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Summary

This thesis describes an investigation into the practical use of ontologies for the development

of information systems. Ontologies are formal descriptions of shared knowledge in a domain.

An ontology can be used as a specification of an information system because it specifies the

knowledge that is required for the tasks the information system has to perform. Sharing and

reuse of ontologies across different domains and applications can therefore improve informa-

tion systems design.

Ontologies have been a subject for a lot of research carried out in the artificial intelligence

community. Although many ontologies have been developed, they fail to demonstrate that

ontologies for large and complex domains can be developed that can be used and reused across

different applications. There are three reasons for this: (i) many ontologies have not been

used to develop a real-life application, (ii) many ontologies have not been reused for different

applications in different domains and (iii) many ontologies are merely taxonomies of domain

concepts and fail to capture meta-level and tacit background knowledge.

As a result, the question whether ontologies can be used and reused for different real-life

applications remains open. The aim of our research has therefore been to find the answer to

this question.

The aim of our research is to investigate the usability and reusability of

ontologies by construction and validation of an ontology for a large and

complex domain, that

1. is usable for application development,

2. is reusable across different applications and

3. captures meta-level and tacit background knowledge.

Chapter 2 explains what ontologies exactly are, how they can be specified and how they

can be used. To make usable ontologies, the domain knowledge must be carved up into

modules containing different kinds of knowledge. This makes it possible to construct large

and complex ontologies out of smaller and more reusable ones.

v



Chapter 3 discusses the way a domain ontology for the modeling of physical systems can be

constructed. The ontology is called PHYSSYS and describes the domain knowledge required

to make simulation models of devices like heating systems, automotive systems and machine

tools.

We found out that a large and complex ontology like PHYSSYS can be constructed out of

smaller ontologies by carving up the domain knowledge in smaller pieces. Because of this

internal structure, the ontology will be easier to understand and be well suited for reuse. The

ontologies that form the building blocks of PHYSSYS can be categorized in three types:

1. `Super'theories which are general and abstract ontologies.

2. Viewpoint or base ontologies that formalize a conceptual category of concepts in a do-

main.

3. Domain ontologies that form an integral and coherent conceptualization of a domain and

can be constructed by combining viewpoint ontologies.

To construct a large ontology from smaller ontologies, the dependencies between concepts

and relations in different ontologies are formalized as ontology projections. Three types of

ontology projections were used and are named according to the way they can be implemented.

1. Include and extend: An imported ontology is extended with new concepts and relations.

2. Include and specialize: An abstract theory is imported and applied to the contents of the

importing ontology. Doing this, abstract concepts are specialized.

3. Include and map: Different viewpoints on a domain are joined by including the views in

the domain ontology and formalization of their interdependencies.

Chapter 4 shows the way PHYSSYS could be used to develop a library of model fragments. The

library allows engineers to construct large simulation models by combining model fragments

from the library. The library has been filled with model fragments for various enginering

domains, including the model fragments for thermodynamic systems we developed (see also

Appendix B). A modelling and simulation experiment of the existing heating system of the

Schieland Hospital (a general hospital in Schiedam, The Netherlands) served as a validation

of the library as well as PHYSSYS.

In Chapter 5 is investigated what happens when, instead of an ontology about the knowledge

for simulation of technical devices, an ontology for a totally different task in a different engi-

neering domain is constructed. This new task is the ecological impact assessment of product

disassembly. It is demonstrated that parts of PHYSSYS can be reused and extended with other

(reusable) ontologies to form a new ontology formalizing a novel approach to product dis-

assembly analysis. A knowledge based system called PROMOD has been developed based

on the new ontology. PROMOD serves as a prototype for a future extension of commercial

software for ecological impact assessment.
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In Chapter 6 we draw the conclusion that our experiences with PHYSSYS, the OLMECO library

and PROMOD demonstrate that large ontologies can be specified that can indeed be used

and reused across applications in different domains. We also summarize the results of our

research for ontology construction and describe the roles ontologies may play in the future.
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Chapter 1

Mechanisms for Knowledge

Sharing and Reuse

In this chapter, the motivation and aim of our research will be explained. Furthermore,

the application domain and context in which the research has been carried out will be

described. We will conclude with an overview of the structure of this thesis and a list of

publications that have reported on parts of our research.

Section 1.1 gives an introduction into knowledge sharing and reuse. We will see how it can

be helpful for the development of information systems. Ontologies have been proposed as a

mechanism for knowledge sharing and reuse and have been studied and developed in artificial

intelligence. Despite this research, the question whether ontologies can be used and reused

for different real-life applications remains open. Finding the answer to this question has been

the aim of this research (see Section 1.2). In Section 1.3 we will give an indication of the type

of knowledge and applications that served as test cases to develop our theories and ideas. The

remaining sections will describe the context in which the research has been carried out, the

organization of this thesis and the publications that reported on parts of our research.

1.1 Motivation: Knowledge Sharing and Reuse

From the beginning of the computer era, programmers have sought for ways to reduce the

effort of software development. The earliest attempt to achieve this has been the sharing

and reuse of pieces of software. The instrument for distribution and sharing were extensive

libraries of reusable software modules. Good examples of libraries that were in the forefront

of these developments are the Fortran subroutine libraries for numerical computation. The

desire to improve the abilities for reuse of software modules has been one of the main incen-

tives for the development of structured and modular programming languages like Pascal and

Modula.

1
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The next step to improve the reuse of software modules was to share not only the modules

themselves, but also knowledge about the modules. This approach originated in the mid 1970s

when knowledge-based systems (KBSs) like Dendral (Buchanan and Feigenbaum 1978) for

elucidating chemical structures and Mycin (Shortliffe 1976), a system to diagnose infectious

blood diseases were developed. These systems employed a separation between the domain

knowledge they reasoned about (often expressed as rules or frames) and the inference engine

(the methods) they used to draw conclusions from the knowledge. Because these systems

stored their knowledge in a format that was independent of the content of the knowledge,

KBS developers realized that the inference engines could be used relatively independent of

the domain.

This has led to generic tasks (Chandrasekaran 1988) and problem- solving methods (McDermott

1989). A generic task is a task that can be used in applications in different domains of

expertise. Examples of generic tasks are classification, interpretation, diagnosis, planning

and design. A problem-solving method is a specification of how a task can be performed. An

example of a problem-solving method for design is propose and revise. This method defines

that a design can be found by first proposing a partial solution and then resolving violated

constraints by revising this partial solution. Identification of the tasks to be performed by an

information system can direct the developer to off the shelf problem-solving methods that

can be implemented. Tasks and problem-solving methods are specified at the knowledge

level (Newell 1982), i.e. they are independent of the computer language the methods are

implemented in. Thus, sharing and reuse of knowledge about problem-solving methods leads

to more effective development of knowledge-based systems.

A recent approach to support information-systems development is to address the domain

knowledge side of the knowledge–method dichotomy. Instead of identification of generic and

reusable structures in the inference engine of a KBS, reusable pieces of the domain knowledge are

specified and reused. Ontologies have been proposed as a specification mechanism to enhance

this type of knowledge sharing and reuse across different applications (Neches, Fikes, Finin,

Gruber, Senator, and Swartout 1991). We will give examples of ontology development below.

Naive Physics and Commonsense Knowledge An example of an ontology about naive

physics is the ontology for liquids developed by Hayes (1985). Naive physics can be hard to

formalize: the problem with knowledge about liquids is that they have no definite shape and

can merge split mix in mysterious ways. Formalizations of knowledge about physical objects

can be found in (Clarke 1981; Simons 1987; Cohn, Randell, and Cui 1995; Borgo, Guarino,

and Masolo 1996b). Ontologies of microscopic and macroscopic views on the electrical

domain are combined by Liu (1992). The aim of the Cyc project (Lenat and Guha 1990) is

to build up a large knowledge base with commonsense knowledge. To help structuring the

knowledge in the knowledge base, an ontology of common-sense top-level concepts has been

developed. Other formalizations of naive physics and commonsense knowledge can be found

in (Hobbs and Moore 1985; Davis 1990; Hobbs 1995).
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Natural-Language Processing The Penman Upper Model (Bateman, Magnini, and Ri-

naldi 1994), is a general model about natural language that can be used for the generation and

processing of different languages (Italian, German and English). Other ontologies formalize

the semantics of the part–whole relation in natural language (Gerstl and Pribbenow 1995).

Natural language about movement in the French language is formalized in (Sablayrolles

1993). Ontologies are also used for the development of systems for extraction of knowl-

edge from abstracts of scientific articles (van der Vet, Speel, and Mars 1994; van der Vet,

Speel, and Mars 1995). An ontology used for the development of a consultation system for

financial investment can be found in (Horacek 1994).

Engineering and Technical Applications Many ontologies have been developed for en-

gineering and technical applications. An ontology for the Sisyphus elevator design problem

(VT) is described in (Schreiber and Terpstra 1996). In the KACTUS project (Laresgoiti, An-

jewierden, Bernaras, Corera, Schreiber, and Wielinga 1996; Bernaras and Laresgoiti 1996),

ontologies for diagnosis of electrical networks and for the exchange of knowledge about

ship design and oil platforms have been written. The YMIR ontology (Alberts 1993) is a

domain independent, sharable ontology for the formal representation of engineering design-

knowledge, based on systems theory. The PHYSSYS ontology (Borst, Akkermans, and Top

1997) described in Chapter 3 has the same objectives, but is less biased to a mathematical

representation. Knowledge formalized in PHYSSYS has been used to develop a number appli-

cations: 007 (Pos 1997), a model revision assistant, the OLMECO library of model fragments

for simulation (Chapter 4) and, in parts, a prototype system for ecological product disassem-

bly analysis (Chapter 5). EngMath (Gruber 1994) is an ontology for mathematical modelling

in engineering. It has been reused many times, for instance in PHYSSYS and in CML. CML

(Falkenhainer, Farquar, Bobrow, Fikes, Forbus, Gruber, Iwasaki, and Kuipers 1994) is an on-

tology about time, continuity, object properties etc. to enable the sharing of models based on

compositional modelling (Falkenhainer and Forbus 1991; Forbus 1984). The CML ontology

has been used to develop an ontology for thermodynamic systems and an ontology for VT.

Corporate Memory and Enterprise Modelling The TOVE ontology (Fox, Chion-

glo, and Fadel 1993; Gruninger and Fox 1994), formalizes knowledge about produc-

tion/communication processes, activities, causality, resources, quality and cost in business

enterprises. Ontologies have also been developed for the implementation of knowledge bases

for formalization and conservation of the knowledge of experts in enterprises. An exam-

ple of such an ontology is the KONE ontology (Kühn 1994) that deals with conservation of

corporate knowledge about crankshaft design.

Medical Diagnosis Knowledge in the medical domain about diagnosis, therapy planning

and patient monitoring has been formalized in the GAMES-II project (Falasconi and Ste-

fanelli 1994; van Heijst, Schreiber, and Wielinga 1997).
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Information-System Specification and Design As we have sketched in Section 1.1,

knowledge about generic tasks and problem-solving methods can support information sys-

tem design. A group of researchers in AI have worked on ontologies that formalize what

the knowledge about tasks and methods look like (Angele, Decker, Perkuhn, and Struder

1996; Fensel, Schönegge, Groenboom, and Wielinga 1996). Takagaki, Wand and Weber

(Takagaki and Wand 1991; Wand and Weber 1990) have worked on ontologies that formally

describe information systems. Their goal is to overcome the lack of theoretical foundations

of information-system design methodologies.

Knowledge Acquisition As an ontology formally specifies meta-level domain knowledge,

it can be an excellent specification for tools that acquire knowledge from domain experts.

A good example of a project in this field is the PROTÉGÉ-II project (Puerta, Egar, Tu, and

Musen 1992).

The examples mentioned above have in common that the domains and applications they are

about are knowledge intensive. Many applications have the additional problem that they have

to combine diverse knowledge from different disciplines to perform their tasks. It is exactly

for these types of applications that developers can benefit from knowledge sharing and reuse

with ontologies.

1.2 Aim: Investigate the Usability and Reusability of On-

tologies

In view of the large number of ontologies that have been developed it is tempting to conclude

that the use of ontologies is a widely accepted and well founded practice. Unfortunately, it is

still too premature to draw this conclusion. There are three reasons for this:

1. Many ontologies have not been used to develop a real-life application.

2. Many ontologies have not been reused for different applications in different domains.

3. Many ontologies are merely taxonomies of domain concepts and fail to capture meta-

level and tacit background knowledge.

Research into the extent to which ontologies can be used and reused for application develop-

ment is therefore justified.

The aim of our research is therefore to investigate the usability and

reusability of ontologies by construction and validation of an ontology

for a large and complex domain, that

1. is usable for application development,

2. is reusable across different applications and

3. captures meta-level and tacit background knowledge.
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1.3 Domain: Physical System Engineering

If ontologies are to be used as a specification mechanism for knowledge sharing and reuse

across different applications (Neches, Fikes, Finin, Gruber, Senator, and Swartout 1991),

they must capture the intended meaning of concepts and statements in a domain. Sharing

and reuse imply two additional requirements: (i) ontologies must aim at a maximum level

of genericity and thus bring out the commonalities within extensive bodies of detailed and

specialized knowledge, and (ii) they must be able to explicate tacit and meta-level knowledge,

as significant parts of domain expertise are highly implicit and have a background nature.

These aspects are all clearly present in the area we consider in this thesis: intelligent support

for physical-system engineering. Take as a simple example the expression F = ma. Many

people will immediately associate this with Newton's law stating that force is the product

of mass and acceleration. But this is a highly non-trivial association, because it can only be

made by invoking a lot of background knowledge. First, we have to know that we are deal-

ing here with a mathematical expression, and we have to understand the related concepts of

equations, parameters and variables. However, this is far from enough: the intended meaning

of F = ma may now still be that electrical voltage is the product of resistance and current

(which, instead, many people would call Ohm's law and typically write as V = IR). To dis-

tinguish between such possible interpretations we need more knowledge about, for example,

the concept of physical dimensions of variables. To capture the intended meaning of F =ma

in the context of its use in problem solving, we have to additionally invoke a significant body

of expert knowledge. For example, we have to understand that in this context of problem-

solving use, physical objects are abstracted to and parameterized in terms of a concept called

`mass' , that this mass acts as a kind of storage place for movement, that this movement does

not change when the mass is undisturbed, and that it does change under certain external

influences and circumstances which are abstracted to and parameterized in terms of a con-

cept called `force' , and so on. That is, in specifying intended meaning we unavoidably have

jumped into a background body of specialist knowledge known as classical mechanics.

If ontologies are to enhance knowledge sharing and reuse by capturing intended meaning,

the above-mentioned issues have to be confronted. Current information systems supporting

complex tasks and domains typically do not possess the body of knowledge necessary for

generating adequate interpretations, but instead rely on the fact that the user does. So, they

place most of the burden on the user. Intelligent support implies that this burden must be

shifted back as much as possible towards the information system. Ontologies are a promising

candidate to help achieve this, but to realize this potential we need a better understanding

both of their role in complex problem solving and of their construction.

1.4 Context of the Research

Our research has been carried out at Department of Computer Science of the University of

Twente, Enschede, The Netherlands. This section describes the project group in which the

research took place and two projects we participated in.
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1.4.1 The TWIST Project Group

The TWIST project group develops concepts and methods for advanced information systems

in science and engineering applications. The aim is to enhance computer support for tasks in

engineering and physical science, in particular concerning the model construction process of

physical systems, simulation and other forms of large-scale computational and mathematical

analysis, and engineering design. A special research emphasis is on the utilization of ideas

and methods from artificial intelligence for physics and engineering, and on their integration

into conventional approaches and techniques in application fields.

1.4.2 The OLMECO Project

The ideas formalized in PHYSSYS (Chapter 3 of this thesis) provided the basis for the devel-

opment of a library of reusable model fragments for engineering and design. This library

has been developed in the European Union ESPRIT-II program OLMECO(`Open Library for

Models of mEchatronic COmponents' ). The program has been carried out in the period from

September 1992 to November 1995.

The aim of the OLMECO project is to develop a modelling and simulation environment for

industrial applications. The philosophy behind the project is that generic models fragments

can be specified that can be reused in many simulation models. The reuse of these models

can improve the modelling productivity and lead to a better competitive position,

The project participants provided three kinds of expertise for the project:

1. Industrial expertise: The project was initiated by the French car manufacturer PSA Peu-

geot Citroën. Further know-how about industrial applications was provided by the

Spanish machine tool manufacturer Fagor. Both PSA and Fagor were assisted by tech-

nology transfer companies, respectively by Imagine (France) and Ikerlan (Spain).

2. Methodological expertise: The University of Twente and the Netherlands Energy Re-

search Foundation (ECN) brought in their expertise about modelling and simulation

methodology.

