then it is easy to show that sGL(π) is irreducible (one can also write directly the
Langlands parameters of these Jacquet modules). Other Jacquet modules do not need to
be always irreducible (for the difference of the case of Steinberg representations). A very
interesting representations from the point of view of the unitary duals of general linear
groups, can be tensor factors in sGL(π).

8. Tempered and square integrable representations

with the same infinitesimal character.

Let Jord, πcusp, ε be an admissible triple of the alternated type, and let π be the
strongly positive representations with these invariants. Suppose

(8-1) π ≤ τ1 × . . .× τn o πcusp,

where τi are irreducible cuspidal representations. Then by the induction with respect to
the number of elements in Jord \ Jord(πcusp) we get

(8-2) Supp(Jord) = Supp(Jord(π)) = Supp(Jord(πcusp)) +
n∑
i=1

{τi, τ̌i}.

Suppose now that the triple Jord, πcusp, ε is of the mixed type. Then there exists a se-
quence of triples Jordi, πcusp, εi, 1 ≤ i ≤ k such that: (Jord, πcusp, ε) = (Jord1, πcusp, ε1),
Jordi+1, πcusp, εi+1 is subordinated to Jordi, πcusp, εi for 1 ≤ i ≤ k−1, and Jordk, πcusp, εk
is admissible of alternated type. Therefore, there exists a(i), a(i)− ∈ (Jordi)ρi , i =
1, . . . , k − 1 such that

(8-3) Jordi+1 = Jordi \ {(ρi, a(i)), (ρi, a(i)−)}, i = 1, . . . , k − 1.
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Denote by π+ the strongly positive representation determined by Jordk, πcusp, εk. Now

(8-4) Supp(Jord)

= Supp(π+) +
k−1∑
i=1

(
δ([ν−(a(i)−1)/2ρ, ν(a(i)−1)/2ρ]) + δ([ν−(a(i)−−1)/2ρ, ν(a(i)−−1)/2ρ])

)
= Supp(π+) +

k−1∑
i=1

(
δ([ν−(a(i)−−1)/2ρ, ν(a(i)−1)/2ρ]) + δ([ν−(a(i)−1)/2ρ, ν(a(i)−−1)/2ρ])

)
.

Suppose that π+ ≤ τ1×. . .×τnoπcusp, where τi are irreducible cuspidal representations.
Consider the following element of the Grothendieck group

(8-5) Π =

k−1∏
i=1

 (a(i)−1)/2∏
ji=−(a(i)−−1)/2

νjiρi

× τ1 × . . .× τn o πcusp.
Write

(8-6) Π = σ1 × . . . σm o πcusp,

where σi are irreducible cuspidal representations (this is just another way of writing (8-5)).
Then (8-2) and (8-4) imply

(8-7) Supp(Jord) = Supp(Jord(πcusp)) +
m∑
i=1

{σi, σ̌i}.

One reconstructs Jord from Supp(Jord) in the following simple way. One can write
Supp(Jord) =

∑l
i=1 ∆i as a sum of segments in a such a way that among segments ∆i

there is no linking (∆i are sets, so one can consider them as multisets). First,

(8-8) ∆i 6= ∆j for i 6= j.

Write ∆i = [ν−(bi−1)/2γi, ν
(bi−1)/2γi]. Then

(8-9) Jord = {(γ1, b1), . . . , (γl, bl)}.

The following essentially combinatorial lemma will be very useful to us.

8.1. Lemma. Let the notation be as above. Then if π is irreducible tempered represen-
tation and π ≤ Π, then π is square integrable.

Proof. Suppose that π is not square integrable. Then there exit irreducible unitarizable
square integrable representations δ(∆i) of GL(ni, F ′) for i = 1, . . . , s, where s ≥ 1 and all
ni ≥ 1, and an irreducible unitarizable square integrable representation π′ of Sq′ such that

π ≤ δ(D1)× . . .× δ(Ds)o π′.
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Since π ≤ Π, we get that ∆̌i = ∆i for i = 1, . . . , s. From the formula (8-7) we get

(8-10) Supp(Jord) = Supp(Jord(π′)) +
s∑
i=1

(
∆i + ∆̌i

)
= Supp(Jord(π′)) + 2

s∑
i=1

∆i.

Since π′ is square integrable, from [M2] follows that Jord(π′), πcusp, επ′ form an admissible
triple. Thus for Jord(π′) holds the properties which we described above for Jord. Now
(8-10) implies that (8-8) does not hold. This contradiction completes the proof. �

The following direct consequence of the above lemma we shall not use, but it is inter-
esting to note it.

8.2. Corollary. Let τ1 and τ2 be irreducible tempered representations of Sq with the
same infinitesimal character. Then τ1 is square integrable if and only if τ2 is square
integrable. �

9. Square integrability I

In this and the following two sections, π will denote an irreducible square integrable
representation of Sq, ρ will be an irreducible cuspidal F ′/F -selfdual representation of
GL(p, F ′), a, a− ∈ N will be such that: a− a− ∈ 2N. We shall assume that (ρ, a) satisfies
(J-1) and that

(9-1) [a−, a] ∩ Jordρ(π) = ∅.

Then by Corollary 4.7, the representation

(9-2) δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π

has exactly two irreducible subrepresentations. They are not equivalent. Write

(9-3) δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π = T1 ⊕ T−1

as a sum of two irreducible (tempered) representations (T1 and T−1 are not equivalent).
Then

δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])o Tη

contains a unique irreducible subrepresentation, which we denote by πη. Further, π1 6∼=
π−1, and these representations are the irreducible subrepresentations of (9-2). Note that

(9-4) πη ↪→ δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])o Tη

↪→ ν(a−1)/2ρ× ν(a−1)/2−1ρ× . . .× ν(a−−1)/2+1ρo Tη.

Denote

(9-5) Πη = ν(a−1)/2ρ× ν(a−1)/2−1ρ× . . .× ν(a−−1)/2+1ρo Tη.

Then Πη has also a unique irreducible subrepresentation by Lemma 4.5 (use (9-1)).
The aim of this and the following two sections is to prove the following
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9.1. Proposition. Representations πη are square integrable.

The importance of the above proposition follows from the following

9.2. Lemma. Suppose that the claim of the above proposition holds for all π, ρ, a and a−
as above, which satisfy

q + p(a+ a−)/2 ≤ n.

Then for each admissible triple Jord, πcusp, ε of degree ≤ n, there exists an irreducible
square integrable representation with these invariants.

Therefore, the above lemma shows that Proposition 9.1 implies Theorem 6.1.

Proof. We shall prove the lemma by induction. The basis of induction is provided by
Proposition 7.1. Let Jord, πcusp, ε be an admissible triple of degree ≤ n. If it is of
the alternated type, then Proposition 7.1 implies the existence of an irreducible square
integrable representation with these invariants.

Suppose now that Jord, πcusp, ε is of the mixed type. Then we can choose a, a− ∈ Jordρ
for some ρ, such that ε(ρ, a) = ε(ρ, a−). Denote Jord′ = Jord \ {(ρ, a), (ρ, a−)}. Let ε′

be the restriction of ε to Jord′ (ε′ is partially defined). Then the degree of Jord′ is
strictly lower than the degree of Jord, which is ≤ n. Since Jord′, πcusp, ε′ is an admissible
triple, the inductive assumption implies that there exists an irreducible square integrable
representation π′ with these invariants. Now, the assumption of the lemma implies that
π1 and π−1 are square integrable. Clearly, (πη)cusp = πcusp for η = ±1. Further, Lemma
5.2 of [M2] implies Jord(πη) = Jord for i = ±1. Therefore, the first two invariants of π1

and π−1 are the same. Since π1 6∼= π−1, we have επ1 6= επ−1 (this implies the main result
of [M2], the injectivity of (2-2)). Further, by (9-1) we can apply Lemma 5.4, Lemma 5.5
and (ii) of Proposition 6.1 (all) from [M2]. They give that the restriction of επη , η = ±1,
to Jord(π′) = Jord′ is επ′ = ε′.

It is easy to see that ε′ can be extended to a partially defined function on Jord, to make
an admissible triple with Jord and πcusp, exactly in two ways. Denote these extensions
by ε1 and ε−1. The above discussion implies επη = εη for η = ±1 or επη = ε−η for η = ±1.
Since ε ∈ {ε±1}, we get that there exists η ∈ {±1} such that επη = ε. This completes the
proof. �

Now we shall start the proof of Proposition 9.1.
To prove the proposition, it is enough to prove it for π which satisfy (L). There are

several ways to see this. Technically, the simplest way seems to be to apply an elementary
Lemma 4.7 of [T4].

Note that the proof of the proposition that we shall present actually does not require
(L), but assuming (L), the proof (which is relatively complicated) will became a little bit
shorter and it shall use more simple notation.

Therefore, we shall assume that π satisfies (L) (this assumption is not important for
this section, since it is automatically satisfied here).

First we shall prove the proposition for cuspidal π.

9.2. Lemma. If π is cuspidal, then πη are square integrable.

Proof. We shall prove the lemma by induction with respect to a− a−.
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Suppose that σ is an irreducible subquotient of (9-2). From (9-2) follows

(9-6) sGL(σ) ≤
(a−1)/2+1∑

i=−(a−−1)/2

δ([νiρ, ν(a−1)/2ρ])× (δ([ν−i+1ρ, ν(a−−1)/2ρ])⊗ πcusp.

This implies that the factors of σ are contained in

{ν−(a−1)/2ρ, ν−(a−1)/2+1ρ, . . . , ν(a−1)/2ρ}.

Suppose that ν−(a−1)/2ρ is a factor of σ. Then we see from (9-6) that the only pos-
sibility to get ν−(a−1)/2ρ as a factor, is to take the index i = (a − 1)/2. This implies
that δ([ν−(a−1)/2ρ, ν(a−−1)/2ρ]) ⊗ πcusp ≤ sGL(σ). Now Lemma 4.4 implies that σ is an
irreducible (Langlands) quotient of (9-2). Since (9-2) reduces, we obtain that σ 6∼= πη for
η = ±1.

Fix η ∈ {±1}. We have just shown that

(9-7) the factors of πη are contained in {ν−(a−1)/2+1ρ, ν−(a−1)/2+2ρ, . . . , ν(a−1)/2ρ}.

Suppose a = a− + 2. Then πη ↪→ ν(a−1)/2ρo Tη. Now (1-2) implies

sGL(πη) ≤ sGL(ν(a−1)/2ρo Tη) = (ν(a−1)/2ρ+ ν−(a−1)/2ρ)× sGL(Tη).

Further, the above inequality and (9-7) imply

sGL(πη) ≤ ν(a−1)/2ρ× sGL(Tη).

From this and Lemma 3.5, we get that πη is tempered (recall that Tη is tempered). Lemma
8.1 implies now that πη is square integrable.