3. Information technology expertise: The Belgian software vendor BIM was involved in the

project to implement the library system and to make it commercially available.

Chapter 4 describes work carried out in the OLMECO project.

1.4.3 The SUSTAIN Project

The research described in Chapter 5 has been carried out in the SUSTAIN project to support life

cycle assessment. The aim of product life cycle assessment (LCA) is to determine the impacts

of a product on the environment. Life cycle assessment entails the specification of a model,
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comprising many different components, materials, energy, production, use and disposal pro-

cesses, environmental impacts, with many interrelationships chaining all this together.

The aim of the SUSTAIN project is to make design for the environment more easy for the user.

Recent advances in information technology give opportunities to make LCA software more

intelligent, such that the user is better supported, needed specialist knowledge is accessed

more easily, and quality LCA's become feasible for a wider range of interested parties, e.g.,

design engineers.

The SUSTAIN project is a cooperation between PRé Product Ecology Consultants (Amers-

foort, the Netherlands), the Energy Research Foundation ECN (Petten, the Netherlands) and

the University of Twente (Faculty of Computer Science, Enschede, the Netherlands). The

SUSTAIN project has run from late 1995 to April 1997, and has been supported by the Dutch

Ministry of Economic Affairs SENTER-IT Programme as project nr. ITU95038. The objective

was to develop a number of innovative ideas regarding product and process modelling that

simplify the end user' s task, and can be built into the PRé SimaPro software package, the

LCA software that is leading the market in Europe.

The project has produced three major deliverables, on interfacing Computer Aided Design

(CAD) and LCA (Burghout, Akkermans, Borst, and Pos 1997), on new methods for product

disassembly analysis (Borst and Akkermans 1997) (also Chapter 5) and on enhancements

of LCA process modelling to make LCA software more intelligent and supportive (Warmer

1997). Some of the results of the SUSTAIN project have been reported at the SETAC Europe

1997 Meeting (Amsterdam, April 1997).

1.5 Organization of this Thesis

The organization of this thesis is as follows:

Chapter 2 We begin with a general chapter on ontologies. It will be explained what an on-

tology exactly is, what ontology specifications look like and which different types of

ontologies can be distinguished. Emphasis will be put on explaining which properties an

ontology should have to be reusable.

Chapter 3 Chapter 3 gives an overview of a general collection of ontologies for physical

systems, whereby we attempt to clarify throughout how we can achieve genericity in

ontological specifications, what general decomposition and structuring principles play

a role, and how we can reuse existing other ontologies. We will introduce a number

of ontology construction operators which are mechanisms to construct large and complex

ontologies from smaller and reusable ontologies.

Chapter 4 Chapter 4 is more domain-specific and demonstrates the practical relevance and

use of ontologies for demanding industrial engineering domains and tasks. We follow

the complete route from formal ontology construction (PHYSSYS, Chapter 3), via the

ontology-based design specifications of an implemented library of reusable models
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(OLMECO, Section 4.1), to the daily task execution by domain experts (numerical sys-

tem simulation, Section 4.3).

Chapter 5 Chapter 5 demonstrates how, using the principles of ontology construction, some

of the ontologies that form PHYSSYS can be reused and extended with new ontologies

to capture knowledge for a totally different task, namely that of ecological product disas-

sembly. This chapter also describes the design of a prototype knowledge-based system,

demonstrating in more detail the use of ontologies as software specifications.

Chapter 6 We believe that many of our experiences and results are independent of the con-

sidered domain, and have a general relevance for the engineering of ontologies. In

Chapter 6 we will discuss the conclusions emerging from the present work and the role

ontologies can play in the future.

Appendix A This appendix contains the complete Ontolingua 4.0 implementation of the

PHYSSYS library of ontologies.

Appendix B This appendix contains a specification of the thermodynamic models we devel-

oped for the OLMECO library as well as a detailed description of the modelling experi-

ment.

1.6 Publications

Parts of this work have been published and presented in international fora:

An article in the International Journal of Human–Computer Studies (Borst, Akkermans, and

Top 1997) reported on the construction and validation of PHYSSYSas described in Chap-

ters 3 and 4. A shorter version has been presented at the Bannf Knowledge Acquisition

for Knowledge-Based Systems Workshop (Borst, Akkermans, and Top 1996).

Earlier versions of he PHYSSYS ontology (Chapter 3) have been presented at workshops of the

European Conference on Artificial Intelligence (ECAI) in 1994 (Borst, Pos, Top, and Akker-

mans 1994) and the International Workshop on Qualitative Reasoning (Borst, Akkermans,

Pos, and Top 1995).

Some ideas of ontology construction were addressed in (Benjamin, Borst, Akkermans, and

Wielinga 1996) and have been presented at the European Knowledge Acquisition Workshop

in 1996. The paper describes the way an ontology for heat exchangers could be constructed.

The same topic, only then applied to the PHYSSYS ontology is covered in (Borst, Benjamin,

Wielinga, and Akkermans 1996a) (presented at the ECAI' 96 workshop on ontological en-

gineering) and (Borst, Benjamin, Wielinga, and Akkermans 1996b) (presented at the Dutch

Conference on Artificial Intelligence).

Our work in the SUSTAIN project on ecological product disassembly (Chapter 5) has also

been described in a project deliverable (Borst and Akkermans 1997). A presentation about

the project has been given at the Seventh Annual Meeting of the Society of Environmental
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Toxicology and Chemistry in 1997. The project has also been presented at the Workshop on

Product Knowledge Sharing and Integration on April 17–18, 1997 in Sophia Antipolis.

The conceptual schemata of the OLMECO library were published in (Akkermans, Borst, Pos,

and Top 1995). The thermodynamic models we developed for the OLMECO library can be

found in the OLMECO deliverable (Top, Borst, and Akkermans 1995) (see also Appendix B).

Our experiences in the design and the use of the thermodynamic library have been described

in (Borst, Top, and Akkermans 1997) and were presented at the International Conference on

Bond Graph Modeling and Simulation in 1997.

On November 19, 1996, the Dutch national newspaper NRC Handelsblad published a photo-

graph that also appears on the cover of this thesis (although with a different background).

The picture shows the Peugeot 106 Electrique. This electrical car has been designed using

the OLMECO library. At the final project review, a prototype of the car was demonstrated by

engineers of Peugeot to the European Community representatives, referees and project par-

ticipants who could take rides in it. A few months later, the car was introduced on the market

and bought by the police in Kidderminster.
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Chapter 2

What is a Useful Ontology?

In this chapter we will explain what ontologies exactly are, how they can be specified

and how they can be used. We will see that different kinds of knowledge can be distin-

guished and that knowledge can be modularized in small, manageable pieces. This makes

it possible to construct large and complex ontologies out of smaller and more reusable

ones.

In Section 2.1 of this chapter will be explained what is meant by the term `ontology' by

giving a definition. The following sections will describe how a very simple ontology of the

classification of animal species in herbivores, carnivores and omnivores can be developed.

With this example ontology we will show how ontologies can be specified (Section 2.2) and

which different kinds of ontologies can be distinguished (Section 2.3). Section 2.4 explains

how large ontologies can be constructed from smaller ontologies. The way ontologies can be

used is discussed in Section 2.5 and Section 2.6 gives a summary of this chapter.

2.1 A Definition of Ontology

In philosophy, the word ontology means a theory about the nature of being, or the kinds of

existence. Artificial intelligence (AI) has borrowed the word from philosophy and has given

its meaning a twist. For AI the main question is not what the nature of being is, but what

an AI system has to reason about to be able to perform a useful task. An often used and

paraphrased definition of ontology is that of Gruber.

An ontology is an explicit specification of a conceptualization. The term is bor-

rowed from philosophy, where an ontology is a systematic account of Existence.

For AI systems, what “exists” is that which can be represented (Gruber 1994).

11
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In order to understand this definition, it must be clear what a conceptualization is. A con-

ceptualization is a structured interpretation of a part of the world that people use to think

and communicate about the world. For a biologist such a conceptualization may include that

animals can be classified in groups called species and that the animals belonging to a species

have similar eating habits. Based on these eating habits the species can be subcategorized

into herbivores, carnivores and omnivores.

The AI definition of ontology resembles the interpretation of the philosopher Quine (Quine

1961): what exists is that what can be quantified over. Just as in the field of AI, he is more

interested in the concepts required for useful reasoning in a domain, and not so much in the

question whether a concept exists in the physical world or not. The question whether the

animal species of elephants exists in reality or only in the mind of people is an interesting

question, but for the practical use of ontologies less important.

A lot of debate has been going about what is the best definition of an ontology. Most re-

searchers generally agree on the definition of Gruber, but find it too broad. The main dif-

ferences between the definitions lie in ways that ontologies that satisfy Gruber' s definition,

but are not useful for application development are excluded. The debate is similar to that of

the difference between data and information. Although it seems to be impossible to define

the exact difference between the two, computer engineers are still able to write successful

information systems. We will therefore give a definition of ontologies that suites us the best

and continue this section with explaining how to make a good ontology.

An ontology is a formal specification of a shared conceptualization.

This definition emphasizes the fact that there must be agreement on the conceptualization

that is specified. The reason for including this is that the ability to reuse an ontology will be

almost nil when the conceptualization it specifies is not generally accepted.

2.2 How to Specify an Ontology?

For reuse of ontologies it is essential that they are formally specified. There are many for-

malisms that can be used. Examples are first-order predicate logic (Hayes 1985), MODEL

(Tu, Erikson, Genari, Shahar, and Musen 1995) and CML (Schreiber, Wielinga, Akkermans,

van de Velde, and Anjewierden 1994). Most specification languages are based on predicate

logic or meta logic. The ontologies described in this thesis have been specified in the lan-

guage of the Ontolingua system (Gruber 1992; Gruber 1993; Farquar, Fikes, and Rice 1996).

The syntax of Ontolingua definitions is based on a standard notation and semantics for predi-

cate calculus called Knowledge Interchange Format (KIF) (Genesereth and Fikes 1992). KIF

is a monotonic first order logic that has been slightly extended to support reasoning about re-

lations. KIF is intended as a language for the publication and communication of knowledge.

The current version of the Ontolingua system is accessible only through the World Wide Web

(http://ontolingua.stanford.edu). The system supports browsing, construction and modifica-
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tion of ontologies by distributed groups of people. The system can check the consistency

of definitions and the use of the terms in an ontology. Ontologies can be presented in a

structured way and stable ontologies can be made public by submitting them to a library.

Furthermore, ontologies can be translated to various knowledge representation languages

such as IDL (Mowbray and Zahavi 1995), Prolog, CLIPS, LOOM (MacGregor 1990), Epikit

(Genesereth 1990) and KIF.

In Ontolingua terms, an ontology is called a theory, a term borrowed from logic. A theory con-

sists of definitions of classes, relations, functions, class instances and axioms. Furthermore, a

standard Ontolingua theory called the Frame Ontology defines concepts like frames, slots, and

slot constraints that enable ontological engineers to express knowledge in object-oriented and

frame-language terms.

Throughout this thesis excerpts of our ontologies will be presented. The excerpts are written

using a slightly altered syntax. The basic structure and the types of the Ontolingua definitions

has been kept, but the syntax has been changed to conform closer to the syntax of predicate

logic. This to improve readability for people unfamiliar with Ontolingua. The ontologies have

been parsed and checked by version 4.0 of the Ontolingua system. Version 4.0 is a previous

version of Ontolingua that was still a stand alone system without Internet capabilities.

2.3 What is in a Useful Ontology?

Figure 2.2 gives an example of (a first attempt to) an ontology of animal forage. Line 1

defines the name of the theory that is specified. Usually this name gives an indication of the

domain the theory is about. Line 2 defines the existence of a concept called species in the

domain of animal forage. On the lines below, marked a to c, axioms regarding the class of

species and its instances are defined. Axioms are definitions of things that are always true

in the domain. Axioms 2a to 2c define that ferrets, polecats and chamois 1 are instances of

the class species. In Line 3 the relation eats is defined. It associates a type of food to animal

species. The axioms in Line 3a to 3c define properties of the relation that are always true.

The knowledge that a species are herbivorous, carnivorous or omnivorous is formalized in

Line 4.

Based on the forage ontology, a small computer program can be written that can tell whether

ferrets, polecats and chamois are herbivores, carnivores or omnivores. The ontology provides

the information to design the data structures of the application. For applications written in a

programming language like C or Pascal, an array of records with fields for the name of the

species, the kind of food and the kind of species suffices. For database applications, a table

with these three fields can be used.

An important observation about the ontology is that it defines terms in the domain and re-

lationships between these terms in a formal way, but it does not specify the meaning of the

1The species used in the example are species that frequently appeared in the hilarious sketches about a pet shop

in the Dutch TV programme Jiskefet (which means trashcan in the Frisian language).
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Figure 2.1: The species appearing in the ontology of animal forage: Polecats (top left-hand

side), Chamois (top right-hand side) and Ferrets (bottom). The drawing has been made by

Annemarie Borst.
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1 define-theory animal-forage

2 define-class species(x)

a instance-of(ferrets,species)

b instance-of(polecats,species)

c instance-of(chamois,species)

3 define-relation eat(s,f)

a eat(ferrets,animals)

b eat(polecats,animals)

c eat(chamois,plants)

4 define-relation kind-of(s,f)

a kind-of(ferrets,carnivorous-species)

b kind-of(polecats,carnivorous-species)

c kind-of(chamois,herbivorous-species)

Figure 2.2: First attempt to an ontology of animal forage.

terms. What species, ferrets or herbivorous species actually are, is assumed to be known to

the group of persons for which the ontology was written (biologists). An ontology therefore

is a formal specification of a part of a conceptualization. The names of the concepts and

the description of the ontology in natural language is therefore important for the ability to

understand and use an ontology.

If an agent, information system or group of people agrees on an ontology, it is said that they

commit themselves to it. The choice of terms and axioms are therefore called the ontological

commitments. There seems to be a general agreement (Gruber 1995) that the ontological com-

mitments in an ontology need to be kept to a minimum, because overcommitment reduces

the reusability of an ontology. We would rather say that there is a tension between under, and

overcommitment. Overcommitment reduces the reusability, but undercommitment reduces

the usability of an ontology. In this view, the forage ontology of Figure 2.2 is a good example

of a useless ontology. In one sense it is overcommitted and in another it is undercommitted.

This will become clear below when we look at the imaginary application that is based on this

ontology.

The functionality of the application is limited because in committing to the ontology, it com-

mitted to three animal species. As a result, when the user asks about the forage habits of

rhinoceroses the system is unable to answer. The ontology should therefore not mention the

factual situation (also called state of affairs) in a domain, but describe the meta-knowledge in

the domain. For the forage ontology this means that it should specify the relationship be-

tween the eating habits of a species and the type of species. In failing to do this, we could

say that the ontology is also undercommitted. Although this remark on undercommitment

may seem obvious, many of the ontologies found in the literature are just classifications of

domain instances, just as the forage ontology in Figure 2.2. Incorporating meta-knowledge

in the forage ontology leads to the ontology in Figure 2.3.

In the new ontology, meta-knowledge about the domain is specified instead of the state of

affairs. The fact that animals of a certain species can eat one or two types of food is specified

in Line 3. Depending on the type of food the species eats, it can be decided what kind of
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1 define-theory animal-forage

2 define-class species(x)

3 define-relation eat(s,f)

a forall s,f: eat(s,f) -> instance-of(s,species)

and (f=plants or f=animals)

4 define-relation kind-of(s,f)

a kind-of(s,herbivorous) <->

instance-of(s,species) and eat(s,plants) and not eat(s,animals)

b kind-of(s,carnivorous) <->

instance-of(s,species) and eat(s,animals) and not eat(s,plants)

c kind-of(s,omnivorous) <->

instance-of(s,species) and eat(s,plants) and eat(s,animals)

Figure 2.3: Second attempt to an ontology of animal forage.

animal species it is. This is formalized in Line 4. Note that in Lines 4a to 4b, the free variable

s is unbound. Where there are unbound variables in an axiom, it is assumed that they are all

universally quantified, just as in Line 3.

It is of course possible to incorporate some domain facts in a domain ontology, but generally

this is only done when there is good reason to believe that the facts are exhaustive. This is

the case with the types of food because there are only two types: plants and animals. For non

exhaustive facts, it is left open to the information system developers to decide which facts to

include in the system. Because the specifications in Figure 2.2 is not much more than just a

specification of domain facts, some researchers would not consider it an ontology at all.

Because the ontology now includes meta-knowledge, its (re)usability has been increased. It

can not only be used for simple programs that know about three animal species, but also

for database systems where information about new species can be added and checked for

consistency (using meta-data derived from the ontology). Also, a more intelligent knowledge

based system can be built that, when it is queried about a species it has not heard of, can ask

the user whether he knows the type of food this species eats. Based on that information the

system can classify the species and update its factual knowledge.