It remains to consider the case a > a− + 2. Consider the unique irreducible subrepre-
sentation of δ([ν(a−−1)/2+1ρ, ν(a−1)/2−1ρ])o Tη, which we denote by π′η. By the inductive
assumption, π′η is square integrable. Since

ν(a−1)/2ρo π′η ↪→ ν(a−1)/2ρo δ([ν(a−−1)/2+1ρ, ν(a−1)/2−1ρ])o Tη ↪→ Πη,

and Πη has a unique irreducible subrepresentation, which is πη, we get

πη ↪→ ν(a−1)/2ρo π′η.

Now, in the same way as above, from (9-7) we get

sGL(πη) ≤ ν(a−1)/2ρ× sGL(π′η).

Lemma 3.5 implies the square integrability. �

A number of additional information about representations πη and their Jacquet modules
in the case of cuspidal π, can be found in [T3].
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10. Square integrability II

In this section, we shall continue to use the notation introduced in the last section.
For the proof of Proposition 9.1, it remains to show the square integrability of πη in

the case of non-cuspidal π. We shall prove the proposition by induction. The basis of
the induction is provided by Proposition 7.1. The inductive assumption is: the claim of
Proposition 9.1 holds for all π, ρ, a and a− satisfying

(a+ a−)/2 + deg Jord(π) < n.

Then Lemma 9.2 implies that each admissible triple Jord, πcusp, ε of degree < n corre-
sponds to some square integrable representation.

In this section we shall suppose

(a+ a−)/2 + deg Jord(π) = n.

Denote

(10-1) b = max
{
a′ ∈ Jordρ(π); a′ − 2 6∈ Jordρ(π),

or a′ − 2 ∈ Jordρ(π) and επ(a′) = επ(a′ − 2),

or a′ = 2 and επ(a′) = 1
}
.

Suppose that the set on the right hand side of (10-1) is empty. This assumption first implies
that π is strongly positive. Further, this and (2-6) imply Jordρ(π) = Jordρ(πcusp). Thus,
φ(ai) = ai for all i. This implies that the representation (7-10) is cuspidal. Thus, π must
be cuspidal (see the seventh section). This contradicts out assumption. Therefore, since
π is not cuspidal, b is well defined.

Now we shall consider all possible relations among a, a− and b.

10.1. First we shall analyze the case

(10-2) b < a−.

The definition of b implies

(10-3) max Jordρ(π) ≤ a− − 2

(if m = max Jordρ(π) ≥ a−, then (9-1) implies m > a, which implies that the set
{a′ ∈ Jordρ(π); a′ > a} is non-empty; denote the minimum of it by m′; then clearly
m′ − 2 6∈ Jordρ(π), which implies m′ ≤ b, and further a− < a < m′ ≤ b; this contradicts
(10-2)).

From this follows directly:

(10-4) factors of π are contained in {ν−(a−−1)/2+1ρ, ν−(a−−1)/2+2ρ, . . . , ν(a−−1)/2−1ρ}.

We can get this also from Lemma 5.2 (this lemma can give a more precise information
about factors).

First we shall prove the following
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Lemma. Suppose b < a−. Then πη has no factors in the set X = {ν−(a−1)/2−zρ, z ∈ Z+}

Proof. First note that (10-4) implies that π has no factors in X. This, (1-2) and (1-4)
imply that πη has no factors in the set {ν−(a−1)/2−zρ, z ∈ N}. Therefore, it remains to
show that ν−(a−1)/2ρ is not a factor of πη. Suppose that it is a factor.

Since ν−(a−1)/2−1ρ is not a factor of πη by the above discussion, we can apply Lemma
3.4 to πη for τ = ν−(a−1)/2ρ. Then

(10-5) πη ↪→ δ([ν−(a−1)/2ρ, ν(a′−1)/2ρ])o σ

for some irreducible representation σ, and for a′ ∈ Z such that a+a′ ∈ 2Z and (a′−1)/2−
(−(a− 1)/2) ≥ 0 (i.e. a′ ≥ −a+ 2). Now (10-5) implies that

(10-6) ν(a′−1)/2ρ⊗ ν(a′−1)/2−1ρ⊗ . . . ν−(a−1)/2ρ⊗ ρ1 ⊗ ρ2 ⊗ . . .⊗ ρl ⊗ πcusp

is an irreducible subquotient (actually a quotient) of a corresponding Jacquet module of
πη, for some irreducible cuspidal representations ρi.

Recall

(10-7) πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π.

We shall consider two possible relation of a− and a′. Suppose first

a′ ≤ a−.

The transitivity of Jacquet modules implies that (10-6) is a subquotient of a standard
Jacquet module of s((a+a−)/2)(πη). Therefore, there exists an irreducible subquotient σ⊗τ
of s((a+a−)/2)(πη) such that (10-6) is a subquotient of a corresponding standard Jacquet
module of σ ⊗ τ . Now a′ ≤ a− implies that ν−(a−1)/2ρ must be in the support of σ (the
support is defined in Proposition 1.10 of [Z], as we already noted).

Note that (10-7) implies

(10-8) σ ⊗ τ ≤ s((a+a−)/2)(πη) ≤ s((a+a−)/2)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π).

Write

(10-9) µ∗(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π) =( (a−1)/2∑
i=−(a−−1)/2−1

(a−1)/2∑
j=i

δ([ν−iρ, ν(a−−1)/2ρ])× δ([νj+1ρ, ν(a−1)/2ρ])⊗ δ([νi+1ρ, νjρ])
)

o µ∗(π).

Because of (10-4), the only terms in the above sum which can have an irreducible subquo-
tient σ′ ⊗ τ ′ such that ν−(a−1)/2ρ is in the support of τ ′ are δ([ν−(a−1)/2ρ, ν(a−−1)/2ρ])×
σ′′⊗ τ ′′, where σ′′⊗ τ ′′ ≤ µ∗(π) (then must be i = j = (a− 1)/2 in the above sum). Since
σ⊗ τ is a subquotient of s((a+a−)/2)(πη), there is only one possibility for σ′′⊗ τ ′′: we must
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have σ′′ = 1 and τ ′′ = π. Thus σ ⊗ τ = δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])⊗ π. Now Lemma 4.4
implies that πη is a Langlands quotient of δ([ν−(a−1)/2ρ, ν(a−−1)/2ρ])oπ. This and (10-7)
contradicts to the reducibility of δ([ν−(a−1)/2ρ, ν(a−−1)/2ρ])o π.

Therefore, we must have
a− < a′.

Note that the fact that (10-6) is a subquotient of a Jacquet module of πη, Lemma 3.1 and
Lemma 3.2 imply that

ν(a′−1)/2ρ⊗ γ ≤ s(p)(πη),

for some irreducible γ, such that ν−(a−1)/2ρ is a factor of γ. Further, (10-7) implies

(10-10) ν(a′−1)/2ρ⊗ γ ≤ s(p)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π).

Write

(10-11) s(p)(π) =
∑
i

µi ⊗ λi

as a sum of irreducible representations. Then (10-9) implies (recall that π satisfies (L))

s(p)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π) =
∑
i

µi ⊗ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o λi

+ν(a−1)/2ρ⊗ δ([ν−(a−−1)/2ρ, ν(a−1)/2−1ρ])o π(10-12)

+ν(a−−1)/2ρ⊗ δ([ν−(a−−1)/2+1ρ, ν(a−1)/2ρ])o π.(10-13)

Since a− < a′, we see that ν(a′−1)/2ρ⊗γ cannot be a subquotient of (10-13). From (1-2), (1-
4) and (10-4) we get that ν−(a−1)/2ρ is not a factor of δ([ν−(a−−1)/2ρ, ν(a−1)/2−1ρ])oπ (this
term shows up in (10-12)). This implies that ν(a′−1)/2ρ⊗γ is not a subquotient of (10-12).
Therefore, ν(a′−1)/2ρ⊗γ is a subquotient for some i of µi⊗δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])oλi.
This implies ν(a′−1)/2ρ ∼= µi. Now (10-11) and Lemma 3.6 imply a′ ∈ Jordρ(π). Since
a− < a′, we get a contradiction with (10-3). This contradiction ends the proof. �

We shall prove now square integrability of πη in the case b < a−. Recall (9-4)

(10-14) πη ↪→ δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])× Tη
↪→ ν(a−1)/2ρ× δ([ν(a−−1)/2+1ρ, ν(a−1)/2−1ρ])× Tη.

Suppose a = a− + 2. Then (10-14) implies

(10-15) sGL(πη) ≤
(
ν(a−1)/2ρ+ ν−(a−1)/2ρ

)
× sGL (Tη) .

Now the above lemma implies

(10-16) sGL(πη) ≤ ν(a−1)/2ρ× sGL (Tη) .
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Since Tη is a tempered representation, Lemma 3.5 implies that πη is tempered. Now
Lemma 8.1 implies that πη is square integrable.

Suppose now a > a− + 2. Then denote by π′η the irreducible subrepresentation of

δ([ν(a−−1)/2+1ρ, ν(a−1)/2−1ρ])o Tη,

(which is unique; see section 9). Then the inductive assumption implies that π′η is square
integrable. Since the representation Πη from (9-5) has a unique irreducible subrepresen-
tation, and both πη and ν(a−1)/2−1ρo π′η embed into it, we conclude

πη ↪→ ν(a−1)/2ρo π′η.

Applying sGL to both sides and using (1-2), we get from the above lemma

(10-17) sGL(πη) ≤ ν(a−1)/2ρ× sGL(π′η).

Now Lemma 3.5 implies the square integrability of πη. This ends the proof of the square
integrability of πη in the case b < a.

It remains to consider the case a− < b. The condition (9-1) implies a < b.

10.2. We shall now assume

(10-18) a < b.

Then
b > 4.

10.2.1. First we shall consider the case

(10-19) b− 2 ∈ Jordρ(π).

Then clearly b− = b− 2. The definition (10-1) of b implies

(10-20) επ(b) = επ(b−).

Note that (10-19) and (9-1) imply
a < b−.

Therefore,
a+ 2 < b.

Note that (10-19) and the definition (10-1) of b imply that b is the maximum of all a′ ∈
Jordρ(π) such that a′− ∈ Jordρ(π) is defined and eπ(a′) = eπ(a′−). Therefore, Lemma 5.2
implies that

(10-21) π has no factors in {ν−(b−1)/2−zρ; z ∈ Z+}.
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By Lemma 5.1, there exists an irreducible square integrable representation π′ such that

(10-22) π ↪→ δ([ν−(b−−1)/2ρ, ν(b−1)/2ρ])o π′.

Proposition 2.1 implies

(10-23) Jord(π′) = Jord(π) \ {(ρ, b), (ρ, b−)}.

Further, (10-7), (10-22), the fact that (a−1)/2+1 < (b−1)/2, b = b−+2 and (a−1)/2 ≤
(b− − 1)/2 (which implies −(b− − 1)/2 ≤ −(a− − 1)/2), imply

πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])× δ([ν−(b−−1)/2ρ, ν(b−1)/2ρ])o π′ ↪→(10-24)

δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])× ν(b−1)/2ρ× δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])o π′(10-25)

∼= ν(b−1)/2ρ× δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′.
(10-26)

Now we know that δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′ has exactly two irreducible subrep-
resentations. Denote them by π′η′ , η

′ ∈ {±1}. Thus

(10-27) ⊕
η′∈{±1}

π′η′ ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′.

Applying the inductive assumption to π′η′ (these representations satisfy the conditions of
the section 9.), we get that they are square integrable. From proposition 2.1, we get

(10-28) Jord(π′η′) = Jord(π′) ∪ {(ρ, a), (ρ, a−)}
= (Jord(π) \ {(ρ, b), (ρ, b−)}) ∪ {(ρ, a), (ρ, a−)}.

Since b− 6∈ Jordρ(π′η′), the representation

(10-29) δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× π′η′

reduces into a sum of two irreducible tempered representations (which are not equivalent).
Further, (10-27) implies that

(10-30) ⊕
η′∈{±1}

ν(b−1)/2 × δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× π′η′

embeds into (10-26). The above discussion implies that (10-30) has at least four irreducible
subrepresentations (since (10-29) reduces into a sum of two irreducible subrepresentation
for each η′ ∈ {±1}).

Now we shall show that (10-26) has at most four irreducible subrepresentations (the
above discussion will imply that it has exactly four irreducible subrepresentations). First
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recall that (10-26) is isomorphic to (10-25). Therefore, it is enough to see that (10-25) has
at most four irreducible subrepresentations. Note that (10-25) embeds into

ν(b−1)/2 × δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])

×δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′

↪→ ν(b−1)/2 × ν(a−1)/2ρ× ν(a−1)/2−1ρ× . . .× ν(a−−1)/2+1ρ(10-31)

×δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′

It is enough to prove that (10-31) has at most four irreducible subrepresentations. Since
each irreducible subrepresentation of (10-31) has

t = ν(b−1)/2 ⊗ ν(a−1)/2ρ⊗ ν(a−1)/2−1ρ⊗ . . .⊗ ν(a−−1)/2+1ρ(10-32)

⊗δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])⊗ δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])⊗ π′

as a quotient of corresponding Jacquet module, the fact that (10-31) has at most four
irreducible subrepresentations will follow from

Lemma. The multiplicity of t (defined in (10-32)), in a corresponding standard Jacquet
module of (10-31), is four.

Proof. Denote the representation (10-31) by Ψ. Then

(10-33) µ∗ (Ψ) =
(
1⊗ ν(b−1)/2ρ+ ν(b−1)/2ρ⊗ 1 + ν−(b−1)/2ρ⊗ 1

)
×
( (a−1)/2∏
i=(a−−1)/2+1

(
1⊗ νiρ+ νiρ⊗ 1 + ν−iρ⊗ 1

))

×
( (a−−1)/2∑
i′=−(a−−1)/2−1

(a−−1)/2∑
j′=i′

δ([ν−i
′
ρ, ν(a−−1)/2ρ])× δ([νj

′+1ρ, ν(a−−1)/2ρ])

⊗ δ([νi
′+1ρ, νj

′
ρ])
)

×
( (b−−1)/2∑
i′′=−(b−−1)/2−1

(b−−1)/2∑
j′′=i′′

δ([ν−i
′′
ρ, ν(b−−1)/2ρ])× δ([νj

′′+1ρ, ν(b−−1)/2ρ])

⊗ δ([νi
′′+1ρ, νj

′′
ρ])
)
o µ∗(π′).

If t is a subquotient of a corresponding Jacquet module of Ψ, by the transitivity of Jacquet
modules, there exists an irreducible subquotient τ ⊗ σ of s(p(a−a−+2)/2)(Ψ), such that t is
a subquotient of a corresponding standard Jacquet module of τ⊗σ. Now we shall examine
(10-33), to find all such τ ⊗ σ. We shall analyze which indexes and terms in the products
and sums we can take, to get such τ ⊗ σ for a subquotient.
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Note that the support of τ is {ν(b−1)/2, ν(a−1)/2ρ, ν(a−1)/2−1ρ, . . . , ν(a−−1)/2+1ρ} (in
general, the support is a multiset, but here is actually a set; therefore we are in the regular
situation).

First, to get τ ⊗ σ, we must not take ν−(b−1)/2ρ⊗ 1 and ν−iρ⊗ 1, since ν−(b−1)/2ρ and
ν−iρ are not in the support of τ .

Suppose that we get τ ⊗σ from some term where we take 1⊗ νiρ in the right hand side
of (10-33). Then to get it in support of τ , it cannot come from ν(b−1)/2ρ⊗ 1 and it cannot
come from indexes i′, j′ since i > (a− − 1)/2. It cannot come also from indexes i′′, j′′,
since then we would have in the support of τ also (b−− 1)/2, which is not the case. From
this we conclude that there exists irreducible τ ′ ⊗ σ′ ≤ µ∗(π′), such that the support of
τ ′ is non-empty and contained in the support of τ . This implies (using Lemma 3.6) that
either b ∈ Jordρ(π′) or 2l + 1 ∈ Jordρ(π′) for some (a− − 1)/2 + 1 ≤ l ≤ (a − 1)/2. But
(10-23) and (9-1) imply that this is impossible.

Further, we must not take 1⊗ν(b−1)/2ρ. Otherwise, since (b−1)/2 is greater than each
of (a − 1)/2, (a− − 1)/2, (b− − 1)/2, to get ν(b−1)/2ρ in the support of τ , we must have
some τ ′ ⊗ σ′ with the same properties as in the above paragraph. We have seen that this
implies the contradiction.

Therefore, we have proved that τ must be subquotient of

(10-34) ν(b−1)/2 × ν(a−1)/2ρ× ν(a−1)/2−1ρ× . . .× ν(a−−1)/2+1ρ

multiplied by other terms. But since τ ⊗ σ is a subquotient of s(p(a−a−+2)/2)(Ψ), we see
that all other terms are equal to 1. Thus, τ is a subquotient of (10-34). This implies that
σ must be a subquotient of

(10-35) δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′.

At the end, note that the multiplicity of ν(b−1)/2 ⊗ ν(a−1)/2ρ ⊗ ν(a−1)/2−1ρ ⊗ . . . ⊗
ν(a−−1)/2+1ρ in corresponding (standard) Jacquet module of (10-34) is one. From the
other side, (ii) of Lemma 4.3 implies that the multiplicity of δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])⊗
δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ]) ⊗ π′ in a corresponding Jacquet module of (10-35) is four.
Therefore the multiplicity of t in a corresponding standard Jacquet module of Ψ is 1·4 = 4.
This ends the proof. �

Since (10-30) embeds into (10-26), and since we have just shown that both represen-
tations have exactly four irreducible subrepresentations, (10-24) – (10-26) imply that πη
embeds into (10-30). This and (1-2) imply

(10-36) sGL(πη) ≤
(
ν(b−1)/2 + ν−(b−1)/2

)
× sGL

(
⊕

η′∈{±1}
δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× π′η′

)
.

From (10-21), (10-7), b > a + 2 (and (1-2)), we get that ν−(b−1)/2ρ is not a factor of πη.
Thus, (10-36) implies

(10-37) sGL(πη) ≤ ν(b−1)/2 × sGL
(
⊕

η′∈{±1}
δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× π′η′

)
.



52 COLETTE MŒGLIN AND MARKO TADIĆ

Now Lemma 3.5 implies that πη is tempered (note that we did not use in the proof of
Lemma 3.5 that τ is irreducible). Lemma 8.1 implies now that πη is square integrable.
This ends the proof of the square integrability in the case b− 2 ∈ Jordρ(π) (and a < b).

10.2.2. It remains to consider the case b − 2 6∈ Jordρ(π) (we continue to assume a < b).
First we have a general

Lemma. If b− 2 6∈ Jordρ(π), then there exists an irreducible square integrable represen-
tation π′′ such that

(10-38) π ↪→ ν(b−1)/2ρo π′′

and (then)

(10-39) Jord(π′′) = (Jord(π) \ {(ρ, b)}) ∪ {(ρ, b− 2)}.

Remark. The proof of the lemma holds if one takes any a′ ∈ Jordρ(π) instead b, which
satisfies

a′ > 2 and a′ − 2 6∈ Jordρ(π).

Note that b satisfies the above condition.

Proof. We prove the lemma, and more general the remark, by induction (for our fixed π,
assuming that our general inductive assumption holds). We need to show the existence of
irreducible square integrable representation π′′ such that

π ↪→ ν(a′−1)/2ρo π′′,(10-38’)

Jord(π′′) = (Jord(π) \ {(ρ, a′)}) ∪ {(ρ, a′ − 2)}.(10-39’)

Since (10-38’) and Proposition 2.1 imply (10-39’), for the proof is enough to show the
existence of the embedding (10-38’).

We discuss several possibilities.
First suppose that π is strongly positive. Now we shall repeat a part of construction

in the seventh section, using the notation that we were using there. First, π embeds into
some representation σ0 defined in (7-10). Let a′ = ai (then i = 1 and ai ≥ 3, or i > 1
and ai−1 ≤ ai − 4). Denote by σ′0 the representation that one gets by substituting in
(7-10) ν(ai−1)/2ρ × δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2−1ρ]) instead of δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])
(all other terms leaving the same, as well as the order of the multiplication). Let σ′′0 be
the representation that one obtains from σ′0 dropping ν(ai−1)/2ρ from the definition of σ′0.
Now a′ − 2 6∈ Jordρ(π) implies

σ′0
∼= ν(ai−1)/2ρo σ′′0 .

Further, by the seventh section, σ′′0 has an irreducible square integrable subrepresentation,
which we shall denote by π′′ (for this one again uses a′ − 2 6∈ Jordρ(π)). Since σ′0 has a
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unique irreducible subrepresentation by Lemma 4.1, then π ↪→ σ0 ↪→ σ′0 and ν(ai−1)/2ρo
π′′ ↪→ ν(ai−1)/2ρo σ′′0

∼= σ′0 imply (10-38’).
Suppose now that π is not strongly positive. Then we can choose c, c− ∈ Jordρ(π)

such that επ(c) = επ(c−) and by Lemma 5.1 there exists an irreducible square integrable
representation π′′′ such that

(10-40) π ↪→ δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])o π′′′.

Proposition 2.1 implies

(10-41) Jord(π′′′) = Jord(π) \ {(ρ, c), (ρ, c−)}.

Note that
[c−, c] ∩ Jordρ(π′′′) = ∅.

We shall consider three cases.
First consider the case a′ = c. Now a′ = c ≥ c− + 4. This and (10-40) imply

π ↪→ δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])o π′′′(10-42)

↪→ ν(c−1)/2ρ× δ([ν−(c−−1)/2ρ, ν(c−1)/2−1ρ])o π′′′(10-43)

↪→ ν(c−1)/2ρ× δ([ν(c−−1)/2+1ρ, ν(c−1)/2−1ρ])(10-44)

×δ([ν−(c−−1)/2ρ, ν(c−−1)/2−1ρ])o π′′′.