The structure of an ontology can be presented in an OMT conceptual schema (Rumbaugh,

Blaha, Premerlani, Eddy, and Lorensen 1991). Figure 2.4 gives an overview of the OMT

notation. The conceptual schema of the forage ontology can be found in Figure 2.5. Such a

schema gives an overview of the concepts and relations in an ontology. Conceptual schemata

cannot replace an ontology, because their expressiveness is too limited. For instance, the

domain knowledge that species that only eat plants are herbivorous (Axiom 4a–c) cannot be

represented. In cases where relations between concepts are restricted by important axioms,

we will represent this using a labelled dotted line between the relations. The labels correspond

to the relevant axioms.



2.3. WHAT IS IN A USEFUL ONTOLOGY? 17
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Figure 2.4: Notational conventions of OMT.
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Figure 2.5: Conceptual schema of the forage ontology extended with three animal species.
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2.4 The Problem: Useful Ontologies will be Big

It is evident that knowledge sharing and reuse is most profitable for applications in large

and complex domains. It can therefore be expected usable ontologies will be also large and

complex. The approach to handle such large ontologies is similar to the approach to handle

large pieces of software in software engineering: divide and conquer. Domain knowledge

is divided into small, manageable pieces with strong internal coherence but relatively loose

coupling. These small bodies of knowledge are specified in separate ontologies that form the

building blocks to construct larger ontologies. In this section we will explain several ways to

modularize large bodies of knowledge and the way ontology construction takes place.

2.4.1 Divide: The Ontological Building Blocks

Division of knowledge into small pieces is based on recognition of different kinds of ontolo-

gies. We will briefly describe these different kinds, the properties they have and the way they

can be identified in large bodies of knowledge.

Natural Viewpoints The first way to modularize domain knowledge is to partition it in

pieces in which the concepts are centered around natural viewpoints or base categories. This

results in relatively small viewpoint ontologies. For instance, the knowledge in the domain of

biology can be partitioned in the subdomains of botany and zoology. Both subdomains can be

combined in the general domain ontology of biology. This ontology could then define a tax-

onomy of all organisms, botanical and zoological on top of it. Other examples of viewpoints

are the ones distinguished in Chapter 3 of this thesis. There, three viewpoints on technical

devices are distinguished: the way they are constructed from components, their behaviour in

terms of physical processes and the way this behaviour can be described mathematically. The

advantage of modularization into viewpoints is that a viewpoint has less ontological commit-

ments and is therefore more reusable than the entire domain ontology.

Abstract Ontologies A second way for modularization is to make ontologies that define

abstract concepts. These abstract abstract concepts can be used to define more specific con-

cepts in different domains. An example of abstract concepts are taxonomies. A taxonomy is

a structured overview of classes, subclasses and instances. Taxonomies can not only be found

in biology, but also in engineering domains. Chapter 4, for instance, describes a library of

reusable simulation models in which the component models can be accessed using a compo-

nent taxonomy. Other examples of abstract ontologies are mereology (part-of relationships),

topology (connected-to relationship), and systems theory which are discussed in Chapter 3.

Ontologies of graph-theory and of state-space are briefly described in Chapter 5.

Method Ontologies The third type of ontologies are method ontologies. Method ontologies

define the way domain knowledge can be used to perform certain tasks. For the forage on-
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tology we have already seen that there are various ways in which domain knowledge (facts)

can be used to classify an animal species. In one application, information in a database was

searched for. In another application, facts (the type of food a species eats) were acquired from

the user and reasoned with to infer the kind of species. Both for searching and for logical

reasoning general problem solving methods exist. For searching, there are for example se-

quential and binary search methods. Examples In the field of logical reasoning are inductive

and abductive reasoning. These methods are general in the sense that they are independent of

the domain that is reasoned about.

A method ontology includes the definition of a terminology for expressing the competence

and the knowledge requirements of a method (Fensel, Schönegge, Groenboom, and Wielinga

1996). For search methods this terminology could include the concept of records, which are

group of related domain facts, keys on which all facts in a record uniquely depend and queries

that define the records we are interested in. The two search methods that have a different

competence. Sequential search generally takes more time than binary search, but the latter has

an additional knowledge requirement. For binary search there must be an ordering relation

defined for the keys, and the records must be sorted accordingly. The way method ontologies

can be linked to domain ontologies is explained in (Gennari, Tu, Rothenfluh, and Musen

1994) and in Chapter 5 of this thesis.

Application Ontologies Ontologies that are used for the design of an application are called

application ontologies. Generally, they consist of a domain ontology and methods from a

method ontology. The methods specify the way the functionality of the application is

achieved. Therefore, application ontologies are less suited for reuse for other applications.

The degree to which knowledge can be formalized in reusable ontologies is strongly affected

by the interaction problem, presented by Bylander and Chandrasekaran (1988):

Representing knowledge for the purpose of solving some problem is strongly

affected by the nature of the problem and the inference strategy to be applied to

the problem (Bylander and Chandrasekaran 1988).

Interpreting this problem in a pessimistic way, one could say that it is hardly possible to write

a domain ontology that can be reused across many applications because each application will

have different tasks and use different methods to accomplish the tasks.

We argue however, that although it is not feasible nor desirable to write one domain ontology

that is appropriate for all tasks in a domain, it is possible to write a domain ontology that can

be shared across large groups of applications. Again, the key factor is modularity. Domain

knowledge that is shared by all applications should be specified in a separate core ontology.

Task dependent extensions to, or axioms restricting this core knowledge can then be specified

in additional ontologies. This provides us another principle for modularization: separate

knowledge that is specific for a small group of tasks from knowledge that is less task specific.
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2.4.2 Conquer: Ontology Construction

Modularizing domain knowledge in manageable ontologies is one part of the solution, but in

order to assemble them into large and complex domain ontologies, a mechanism to combine

ontologies is required. We call this assembling of small ontologies ontology construction.

In the Ontolingua system version 4.0, ontology construction is supported by ontology in-

clusion. Inclusion of an ontology in another means that definitions of the first theory are

added to the second. The current version of Ontolingua offers additional facilities to resolve

naming conflicts when an ontology that defines a term includes an ontology that defines a

conceptually different term with the same name. Furthermore, there is a mechanism to han-

dle polymorfism. This allows existing operators to be extended to work on new classes (for

instance the + operator means addition for numbers and concatenation for strings).

What we think is a disadvantage of the present inclusion mechanism, is that it is a pure syn-

tactical operation. If large ontologies are constructed by combining smaller ontologies, the

inclusion operator should make explicit the relationship between the combined knowledge:

are different viewpoints combined, are abstract concepts used to define more specific ones

or is the knowledge merely extended? This kind of informative mechanisms would help to

understand large ontologies. This is important, because in order to reuse an ontology, the

contents of it must be understood by the ontological engineer.

2.4.3 Libraries of Ontologies

To deal with large ontologies, large and complex domain ontologies are modularized in

smaller, manageable ontologies of different kinds. Many of these ontologies will be reusable

for different applications.

Domain ontologies can be reused because they define domain knowledge that can be used for

a large group of applications and problem solving methods.

Domain viewpoints can be candidates for reuse because they define compact and coherent

pieces of knowledge in a domain. Because subdomains generally consist of a subset of

the views of an entire domain, it is likely they can be shared across many subdomains.

Abstract ontologies are especially suited for reuse. Many domain concepts can be defined

as specializations of abstract concepts. The domain concepts will then comply to the

same properties as the abstract concepts.

Method ontologies can be reused because they define generic problem-solving methods that

can applied in different domains.

To allow that the above mentioned ontologies can be reused by different people they need to

be shared. A common way to share knowledge is by using a library. The Ontolingua system

supports such a publicly accessible library of ontologies. Ontological engineers can submit
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ontologies to this library or use ontologies from the library for ontology construction. To ac-

cess the ontologies in the library, the library system offers different kinds of information such

as an inclusion lattice of the ontologies in the library. Furthermore, automatically generated

reports of ontologies can be inspected. These reports give an overview of the terms defined

in the ontology as well as the terms included from other ontologies.

One aspect in which ontology libraries need to be improved is their support to retrieve an

appropriate ontology in the library. Although the library system presents some information

about the ontologies, we think this is not enough to support reuse sufficiently. The rela-

tionships between the contents of the ontologies have to be presented. Differences between

alternative ontologies for a domain or domain view have to be made explicit. For method

ontologies, similarities and differences between the problems they solve should be visible.

Abstract and method ontologies should give indications in which domains they can be of use.

With this information an appropriate ontology can be retrieved without having to study the

definitions in every ontology in detail.

2.5 The Role of Ontologies in Information Systems Devel-

opment

The usual way ontologies are used in information systems development is by construction

of an application ontology. This application ontology then serves as a specification of the

application' s data structures and the inference engine that performs the application' s tasks.

In the first part of this section we will describe the design process in which the application

ontology is constructed. The second part gives a comparison between ontology-based devel-

opment and other approaches in (non-AI) computer science.

2.5.1 In Artificial Intelligence

Most of the current approaches (for instance PROTÉGÉ-II (Gennari, Tu, Rothenfluh, and

Musen 1994)) to construct an application ontology include the following steps:

1. construct the domain ontology

2. determine which problem solving methods perform the application' s tasks

3. relate the knowledge required by the selected methods to domain knowledge

4. add factual knowledge about the domain

Some steps can be executed concurrently by different persons, for instance Step 1 and 2.

Step 1, 2, and 3 may need to be iterated for the domain ontology to converge to the selected

methods. The addition of domain knowledge can sometimes be supported by knowledge
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acquisition tools based on the domain ontology constructed in Step 1. The result is the appli-

cation ontology for the information system.

In (van Heijst, Schreiber, and Wielinga 1997), Van Heijst discusses the problem of

knowledge-based integration of representation formalisms. The off the shelf problem solvers

that are used to implement the application often require different knowledge representation

formalisms. The solution he proposes is to use the application ontology as a specification of

a common knowledge representation. Inferences of problem solvers using other representa-

tions are translated to and from this common representation. As we will see in Chapter 5,

the same solution has been used for the development of a prototype knowledge based system.

There, we used functions that translate data from C data structures to the form required for

the problem solving methods.

2.5.2 In Information Systems Development and Object Orientation

The role of application ontologies for information systems design does not differ much from

more conventional system design principles in software design, such as semantic modelling

(entity/relationship diagrams and object models), meta-data, design and analysis patterns and

the use of libraries of reusable software modules. We will discuss the main differences be-

tween these approaches and the ontological approach and explain the added value of the

latter.

Reusable Software Modules Libraries of problem-solving methods are very similar to li-

braries of reusable software modules. Both contain pieces of software that can be used for

different tasks in different domains. Method ontologies serve as a specification for the com-

petence and knowledge requirements of the methods in these libraries. Therefore, the appli-

cation ontology constructed in the ontological approach makes explicit how the domain tasks

are related to the generic task performed and which domain knowledge is used.

Semantic Modelling An entity/relationship diagram is a conceptual specification of the

data in an information system. It defines the concepts that are distinguished, the properties

they can have and the relations between entities. Furthermore, a class–subclass hierarchy

between entities can be defined which causes inheritance of properties and relations. The

Ontolingua frame ontology is a formal definition of this way of specification of knowledge.

Therefore, every entity/relationshipdiagram can be captured in an ontology. Ontologies how-

ever have the ability to specify domain knowledge in a much richer and structured way.

Object models can be viewed upon as entity/relationship diagrams with an extension that

attaches methods to objects (inheritance also applies to these methods). In the ontological

approach, these methods specified in method ontologies can also be related to domain objects.

Application ontologies can therefore be used to express object oriented models (Takagaki and

Wand 1991).
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Meta-Data In database systems development, specifications of the properties of objects

and relations is called meta-data. Meta-data can be used to check the consistency of the data

in the system. Because domain ontologies are developed to capture this meta-knowledge,

meta-data can be easily derived from a domain ontology. The ontological approach has the

benefit that the principles of ontology construction can be used to define meta-knowledge in

a structured way.

Object Oriented Design and Analysis Patterns A very interesting development in the

field of object oriented analysis and design is the use of patterns (Coad 1992; Gamma, Helm,

Johnson, and Vlissides 1995; Partridge 1996; Fowler 1997). Analysis patterns are meta-level

descriptions of pieces of object models that frequently occur in object oriented analysis. De-

sign patterns are similar, but have pieces of code attached to it, so they can be used for object

oriented design. Analysis patterns are similar to domain ontologies and design patterns to

application ontologies. The benefit of using ontologies instead of patterns is that ontology

construction offers a way for constructing complex ontologies from smaller ones. Further-

more, using abstract ontologies it is possible to specify knowledge at higher knowledge levels.

In pattern terminology this means that patterns of patterns can be specified.

The great benefit of design patterns is that the methods defined for them are tuned to the

object oriented knowledge representation. Thus, the problem of knowledge representation

integration is got around. Application development using design patterns is therefore less

time consuming than ontology-based development. On the other hand, ontologies are not

restricted to object oriented knowledge and methods. We think that the fields of object orien-

tation and ontological engineering can learn a lot from one another' s achievements.

Analysis and design patterns are collected in libraries. Like ontology libraries, these pattern

libraries also lack good support for accessing the contents of large libraries.

2.6 Ontologies as Information System Specifications

We conclude this chapter by summarizing the most important findings.

Ontologies are formal specifications of shared conceptualizations. They can be the instru-

ments for knowledge sharing and reuse. Ontologies can support information systems design

because they specify the knowledge an information system must capture to perform its tasks.

To be (re)usable, ontologies should not capture facts about instances in the domain, but make

explicit tacit and meta-level knowledge. Ontologies are usually specified in representation

languages based on predicate logic.

Ontologies can be constructed from smaller modules that are ontologies themselves. Dif-

ferent types of these smaller ontologies can be distinguished: domain ontologies, domain

viewpoint ontologies, abstract ontologies and method ontologies. Many of these ontologies

can be reused across different domains and applications. A good way to support sharing and

reuse of ontologies is to include them in a publicly accessible ontology library.
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By combining a domain ontology and different method ontologies and adding domain facts,

an application ontology can be constructed. An application ontology specifies how the appli-

cation' s functionalitycan be implemented and which domain knowledge is required. As such,

application ontologies play a similar role in information systems design as entity-relationship

diagrams, object models, and object patterns. The benefit of ontologies is that they are better

suited for piecemeal specification of complex structured domain knowledge, that they make

explicit the way domain tasks are performed and that they are independent of the application' s

implementation language.

In the next chapters we will leave the animals in this chapter in peace and start the investiga-

tion of the use of ontologies for complex applications in a large, technical domain.



Chapter 3

Engineering Ontologies

In this chapter we will discuss the way a domain ontology for the modeling of physical

systems can be constructed from smaller, reusable ontologies. The ontology is called

PHYSSYS and describes the domain knowledge required to make simulation models for

devices like heating systems, automotive systems and machine tools.

In Section 3.1 we will see that the knowledge about physical systems can be centered around

three conceptual viewpoints: technical components, physical processes and mathematical

relations. Furthermore, generic abstract relations that play a role in both component and

process viewpoints can be distinguished. This allows us to modularize the ontology and

construct it out of small, reusable ontologies using ontology projections. Section 3.2 gives an

extensive comparison of the work presented in this chapter and related research. We will

end this chapter with an overview of our findings about ontology construction and ontology

projections (Section 3.3).

3.1 The PHYSSYS Ontology for Physical Systems

PHYSSYS is a formal ontology based upon system dynamics theory as practiced in engineer-

ing modelling, simulation and design. It forms the basis for the OLMECO library, a model

component library for physical systems like heating systems, automotive systems and ma-

chine tools. The ontology expresses different conceptual viewpoints on a physical system.

To demonstrate what these viewpoints are, we carry out the small exercise of determining the

knowledge that is required to understand the formula F = ma. Anybody who paid attention

during physics class at highschool knows that this formula is Newton's law that describes the

acceleration of an object under the influence of a force. Unfortunately, for a computer this is

not obvious at all.

25
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When a user types in the formula on the console, it is just a string of characters. Assuming

the computer knows about mathematics, this string will be parsed and identified as a mathe-

matical formula, a relation between variables. The mathematical knowledge must include the

facts that a variable stands for a certain value that may or may not change in time (or another

free variable) and that possibly has a certain dimension. Knowing all this, F = ma just means

that the value of one variable is equal to the product of the value of two other variables, at

any time. The system still knows nothing about its meaning in terms of physics.

In order to make the computer understand the physical implication of the formula it must

know about physical processes, energy and physical domains. It must know that a formula

can be a mathematical description of a physical process like the inertial effect of a mass.