Now δ([ν−(c−−1)/2ρ, ν(c−1)/2−1ρ]) o π′′′ has two irreducible subrepresentation, which are
square integrable by our general inductive assumption (see (10-41)). Denote them by
π′′′η′ , η

′ ∈ {±1}. By Lemma 4.5 and Remark 4.2, (10-44) has at most two irreducible
subrepresentations. Therefore (10-43) has at most two irreducible subrepresentation. This
implies π ↪→ ν(c−1)/2ρo π′′′η′ for some η′. This proves (10-38’).

Let now a′ = c−. Then

π ↪→ δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])o π′′′

↪→ δ([ν−(c−−1)/2+1ρ, ν(c−1)/2ρ])× ν−(c−−1)/2ρo π′′′

∼= δ([ν−(c−−1)/2+1ρ, ν(c−1)/2ρ])× ν(c−−1)/2ρo π′′′.

The last equivalence follows from Lemma 5.4.1 of [M2] (since (c− − 1)/2 = (d + 1)/2 for
some d ∈ Jordρ(π) would imply d = c− − 2 = a′ − 2 ∈ Jordρ(π), which contradicts to our
assumptions). From the above embeddings, we get

π ↪→ ν(c−−1)/2ρ× δ([ν−(c−−1)/2+1ρ, ν(c−1)/2ρ])o π′′′

= ν(c−−1)/2ρ× δ([ν−(c−−2−1)/2ρ, ν(c−1)/2ρ])o π′′′.

Note
[c− − 2, c] ∩ Jordρ(π′′′) = ∅
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(since a′ − 2 = c− − 2 6∈ Jordρ(π)). Therefore

δ([ν−(c−−2−1)/2ρ, ν(c−1)/2ρ])o π′′′

has exactly two irreducible subrepresentations. Denote them by π′′′η′ , η
′ ∈ {±1}. They are

square integrable by the general inductive assumption. Further

π ↪→ ν(c−−1)/2ρ× δ([ν−(c−−1)/2+1ρ, ν(c−1)/2ρ])o π′′′

↪→ ν(c−−1)/2ρ× δ([ν(c−−1)/2ρ, ν(c−1)/2ρ])× δ([ν−(c−−1)/2+1ρ, ν(c−−1)/2−1ρ])o π′′′.

Using [c−, c] ∩ Jordρ(π′′′) = ∅, in a similar way as in the proof of Lemma 4.5, one
gets that the last representation has at most two irreducible subrepresentations (the
only difference from the proof of Lemma 4.5 is that one does not use regularity, but
the well known fact that ν(c−−1)/2ρ × δ([ν(c−−1)/2ρ, ν(c−1)/2ρ]) has multiplicity one in
ν(c−−1)/2ρ ×

∏(c−c−)/2
i=0 ν(c−−1)/2+iρ. From this and the above embeddings we conclude

that
π ↪→ ν(c−−1)/2ρo π′′′η′

for some η′ ∈ {±1}. This shows (10-38’) in the case a′ = c−.
Suppose at the end a′ 6∈ {c−, c}. Then a′ 6∈ [c−, c]. Further note that

ν(a′−1)/2ρ× δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ]) ∼= δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])× ν(a′−1)/2ρ

since either a′ < c− or (c − 1)/2 + 1 < (a′ − 1)/2 by our assumptions. Then c ≤ a′ −
4. Further, a′ ∈ Jordρ(π′′′) by (10-41) and a′ − 2 6∈ Jordρ(π′′′). Therefore, we can
apply the inductive assumption. Applying it, we get that there exists a square integrable
representation π′′′′ such that

(10-45) π′′′ ↪→ ν(a′−1)/2ρo π′′′′,

(10-46) Jord(π′′′′) = (Jord(π′′′) \ {(ρ, a′)}) ∪ {(ρ, a′ − 2)}
= (Jord(π) \ {(ρ, c), (ρ, c−), (ρ, a′)}) ∪ {(ρ, a′ − 2)}.

Now

π ↪→ δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])o π′′′(10-47)

↪→ δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])× ν(a′−1)/2ρo π′′′′(10-48)

∼= ν(a′−1)/2ρ× δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])o π′′′′(10-49)

↪→ ν(a′−1)/2ρ× δ([ν(c−−1)/2+1ρ, ν(c−1)/2ρ])(10-50)

×δ([ν−(c−−1)/2ρ, ν(c−−1)/2ρ])o π′′′′.

Now (10-46) implies that δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ]) o π′′′′ has exactly two irreducible
subrepresentations, and they are square integrable by the general inductive assumption.
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Denote them by π′′′′η′ , η′ ∈ {±}. Lemma 4.5, Remark 4.2 and (4-46) imply that (10-50)
has at most two irreducible subrepresentations. Then, the same holds for (10-49). This
implies that π ↪→ ν(a′−1)/2ρ×π′′′′η′ for some η′. This proves (10-38’). Now the proof of the
lemma and the remark is complete. �

Using this lemma, we get

(10-51) πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π

↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])× ν(b−1)/2ρo π′′.

Recall a < b. We shall consider separately the cases of a+ 2 < b and a+ 2 = b.

10.2.2.1. First we shall consider the case

a+ 2 < b.

Since (a− 1)/2 + 1 < (b− 1)/2, (10-51) implies

(10-52) πη ↪→ ν(b−1)/2ρ× δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′′ ↪→

ν(b−1)/2ρ× δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′′.

Now (10-39) implies that δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])oπ′′ has exactly two irreducible sub-
representations. They are square integrable by the inductive assumption. Denote them by
π′′η′ , η

′{±1}. Further, (10-39), Lemma 4.5 and Remark 4.2 imply that the representation
in the second row of (10-52) has at most two irreducible subrepresentations. This implies

(10-53) πη ↪→ ν(b−1)/2ρo π′′η′

for some η′. Note that πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π and Lemma 5.2 applied to π,
imply that ν(b−1)/2ρ is not a factor of πη (similarly as in 10.2.1; see (10-21)). Now (1-2)
and (10-53) imply sGL(πη) ≤ ν(b−1)/2ρ × sGL(π′′η′). Now Lemma 3.5 implies that πη is
square integrable.

Therefore, we have settled the case a+2 < b (recall that we assumed b−2 6∈ Jordρ(π)).
At the end, it remains to consider only the case b = a+ 2.

11. End of proof of square integrability

We continue with the notation of the last section, and assume additionally

a+ 2 = b.

This is the only case where we have not proved yet the square integrability of πη.
We shall suppose now that πη is not square integrable.
If b− ∈ Jordρ(π) is not defined, then the definition of b implies that π is strongly

positive. Suppose that b− ∈ Jordρ(π) is defined. Then a + 2 = b and (9-1) imply
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b− ≤ a−− 2. Now Lemma 3.6 implies that ν−(b−−1)/2−1, ν−(b−−1)/2−2, . . . are not factors
of π. Note that −(a− − 1)/2 ≤ −(b− − 1)/2− 1. Therefore, we have

(11-1) π has no factors in the set {ν−(a−−1)/2−zρ; z ∈ Z+},

regardless if b− is defined or not. Recall further

(11-2) πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π.

This, (1-2), (1-4) and (11-1) imply that

(11-3) πη has no factors in the set {ν−(a−1)/2−1−zρ; z ∈ Z+}.

Suppose that ν−(a−1)/2 is not a factor of πη. Then from (11-2) follows

πη ↪→ ν(a−1)/2ρ× δ([ν−(a−−1)/2ρ, ν(a−1)/2−1ρ])o π

Using the inductive assumption, from this we get in the same way as before (for example
in 10.1) that πη is square integrable.

Therefore, ν−(a−1)/2 is a factor of πη.
Recall that Lemma 10.2 implies

(11-4) π ↪→ ν(b−1)/2ρo π′′,

where

(11-5) Jordρ(π′′) = (Jordρ(π) \ {b}) ∪ {a}.

We need to keep all the time in mind that b = a+2, which implies (b−1)/2 = (a−1)/2+1.
Now

(11-6) πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π

↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o ν(b−1)/2ρo π′′.

Now we two technical lemmas. The first one is very simple.

11.1. Lemma. If νzρ⊗σ ≤ µ∗(π) for some irreducible representation σ and z ∈ (1/2)Z,
then z ≤ (b− 1)/2.

Proof. Suppose z > (b − 1)/2. This implies 2z + 1 > b. Lemma 3.6 implies 2z + 1 ∈
Jordρ(π). Lemma 3.1 and Lemma 3.2 imply the existence of an irreducible representation
σ′, such that π ↪→ ν2z+1ρoσ′. By the definition of b, 2z−1 ∈ Jordρ(π) (since 2z+1 > b).
Now the definition of the partial function ε implies ε(2z − 1, 2z + 1) = 1. This contradicts
the definition of b (since 2z + 1 > b). �



DISCRETE SERIES 57

11.2. Lemma. (i) If there exists an embedding

(11-7) πη ↪→ δ([ν−(a−1)/2, νl])o σ′,

with σ′ irreducible and l ∈ {−(a− 1)/2 + z; z ∈ Z+}, then l = (b− 1)/2.

(ii) There exists an embedding

(11-8) πη ↪→ δ([ν−(a−1)/2, ν(b−1)/2])o σ′,

with irreducible σ′.

(iii) Any representation σ′ which satisfies (ii), must be square integrable. Further,

Jordρ(σ′) = (Jordρ(π) \ {b}) ∪ {a−}.

Proof. The proof of (i) and (ii) proceeds in a similar way as the proof of Lemma 10.1.
Since ν−(a−1)/2−1ρ is not a factor of πη, Lemma 3.4 implies

(11-9) πη ↪→ δ([ν−(a−1)/2ρ, ν(a′−1)/2ρ])o σ,

for some irreducible σ and a′ ∈ Z such that a+ a′ ∈ 2Z and (a′− 1)/2− (−(a− 1)/2) ≥ 0.
The Frobenius reciprocity implies that

(11-10) ν(a′−1)/2ρ⊗ ν(a′−1)/2−1ρ⊗ . . . ν−(a−1)/2ρ⊗ ρ1 ⊗ ρ2 × . . .⊗ ρl ⊗ πcusp

is an irreducible subquotient of a corresponding Jacquet module of πη (ρi are irreducible
cuspidal representations). Now (11-60) must be a subquotient of a corresponding Jacquet
module of some irreducible subquotient τ ⊗ σ of s((a+a−)/2)(πη).

Suppose first a′ ≤ a−. This implies that ν−(a−1)/2ρ must be in the support of τ .
Clearly, τ ⊗ σ ≤ s((a+a−)/2)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π). Now (10-9) and (11-1) imply
σ ⊗ τ = δ([ν−(a−1)/2ρ, ν(a−−1)/2ρ]) ⊗ π. Now Lemma 4.4 implies that πη is a Lang-
lands quotient of δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) o π, which contradicts to the reducibility of
δ([ν(a−−1)/2ρ, ν(a−1)/2ρ])o π.

Suppose now a− < a′. Since (11-10) is a subquotient of a Jacquet module of πη, Lemma
3.1 and Lemma 3.2 imply that ν(a′−1)/2ρ⊗γ ≤ s(p)(πη), for some irreducible representation
γ, such that ν−(a−1)/2ρ is a factor of γ. Now (11-2) implies

ν(a′−1)/2ρ⊗ γ ≤ s(p)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π).

Write s(p)(π) =
∑
i µi ⊗ λi as a sum of irreducible representations (as we did in (10-11)).

In 10.1 we have computed the formula for

s(p)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π)



58 COLETTE MŒGLIN AND MARKO TADIĆ

(the first displayed formula after (10-11)). We shall use this formula now. The present
assumption a− < a′ implies that ν(a′−1)/2ρ ⊗ γ cannot be a subquotient of (10-13). Fur-
ther (1-2), (1-4) and (11-1) imply that ν−(a−1)/2ρ is not a factor of the representation
δ([ν−(a−−1)/2ρ, ν(a−1)/2−1ρ])o π. This implies that ν(a′−1)/2ρ⊗ γ is not a subquotient of
(10-12). Therefore, ν(a′−1)/2ρ ∼= µi for some i. Lemma 3.6 now implies a′ ∈ Jordρ(π).
Since a− < a′, (9-1) implies a < a′. Now (9-1) implies b ≤ a′.

Suppose b < a′. Then, to get δ([ν−(a−1)/2ρ, ν(a′−1)/2−1ρ]) ⊗ σ′ as a subquotient of
(10-9) we first need to take i = (a − 1)/2 in (10-9) (since ν−(a−1)/2ρ is not a factor
of π). Therefore, we must have δ([ν(a−−1)/2+1ρ, ν(a′−1)/2−1ρ]) ⊗ σ′′ ≤ µ∗(π) for some
irreducible representation σ′′. This contradicts the above lemma (since we would have
ν(a′−1)/2−1ρ ⊗ σ′′′ ≤ µ∗(π) for some irreducible representation σ′′′, with (a′ − 1)/2 >
(b− 1)/2). This proves (i).

Now (ii) follows from (i) and (i) of Lemma 3.4.
It remains to prove (iii).
From 10.2.2, we know that there exists an irreducible square integrable representation

π′′ and an embedding:
π ↪→ ν(b−1)/2ρ× π′′.

Moreover we know by Proposition 2.1 that:

Jordρ(π′′) = (Jordρ(π) \ {b}) ∪ {b− 2}.

Further, since a = b− 2 ∈ Jordρ(π′′) and (a− 2) /∈ Jordρ(π′′), we can again use Remark
10.2.2. Continuing to use this remark several times (in the cases when we can), we shall
get

(11-11) π ↪→ ν(a−−1)/2+1ρ× . . .× ν(a−1)/2ρ× ν(b−1)/2ρo π′,

where

(11-12) Jordρ(π′) = (Jordρ(π) \ {b}) ∪ {a−}.

In particular, if a′ ∈ Jordρ(π′):

(11-13) (a′ − 1)/2 /∈ [(a+ 1)/2, (a− + 1)/2]

Now (11-11) and the definition of πη imply that we have the embedding

(11-14) πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])×ν(a−−1)/2+1ρ×. . .×ν(a−1)/2ρ×ν(a+1)/2ρoπ′.

By (ii), we have embedding

(11-15) πη ↪→ δ([ν−(a−1)/2ρ, ν(a+1)/2ρ])× σ′.

Consider any such embedding. The Frobenius reciprocity implies that:

(11-16) δ([ν−(a−1)/2ρ, ν(a+1)/2ρ])⊗ σ′
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is a subquotient of a corresponding Jacquet module of

(11-17) δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])× ν(a−−1)/2+1ρ× . . .× ν(a−1)/2ρ× ν(a+1)/2ρo π′.

We shall show now σ′ ∼= π′. This (and (11-12)) will imply (iii).
First we shall write µ∗ of (11-17). It is

(11-18)

 (a+1)/2∏
k=(a−−1)/2+1

(
νkρ⊗ 1 + ν−kρ⊗ 1 + 1⊗ νkρ

)×
 (a−1)/2∑
i=−(a−−1)/2−1

(a−1)/2∑
j=i

δ([ν−iρ, ν(a−−1)/2ρ])× δ([νj+1ρ, ν(a−1)/2ρ])⊗ δ([νi+1ρ, νjρ])


o µ∗(π′).

Now we shall analyze when we can get (11-16) for a subquotient of (11-18).
The first conclusion is that we need to take for k = (a + 1)/2 the term ν(a+1)/2ρ ⊗ 1,

since b 6∈ Jordρ(π′).
Now look at k = (a − 1)/2. Suppose that we have taken the term 1 ⊗ ν(a−1)/2ρ. We

consider two possibilities. Suppose j + 1 ≤ (a− 1)/2. Then i ≤ (a− 1)/2− 1. Therefore,
in the term δ([ν−(a−1)/2ρ, ν(a+1)/2ρ]) in (11-16), ν−(a−1)/2ρ must come from µ∗(π′). This
directly implies that π′ is not square integrable. Thus, j = (a − 1)/2. This would imply
that a ∈ Jordρ(π′). This cannot happen. Therefore, for k = (a − 1)/2 we mast not take
the term 1⊗ ν(a−1)/2ρ (if we want to get (11-16) for a subquotient). The two possibilities
remain.

Suppose that we have taken the term ν−(a−1)/2ρ ⊗ 1. Then we need to take in (11-
18) −i ≥ −(a − 1)/2 + 1. Suppose −i > −(a − 1)/2 + 1. Since a 6∈ Jordρ(π′), we get
j+1 ≤ (a−1)/2. This implies that π′ is not square integrable. Thus −i = −(a−1)/2+1,
i.e. i = (a − 1)/2 − 1. Now j = (a − 1)/2 − 1 or (a − 1)/2. If j = (a − 1)/2, then
a ∈ Jordρ(π′), which is impossible. Thus, j = (a− 1)/2− 1. Now for other k’s (i.e. when
k < (a− 1)/2), we must take terms νkρ⊗ 1. This implies σ′ ∼= π′.

The other possibility is that we have taken the term ν(a−1)/2ρ ⊗ 1. This implies j =
(a − 1)/2. Suppose −i > −(a − 1)/2 (i.e. i < (a − 1)/2). This easily implies that π′ is
not square integrable. Therefore, i = (a − 1)/2. This implies j = (a − 1)/2. Again for
remaining k’s, one must take the terms νkρ⊗ 1. This implies again σ′ ∼= π′.

The proof of (iii) is now complete. �

Suppose b = max(Jordρ). Now (iii) of the above lemma and the tenth section imply the
contradiction. Thus, b < max(Jordρ). Nevertheless, using the above lemma, in a finitely
many steps we come to the contradiction.

This contradiction implies that our assumption that πη is not square integrable cannot
hold. Thus, πη is square integrable. This ends the proof of the square integrability.

Note that the representations πη are constructed recursively. There are the cases when
one can define them more directly. In [T4] are examples of constructions of families of such
representations (and proof of their square integrability, together with explicit estimates of
their Jacquet modules and description of some other properties).
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12. Jordan blocks and cuspidal reducibility

In this section only, we shall not assume that (BA) holds (and also we shall not assume
that (A) holds). For simplicity, we shall assume in this section that groups Sn are split.

Let ρ be an irreducible F ′/F -selfdual cuspidal representation of GL(p) and let σ be an
irreducible cuspidal representation of Sq. We are interested in the reducibility points of
the family ναρo σ, α ∈ R. First, ναρo σ reduces for some α ∈ R. In all the known cases
when the reducibility points of such families are computed, holds

(HI) if ναρo σ reduces, then α ∈ (1/2)Z and νbρo σ is irreducible for β ∈ R \ {±α}.

This is expected to hold in general. The first general result in this direction is done by
Shahidi ([Sh1]). Shahidi proved that (HI) holds if σ is generic (he showed much more;
see bellow). Assume that (HI) holds for ρ and σ (note that (BA) implies (HI)). Then the
non-negative reducibility point is unique. We shall denote it by

α(ρ, σ).

Shahidi proved

(12-1) if σ is generic, then α(ρ, σ) ∈ {0,±1/2,±1}.

In particular, this implies for the simplest case, when σ is the trivial representation 1 of
the trivial group:

(12-2) α(ρ, 1) ∈ {0,±1/2,±1}

In the lemma bellow, we shall see that (BA), which comes from a study of Arthur’s
conjectures, implies that holds:

(D) if ναρo σ reduces, then α− α(ρ, 1) ∈ Z
and νβρo σ is irreducible for β ∈ R \ {±α}.

Obviously, (D) implies (HI) (using (12-2)).

12.1. Lemma. The assumptions (BA) and (D) are equivalent.

Proof. Assume that (D) holds.
Suppose that ρ o σ reduces. Then by (D) and (12-2), ρ o σ or νρ o σ reduces. This

implies that L(ρ,Rdρ , s) has not a pole at s = 0. Thus if a ∈ Jordρ(σ), then a is odd.
For any odd a ∈ N, δ(ρ, a) o σ reduces by Proposition 4.4 of [T2]. Thus, Jordρ(σ) = ∅.
Therefore, (BA) holds for this pair.

Let ν1/2ρoσ be reducible. Then ν1/2ρo1 reduces by (D). This implies that L(ρ,Rdρ , s)
has a pole at s = 0. Thus, each a ∈ Jordρ(σ) must be even. Now Proposition 4.3 of [T2]
implies Jordρ(σ) = ∅. Thus, (BA) holds also in this case.

Suppose now that νb/2ρo σ reduces for some b ∈ N, b > 1. We shall consider first the
case b ∈ 2N. Then ρo σ or νρo σ reduces by (D). Therefore, L(ρ,Rdρ , s) has not a pole



DISCRETE SERIES 61

at s = 0. Therefore, a ∈ Jordρ(σ) must be odd. Now Theorem 13.2 of [T2] (see also the
remark below) implies

Jordρ(σ) = {1, 3, . . . , b− 1}.
Therefore, (BA) holds again. Suppose now that b is odd. Then ν1/2ρo σ reduces by (D).
This implies that L(ρ,Rdρ , s) has a pole at s = 0, and further a ∈ Jordρ(σ) must be even.
Theorem 13.2 of [T2] implies

Jordρ(σ) = {2, 4, . . . , b− 1}.