At this point it also becomes clear that a mathematical variable represents a certain physical

quantity. In the F = ma example, F is a force quantity, m stands for a mass and a for an

acceleration. Without this knowledge F = ma could also have meant that the voltage F is

equal to a resistance m multiplied by the electrical current a. With this interpretation, the

equation would have been another famous physical law called Ohm's law (usually written

down as V = IR) that describes the process of electrical resistance.

The final step is to introduce the relation between the physical processes and the real world

physical system. For this, knowledge of how people look upon physical systems is required.

In engineering it is customary to think of the system as a configuration of components which

on their turn can be decomposed into smaller components. Connections between components

are the means for interaction. In these terms, the mass could be a heavy object hoisted by a

crane. The load and cable would be two components connected to each other by a mechanical

connection. Each component is the carrier of physical processes. The load component is the

carrier of the inertial effect and its interaction with the cable component implies an energy

flow between the physical processes modelling the two components.

Accordingly, it is clear that three conceptual viewpoints on physical systems can be distin-

guished: (i) system layout, (ii) physical processes underlying behaviour and (iii) descriptive

mathematical relations. This can be seen in Figure 3.1, which gives an overview of the struc-

ture of the PHYSSYS ontology (Borst, Pos, Top, and Akkermans 1994; Borst, Akkermans,

Pos, and Top 1995). Boxes represent separate ontologies whereas labeled arrows indicate

ontology inclusion. The labels next to the arrows show the kind of inclusion. As can be

seen in the figure, the basis of PHYSSYS is formed by three primary ontologies which are

formalizations of the three views on the physical domain.

What can also be noticed is the use of the abstract ontologies mereology, topology and systems

theory in the construction of the component and process views. One particular viewpoint on

a physical system is that it is a system in the sense of general systems theory. That is, it

constitutes an entity that (i) can be seen as separate from the rest of the world —so it has a

boundary and an outer world, the environment— and that (ii) has internal structure in terms

of constitutive elements and subsystems maintaining certain mutual relationships. Clearly,

this system theoretic view can be applied for device components for the entire concept of

components is based on the fact that they are separate entities that can be connected to form a

device. In Section 3.1.5 we will see that systems theory can also be applied for the definition

of physical process descriptions.
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Figure 3.1: Inclusion lattice of the PHYSSYS ontology.

For physical systems this implies that we focus on the structural aspects, and abstract from

what kind of dynamic processes occur in the system and from how it is described in terms of

mathematical constraint equations. Within such a purely structural view, we can express the

following knowledge about the system:

Mereological relationships: a system has a certain part-of decomposition into subsystems, which

on their turn can be decomposed into more primitive components.

Topological relationships: the various constituents of a system (subsystems, components) are

linked to one another through certain connections. For a physical system, this usually

provides information on the spatial topology of the system, but in general, the connec-

tions indicate the paths for physical interactions between the constituents.

System theoretic concepts: with use of the mereological and topological relationships system

theoretic concepts such as system boundary, system environment etc. can be defined.]

The PHYSSYS ontology consists of the three engineering ontologies formalizing the three

viewpoints on physical devices. These viewpoints themselves are constructed from smaller

abstract ontologies. The interdependencies between these ontologies are formalized as on-

tology projections. This gives us a set of ontologies of varying genericity and abstractness.

Identifying these separate ontologies not only makes it easier to understand the domain be-

cause classes and ontological commitments are added incrementally, it also increases the

ability to share and reuse parts of PHYSSYS.

In the next sections these ontologies will be presented. The three abstract ontologies will be

described first because they are used in the construction of the component and process views.

Special attention will be given to the ontology projections, which are the formalizations of the

interdependencies between included ontologies.
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3.1.1 Mereological Ontology

This section describes the mereological ontology that defines the part-of relation and its prop-

erties. The mereological ontology of PHYSSYS is simply an Ontolingua implementation of the

Classical Extensional Mereology as described in (Simons 1987). In at the end of this section

the Ontolingua Implementation will be presented, but first we will discuss Classical Exten-

sional Mereology in detail to show what an abstract ontology is and why they are difficult to

develop.

Classical Extensional Mereology

Mereology literally means `science or theory of parts' and stems from the Greek word for part,

���o&. It is also the name of the formal theory of parts and associated concepts developed

by Leśniewski. To distinguish his theory from other mereological theories, the theory of

Leśniewski is referred to as `Mereology' written with a capital M.

At first glance, the part-of relation does not seem to be hard to define. A component for

instance is part of a another component when the smaller component has been used to built

the larger. Mereology claims to be not only a theory about the part-of relationship between

components, but rather between a large class of `things' for which parts and wholes are

relevant. Some examples of these things, which we will call individuals from now on, can

be found in Table 3.1. It is only when we study in detail what may be concluded from

the statement that individual A is part of individual B and what this means for the part-

of relationships between A, B and other individuals that the difficult aspects of Mereology

become appearant.

whole parts

body organs

organism cells

device components

house roof, walls

book chapters

Table 3.1: Examples of part-whole relationships.

In this section we will investigate these aspects by presenting Leśniewski' s Classical Exten-

sional Mereology in the way it is explained in (Simons 1987). We will see that we have to

consider aspects of the theory that may be irrelevant in the context of components but are

essential for choosing the right ontological commitments. This will give us some clues of

how a library of ontologies needs to be organized.

The logical notation used in this section and Section 3.1.2 corresponds to the notation used

in (Simons 1987) and can be found in Table 3.2. Furthermore, we have to mention that it is

assumed that unbound variables are universally quantified. The survey of Mereology in this

section and that of the mereo-topology in Section 3.1.2 is based on the work of Simons.
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symbol meaning symbol meaning

� logical implication � overlap

� logical equivalence l disjointness

^ logical and + binary sum

_ logical or � mereological difference

� logical negation � binary product

9 existential quantifier � definite description

8 universal quantifier � general sum

p: : :q scope of quantifiers � general product

= equality >< connectedness

� identity ][ disconnectedness

< part-of >< external connectedness

� proper part-of

Table 3.2: Logical notation for Mereology and Clarke' s mereo-topology.

Part-of, Proper-part-of and Equality Like in mathematics, where the usage of the relation

� leads to shorter expressions than the combined use of < and =, in the formalization of the

properties of the part-of relation it is often convenient to express that the logical variable x

signifies a single individual that is part-of or equal to the single individual signified by y.

For this reason, there are two part-of relations in Mereology, one meaning part-of-or-equal

and the other meaning a-real-part of. The relation for a-real-part-of is called the proper part-

of relation (�) and the relation for part-of-or-equal somewhat confusingly part-of (<). The

relation between the three relations is expressed by the following definition of part-of in terms

of the more intuitive proper-part-of and equal relations.

x < y � x� y _ x = y

Asymmetry and Transitivity In Mereology, axioms define the properties the part-of re-

lation must have to exclude situations that do not make sense. These properties include

asymmetry and transitivity:

x� y �� y � x

x� y ^ y � z � x� z

Asymmetry makes it impossible to say that an individual is a proper part of itself. Transitivity

states that when an individual is a proper part of a second individual that is a proper part of a

third individual, the first is also a proper part of the third. Although transitivity is a sensible

property when we regard a whole as being `assembled' from its parts, it can sound a bit

strange in cases where the parts are named after their function. Take for instance the sentence:

The house has a door, the door has a handle, so the house has a handle. This different view on

the part-of relation is discussed in (Winston, Chaffin, and Herrmann 1987) and (Gerstl and

Pribbenow 1995).
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Overlap and Disjointness We define overlapping (�) as “sharing a common part” and dis-

jointness (l) as the logical negation of this:

x � y � 9zpz < x ^ z < yq

x l y �� x � y

It can easily be seen that overlap is reflexive and symmetric but not transitive. More inter-

estingly, we can see that x � y can mean that either x or y is a part of the other, or that they

share a proper part. In the last situation we speak of proper overlap. Proper overlap may appear

strange, because usually we carve up the world in disjoint pieces, but it is not ruled out in

Mereology. In some situations proper overlap is very useful. Take for example the territory

of a nation. Although a nation can be divided into disjoint counties or provinces, the north-

ern part of a nation (properly) overlaps the eastern part (being the north-eastern part). With

national territories at sea something different is the matter. There it is acceptable that a sea

or ocean is divided into national territories that do not overlap and even have stretches of no

man's land in between. For different types of individuals, proper overlap may, or may not be

allowed. For device components, proper overlap is forbidden.

Weak Supplementation Principle Mereology contains an axiom that compels the Weak

Supplementation Principle:

x� y � 9zpz � y ^ z l xq

It means that when an individual has a proper part, it must have another proper part disjoint

from the first. The philosophy behind this principle is that an individual cannot be distin-

guished from the sum of its parts. An individual that consists of only one part therefore

cannot be distinguished from that part because the part and the sum of the part are the same.

Put into a component context, the weak supplementation principle says that a device cannot

be composed out of one single component, because there is nothing to compose with just one

component. In such a situation, the device is the component.

Binary Sum, Product and Difference By definition, two overlapping individuals share at

least a part. Each of these common individuals is called a lower bound of the overlapping

individuals. Mereology demands that for each pair of overlapping individuals x and y there

exists an individual that has all lower bounds as parts. This individual is called the greatest

lower bound, or binary product and is denoted as x �y (for non-overlapping individualsx and y,

x � y is an invalid description). The reason for demanding the existence of binary products is

that when two individuals x and y share a group of individuals (parts), the shared individuals

can be distinguished from both x and y. This suggests that this group is an individual itself.

A good example are the regions of a country mentioned above. The fact that the northern part

of a country overlaps the eastern part suggests that the overlapped part forms region itself:

the north-eastern part.
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The mereological sum of individuals x and y, x + y is the individual that overlaps all and

only those individuals that overlap at least one of x and y. Informally, it is that individual

that has only x and y and the parts of x and y as parts. The assumption of the existence of

a binary sum for every pair of mereological individuals is the most controversial property

of classical extensional mereology. For overlapping individuals the existence of the binary

sum may be appropriate since they are `connected' into one individual by their shared parts.

Also, for individuals of the same kind (Jack and Jill) or individuals that are spatially close,

the existence of a sum is plausible, but for individuals in general it is a too strong axiom.

Two arbitrary individuals may be spatially remote and of completely different types, so it

is strange to say that they form an individual that is the sum of both. The reason that the

existence of binary sums is nevertheless an axiom of Mereology will be made clear in the

following paragraphs.

For individuals that properly overlap, the mereological difference (�) exists. For individuals

x and y, x� y is the largest proper part of x that does not share a part with y.

General Sum and Product By taking binary sums of binary sums and binary products

of binary products, sums and products of finite numbers of individuals can be taken. Fur-

thermore, the existence of finite sums and products is guaranteed because of the existence,

commutativity and associativity of binary sums and products. However, classes of individu-

als may be infinite, and then the existence of their sums is not guaranteed. Likewise, products

for classes of individuals sharing common parts are also not guaranteed. To account for this,

a notation and definition for general sums and products must be introduced.

The sum of each individual x in class F is denoted as �xpFxq and the product of each

individual x in a class F as �xpFxq. Their definitions make use of the definitional notation

�x : : : , which means the individual x which is such that : : : :

�xpFxq � �x8ypx � y � 9zpFz ^ z � yqq

�xpFxq � �x8ypy < x � 8zpFz � y < zqq

By introduction of the class of all individuals that are common parts of the individuals of

class F , the general product can be expressed in terms of a general sum:

�xpFxq � �xp8ypFy � x < yqq

In the same way, by introduction of additional classes of individuals (the class of pairs),

binary sums, products and differences can be defined in terms of general sums:

x � y � �zpz < x ^ z < yq

x+ y � �zpz < x _ z < yq

x� y � �zpz < x ^ z l yq
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Axioms The great strength of Classical Extensional Mereology is that by expressing binary

sums, products and differences in terms of general sums and products, only one additional

axiom has to be added to the axioms of irreflexivity, transitivity and the Weak Supplementa-

tion Principle to get a full axiomatization of the theory. This axiom is called the General Sum

Principle that guarantees the existence of general sums:

9xFx � 9x8ypy � x � 9zpFz ^ y � zqq

Note that this axiom is in fact is an axiom rule. It defines an axiom for each class of individ-

uals that exists.

Extensionality One of the theorems that can be derived from the axioms mentioned above

is that of Extensionality. Just like the question whether an individual could be distinguished

from its only part, we can ask ourselves the question whether two individuals that have exactly

the same parts can really be distinguished. In Extensional Mereology, this is impossible. Al-

though for some kinds of individuals, such as events and singular objects (classes or masses)

this is not a problem, there are kinds of individuals for which it can be.

Consider for instance the situation where the same group of people form two different com-

missions. This situation can occur in everyday life, but is not allowed in extensional theories.

Other occasions where problems arise is when temporal aspects of individuals are considered.

It is common that parts of individuals change over time, but by using an extensional theory,

we commit ourselves for instance to the dramatical point of view that a child that looses a

milk-tooth is not the same child anymore.

Atomism In an atomistic mereological theory every individual is made out of individuals

that are building blocks, or atoms. An atom is an individual that has no proper parts:

Atx �� 9zpz � xq

Some kinds of individuals are definitely atomistic and some are not. The off-the-shelf com-

ponents where a device is assembled from are the atoms of the device. An example of non-

atomistic individuals are intervals of time: a time interval can always be split in shorter inter-

vals. Whether atomicity is appropriate depends on the type of individuals that are described.

Atomicity can be enforced with the axiom

8x9ypAt y ^ y < xq

and atomlessness with

8x9ypy � xq
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There are also variants of Mereology where for different kinds of individuals, different atoms

can be defined. In such a theory one can express for instance that off-the-shelf components

are the atoms of all devices and that cells are the atoms of organisms.

Although it might be convenient to think of continua such as time and space as being made

out of points in time/space (the atoms), it is debated in philosophy that this is the `correct'

way to describe reality. So instead of regarding points in time or space as the atomic parts

of individuals, other theories have been developed where they form the boundaries between

individuals (Clarke 1981; Galton 1996). In these theories, a point is the boundary of two (or

more) continuous individuals that are connected (touch each other). We will look further into

this subject in Section 3.1.2 where topology will be discussed.

The importance of assuming atomicity or atomlessness is that in the atomistic case, the theory

can be simplified due to the fact that an individual will be part of another iff (if and only if) all

its atoms are also atoms of the second individual. With this property, the axioms of Mereology

can be simplified a great deal. Furthermore, the identity relation (=) can be defined as `having

the same atoms as parts' .

Summary We have seen that even for a theory such as Mereology that claims to be a general

theory of parts and wholes, we still have to check carefully whether the theory is appropriate

to describe the individuals we are interested in. Furthermore, in studying Mereology, we

encountered axioms and properties that may have been overlooked if we would have written

an ontology of mereology from scratch.

We have also seen that there is not just one mereological theory, but there are flavours of

mereology that are different in the ontological commitments they make (the axioms chosen).

Each theory is appropriate for different kinds of individuals. This suggests that a library of

mereological ontologies can be made, where a simple ontology of mereology is specialized

into the different flavours of mereology that are appropriate for specific classes of individuals.

After the addition of ontological commitments to create a new flavour, simplifications of ax-

ioms and definitions can sometimes be made. Therefore, it can be the case that the differences

between the old and the new theory (the extra commitments) may not be clearly visible. It

is therefore necessary to include (descriptions of) these commitments as meta-information

about the ontologies in the ontology library. Only when this meta-information is accessible,

an appropriate ontology can be chosen from the library and knowledge sharing and reuse can

be realized,

Ontolingua Implementation

Our mereological ontology is simply an Ontolingua implementation of the Classical Exten-

sional Mereology (Simons 1987) as described above. Two relations define part-of decom-

positions. The relation equal(x,y) defines which individuals are to be considered mere-

ologically equal. An individual x is a mereological individual when equal(x,x) holds.

When a mereological individual x is a part of a mereological individual y, the relation
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proper-part-of(x,y) holds. With these relations it is possible to write down a variety

of axioms specifying desirable properties any system decomposition should have. Examples

are the asymmetry and transitivity of the proper-part-of relation.

1 define-theory mereology

2 define-class m-individual(x)

a m-individual(x) <-> equal(x,x)

3 define-relation proper-part-of(x,y)

a proper-part-of(x,y) -> not proper-part-of(y,x)

b proper-part-of(x,y) and proper-part-of(y,z) -> proper-part-of(x,z)

4 define-relation direct-part-of(x,y)

a direct-part-of(x,y) <-> proper-part-of(x,y) and

not exists z: proper-part-of(z,y) and proper-part-of(x,z)

5 define-relation disjoint(x,y)

a disjoint(x,y) <-> not(equal(x,y) or

exists z: proper-part-of(z,x) and proper-part-of(z,y))

6 define-class simple-m-individual(x)

a simple-m-individual(x) <-> m-individual(x) and

not exists y: proper-part-of(y,x)

Figure 3.2: Excerpt from the mereological ontology. This ontology defines the means to

specify decomposition information and the properties any decomposition should have.