Therefore, (BA) holds.
Assume now that (BA) holds. Let νb/2ρoσ reduces for some b ∈ Z+. First consider the

case of even b. Suppose Jordρ(σ) = ∅. Then (BA) implies that L(ρ,Rdρ , s) has not pole at
s = 0. This implies that ρo1 or νρo1 reduces. Therefore, (D) holds in this case. Suppose
now Jordρ(σ) 6= ∅. Then by (BA), from (b−1+1)/2 = b/2 follows b−1 ∈ Jordρ(σ). Since
b− 1 is odd, (J-1’) implies that ρo 1 or νρo 1 reduces. Again, (D) holds. Now consider
the case of odd b. Suppose first Jordρ(σ) = ∅. Now (BA) implies that L(ρ,Rdρ , s) has
a pole at s = 0. This implies that ν1/2ρ o 1 reduces. Thus, (D) holds. Suppose now
Jordρ(σ) 6= ∅. Then again b − 1 ∈ Jordρ(σ). Since b − 1 is even, L(ρ,Rdρ , s) has a pole
at s = 0, and therefore ν1/2ρ o 1 reduces, which implies that (D) holds also in this case.
This completes the proof. �

12.2. Remark. Note that in Theorem 13.2 of [T2] we have assumption char(F ′) = 0.
This assumption is used in the proof of that theorem to prove irreducibility. Note that the
irreducibility that we needed in the proof of the last lemma is in the unitarizable case. This
irreducibility follows in the same way as in the proof of Propositions 4.1 and 4.2. Namely,
let δ(∆) be an F ′/F -selfdual irreducible (unitarizable) square integrable representation of
a general linear group such that ρ′ o σ is irreducible for every ρ′ ∈ ∆. Then proofs of
Propositions 4.1 and 4.2 imply that δ(∆)oσ is irreducible. These proofs does not require
char(F ′) = 0.

We shall write now one direct consequence of the above proof. From the (non-negative)
reducibility point α(ρ, σ) = b/2 ∈ (1/2)Z+, we can write down directly

(12-3) Jordρ(σ) = {b− 1− 2i ; i ∈ Z+ and b− 1− 2i ∈ N}.

Observe that for trivial representation we have

Jord(1SO(1)) = ∅,
Jord(1Sp(0)) = {(1GL(1), 1)},

(depending on the series of the groups with which we are working).
There is one type of ρ for which the problem of computing of the reducibility points

of induced representation with irreducible cuspidal representations σ can be in principle
solved using the known facts. It is the case where ρ is a quadratic characters. One has to
use ideas of Adams, Kudla and Rallis, to interpret the reducibility points in terms of the
Howe duality ([W2] is an example of this kind). This interpretation is a local analogue of a
more difficult global results explained in [KR] (in particular of 6.1 in [KR]; see also [M4]).
A particular case which is completely written, is the case where the cuspidal representation
σ is quadratic unipotent ([M3]).
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13. Tempered representations

We continue to assume (BA) again (till the end of the paper).
Fix an irreducible (unitarizable) square integrable representation

δ(ρ, a)

of a general linear group (recall that δ(ρ, a) denotes δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])). Let π be
a similar representation of Sq.

If ρ is not F ′/F -selfdual, it is well-known that

δ(ρ, a)o π

is irreducible (one can get also this easily from (1-1) and Theorem 4.9 of [T1]).
Therefore, to describe the reducibility of δ(ρ, a) o π, it remains to consider the case

of F ′/F -selfdual irreducible cuspidal representations ρ. We shall now assume that ρ is
F ′/F -selfdual.

The composition of the standard intertwining operators

νsδ(ρ, a)o π → ν−sδ(ρ, a)o π → νsδ(ρ, a)o π

can be computed in terms of the L-functions using (BA) (such computations are car-
ried out in [M1]). To have more simple notations, we will, here, write δ(ρ, a) instead of
L(δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]); this is the generalized Steinberg representation of GL(dρ a)
based on ρ. The result is the following product:

∏
(ρ′,a′)∈Jord(π)

L(δ(ρ, a)× δ(ρ′, a′), s) L(δ(ρ, a)× ρ′, a′), s+ 1)−1

(13-1)

∏
(ρ′,a′)∈Jord(π)

L(δ(ρ, a)× δ(ρ′, a′),−s) L(δ(ρ, a)× ρ′, a′),−s+ 1)−1

(13-2)

L(δ(ρ, a), Ra dρ , 2s) L(δ(ρ, a), Ra dρ , 2s+ 1)−1(13-3)

L(δ(ρ, a), Ra dρ ,−2s) L(δ(ρ, a), Ra dρ ,−2s+ 1)−1(13-4)

Now (J-1) of section 2 is equivalent to the fact that the two last products (13-3) and (13-4)
have no pole at s = 0. The two first products (13-1) and (13-2), are easy to analyze using
Theorem 8.2 of [JPSS]:

L(δ(ρ, a)× δ(ρ, a′), s) =
(a+a′)/2−1∏
k=|a−a′|/2

L(ρ× ρ′, s+ k).

Denominators have no pole and numerators have pole of order one exactly when (ρ, a) ∈
Jord(π).
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This explains the following result: the induced representation

δ(ρ, a)o π

is irreducible if and only if either (ρ, a) does not satisfy (J-1) of section 2 or (ρ, a) ∈ Jord(π).
Therefore, Jordρ(π) determines completely if δ(ρ, a)oπ is reducible or not (for arbitrary

irreducible unitarizable cuspidal representation ρ).
A more elementary arguments can be applied in the following way to obtain the same

result. If a satisfies the condition (J-1) of section 2, then Jordρ(π) by the definition tells
exactly when δ(ρ, a) o π reduces (this is a part of the definition of Jordρ(π)). Suppose
that a does not satisfy (J-1). Let a be odd. Then (BA) implies that νxρ o σ reduces for
some x ∈ (1/2)+Z. Now Proposition 4.2 of [T2] (together with Remark 12.2 in this paper,
and (BA)) implies that δ(ρ, a)o π is irreducible. If we suppose that a is even, we get in a
similar way that δ(ρ, a)o π is irreducible (using Proposition 4.1 of [T2] and Remark 12.2
of this paper).

The computation of the product of standard intertwining operators can be generalized
replacing π by a representation induced from an irreducible square integrable representa-
tion. This computation can be made since the case of the general linear groups is already
known by the Shahidi’s results. Using the result of Harish-Chandra, we can compute the
intertwining algebra of a representation induced by an irreducible square integrable repre-
sentation in terms of poles of the standard intertwining operators. From above description
of reducibility of δ(ρ, a)o π, we obtain in that way the following

13.1. Theorem. (i) Let ρ1, . . . , ρn be a set of (equivalence classes of) irreducible unitariz-
able cuspidal representations of general linear groups GL(ki), ki ≥ 1 and let a1, . . . , an ∈ N.
Suppose that π be an irreducible square integrable representation of some Sq. Then the
induced representation:

(13-1) Π =

(
n∏
i=1

δ(ρi, ai)

)
o π

is a multiplicity one representation of length 2m, where m is the cardinal number of the
following set:

{(ρi, ai); 1 ≤ i ≤ n, (ρi, ai) satisfies (J-1) and (ρi, ai) /∈ Jord(π)}

(note that we count only different (ρi, ai)’s, not the different indexes).

(ii) Suppose that we have another collection ρ′1, . . . , ρ
′
n′ , a

′
1, . . . , a

′
n′ and π′ as above. We

define the representation Π′ for this collection in the same way as we have defined Π
in (13-1) for ρ1, . . . , ρn, a1, . . . , an and π. Then the representations Π and Π′ have an
irreducible subquotient in common, if and only if they are equivalent. This happens if and
only if π ∼= π′, n = n′ and (ρ1, a1), . . . , (ρn, an) is a permutation of (ρ′1, a

′
1), . . . , (ρ′n, a

′
n).

The first part of the theorem can be obtained from the discussion which precedes the
theorem, also using the Goldberg’s result from [G] (this requires charF ′ = 0 assumption).
The second part of the theorem follows from Proposition III.4.1 of [W1].

The above theorem gives a reduction of irreducible tempered representations to cuspidal
representations and cuspidal reducibilities. Therefore, it implies also the same type of
reduction of the non-unitary duals (i.e. of the parameters in the Langlands classification).
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14. Exercises of the introduction and examples of admissible triples

We shall first fix Jord and
ε : Jord→ {±1}.

We shall prove the exercises which we have mentioned in the introduction. Therefore, we
shall use the notation φ of the introduction, which is uniquely determined by Jord in such
a way that Jord(φ) = Jord. Using the notation of the introduction, we shall construct
directly

φφ,ε,cusp, εφ,ε,cusp.

To do that, we fix ρ such that Jordρ 6= ∅, and we decompose Jordρ into a partition

∪`i=1Si = Jordρ

of non-empty sets Si, where S1, · · · , S` are subsets of N, in such a way that for all 1 ≤ i < `
and for all a ∈ Si, a′ ∈ Si+1 we have a < a′ and ε(ρ, a) 6= ε(ρ, a′).

Note that the last condition implies that ε is constant on each Si for any i ∈ [1, `].
Clearly, one can do the above decomposition, and there is only one way to do that.

Define I ⊆ [1, `] by: i ∈ I if and only if card (Si) is odd and i 6= 1 if Jordρ ⊆ 2N and
ε|S1 is trivial. If I = ∅, we take Jordρ,cusp = ∅. If I 6= ∅, we denote by ψ the unique
ordering preserving bijection between I and [1, card (I)]. Define

Jordρ,cusp := {(ρ, 2j − η); j ∈ [1, card (I)]},

where η = 1 (resp. 0) if Jordρ contains odd (resp. even) elements. Define

ερ,cusp : Jordρ,cusp → {±1}

with
ερ,cusp(ρ, 2j − η) = ε(ρ, aj),

where aj is any element in Sψ−1(j).
We define φφ,ε,cusp uniquely by:

Jord(φφ,ε,cusp) = ∪ρJordρ,cusp.

Further, εφ,ε,cusp comes from all the ερ,cusp in the obvious way. We need now to prove that
φφ,ε,cusp, εφ,ε,cusp is the cuspidal support of φ, ε. One proves this directly.

The first case is when all Si (as above) have cardinality 1. This is exactly the case when
the first condition of the introduction is satisfied (i.e. we are in the alternated case). In the
other case, we argue by induction. The observation here is that the subsets associated to
φ1, ε1 (the notation is the same as in the introduction), are obtained from those associated
to φ, ε by deleting two elements in the same subset.

The second exercise of the introduction is also easy to conclude from our construction.
Fix φ, ε as above, and let ε′ be such that φ, ε′ is a Langlands parameter. We assume that
∆ε = ∆ε′ and we have to prove that

φφ,ε,cusp = φφ,ε′,cusp.
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The assumption ∆ε = ∆ε′ on the connection between ε and ε′ implies that, for all ρ, the
decomposition of Jordρ into intersections with segments as above, is the same if we use ε
instead of ε′. This and the above construction imply φφ,ε,cusp = φφ,ε′,cusp.