Figure 3.2 shows an excerpt from the mereological ontology. Definition 2 defines the class

of mereological individuals that has been described above. The (partial) definition of the

proper-part-of relation clearly shows the asymmetry (3a) and transitivity (3b) axioms.

The ontology furthermore defines the relation disjoint(x,y) which holds for individuals

that do not share a part and simple-m-individual, the class of individuals that have no

decomposition (the atoms). Note that the definitions only serve as an illustration and are not

meant to be complete. For the entire implementation we refer to Appendix A.

3.1.2 Topological Ontology

With the part-of relation of Mereology we are capable to express that devices are assem-

bled out of components, which on their turn, can be made out of smaller components. But

to describe the physical behaviour of these devices we must also describe the way compo-

nents interact. In Section 3.1.5 we will see that component behaviour is a result of energetic

physical processes that occur in a component. Interaction between components can therefore

be described as energy flowing from one component to another or vice versa. When two

components are able to exchange energy they are said to be (energetically) connected.

Just as mereology is a theory for the part-whole relation in general, there is also a theory

of the is-connected-to relation in general. This theory is called topology, after �o�o& which is

the Greek word for place. As is the case with mereology, there are also different flavours

of topology, depending on the kind of individuals connected and the meaning of being con-

nected.
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For obvious reasons, we are interested in connectivity of individuals for which the part-whole

relation applies. There are two approaches to make such a theory. One is to extend an exist-

ing theory of mereology with the topological is-connected-to relation. The other is to inte-

grate mereological and topological concepts and relations into one mereo-topological theory.

While the first approach is more intuitive, the second usually leads to more compact theories

because axioms can be combined.

In the next section, the popular mereo-topological theory of Clarke will be described. We will

not give a complete axiomatization of the theory but will only describe its main principles

and peculiarities. After that, in Section3.1.2, we will introduce our own topological theory.

This theory is an extension of Classical Extensional Mereology and will serve as an example

for one of the types of ontology projection.

Clarke's Mereo-topology

The mereo-topology of Clarke is based on the relation x><y which means “x and y are con-

nected”. The easiest way to understand the theory is to assume that connected individuals are

spatial regions and that being connected means the same as touches. With this in mind three

axioms concerning the >< relation can be defined as follows.

x><x

x><y � y ><x

8zpz ><x � z ><yq � x = y

The first axiom states that the >< relation is reflexive, i.e. an individual is always connected

to (touches) itself. Furthermore, the relation is symmetric. The third axiom defines an exten-

sionality principle for connected individuals: when two logical variables signify individuals

that are connected to exactly the same individuals, the two variables signify the same indi-

vidual.

Based on the >< relation, the relations disconnected ][, part-of <, proper part-of �, overlap � and

externally connected>< are defined.

x ][y �� x><y

x < y � 8zpz ><x � z >< yq

x� y � x < y^ � y < x

x � y � 9zpz < x ^ z < yq

x><y � x><y^ � x � y

Something is part of an individual when everything that is connected to the part is also con-

nected to the whole. The definition of proper-part-of relation is slightly different compared
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to Mereology. Together with the axiom of extensionality this ensures that in situations where

individuals only touch their (proper) parts the theory is equivalent with mereology. In partic-

ular the Weak Supplementation Principle holds: when individual x has a proper part y, there

must be a second proper part z. This follows from the fact that x must be part of y but y may not

be part of x. When there is no second proper part, x and y touch the same individuals and this

would clash with the extensional axiom that says that they would signify the same individual.

When there is a second part z, y will touch z but x will not so there is no discrepancy.

An individual x is externally connected to y when they touch, but they do not overlap. The

problem with Clarke' s theory is that for being externally connected, the connected individuals

must have proper parts. When individuals x and y are externally connected, they touch. But

when they do not have proper parts, each individual touches the same individuals (both x and

y) so they are identical, and identical individuals overlap. When x has a proper part z, y does

not touch z so there is no problem.

To work around the problem it is assumed that every individual has an interior, which is the

mereological sum of its proper parts. When an individual is externally connected with an-

other, the first touches the second, but not the interior of the second. This results in the strange

situation that the Weak Supplementation Principle holds for individuals without external con-

nections, but for individuals with external connections the principle is turned a blind eye on.

The advantage of Clarke' s mereo-topology is that it allows to express topological relation-

ships between individuals without having to worry about the nature of the connections. In

other topological theories connections are points or surfaces that are shared between the con-

nected individuals. In this viewpoint, connected individuals share a common part, so mereo-

logically speaking, they overlap. This does not sound intuitive, for objects that touch do not

share anything, they are just positioned in a way that they make contact. A solution to this

problem has been adopted in so called `pointless' theories (Clarke 1981; Cohn, Randell, and

Cui 1995; Borgo, Guarino, and Masolo 1996b; Galton 1996). In these theories connections

are regarded as the boundaries between objects that touch. Boundaries are different entities

than mereological individuals. They cannot exist on their own. Their existence is solely due

to the topological configuration of individuals. A complicating factor in theories of this kind

is that they have to deal with the dimensional aspects of the boundaries. A surface can only

connect two objects, whereas points and lines can connect more than two objects. Dealing

with these constraints makes these theories rather complex (Galton 1996).

Therefore, in Clarke' s theory, points, lines and surfaces are all moved into the boundary of

the individuals, which is the difference between the individuals and their interiors. This leads

to a compact theory that can be used in many situations but has some peculiarities. One of the

peculiarities is the already mentioned inconsistency in the validity of the Weak Supplementa-

tion Principle. Another is the fact that there is a difference between a non-atomic individual

and the sum of its proper parts (its interior) whereas in Classical Extensional Mereology, a

non-atomic individual is the sum of its proper parts.
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A Topological Extension of Mereology

To illustrate the concept of ontology construction we will now present a topological extension

of Mereology. Again, it will be clarifying to imagine that the connected individuals are

spatial regions. Connections are regarded as boundaries between connected individuals but

we will not distinguish between points, lines and surfaces. We will restrict ourselves to

connections that connect a pair of individuals. The theory is presented by explaining its

Ontolingua implementation that can be found in Figure 3.3.

1 define-theory topology

2 include-theory mereology

3 define-class connection(c)

a connection(c) -> not m-individual(x)

b connection(c) <-> exists x,y: connects(c,x,y)

4 define-relation connects(c,x,y)

a connects(c,x,y) -> connects(c,y,x)

b connects(c,x,y) -> not(part-of(x,y) or

part-of(y,x))
x y x,y

c connects(c,x,y) and part-of(x,z) and

disjoint(z,y) -> connects(c,z,y)
x yz

d connects(c,x,y) and not simple-m-individual(y)

-> exists z: part-of(z,y) and connects(c,x,z)
zx y

e connects(c,x1,y1) and connects(c,x2,y2)

-> not(disjoint(x1,x2) and disjoint(x1,y2))

y1x1

x2 y2
c

y2

x2,y1

x1

c

c

c

Figure 3.3: Excerpt from the topological ontology. This ontology provides the means to

express that individuals are connected. Axioms ensure that only sound connections can be

made. These axioms take into account the possible part-of decomposition an individual can

have.

The projection performed in this ontology is of the type include and extend. Inclusion is done

in Line 2 and the extension takes shape by definition of new concepts and relations that use

mereology in their axioms. This yields an ontology that has the same level of abstraction as

the included mereology.

Line 3 introduces the class of connections. Axiom 3a defines that connections are different

things than mereological individuals. The fact that a connection connects two individuals is

represented by Axiom 3b. Line 4 defines the connects relation. This relation is symmetric

in the last two arguments (Axiom 4a) and a connection cannot connect an individual to one

of its parts, including itself (Axiom 4b). The rationale behind this is that we do not want

to allow self connectedness and, because a non-atomic individual is the sum of its proper

parts, also want to disallow connectedness to proper parts. Axiom 4c defines the conditional

transitivity in the last two arguments. It states that when connection c connects a part x to

an individual z that is disjoint from its whole y, the whole y is also connected to individual

z by c. Because we assumed that a non-atomic individual is the sum of its proper parts,

we must ensure that a connection to a non-atomic individual is also a connection to one of

its proper parts (Axiom 4d). Finally we have to disallow that a connection can connect two

mereologically separated pairs of individuals (Axiom 4e). This also excludes connections

that fork.
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3.1.3 Ontology of Systems Theory

On top of the topological ontology the standard system-theoretic notions such as system,

subsystem, system boundary, environment, open/closedness etcetera can be defined. Some

of these definitions can be found in Figure 3.4. The ontology projection is of the include and

extend type, just like in the topological ontology.

1 define-theory systems-theory

2 include-theory topology

3 define-class system(s)

a system(s) -> m-individual(s)

4 define-relation in-system(x,s)

a in-system(x,s) <-> proper-part-of(x,s) and

system(s) and simple-m-individual(x)

5 define-relation in-boundary(c,s)

a in-boundary(c,s) <->

connection(c) and system(s) and

exists x,y: connects(c,x,y) and

part-of(x,s) and not part-of(y,s)

6 define-relation subsystem-of(sub,sup)

a subsystem-of(sub,sup) <-> system(sub) and system(sup) and

proper-part-of(sub,sup)

7 define-class open-system(s)

a open-system(s) <-> system(s) and exists c: in-boundary(c,s)

8 define-class closed-system(s)

a closed-system(s) <-> system(s) and not open-system(s)

Figure 3.4: Excerpt from the systems theory ontology. This ontology introduces system-

theoretic notions on top of the topological ontology.

Definition 3 states that a system is a mereological individual (but not every mereological

individual is a system). The relation in-system(x,s) holds for individuals that are the

atoms of the system. This is different from the relation subsystem-of(sub,sup), where

the part can be a non-atomic system. A connection is in the boundary of a system when it

connects an individual that is part of the system to an individual outside the system. With this

definition, the classes open-system and closed-system can be defined easily.

3.1.4 Component Ontology

In the component ontology we focus on the structural aspects of devices, and abstract from

what kind of dynamic processes occur in the system and from how it is described in terms of

mathematical constraint equations.

An example of a structural-topological diagram for a physical system, i.c. an air pump, is

shown in Figure 3.5. This structural view on physical systems is based upon what we call a

component ontology.
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Figure 3.5: The component view on a physical system, showing a two-level part-of decom-

position and the system topology for an air pump. Sub-components are drawn inside the area

defined by their super-component. The small solid blocks are the interfaces through which

components are connected.

Our component ontology is constructed from mereology, topology and systems theory. The

ontology projection of the abstract systems theory ontology to the component ontology to

accomplish this is slightly more complex than the one introduced in the previous sections.

The component ontology defines the structural view on physical systems engineers have as

depicted in Figure 3.5, i.e. components that can have subcomponents and terminals. The ter-

minals are the interfaces of the components to the outer world. Therefore, connections hook

onto terminals instead of components. This interpretation of components and connections

is a bit more complex than the networks of abstract individuals and connections in systems

theory. Nevertheless, the definition of these concepts can be kept simple due to a projection

of the abstract systems theory on the definitions of engineering components and connections,

thus enforcing the components to comply to the rules of systems theory. We will describe the

way this projection takes place below. Because this projection makes abstract concepts more

specific, this type of projection is called include and specialize.

Figure 3.6 shows some definitions from the component view ontology. The important

classes are the classes component, terminal and physical-system. The relations

comp.subcomp, comp.term and conn.term relate components to their subcomponents,

terminals to components and connections to terminals. The general structure of the ontology

can also be presented as a conceptual schema like in Figure 3.7.

Only the definitions contributing to the ontology projection are shown in the excerpt. On-

tology projection consists of inclusion (Line 2) and the definition of axioms that specify the
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1 define-theory component-view

2 include-theory systems-theory

3 define-class component(c)

a component(c) -> m-individual(c)

4 define-relation comp.subcomp(c,s)

a comp.subcomp(c,s) <-> component(c) and

component(s) and direct-part-of(s,c)

5 define-relation conn.term(conn,term)

a conn.term(conn,term) and comp.term(comp1,term)

-> exists comp2: connects(conn,comp1,comp2)

b component(comp1) and component(comp2) and

connects(conn,comp1,comp2)

-> exists term: conn.term(conn,term) and comp.term(comp1,term)

6 define-class phys-system(s)

a phys-system(s) <-> system(s) and (in-system(c,s) -> component(c))

Figure 3.6: Excerpt from the component ontology. This ontology formalizes the component

view of engineers on physical systems. Note that the ontology can be kept relatively simple

because systems theory is projected onto it.
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abstraction of components to system theoretical concepts. Definition 3 shows how the on-

tological commitments for abstract mereological individuals are projected onto components.

Definition 4 defines the meaning of the comp.subcomp relation in terms of mereology. The

projection of topological connections onto component connections is performed by Defini-

tion 5. Definition 6 defines the modelled device as a system of components. The fact that

connections can be of a certain type has been left out of the excerpt to keep it simple.

3.1.5 Physical Process Ontology

Our physical process ontology specifies the behavioural view on physical systems. In the

general case it is quite difficult to formalize what the notion of a dynamic process precisely

entails. Fortunately, for a certain part of physics this has been done to a level where one can

define really primitive process concepts. The approach we take here is known in engineering

as system dynamics theory, which also forms the theoretical background of the bond graph

method (Karnopp, Margolis, and Rosenberg 1990). The basic idea behind this theory is that

the dynamics of a system can always be captured by looking at the change of different kinds

of stuff. This change of stuff is also called flow. For instance, in electrical systems, dynamic

behaviour consists of the change of electrical charge, i.e. electrical current. Likewise, in the

mechanical domain the stuff is called location and change of location is velocity. The thing

required to bring about a flow is called effort. Table 3.3 lists the types of stuff, flow and effort

of some of the physical domains defined in the ontology.

domain stuff flow effort

electrical charge current voltage

mechanical location velocity force

hydraulical volume volume flow pressure

Table 3.3: Some examples of physical domains. In each domain, dynamic behaviour is de-

scribed as flow, i.e. change of stuff. Effort is that what is required to bring about a flow.

The interesting aspect about this table is that the product of a flow with its related effort

has the dimension energy / time, i.e. such a pair defines an energy flow. Physical behaviour

can therefore be defined in terms of energy flows. The process ontology introduces physical

mechanisms which are applications of physical laws or principles to one or more energy

flows. An important feature of these mechanisms is that they exploit in detail the analogies

that exist between different physical domains. For example, the principle of conservation

of momentum in mechanics is analogous to induction in the electrical domain. Many more

of these analogies exist. This approach is valid for standard classical, deterministic physics,

covering such diverse fields as mechanics, electricity and magnetism, hydraulics, acoustics,

and thermodynamics.

Complex process descriptions can be formed by making a network of mechanisms, linked

by energy flows. This abstraction is used to construct the process ontology. The process

ontology includes systems theory and specializes the system theoretic concepts to processes.

Just like the component ontology, the process ontology defines relatively simple concepts
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Figure 3.8: Conceptual schema of the physical process ontology

and relations onto which the system ontology is projected. Figure 3.8 gives the conceptual

schema of the physical process ontology.

Figure 3.9 gives an excerpt of the physical process ontology. Mechanisms are defined as

simple mereological individuals. Energy flows, which have a certain direction, flow from

one mechanism to another. The projection is performed by stating that an energy flow is

a topological connection that connects the two mechanisms. A process description can now

simply be defined as a system of mechanisms. The definition of physical domains as depicted

in Table 3.3 is not shown in Figure 3.9.

Figure 3.10 shows the taxonomy of mechanisms as defined in the process ontology. The

classes in the figure are present as classes in the ontology and class-subclass relations are

defined for every line in the figure. The discriminating properties used to construct this tax-

onomy are the number of energy flows linked by a mechanism (connectivity), the mechanism

type, whether effort or flow plays the most important role with respect to the mechanism type

and the physical domain (e.g. mechanics, electricity, hydraulics, thermodynamics). Note that

some discriminating properties are not useful for certain types of mechanisms.