In the sequel of this section, we shall write few examples of admissible triples. To
simplify discussion, we shall assume that our triples in this section satisfy the condition
(L) of the fifth section.

For a given Jord and πcusp (or Jord(πcusp)), we shall say that a partially defined
function ε is admissible if ε, together with Jord and πcusp forms an admissible triple.

14.1. We shall first consider the case when Jordρ(πcusp) = ∅ and L(ρ,Rdρ , s) has a pole
at s = 0 (the last condition is equivalent to the fact that we are in the even case). Then
ν1/2ρo πcusp reduces. We shall now discuss some possibilities for Jordρ.

14.1.0. Jordρ = ∅.
Here is only one ε. We are in the alternated case. The attached representation is πcusp.

14.1.1. Jordρ = {2k1}, k1 ∈ N.
Then there are two possible partial functions ε, which we can describe by the following
table

(14-1-1)
Jordρ ε1 ε2

2k1 1 −1.

First ε2 is not admissible (ε2 can not be in the mixed case because card(Jordρ)=1, and ε2
can not be alternated since card(Jordρ)=1 and card(Jord′ρ(πcusp))=0). Further,

ε1

is admissible and we are in the alternated case.

14.1.2. Jordρ = {2k1, 2k2}, k1 < k2 ∈ N.
Then there exist the following functions ε on Jordρ:

(14-1-2)

Jordρ ε1 ε2 ε3 ε4

2k1 1 1 −1 −1
2k2 1 −1 1 −1.

We cannot have alternated ε (since card(Jordρ) = 2 and card(Jordρ(πcusp))=0). Obvi-
ously,

ε1, ε4

are admissible (see 14.1.0).

14.1.3. Jordρ = {2k1, 2k2, 2k3}, k1 < k2 < k3 ∈ N.
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We have the following possibilities for ε

(14-1-3)

Jordρ ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8

2k1 1 1 1 1 −1 −1 −1 −1
2k2 1 1 −1 −1 1 1 −1 −1
2k3 1 −1 1 −1 1 −1 1 −1.

We cannot have alternated ε (since card(Jordρ)=3 and card(Jordρ(πcusp))=0). Thus ε3
and ε6 cannot be admissible. Further, if we have odd number of −1’s, then from 14.1.1
we see that ε can not be admissible. Thus, it remains

ε1, ε4, ε7.

From 14.1.1 we see that they are admissible.

14.1.4. Jordρ = {2k1, 2k2, 2k3, 2k4}, k1 < k2 < k3 < k4 ∈ N.
We have the following partial functions ε

(14-1-4)

Jordρ ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12 ε13 ε14 ε15 ε16

2k1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
2k2 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
2k3 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
2k4 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1.

We have not alternated ε (since card(Jordρ)=4 and card(Jordρ(πcusp))=0). Thus ε6 and
ε11 cannot be admissible. Again, if we have odd number of −1’s, then from 14.1.2. we
see that ε can not be admissible. Thus, ε2, ε3, ε5, ε8, ε9, ε12, ε14 and ε15 are not admissible.
it remains

ε1, ε4, ε7, ε10, ε13, ε16.

From 14.1.2 follows that they are admissible.

14.2. Now we shall consider the case Jordρ(πcusp) = {2}. Then ν3/2ρ o πcusp reduces.
We shall list now some examples for Jordρ. In paragraphs 14.2.i below, εj will denote the
function εj from the table 14.1.i.

14.2.0. Jordρ = ∅.
This case cannot have admissible ε (since there is no bijection between the sets ∅ and
Jordρ(πcusp) = {2}).

14.2.1. Jordρ = {2k1}, k1 ∈ N.
First, ε1 is not admissible (since ε1 can not be in the mixed case, and further ε1 can not
be alternated since card(Jordρ)=1 and card(Jord′ρ(πcusp))=2). For

ε2
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we are in the alternated case. If k1 = 1, the attached representation is πcusp.

14.2.2. Jordρ = {2k1, 2k2}, k1 < k2 ∈ N.
Here we can not have ε of mixed type, because of 14.2.0. Now consider alternated ε.
Suppose that ε3 is admissible. Then we would have a bijection of Jordρ onto {2}, what is
impossible. For ε2, we have a bijection of Jordρ onto {0, 2}. Thus

ε2

is admissible and we are in the alternated case.

14.2.3. Jordρ = {2k1, 2k2, 2k3}, k1 < k2 < k3 ∈ N.
We cannot have alternated ε. Therefore, ε3 and ε6 cannot be admissible. Further, if we
have odd number of 1’s, then from 14.2.1 we see that ε can not be admissible. Thus, it
remains

ε2, ε5, ε8.

Now 14.2.1 implies that they are admissible.

14.2.4. Jordρ = {2k1, 2k2, 2k3, 2k4}, k1 < k2 < k3 < k4 ∈ N.
We do not have here alternated ε. Thus ε6 and ε11 cannot be admissible. Again, if
we have even number of 1’s, then from 14.2.2 we see that ε can not be admissible. Thus,
ε1, ε4, ε6, ε7, ε10, ε11, ε13 and ε16 are not admissible. Among ε’s which remain, 14.2.2 implies
that after deleting 1, 1, or -1, -1, we need to have 1, -1 left (in this order). Therefore, all
the candidates for admissible ε’s are among

ε2, ε5, ε8, ε14.

Their admissibility follows from 14.2.2.

14.3. Now suppose that L(ρ,Rdρ , s) has not pole at s = 0 (i.e. we are in the odd case).
Let Jordρ(πcusp) = ∅ (then ρoπ reduces). Now if one changes 2ki into 2ki−1 in examples
14.1.i, one gets admissible ε’s in this case, assuming that i is even (i.e. Jordρ have even
number of elements). If Jordρ has odd number of elements, then there are no admissible
partial functions in this case.

14.4. If Jordρ(πcusp) = {1, 3, . . . , 2l − 1} for some l ∈ N, then νlρo σ reduces. We shall
now consider the case l = 1, i.e. Jordρ(πcusp) = {1}.

14.4.0. Jordρ = ∅.
Here we cannot have admissible ε (otherwise we would have a bijection between the sets
∅ and Jordρ(πcusp) = {2}).

14.4.1. Jordρ = {2k1 − 1}, k1 ∈ N.
There is only one

ε = ∅,

and it is admissible of alternated type.
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14.4.2. Jordρ = {2k1 − 1, 2k2 − 1}, k1 < k2 ∈ N.

We have the following partial functions ε which we shall describe in the following way

Jordρ ε1 ε2

2k1 − 1
1 −1

2k2 − 1 .

Here ε1 and ε2 denote the following partial functions

ε1(2k1 − 1)ε1(2k2 − 1)−1 = 1,

ε2(2k1 − 1)ε2(2k2 − 1)−1 = −1.

Note that we can not have ε of mixed type (because of 14.4.0.). Further, ε2 is not
alternated (since card(Jordρ)=2 and card(Jordρ(πcusp))=1). Therefore, in this case we
do not have admissible ε’s.

14.4.3. Jordρ = {2k1 − 1, 2k2 − 1, 2k3 − 1}, k1 < k2 < k3 ∈ N.

We have the following partial functions ε:

Jordρ ε1 ε2 ε3 ε4

2k1 − 1
1 1 −1 −1

2k2 − 1
1 −1 1 −1

2k3 − 1 .

The interpretation of the table is analogous to the interpretation of the table in 14.4.2.
First, we cannot have ε of alternated type by the usual argument. Thus, it remains

ε1, ε2, ε3.

As before, 14.4.1. implies that above ε’s are admissible.

14.4.4. Jordρ = {2k1 − 1, 2k2 − 1, 2k3 − 1, 2k4 − 1}, k1 < k2 < k3 < k4 ∈ N.

Obviously, we can not have alternated ε here. Now 14.4.2 (or 14.4.0) implies that we do
not have here also ε of the mixed type.

14.4.5. Jordρ = {2k1−1, 2k2−1, 2k3−1, 2k4−1, 2k5−1}, k1 < k2 < k3 < k4 < k5 ∈ N.
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We have the following partial functions ε

Jordρ ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12 ε13 ε14 ε15 ε16

2k1 − 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

2k2 − 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

2k3 − 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

2k4 − 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

2k5 − 1 .

First, we do have not alternated ε. Thus, ε16 is not admissible. Further, if we remove 1,
the resulting restricted partial function that we obtain then, cannot be -1, -1 by 14.4.2.
Therefore, the candidates for admissible ε’s reduce to

ε1, ε2, ε3, ε5, ε6, ε7, ε9, ε11, ε12, ε14.

Their admissibility follows from 14.4.2.

14.4.6. Jordρ = {2k1 − 1, 2k2 − 1, . . . , 2k2n − 1}, k1 < k2 < · · · < k2n ∈ N.

Again, we do not have here ε of the alternated type. As before, we see that we do not
have here ε of the mixed type.

14.5. Remark. In this remark we shall give interpretations of the classification of irre-
ducible square integrable representations, without assuming (A).

(i) The first possibility is to make the following modification of the definition of Jord in
admissible triple: instead of requiring that Jord is finite, to require that Jord\Jord(πcusp)
is finite. Then the classification of irreducible square integrable representations done in
this paper holds in unchanged form (we do not need to assume (A)).

(ii) Fix an irreducible cuspidal representation πcusp of Sn′ . Let ρ1, . . . , ρk be inequiv-
alent F ′/F -selfdual irreducible cuspidal representations of general linear groups. Let
νRρi = {νxρi;x ∈ R}. Denote by D(ρ1, . . . , ρk;πcusp) the set of all equivalence classes
of irreducible square integrable representation of groups Sn, whose all factors are con-
tained in ∪ki=1ν

Rρi and whose cuspidal support is πcusp.
Let π ∈ D(ρ1, . . . , ρk;πcusp). For each j, there exists an irreducible representation

πj of some Snj whose all factors are contained in νRρj , and an irreducible representa-
tion τj of a general linear group whose cuspidal support contains of representations from(
∪ki=1ν

Rρi
)
\νRρj , such that π ↪→ τj oπj . By [J1], representations π1, . . . , πk are uniquely

determined by π, they are all square integrable and π 7→ (π1, . . . , πk) is a bijection from
D(ρ1, . . . , ρk;πcusp) onto the Cartesian product

∏k
i=1D(ρi;πcusp). In this way one gets a

reduction of the problem of classification of irreducible square integrable representations
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to the problem of classification of sets D(ρ;πcusp) of irreducible square integrable represen-
tations (this reduction is implicit in our construction in this paper). Now the pairs Jordρ
(⊆ N), ερ, where ερ is a partially defined function on Jordρ which makes with Jordρ(πcusp)
an admissible triple, parameterize D(ρ;πcusp).

(iii) Now we shall describe more explicitly the parameters of D(ρ;πcusp). Suppose that
ν±α o πcusp reduces (α ≥ 0). Now (BA) implies α ∈ (1/2)Z (then Jordρ(πcusp) =
{2α− 1− 2i; i ∈ Z+ and 2α− 1− 2i ∈ N}).