The order in which the discriminating properties are applied here is the opposite of the order

used in the typical engineering education. There, the distinction between physical domains is

made first: there are separate courses in mechanics, electrical engineering and thermodynam-

ics. Only when students have mastered all courses, they are able to see the analogies between

the domains that makes the process ontology as compact and elegant as it is.
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1 define-theory process-view

2 include-theory system-theory

3 define-class mechanism(m)

a mechanism(m) -> simple-m-individual(m)

4 define-class energy-flow(ef)

a energy-flow(ef) -> connection(ef)

5 define-relation ef.from-to(ef,f,t)

a ef.from-to(ef,f,t) -> not ef.from-to(ef,t,f)

b ef.from-to(ef,f,t) -> connects(ef,f,t)

c energy-flow(ef) and connects(ef,x,y)

-> ef.from-to(ef,x,y) or ef.from-to(ef,y,x)

6 define-class process(p)

a process(p) <-> system(p) and (in-system(m,p) -> mechanism(m))

Figure 3.9: Excerpt from the process ontology. This ontology formalizes a large part of

physics. It defines how process descriptions can be formed by making a network of domain-

independent mechanisms and energy flows. The ontology is relatively simple because sys-

tems theory is used for the definition of the networks.

same-velocity

series-connection

same-force

parallel-connection

gyrator

voice-coil

transformer

lever

friction

resistor

mass

inductance

spring

capacitor

velocity-source

current-source

force-source

voltage-source

effort/flowtypeconnectivity (e.g. el, me)domain

flow-distributor

effort-distributor

distributormulti-port

gyration

transformation

convertortwo-port

dissipator

action-store

stuff-store

flow-source

effort-source

source

storeone-port

mechanism

Figure 3.10: The taxonomy of physical mechanisms. The properties discriminating between

the classes after branching are printed above the branch points. The classes on the right give

some examples of mechanisms in the electrical and mechanical domain.



44 CHAPTER 3. ENGINEERING ONTOLOGIES

3.1.6 Mathematical Ontology

The mathematical ontology defines the mathematics required to describe physical processes.

The EngMath ontology (Gruber 1994), available in the Ontolingua ontology library, is per-

fectly suited for this job and has therefore been (re)used for this. In this section, only a very

short description is given that should be sufficient to understand the projection of the process

ontology onto mathematics. For detailed information on EngMath see (Gruber 1994).

The EngMath ontology formalizes mathematical modelling in engineering. The ontology

includes conceptual foundations for scalar, vector, and tensor quantities, physical dimensions,

units of measure, functions of quantities, and dimensionless quantities.

A physical quantity is a measure of some quantifiable aspect of the modelled world character-

ized by a physical dimension such as length, mass or time. Quantities in the EngMath ontology

can be expressed in various units of measure e.g. meter, inch, kilogram, pound, etc. The ontol-

ogy defines the relationships between quantities, units of measure and dimensions. A special

class of physical quantities are time-dependent quantities. These are in fact continuous func-

tions from a quantity with the time dimension to another physical quantity, and can therefore

be interpreted as dynamic quantities, varying over time.

Another important EngMath class for the PHYSSYS ontology are the Ontolingua (KIF) ex-

pressions that serve as a meta-level description of mathematical relations between physical

quantities. For instance, a relation r between two time-dependent physical quantities x and y

can be defined as:

define-relation r(x,y)

r(x,y) <=> x = 2 * y

Here, the expression x = 2 * y is the (infix form of the) Ontolingua expression used to

define the EngMath relation r. In the PHYSSYS ontology, two time-dependent physical quan-

tities are used to mathematically describe an energy flow and relations similar to r define the

mathematical relationships between these quantities.

3.1.7 Ontology Projections

The PHYSSYS top-level ontology is an ontology that only performs ontology projections. It

includes the component, process and EngMath ontologies and relates them to each other.

Figure 3.11 shows an example of the relations between instantiated views on a physical sys-

tem. Basically, it defines that components are the carriers of physical processes that can be

mathematically described with physical quantities and mathematical relations.

Figure 3.12 gives an overview of the way the mapping relations have been defined. In the

next section we will first describe the mapping from components to physical process descrip-

tions. After that, the mapping from physical mechanisms to mathematical relations will be

explained.
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Mapping of Components to Processes

Figure 3.13 shows the first part of the PHYSSYS ontology that includes the three viewpoints

(lines 2, 3 and 4) and relates the component and process views (definitions 5 and 6). The re-

lation comp.proc (Definition 5) implements the projection of simple components to process

descriptions. Axiom 5a states that every atomic component must have a process description

and Axiom 5b that each mechanism must be part of the process description of a component.

Axiom 5c ensures that a mechanism can only be part of one process description of one com-

ponent. The relationship between component connections and the energy flows between the

process descriptions of these components is expressed by Definition 6. For each connec-

tion between components, the process descriptions of these components must interact via an

energy flow (Axiom 6a). Vice versa, Axiom 6b defines that an energy flow between the pro-

cess descriptions of two components goes through a connection. Note that the relationship

between the type of a connection and the number and domain of the energy flows of this

connection has not been included in the excerpt.

1 define-theory PhysSys

2 include-theory component-view

3 include-theory process-view

4 include-theory EngMath

5 define-relation comp.proc(c,p)

a component(c) and simple-m-individual(c)

-> exists p: process(p) and comp.proc(c,p)

b mechanism(m) -> exists c,p: process(p) and

in-system(m,p) and comp.proc(c,p)

c comp.proc(c1,p1) and comp.proc(c2,p2) and

c1 != c2 -> disjoint(p1,p2)

6 define-relation conn.ef(c,ef)

a conn.term(c,t1) and conn.term(c,t2) and comp.term(c1,t1) and

comp.term(c2.t2) and comp.proc(c1,p1) and comp.proc(c2,p2)

-> exists ef: conn.ef(c,ef) and in-boundary(ef,p1) and

in-boundary(ef,p2)

b energy-flow(ef) and process(p1) and

in-boundary(ef,p1) and comp.proc(c1,p1) and

process(p2) and in-boundary(ef,p2) and comp.proc(c2,p2)

-> exists c: comp.term(c1,t1) and conn.term(c,t1) and

comp.term(c2,t2) and conn.term(c,t2)

Figure 3.13: Excerpt from the first part of the PHYSSYS ontology where components are

projected onto physical processes. This is an example of an ontology that only contains

formalizations of the interdependencies between the viewpoints it includes.

Mapping of Processes to EngMath

Mapping of the process ontology to EngMath is depicted in the right-hand side of Fig-

ure 3.11. Informally, the mapping states that for each energy flow there are two time-

dependent physical quantities, one for the effort and one for the flow. The domain of the
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energy flow determines the dimension of the quantities. For instance, an electrical effort

quantity has the dimension energy/electrical-current (voltage) and the flow quantity

the electrical-current dimension. For each mechanism there is a mathematical relation

that relates the values of the physical quantities of the energy flows connecting the mecha-

nism to each other. The mapping also imposes constraints on the relation. These constraints

only depend on the mechanism type and they are independent of the domains of the energy

flows (Beaman and Rosenberg 1988). The mathematical relation in Figure 3.11 belongs to a

dissipator mechanism. The constraints on such a relation are that it is a continuous function

r : e 7! f that lies in the first and third quadrant and that r(0) = 0. For an electrical energy

flow, this can be an instantiation of Ohm's law V = I �R whereas in the mechanical domain

it can model some kind of friction with F = k � v.

7 define-relation mech.mathrel(m,r)

a dissipator(m) and ef.from-to(ef,n,m) and

ef.effortq(ef,e) and ef.flowq(ef,f) ->

exists r: mech.mathrel(m,r) and

forall t: value-at(e,t) = et and value-at(f,t) = ft ->

r(et,ft) and (et * ft >= 0 * energy-dimension) and

zero-quantity(et) <-> zero-quantity(ft)

Figure 3.14: Excerpt from the second part of the PHYSSYS ontology where physical pro-

cesses are projected onto mathematical relations. This is an example of a domain ontology

that only contains formalizations of the interdependencies between the viewpoints it includes.

Figure 3.14 shows an excerpt of the second part of PHYSSYS, the part that performs the pro-

cess to mathematics projection described above. Only a part of the definition of the relation

mech.mathrel, the relation that relates a mathematical relation to a process, is shown. Ax-

iom 7a states that for every dissipator a relation between the effort and flow quantities of

the energy flow to the dissipator must exist. In the axiom the relations ef.effortq and

ef.flowq are used. These relations link each energy flow to physical quantities for the ef-

fort and the flow. Axioms not incorporated in Figure 3.14 ensure that these quantities have

the proper physical dimension. The constraints on the relation for dissipators have been for-

malized by stating that the effort is zero if and only if the flow is zero and that the product

of effort and flow, i.e. the energy flow, must be positive. In other words, the dissipator must

dissipate energy. Furthermore, it is probably needless to say that PHYSSYS contains axioms

like axiom 7a for each type of mechanism defined in the process view.

3.2 Related Research

In comparing the contents, design principles and application of the PHYSSYS ontology with

related work, we will consider several aspects:

� Domain theories concerning physical systems and engineering embodied in the ontol-

ogy.
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� Top-level, general `super' theories (as we have called them) incorporated in the ontol-

ogy.

� Constructive aspects of ontologies, and in particular the notion of minimum ontological

commitment as a design principle.

� The role of ontologies in the knowledge engineering process.

Our PHYSSYS ontology intends to capture widely applicable concepts and background theo-

ries in physical systems engineering, an area which has stimulated quite a significant effort in

ontology development in various application directions (Top and Akkermans 1994; Neches,

Fikes, Finin, Gruber, Senator, and Swartout 1991; Alberts 1993; Gruber 1994; van der Vet,

Speel, and Mars 1995; Bernaras and Laresgoiti 1996; Benjamin, Borst, Akkermans, and

Wielinga 1996). A feature of our approach is the postulated existence of different conceptual

viewpoints on the domain objects and reasoning about them, that is, a grouping of properties

of the domain objects into separate `natural' categories. This has the advantage that it leads to

a corresponding strict separation of ontologies (describing these properties) as a basic struc-

turing principle. The ontological viewpoints selected here — technical system components,

physical processes, mathematical descriptions — have been adopted from (Top and Akker-

mans 1994), but are much further worked out and operationalized in the present work. It is

gratifying that the EngMath ontology for engineering mathematics (Gruber 1994) could be

reused here and integrated into a wider physical systems ontology.

We do not at all want to imply that these are the only possible or relevant viewpoints. In the

next chapter we will see that the determination of exogenous model and design parameters

often proceeds on the basis of geometric and material properties. This suggests to extend the

set of ontologies. We are currently developing a geometry view, which has to be compati-

ble with the already available topology theory, and can be linked to the relevant part of the

EngMath ontology by means of an ontology projection. Spatial ontologies are discussed e.g.

in (Cohn, Randell, and Cui 1995). Also, work on separate ontologies for material properties

is ongoing, such as the Plinius ontology (van der Vet, Speel, and Mars 1995). In tasks like

analyzing the environmental impact of alternative designs for engineering systems, the topic

of Chapter 5, modelling the material properties is a key issue.

In other work, we also find the idea of using different conceptual viewpoints to modularize

ontologies but usually in a much looser way. In (Ushold 1992), two viewpoints contain-

ing such meta-knowledge are considered: an ontology for the domain of ecological mod-

elling and a mathematical ontology based on lambda calculus to execute (simulate) the

models. Macroscopic and microscopic viewpoints for electronics have been combined by

Liu (1992). The problems of mereo-topology regarding time aspects are being worked upon

by Borgo (1996b). He defines three viewpoints on objects: a viewpoint of conceptual physi-

cal objects, a viewpoint of chunks of matter and a viewpoint of regions of space.

In the Ontolingua library, also a thermal systems ontology has been specified (Neches, Fikes,

Finin, Gruber, Senator, and Swartout 1991). Basically, it contains a number of thermal com-

ponents (such as `boiler' ), for which then mathematical equations are given that specify the

component behaviour. In our approach, such models are not part of the ontology, but are
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found in the OLMECO library (see Chapter 4). The PHYSSYS ontology rather specifies what

such models should look like in general. Thus, our ontology expresses meta-level knowledge

concerning modelling and simulation. This conforms to the view in (Schreiber, Wielinga,

Akkermans, de Velde, and de Hoog 1994; Schreiber, Wielinga, and Jansweijer 1995), where

ontologies are viewed as meta-level specifications of a set of possible domain theories or

models.

This, by the way, does have practical consequences, since in our case there are clearly more

constraints than in the KSE library on how components can or cannot be connected at the

component level, and what implications follow for the assembly of mathematical models.

Closest to our approach is probably the YMIR ontology of (Alberts 1993), which is also

based upon general systems theory. The systems part is essentially the same as the PHYSSYS

component ontology, although it is not constructed out of smaller ontologies about mereology

and topology. YMIR pays more attention than both PHYSSYS and EngMath to possible ab-

straction steps from larger to simpler models at the mathematical level. A major difference is

the absence in YMIR of a process ontology. Like in the KSE physical systems library, phys-

ical processes are in fact equated with their mathematical descriptions. This is also a typical

situation in AI qualitative reasoning frameworks that are device- and constraint-oriented, cf.,

(Kuipers 1994) and references therein.

We have not made this choice for fundamental reasons: (i) it is common in knowledge ac-

quisition to encounter forms of conceptual or qualitative reasoning (also by experts) about

physical processes without mathematics; (ii) in general the relationship between physical

processes and mathematical descriptions is n-to-n. Both our ontology and the OLMECO library

that will be described in the next chapter cater for this, leading to more flexible modelling.

Thus, the process ontology is a salient feature of PHYSSYS. Forbus' qualitative process theory

(Forbus 1984) and the associated modelling framework (Falkenhainer and Forbus 1991) are

much in the same spirit, but there are important differences in the underlying ontology. In

contrast, the PHYSSYS process ontology is formally built in a compositional way on a set of

primitive physical mechanisms, that in addition satisfy generic ontologies concerning mere-

ology, topology and (network) systems theory. All this is left much more open (as well as

much more informal) in the ontology underlying QPT, resulting in less commitment and less

guidance. One side of the coin is that QPT allows to specify processes according to, say,

medieval, Aristotelian or commonsense physics. This is not possible in PHYSSYS as it com-

mits to modern physical science 1. The other side of the same coin is that, due to this lack of

commitment, it is much easier in QPT to come up with nonsensical process models. Here,

PHYSSYS provides more physics knowledge and guidance — that is, according to current

scientific standards.

A unique, strongly unifying, characteristic of PHYSSYS is that it formally specifies and ex-

ploits the analogies between different fields in physics. This makes it much more widely

applicable and reusable than first selecting a physics subdomain (e.g. thermodynamics) and

1To allow types of physics other than the current scientific one, we would have to fundamentally revise the axioms

pertaining to the elementary physical mechanisms. It seems to us a very interesting exercise, by the way, to try and

find a similar comprehensive axiomatization of very different notions concerning physics, like the medieval impetus

theory.
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restricting the ontology to this subdomain as is usually done. This again has practical conse-

quences: many modern engineering systems are inherently multidisciplinary —mechatronic

systems but also heating systems are good examples— and restricting ontologies in such

situations to the standard physics subdomains not only hampers reusability but also usability.

In some ontologies for technical domains, see (Bernaras and Laresgoiti 1996; Benjamin,

Borst, Akkermans, and Wielinga 1996) and other ontologies from the KACTUS project, where

we do find a separate notion of physical processes or phenomena, it resembles a function-

oriented abstraction of our process notion. The reason is that it depends on the task how

much detail one needs. In our type of tasks, control- and design-oriented prediction, process

detail is required for making adequate modelling decisions. In other tasks, such as electrical

network diagnosis and service recovery as in (Bernaras and Laresgoiti 1996), (dys)function

abstractions of underlying processes are sufficient to do the job.

We now turn to aspects of what (van Heijst, Schreiber, and Wielinga 1997) calls generic

ontologies, representing theories that are supposed to be valid across many fields. Devis-

ing a satisfactory top-level categorization of generic concepts (such as thing, object, state,

event, etc.) has turned out to be extremely hard (Lenat and Guha 1990; Sowa 1995; Skuce

1993; Benjamin, Borst, Akkermans, and Wielinga 1996). On the other hand, the present

work has indicated that it is practically feasible and useful to use and reuse generic theo-

ries such as mereology, topology and systems theory in domain ontology building. Hobbs

(Hobbs 1995) comes to a similar conclusion (he calls it `core theories' ) in the context of

language understanding. These generic ontologies are abstract theories that define particular

kinds of relations (part-of, connected-to, etc.) over abstract entities. A standard top-level

concept taxonomy for such entities apparently is not a requirement for the reuse of generic

ontologies. What happens is that these abstract entities are projected onto the relevant domain

objects. After this, the way is open for further extension and specialization by adding axioms

expressing more specific domain knowledge.