Then Jord+
ρ of alternated type is a subset of N consisting of the element of the same

parity as 2α − 1, of cardinality α if α ∈ Z+ and α ± 1/2 if α 6∈ Z+. In this case, ερ is
uniquely determined with Jord+

ρ (and the fact that we are in the alternated case).
Fix alternated Jordρ = Jord+

ρ (and ερ). Take any two numbers a− < a ∈ N of the same

parity as 2α − 1 such that [a−, a] ∩ Jordρ = ∅. Set Jord(1)
ρ = Jordρ ∪ {a−, a}. Denote

by ε
(1)
ρ any extension of ερ to Jord

(1)
ρ such that ερ(a−) = eρ(a) (there are precisely two

such extensions). Repeating this construction, we get Jord(2)
ρ , ε(2)

ρ . We can continue this
construction. By this simple construction, each admissible Jordρ, ερ can be obtained in a
finitely many steps (starting from appropriate alternated Jord+

ρ ).

15. Unitary groups

In this section we shall explain necessary modifications which one needs to make that
the classifications obtained for symplectic and odd-orthogonal groups in former sections,
holds also for the unitary groups.

Fix a series Sn of unitary groups (see the first section). Note that Sn are connected
reductive groups over F . Further, the formula (1-1) holds (and therefore (1-2) also holds).
This follows in a similar way as in the case of non-split odd-orthogonal groups (the reduced
root system is either of type B or C; in both cases the Weyl group is the same as in the
symplectic and odd-orthogonal cases).

The Casselman’s square integrability criterion has the same form as in the case of
symplectic and odd-orthogonal groups.

In the definition of an admissible triple, we need only to specify which L-function we
need to take in the definition of the parity of a for (ρ, a) ∈ Jord . The L-function is
determined by the representation. We shall recall of the representation introduced in [M2]
which enteres the definition of the parity.

Let Sn be the unitary group of the unitary space Vn from the Witt tower and denote
by n∗ = dimF ′(Vn) (note that n∗ = 2n if dimF ′(Vn) is even, and n∗ = 2n + 1 otherwise;
recall that Sn is the unitary group U(n∗, F ′/F )).

Take an irreducible F ′/F -selfdual cuspidal representation ρ of a general linear group
GL(dρ, F ′). The L-group of F -group GL(dρ, F ′) is isomorphic to a semidirect product(

GL(dρ,C)×GL(dρ,C)
)
iGal(F ′/F ),

where (the non-trivial element of) Gal(F ′/F ) acts on the normal subgroup GL(dρ,C) ×
GL(dρ,C) by

θ(g1, g2, 1)θ−1 = (tg−1
2 ,t g−1

1 , 1)
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(here tg denotes the transposed matrix of g).
For η ∈ {±1}, denote by R(η)

dρ
the representation of the above L-group of GL(dρ, F ′) on

EndC(Cdρ) given by:

(g1, g2, 1)u = g1 u
tg2 and (1, 1, θ)u = η tu.

Suppose now that Sn is a series of groups such that dimensions dimF ′(Vn) are even.
Then we shall denote by

Rdρ

the representation R
(1)
dρ

. Otherwise, in the odd case, Rdρ will denote R(−1)
dρ

.
With Rdρ defined in this way for unitary groups, we have the same definition of the

parity as in the second section.
The degree ∑

(ρ,a)∈Jord(π)

a dρ

needs to be n∗, for an irreducible square integrable representation π of Sn.
These are required modifications in the unitary case.

16. Even-orthogonal groups

Fix a series Sn of even-orthogonal groups (see the first section). First we need to describe
L-functions which enter the definition of Jordan blocks. For an irreducible cuspidal selfdual
representation ρ ofGL(dρ, F ) , we denote byRdρ the representation ofGL(dρ,C) on ∧2

C
dρ .

The degree
∑

(ρ,a)∈Jord(π) a dρ needs to be here 2n, for an irreducible square integrable
representation π of Sn.

Denote the subgroup of elements in Sn of determinant one by S′n (S′n has index two in
Sn).

Now we shall comment the case of non-split even-orthogonal groups Sn. Then the Weyl
group of S′n is the same as in the case of symplectic and odd-orthogonal groups (the root
system is of type B). Therefore, we can apply the calculations done in the section 4. of
[T5] to the groups S′n. Further, one can easily see that the analogue of Lemma 5.1 holds
here (recall that the unipotent radicals in Sn are already contained in S′n). From this one
gets that the formula (1-1) holds also for groups Sn.

Further, since we have the same root system as in the case of odd-orthogonal groups,
the Casselman’s square integrability criterion hold for groups S′n (and Sn) in the same
form as in the case of symplectic and odd-orthogonal groups.

These are the only comments that we need in the case of non-split even-orthogonal
groups.

Suppose now that Sn consists of split even-orthogonal groups. Now the formula (1-1)
holds by [B] (the strategy of proving (1-1) requires modification in this case, since the root
systems of the groups S′n are of type D, and the Weyl group is slightly different from the
previous cases; there are also other ways to prove (1-1), different from proof in [B]).

A possible differences with the case of the groups that we have studied before appears if
πcusp is a representation of S0 = {1}. In this case we have two standard ”Siegel parabolic
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subgroups” in Sn. They are also parabolic subgroups in Sn, but they are conjugated in
Sn. Therefore, we can proceed in this situation in the same way as in the cases of groups
that we have considered before.

For n 6= 1, a (finite length) representation πcusp of Sn is cuspidal if πcusp|S′n is cuspidal
representation of S′n. The group S1 does not have cuspidal representations.

Further, if n 6= 1, then a representation π of Sn is square integrable if and only if π|S′n
is square integrable representation of S′n. One directly sees that S1 does not have square
integrable representations (neither it has essentially square integrable representations).

A comment regarding the Casselman’s square integrability criterion is necessary, since
the root systems of S′n are different from the previous ones. First we shall say few words
about parabolic subgroups.

Denote by s ∈ Sn a quasi-diagonal matrix

q-diag
(

1, . . . , 1︸ ︷︷ ︸
n−1 times

,

[
0 1
1 0

]
, 1, . . . , 1︸ ︷︷ ︸
n−1 times

)
.

Recall that standard parabolic subgroups in SO(2n, F ) are parameterized by partitions
β = n1 + · · ·+ nk of 0 ≤ m ≤ n, m 6= n− 1 into a sum of positive integers. Besides these
standard parabolic subgroups, the remaining ones are parabolic subgroups sPβs, when
n = m and nk ≥ 2 (see [B]).

Let (π, V ) be an irreducible representation of Sn, whose partial support is πcusp. Denote
V (N) = spanC{π(n)v−v;n ∈ N, v ∈ V } and let VN = V/V (N) be the normalized Jacquet
module.

For checking square integrability of π, we need to check the Casselman’s square inte-
grability criterion for parabolic subgroups of type Pγ or sPγs, for which Jacquet modules
are cuspidal.

Now the Levi factor of a parabolic subgroup Mγ of Pγ is naturally isomorphic to
GL(n1, F ) × · · · × GL(nk, F ) × SO(n − m,F ). In the case of sPγs, it is also naturally
isomorphic to GL(n1, F ) × · · · × GL(nk, F ) × SO(n −m,F ), by the conjugation of this
subgroup with s (in the first case, we shall say that we are in the non-conjugate situa-
tion, while in the other case we shall say that we are in the conjugate situation). Let
ρ = ρ1 ⊗ · · · ⊗ ρk ⊗ σ be an irreducible cuspidal subquotient of the Jacquet module, or its
conjugate, if we are in the conjugated situation. Define

e∗(ρ) = (e(ρ1), . . . , e(ρ1)︸ ︷︷ ︸
n1 times

, . . . , e(ρk), . . . , e(ρk)︸ ︷︷ ︸
nk times

, e(σ), . . . , e(σ)︸ ︷︷ ︸
n−m times

),

where we take e(σ) = 0 if n−m ≥ 2.
First consider the case n −m ≥ 2. The Casselman’s criterion for square integrability

tells in this case that the square integrability is equivalent to

(16-1)
j∑
i=1

e(ρi)ni > 0, j = 1, . . . , k.

These are our usual relations for square integrability.
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Let n = m. Suppose nk = 1. Then the last two simple roots of the root system Dn

are not in the roots that define the parabolic subgroup. The square integrability criterion
now is equivalent to the following relations

(16-2)
j∑
i=1

e(ρi)ni > 0, j = 1, . . . , k − 2,

(16-3)

(
k−1∑
i=1

e(ρi)ni

)
− e(ρk)nk > 0,

(16-4)
k∑
i=1

e(ρi)ni > 0.

Summing (16-3) and (16-4) we get

(16-5)
k−1∑
i=1

e(ρi)ni > 0.

Thus

(16-6)
j∑
i=1

e(ρi)ni > 0, j = 1, . . . , k.

Note that (16-6) represents our usual relations for square integrability. We need to see
that they are enough for square integrability, i.e. that they also imply (16-3) (recall that
π is a representations of O(2n, F )).

Suppose that (16-6) hold for each irreducible cuspidal subquotient ρ of the Jacquet
module. We shall now see that (16-3) holds. We know that there is an epimorphism
V −→ VNγ −→ ρ = ρ1⊗· · ·⊗ρk⊗1 of Pγ−representations (the unipotent radical is assumed
to act trivially in the last representation). Now conjugating this epimorphism by s, we
get that there is Pγ epimorphism onto ρ1⊗ · · · ⊗ ρk−1⊗ ρ̃k ⊗ 1. Now (16-4) applied to the
last subquotient of the Jacquet module, implies that (16-3) holds.

It remains to consider the case n = m and nk ≥ 2. Then σ = πcusp is the trivial
representation (of O(0, F )). Now the square integrability criterion gives relations (16-
6). Note that these relations need to hold in the non-conjugate situations, as well as in
conjugate ones.

Suppose that relations (16-6) hold for non-conjugate situations only. Let ρ be a subquo-
tient of the Jacquet module for sPγs (note Nγ = sNγs). Then we have an epimorphism
V −→ VNγ −→ sρs = s(ρ1⊗· · ·⊗ρk⊗1)s ∼= ρ = ρ1⊗· · ·⊗s(ρk⊗1)s of sPγs−representations
(the unipotent radical is assumed to act trivially in the last representation, as in the pre-
vious case). Conjugating this epimorphism by s, we obtain an epimorphism from V onto
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ρ1⊗· · ·⊗ρk⊗1 of Pγ representations. Now relations (16-6) applied to the last subquotient
of the Jacquet module (in the non-conjugate situation), imply that (16-6) also hold in the
conjugated situation.

At different places, we have use Harish-Chandra’s results on the Plancherel measure,
specialy in 2.2; this has only be written in [W1] for connected group but we have extend
what we need for even orthogonal groups in the appendix of [M2]. The proof of 2.2 is
already in [M2].
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201-229.
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