Concerning the contents of the generic ontologies that have been reused in PHYSSYS, we note

that we have employed rather classical theories of mereology and topology. Alternatives are

being discussed also in the ontology literature (Gerstl and Pribbenow 1995; Guarino 1995;

Eschenbach and Heydrich 1995). One of the efforts in ontology research is to combine mere-

ology and topology in one theory that expresses the part-of relation in terms of connectedness

(Clarke 1981). In PHYSSYS we have followed an approach similar to what is described in (Es-

chenbach and Heydrich 1995) where mereology is extended with topological relations. This

is because we are not primarily interested in the philosophical question whether part-whole

and connectedness relationships can be expressed using only one relation within a single the-

ory. Rather, we want to reflect the engineering practice where components are thought to

be decomposed first and connected later on (often as off-the-shelf components) as a step in

configuration design. Furthermore, an ontology of mereology without topology imposes less

ontological commitments. Our approach is based on incremental specification which yields

more structure and is also easier to understand. Once more, we would like to stress that other

alternatives are less preferable than our ontologies, they just differ in the way they are con-

structed, their compactness and the situations in which they can be used. The important thing

is that the differences between alternative ontologies should be clear.
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In this chapter we have barely touched upon the issue of method ontologies: ontologies

that are oriented towards problem solving methods, specifying information requirements that

must be fulfilled by domain models such that inference methods can be executed (Gennari,

Tu, Rothenfluh, and Musen 1994; Tu, Erikson, Genari, Shahar, and Musen 1995; van Heijst,

Schreiber, and Wielinga 1997). This subject will be elaborated on in Chapter 5.

Gruber has listed in (Gruber 1995) a number of design principles for ontologies — clarity, co-

herence, extensibility, minimal encoding bias, minimal ontological commitment. In general,

these turn out to be valid design principles as far as the PHYSSYS ontology is concerned. The

principle of `minimum ontological commitment' deserves however some further discussion.

In (van Heijst, Schreiber, and Wielinga 1997) it is suggested to operationalize this principle

as the minimization of the number of theory inclusions in the ontology. Guarino et al. (1995)

propose a formalization of ontological commitment in a modal-logic style. Informally and

roughly stated, statements of an ontological theory must be true in every possible world; on-

tological commitment comprises the set of possible worlds thus allowed by the ontological

theory specification. The minimum commitment principle favours the weakest theory (maxi-

mum number of models) and tends to emphasize the danger of overcommitment by excluding

allowable worlds. In our opinion, there are two practical dangers: excluding acceptable pos-

sible worlds, but also including undesired ones. Overcommitment leads to reduction of reuse

and sharing, but undercommitment diminishes end-user guidance and support. For example

in the component part of our ontology, an issue is whether or not one wants to have typed

connections between components. No typing means less commitment, but it also implies that

end users are not prevented from making undesirable system models whereby an electrical

outlet of one component is directly connected to a mechanical plug of another component.

Our experience in the PHYSSYS ontology is that the specification is a balancing act between

over- and undercommitment.

Van Heijst et al. (1997) discuss a number of ways to categorize and organize ontologies, and

what role they play in the knowledge engineering process. In the categorization of Van Heijst

et al., the PHYSSYS ontology is a knowledge-modelling ontology. They point to the need

to explicate ontological commitments early in the process. As a method to modularize and

organize ontologies, they suggest, first, to single out basic concepts (such as patient, disease,

therapy) on the basis of `natural categories' of the field to construct some widely usable

base ontologies; to specialize these concepts with respect to various relevant (here, medical)

subdomains; and then add method-oriented extensions. These are steps needed in achieving

modularity of ontologies, which is seen as a key principle in ontology library organization

(see especially their Section 3). We will consider the impact of our work in this regard in the

next paragraphs.

There is in our opinion no doubt that modularity is indeed a key success factor to ontology

library construction. In any large-scale application we face what Van Heijst et al. call the

hugeness problem: the enormous amount of domain knowledge that is involved in expert

tasks. However, as these authors point out, concepts involved come in different levels of

generality, and this gives a handle on organizing an ontology library. This is clearly visible in

the structure of the GAMES-II core library, and we have deployed a very similar approach,

as depicted in Figure 3.1. What Van Heijst et al. call `generic concepts' is very akin to our
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reusable `super'theories. They claim that partitioning should be based on two considerations:

(i) definitions are to be centered around available `natural categories' of concepts that belong

together, and (ii) the number of theory inclusions must be kept to a minimum.

Although we are generally in agreement with these views, our PHYSSYS and OLMECO work

offers some different perspectives as well as extensions. As we have argued earlier in this

section in relation to the work of (Gruber 1995), minimization of theory inclusions to achieve

minimum ontological commitment is a phrase that is in danger of simplifying the real pic-

ture in applications. Rather, we would phrase it as piecemeal ontological commitment: starting

from (indeed) the minimal side, one needs to incrementally build up the ontological commit-

ments until the right degree of commitment for the particular application is achieved. The

organization of an ontology library must be modular in such a way that this can be realized.

In (van Heijst, Schreiber, and Wielinga 1997), the proposed `natural categories' are groups

of concepts that naturally belong together, reflecting the social consensus of a certain expert

community. We share the observation that such natural categories do exist (although they may

be so self-evident to a community that they are implicit for outsiders), and that they provide

a good handle for partitioning ontologies. This has also been a major structuring principle in

PHYSSYS. In our case, we have called these natural categories viewpoints (Top and Akkermans

1994), because our ontologyorganization has been based from the start on coherent categories

of properties of the same class of real-world objects, rather than on categorizing different real-

world objects. In modeling and simulation, engineers view the same object (say, a hospital

heating system under design) sometimes as a collection of connected components, or as a

collection of interacting physical processes, etc., depending on the type of information that is

to be extracted or decisions that are to be made.

Talking about partitioning and modularity, naturally leads us to the question how ontological

modules can be connected again to meaningful assemblies. Here, our work offers an impor-

tant new extension. The standard mechanism for configuring ontologies is theory inclusion,

as it is used in most ontology work including (van Heijst, Schreiber, and Wielinga 1997).

We have found in our applications that richer and more flexible means for linking ontologies

together are necessary, that go beyond relatively simple inclusion, specialization and exten-

sion operations. To this end we have developed what we call ontology projections: connections

between two different ontologies realized by a mapping, that is highly knowledge-intensive

itself and therefore assumes the form of an ontology in its own right. A good example is

our specification of the connection between physical process knowledge and mathematical

theory concepts.

Finally, we want to emphasize that using explicit ontologies yields benefits for a much wider

range of information systems than KBS only. The PHYSSYS ontology is a formalization

of domain knowledge of the QUBA modeling assistant (Top and Akkermans 1994) and its

successor IMMS, the KBS 007 for automated model revision (Pos, Borst, Top, and Akkermans

1996; Pos, Akkermans, and Top 1996), and the OLMECO library of reusable mechatronic

models reported in Chapter 4.

007 (Pos 1997) is a KBS in which model revision is actively carried out by the system on

the basis of repair plans. Model revision itself is based upon a (considerable) extension of
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the Propose-and-Revise method (Marcus and McDermott 1989). What is interesting in the

present context is that some of the repair plans are able to automatically adapt models, such

that they conform to the requirements of given simulation methods. Thus, some repair plans

function on the basis of knowledge about available method ontologies and about method-

oriented revisions of domain models.

The OLMECO library is, at least in its implementation, a conventional database. Explicit

ontologies are helpful in two ways here. First, they support and even enforce a sharply defined

conceptualization of the information in the system in a way that is natural to the user (some

might perhaps want to view this as a formal and high-quality `data dictionary' ). Highly

important is the experience that ontologies are a great help in clarifying the many tacit and

implicit aspects involved. Second, from the modular organization of ontologies the modular

structure of the information system itself quite easily follows. This proved to be strongly

beneficial in the OLMECO library work, resulting in a design and demonstrator system that

was appreciated by end users. Hence, also in a conventional implementation setting, this

approach leads to a knowledge-oriented system design that reflects the way users view their

world during task execution.

3.3 Ontology Construction

In developing PHYSSYS we found out that an ontology for a large and complex domain can be

constructed out of smaller ontologies by carving up the domain knowledge in smaller pieces.

Because of this internal structure, the ontology will be easier to understand and be well suited

for reuse. The ontologies that form the building blocks of PHYSSYS can be categorized in

three types:

`Super'theories which are general and abstract ontologies such as mereology, topology, sys-

tems theory.

Viewpoint or base ontologies that formalize a conceptual category of concepts in a domain.

For the physical domain at least three of such categories exist: that of a configuration

of components, physical processes underlying behaviour and the engineering mathe-

matics that is used to describe the processes.

Domain ontologies that form an integral and coherent conceptualization of a domain. The

conceptualization of the domain of physical systems offered by PHYSSYS is nothing

other than a combination of the three viewpoints plus the formalization of the interde-

pendencies between the concepts in different viewpoints.

Distinguishing pieces of knowledge of these three types can modularize a large domain in

small, reusable modules. To construct a large ontology from smaller ontologies, the de-

pendencies between concepts and relations in different ontologies are formalized as ontology

projections. Three types of ontology projections were used and are named according to the

way they can be implemented.
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Include and extend: An imported ontology is extended with new concepts and relations. The

result is at the same level of abstraction as the included ontology. An example is the

extension of mereology to topology that was described in this chapter.

Include and specialize: An abstract theory is imported and applied to the contents of the

importing ontology. Doing this, abstract concepts are specialized. An abstract `su-

per' theory can be considered generic when there are many useful specializations that

can be made. For instance, systems theory is used twice in PHYSSYS. It is used as an

abstraction of system components as well as an abstraction of physical process descrip-

tions, and it is easy to imagine its application in other domains.

Include and map: Different viewpoints on a domain are joined by including the views in the

domain ontology and formalization of their interdependencies. In contrast to the previ-

ous ontology projections, these projections contain a great deal of domain knowledge

and can therefore be considered to be ontologies of their own.

From our study of mereology and topology, we found out that a library of ontologies may con-

tain abstract ontologies that define similar abstract concepts and relations, but are applicable

in slightly different situations. To be able to retrieve the right ontology for an application, the

library system should make clear the cases in which an ontology can be used and describe the

differences between similar ontologies.



Chapter 4

Using an Ontology as an

Information System Specification

The previous chapter described the PHYSSYS ontology that specifies what a valid physi-

cal model looks like. In this chapter a library of model fragments is presented that allows

engineers to construct large simulation models by combining model fragments from the

library. We will demonstrate the way in which PHYSSYS played a role in the design of the

library. A modelling and simulation experiment carried out using thermodynamic models

from the library, serves as a validation of the library as well as PHYSSYS.

The design of the OLMECO library is described in Section 4.1. Model fragments of thermo-

dynamic systems will serve as illustrations. Section 4.2 discusses the design of the thermo-

dynamic model fragments in the library, which can be found in Appendix B. Section 4.3

describes the modelling and simulation of the existing heating system of a general hospital.

Section 4.4 discusses the main bottlenecks in the use of the library in more detail and suggests

a possible extension of OLMECO and PHYSSYS that could resolve the remaining problems. In

the final section of this chapter we will draw conclusions about the OLMECO library and the

usability of PHYSSYS.

4.1 The OLMECO Library of Simulation Models

In this section we will first examine the way in which the physical models formalized by

PHYSSYS are constructed by engineers. This provides us with the information about what

kind of data a model library should contain to support the modelling process. The remainder

of this section will describe the OLMECO model library that has been designed in accordance

to these observations.

55
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4.1.1 Evolutionary Modelling

The explicit separation between conceptual levels (Top and Akkermans 1994) described in

Chapter 3 defines a way of organizing models which is different from the traditional approach,

and it is depicted in Figure 4.1. Here, each ontological viewpoint corresponds to an informa-

tion layer which has a strong internal cohesion and a relatively narrow coupling with other

layers. The left part of the figure shows a physical model of the kind described by PHYSSYS.

Arrows indicate the relationship between parts of the model and the model fragments in the

library they can be chosen from.

model

component

level

process

level

mathematical

level
alternative relations

alternative processes

alternative decompositions

Figure 4.1: Modular structure of a model composed from model fragments in an engineer-

ing library, based on the separation of ontological viewpoints. The arrows indicate links to

alternative model fragments in the library that are available to revise the model.

When modelling in a top-down manner, first components will be identified, since they are

linked to the `real' objects, more or less independent from physical processes considered.

Components are decomposed into subcomponents until the internal layout of the subcom-

ponents becomes irrelevant. Next, at the conceptual-physical level for each component the

assumed physical concepts or processes are described. This description is independent of the

internal layout of the components, but does depend on the underlying physical assumptions

made. Finally, the resulting mathematical equations are specified and processed for computer

analysis and simulation.

Once a fully instantiated model has been constructed, the result can be assessed by means of

analysis of the model or the simulation data derived from the model. This may lead to the

conclusion that the model, or parts of the model are inadequate. In such a case, the modeller

will revise the model by choosing alternative model fragments from the library for parts of the

instantiated model. The model granularity can be changed by choosing alternative decompo-

sitions, alternative process descriptions may contain additional secondary physical processes

that were neglected first and alternative relations may be non-linear instead of linearized.

This approach to structured engineering modelling is depicted in Figure 4.2; an associated

modelling support system prototype called QUBA has been developed and is described in

(Top and Akkermans 1994).

Each ontological level goes with its own characteristic questions that have to be answered by

the modeller:
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modelling
component

model

modelling

modelling

model

model

process

mathematicalquery and

observations

Figure 4.2: Evolutionary approach to physical modelling, with task decomposition based on

ontological differentiations.

� Component level: Out of which concrete artefacts (device components) does the sys-

tem that is to be designed exist, and how are they interconnected (system structure or

layout)?

� Process level: How is the behaviour of the system components realized in terms of

physical mechanisms?

� Mathematical level: How is the physical behaviour formally specified in terms of equa-

tions, such that system analysis and simulation can be carried out by computer?

Thus, in practice it will be quite evident during the modelling process what to put on what

level, and when to transit from one level to another.

Given the modelling decisions described above, a model library should contain the following

kinds of model fragments:

� A sufficient number of top-level components to support modelling in a certain domain

and facilities like a taxonomy to help the modeller to find the right components.

� Different options for decomposition of the top-level components into smaller ones.

� Different physical process descriptions that are possible for a component. Usually,

these descriptions have in common that they model one primary physical process and

are only different in the secondary processes that are modelled.

� A physical process can often be described by different mathematical relations. Which

one has to be chosen often depends on structural properties or the operating conditions

of the modelled system. The library must therefore contain relations for each situation.

In the next sections, the general structure of the library will be explained by following the

conceptual schema that was used as the basis for the implementation of the library. Model

fragments from the thermodynamic domain will be presented as an illustration.
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4.1.2 Structure of the Library

The above discussion represents a knowledge-level analysis of what engineering modelling

and design actually `is' . In this section we will discuss how some of these aspects are being

practically implemented in the OLMECO library for models of mechatronic design compo-

nents. The core of the OLMECO software is a conventional (OO/relational) database for stor-

age and retrieval of mechatronic model fragments; we will give an impression of its structure

by considering the most important parts of the conceptual schema of the database. For more

details, see (Top, Breunese, van Dijk, Broenink, and Akkermans 1994) and for some exam-

ples of its use see also (Top, Breunese, Broenink, and Akkermans 1995).

component

process

description

physical

mechanism

mathematical

relation

decomposition

structure
kind-of

part-of

refined-by

process level

component level

mathematical level

part-of

(alt-processes)refined-by

(alt-decomps)

refined-by

(alt-relations)

Figure 4.3: The general conceptual schema of the OLMECO library. It defines the database

structure of the library and reflects the PHYSSYS ontology. rectangular boxes denote entity

types or classes. Solid line connections, possibly with a diamond symbol carrying the relation

name, stand for relations. Open and solid balls indicate the cardinality of the relation to be

zero or one (optional association) and zero or more (one-to-many association), respectively.

The triangle symbolizes the is-a or kind-of relationship (generalization/specialization), while

the small diamond is employed for the part-of relationship (aggregation). Dotted lines are

used to indicate constraints on/between entities or relations.

The OLMECO conceptual schema has been represented with the object-oriented modelling

technique, called OMT, of (Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen 1991). The

basic structure of the OLMECO library is shown in Figure 4.3.

It can be seen that the library structure follows the differentiation between ontological as-

pects, as discussed in the previous section. It is noteworthy that there are three different

points, indicated by the alt-: : : links, where the user can make separate modelling choices.

Systems can be decomposed in different ways, functions of which device components are the
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carrier can be realized by different physical processes, and physical processes can be speci-

fied by different mathematical constraint expressions. Similar suggestions for structuring the

modelling process not only come from AI, but are also proposed in the engineering literature

(de Vries, Breedveld, and Meindertsma 1993).

The proposed generic structure of the OLMECO library has two important advantages:

1. It separates different groups of modelling decisions, thus giving handles for user sup-

port and facilitating a piecemeal approach to engineering model construction, and

2. It provides a breakdown of stored models into parts that have a generic nature, thus

enhancing reusability and sharability of library models.

Component Taxonomy A component taxonomy can be stored in the library by means of

the kind-of generalization/specialization relationship in Figure 4.3. This information can be

used by the modeller to quickly access the components he or she wants to use. Figure 4.4

shows the taxonomy of the thermodynamic models in the library. For the components on

the right, decompositions and/or process descriptions are available. Note that because the

component taxonomy is meta-level information about components in instantiated models,

the PHYSSYS ontology did not contain a formalization of it.

thermal fluid

line

thermal fluid

flow controller

thermal fluid

junction

splitter

mixer

recuperative heat exchanger

regenerative heat exchangerheat exchanger

heat source (heater)

heat sink (atmosphere)

conduction

source

convection heater (boiler)

convection heat sink (atmosphere)

closed system heater (boiler)

convection

source

thermal

source

connector

thermal

component

thermal

heated space (room)

thermal barrier (wall, radiator)

pipe

pipe with ext. cond.

pump

(heat exch. pipe, radiator)

two-way valve (valve)

controlled splitter (valve)

controlled mixer (valve)

thermal store

Figure 4.4: Taxonomy of thermal components. This taxonomy allows the modeller to quickly

find components in the library. The library contains component models for the components

on the right. Keywords printed in italics annotate specific situations in which a generic library

component can be used, thus providing an alternative way to access components in the library.

The keywords printed in italics on the right cater for another way to index the library. The

idea is that these keywords provide the link between specific component names used in the

thermodynamic domain and the generic model components stored in the library. The key-

words wall and radiator are examples of this. In both situations the thermal barrier component



60 CHAPTER 4. USING AN ONTOLOGY AS AN I.S. SPECIFICATION

can be used because it can model both heat flow through the metal of a radiator as well as

heat flow from one side of a wall to the other.

For large libraries like the OLMECO library, the component taxonomy also becomes very large.

A picture like the one in Figure 4.4 containing the model components of all OLMECO partic-

ipants contains over 250 components and covers 16 pages! This shows that the taxonomy

browsers in the library software must be able to cope with large amounts of components and

be able to present parts of this taxonomy in a clear way to the user.

Decomposition Structure In physical modelling two types of decomposition can be distin-

guished. One type is the decomposition of components in pure physical subcomponents. An

example of this is the decomposition of a closed system heater in Figure 4.5. A closed system

heater is a device to heat circulating water. In the domain of thermodynamic systems, closed

system heaters may, or may not include a pump that causes this circulation of the water. This

has led to the three decompositions in the figure.

heat
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in out
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in out
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pump

in

out

in out

ext

out

(a) (b)

in

pipe w. ext.
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heat
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Figure 4.5: Decompositions of a closed system heater.

A second kind of decomposition establishes that physical models can be modelled more ac-

curately. Because of the way physical processes are described, objects can only have a single

value for state quantities like for instance temperature. This means that every part of for ex-

ample a wall, is assumed to have the same temperature, instead of the continuous temperature

distribution it has in reality. To approximate the real situation more accurately, the wall can be

mentally decomposed into a number of wall segments which all can have a different temper-

ature. This way, the continuous distribution will be approximated by a stepwise distribution.

To facilitate this kind of decomposition, the library contains decompositions like the one in

Figure 4.6.
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thermal

conductor outin

thermal

conductor outin outin

Figure 4.6: A possible decomposition of a thermal conductor.

The most apparent difference between the OLMECO library structure and PHYSSYS is that the

first contains decomposition structures. In PHYSSYS it was sufficient to associate subcompo-

nents to their parent with the comp-subcomp relation. For the library however, the relation

between a generic component and all alternative ways for decomposition must be stored.

Therefore, the concept of a decomposition was introduced. Thus, the association between a

component and a possible subcomponent is made in two steps: first from the component to a

possible decomposition structure (alt-decomp) and then from this decomposition structure

to the subcomponent by a part-of relation.

Physical Process Description Figure 4.7 shows two process descriptions that can be used

to model a pipe component. The process descriptions are presented in a graphical way using

bond graphs. Bond graph representations are used in the modelling tool to display process

descriptions in the library and as a way for the modeller to construct and edit instantiated pro-

cess descriptions graphically. In a bond graph, the nodes represent physical mechanisms con-

nected by half arrows, called bonds, which represent energy flows. The nodes are mnemon-

ics indicating the type of the mechanism they stand for. A C node (short for capacity) for

instance, indicates a store of stuff. Table 4.1 lists all bond graph nodes and the corresponding

mechanisms. Full arrows in the bond graphs represent information flows which have not been

formalized yet in PHYSSYS.

C

0 1
tp

C
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tp tp tp
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1
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hy
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1
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Figure 4.7: Bond graph process descriptions of a hot water flow through a pipe. A bond graph

is a graphical representation of the process ontology as formalized in PHYSSYS. The nodes

represent physical mechanisms of different kinds which are connected by energy flows. Both

process descriptions model heat convection, whereby (b) contains an additional, secondary

effect (the I node) due to the inertia of the water.
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node short for mechanism

Se source of effort effort source

Sf source of flow flow source

C capacity stuff store

I inertia action store

R resistance dissipator

TF transformer transformation

GY gyrator gyration

0 - flow distributor

1 - effort distributor

Table 4.1: This table lists the bond graph nodes and the names of the mechanisms they

represent. The nodes are mnemonics for the entries in the third column of the table.

Usually, the only difference between the process descriptions that model a library component

are the secondary physical processes that are included. The process descriptions in Figure 4.7

for example, both model the convection and hydraulic resistance processes. The description on

the left does not include hydraulic inertia (the process that makes your water pipes at home

bang when you close the tap abruptly) whereas the one on the right-hand side does. This can

easily be seen by the fact that the process description on the right includes an additional I

node.

The relation between components and the alternative process descriptions that can model

their behaviour can be found in the conceptual schema as the alt-processes relation that

crosses the boundary between the component level and the physical process level. Note the

analogy between this relation and the comp.proc relation in PHYSSYS. The difference is

that in PHYSSYS the relation is between a component and one process description that models

the component whereas alt-processes associates all alternative process descriptions to a

generic component.

Mathematical Description For a number of reasons, a physical mechanism can be de-

scribed mathematically in numerous ways. These reasons have been listed below, with exam-

ples from the thermodynamic domain. Some of the examples below concern the relations for

hydraulic resistance (the R element in Figure 4.7). These relations can be found in Figure 4.8.

The reasons for different mathematical relations are:

Domain and nature of the process: Hydraulic friction requires relations different from those

for mechanical friction. Different kinds of mechanical friction are described by differ-

ent formulas.

Geometric and material properties of the modelled system: The relation for hydraulic friction

in pipes with a smooth surface is different from the relation to be used in case of a

rough surface (see Figure 4.8).
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Operating conditions of the model: When the volume flow of water becomes higher, the na-

ture of the water flow changes from laminar to turbulent. Hydraulic resistance for lam-

inar flows is described differently compared to resistance in the turbulent case. This

can be seen in Figure 4.8 where the Reynolds number Re quantifies the degree of tur-

bulence. The simulator should check whether all relations are used in their range of

validity and stop in case of a violation. Ideally, the violated relation could be replaced

and simulation resumed.

Mathematical simplifications: The numerical simulation algorithm used may pose restrictions

on the mathematical relations. This may require, for instance, linearizations of equa-

tions around a certain working point. In these cases, the same consideration for the

validity of linearized relation holds as for the operating conditions mentioned above.
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Figure 4.8: Some examples of mathematical relations that can be used to describe hydraulic

resistance.

It is important to realize that all relations for a mechanism must conform to the constraints im-

posed upon them by the projection of physical processes onto mathematical relations defined

in PHYSSYS. The ontology does not define the exact relation to be used, but only says what

class of mathematical relations it must belong to. In theory, the library software could check

these constraints, but to be able to check all possible relations requires powerful computer

algebra.

In the conceptual schema of Figure 4.3, one or more mathematical relations are linked to

a mechanism by the alt-relations relation crossing the line between the physical pro-
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cess level and the mathematical level. The difference with the mech.mathrel relation in

PHYSSYS again is that in an instantiated model a mechanism is described by a single relation

but a generic mechanism can be described by one of many relations.

4.1.3 Instantiated Models

Software to support the modelling of physical systems consist of three main parts: a model

library, a modelling tool and a simulator. The model library software allows the modeller to

browse through the library and select the appropriate model fragments. The selected model

fragments can then be assembled into an instantiated model using the modelling tool. Output

of the modelling tool is the set of (differential) equations describing the behaviour of the

modelled system. The simulator can accept these equations together with parameter values

and arguments for the simulation algorithm (such as step sizes) and compute a simulation

that predicts the behaviour of the modelled system.
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Figure 4.9: User-constructed instantiated models in the OLMECO library.

Up to now, only the general relationships that can exist between library model fragments

were discussed. The situation is slightly different when we consider the user-built application

models the modelling tool works with, since they represent an assembly of instantiations of

generic model fragments. An instantiated model is a model constructed by an individual

user or user group in the context of a specific application. The conceptual schema of an

instantiated model is given in Figure 4.9. It contains references to the three different levels:

(i) it identifies a selected component and the selected part-of hierarchy; (ii) it gives a set

of bond graphs that collectively provide the physical description of the selected component,

(iii) it gives a set of mathematical descriptions that describe the behaviour of each of the

associated bond graph elements. Moreover, an instantiated model contains (iv) parameter
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information. Note that the lower part of Figure 4.9 could almost serve as a conceptual schema

of the PHYSSYS ontology. The only exception is the decomposition structure, which was

introduced in OLMECO to store alternative decompositions and, for practical reasons, is also

used in instantiated models. In instantiated models, it is completely equivalent to PHYSSYS'

comp.subcomp relation.

In order to appreciate the differences between an instantiated model and the generic build-

ing blocks of the library, it is helpful to compare the schema of Figure 4.9 with Figure 4.3.

Whereas the generic library fragments allow one-to-many refinement links —representing

multiple modelling alternatives— instantiated models only contain one-to-one links corre-

sponding to the specific selection made among alternatives. Furthermore, it is possible to

have instantiated models that do not contain certain layers of information (see the solid balls

in the schema). This is important to provide flexibility for the end user and to enhance inter-

operability with external software.

Namely, instantiation can be partial, e.g. if not all parameter data in the mathematical de-

scriptions are specified. What type of instantiation is needed, depends on the requirements

and capabilities of the external tools. Strictly speaking, for mathematical and computational

purposes (analysis and simulation) only the mathematical description would be needed, and

the component and/or physical levels of the model might be left empty. According to the

conceptual schema, this constitutes a legal instantiated model — although perhaps not a pre-

ferred one from the viewpoint of structured modelling and sharability of models. (Note that

even the empty model represents a legal instantiated model). This guarantees the interoper-

ability with the external tools working with the library. For example, the OLMECO conceptual

schema makes it even possible to work with simulation tools that don' t know anything about

components and bond graphs (e.g. ACSL or other Fortran-based mathematical software). All

other information about components and bond graphs then provides confidence building docu-

mentation that can be used to backtrack the model construction process and to find suitable

alternatives.

Components, decomposition structures, conceptual physical descriptions and mathematical

descriptions know by which instantiated models they are used. Furthermore, each instantiated

model has a user-definable label or keyword. This provides an important search facility.

version user adivcepublicnessresponsibility

modelling

assumptions

management

info

validation

info
part-of part-of

part-of

Figure 4.10: Model management information in the OLMECO library.
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Finally, end user requirements with respect to the library have clearly pointed to the need for

handles for knowledge management in sharing and reuse. Figure 4.10 shows a schema for

this kind of information in the OLMECO library. The management information attributes: ver-

sion, responsibility and publicness, represent quite straightforward database administration

aspects. Version contains the information about which version of the model one is dealing

with, and possibly about how and why the model has become what it is (the revision or up-

date history). Responsibility refers to the owner(s) or administrator(s) who is/are responsible

for the stored model information. The publicness attribute yields the status of the model as,

say, a generally accepted one (within the user organization) or as a private `exercise' . This

attribute might be used to introduce certain quality levels with respect to models and their

degree of validation. User advice contains miscellaneous comments for using the model (such

as hints for simulation algorithms or step sizes in tricky cases).

There are two management information elements that deserve special mention, because they

contain crucial meta-level information regarding model construction and use:

Validation information: Any information that explains how the model has been or can be

validated: literature references, measurement data, etc.

Modelling assumptions: The conditions under which the model is (not) applicable.

Both are very important attributes, that will need further attention in the future. Currently,

the modelling assumptions and validation information are simply given in textual format,

and thus comprise qualitative annotations concerning the model. Ideally, however, this meta-

level information should be formalized in such a way that a support system for engineering

modelling could actually reason about it. Steps in this direction have been made by (Addanki,

Cremonini, and Penberthy 1991) in the so-called GoM approach, which contains some of this

meta-level information, albeit in hardwired form.

To see whether the OLMECO library is able to support engineers in real-life situations, the

library has been filled with model fragments and modelling and simulation experiments have

been carried out.

4.2 The Thermodynamic Models in the OLMECO Library

To test the usefulness of the OLMECO library, each project partner has filled the library with

model fragments for their domain of expertise and carried out a large scale modelling exper-

iment. For the automotive domain, this has resulted in models for car bodies, gear boxes,

ABS systems, hydraulical power steering, windshield wipers and electrical car components.

Other partners in the consortium have modelled machine tools such as lathes, presses, milling

and grinding machines. We have contributed to the library with thermodynamic models for

components like pipes, valves, splitters and mixers, heaters and heat exchangers. Further-

more, the library contains models of electromagnetic transducers and general models of, for
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instance, electrical components and mechanical rigid bodies. Table 4.2 gives an impression

of the number of model fragments of the OLMECO library.

domain process mathematical total

descriptions relations

general models 30 95 125

rigid bodies 35 15 50

machine tools 55 54 109

thermodynamics 124 26 150

automotive 10 8 18

transducers 34 7 41

total 288 205 493

Table 4.2: Some statistics about the model fragments in the OLMECO library. For each

domain, the the number of process descriptions and the number of mathematical relations are

given.

We already have seen some of the thermodynamic models in examples used in the previous

sections. It would take too much space to describe every thermodynamic model fragment in

detail in this section. Instead, we will describe the most important design considerations for

the thermodynamic models. The importance of these considerations lies in the fact that they

concern constraints imposed on the models by the numerical simulation method used, so they

are task specific extensions of PHYSSYS. A full description of all thermodynamic models can

be found in (Top, Borst, and Akkermans 1995) and AppendixB.

The model fragments for convection in pipes are used to demonstrate the design consider-

ations for the thermodynamic library models. We will see that to be able to make accurate

models of pipes, we must place a number of models of pipe segments in a row. The problem

that is encountered is that when the models of two pipe segments are connected, this leads to

a set mathematical relations that cannot be handled by most numerical simulation methods.

The problem is not so much that the constructed models are physically wrong, but rather that

the generated set of mathematical relations contains two identical relations for one variable.

In fact, one of these relations can be removed from the set of equations, but the problem is

that this requires computer algebra. Therefore, another solution had to be found, as will be

described next.

4.2.1 The Problem with Models for Convection

The problem occurs in components in which the physical process of thermal convection takes

place. In the process of convection, thermal energy that is contained in material (usually a

gas or liquid), is transported by movement of the material.

Figure 4.11 shows a physical process model for convection through a pipe. To obtain an

accurate model, the pipe has been divided into three segments (also called lumps). For each

segment, the heat stored in the segment is modelled by a C element and the hydraulic resis-

tance the water undergoes by an R element. When the water flows out of one segment into
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Figure 4.11: Pseudo bond graph for convection with three lumps.

the next, it will carry an amount of heat along with it. This is modelled by the convection

Sf element. This element enforces a heat flow from a segment into the next. The magnitude

of this heat flow W depends on the temperature T of the water flowing out the segment, the

magnitude of the water volume flow V 0 and material properties of the water (� and cv). The

exact relation is W = Tcv�V
0, where T = Tl when V 0 > 0 and T = Tr when V 0 < 0 and cv

and � are the specific heat and specific mass of the fluid.

To support accurate modeling of components with convection, the library must support that

models like the one in Figure 4.11 with arbitrary numbers of lumps can be constructed. This

is because a model for convection with one lump assumes that at every point along the pipe,

the water has the same temperature. With three lumps, like in Figure 4.11, the model is

already more accurate, because each lump can have a different temperature. For longer pipes

however, more segments are required for an accurate model. Therefore, the thermodynamic

library must contain components, decompositions and bond graphs that can be put together

to form models like in Figure 4.11 with arbitrary numbers of lumps.

4.2.2 Ways to Support Segmentation

There are a couple of alternative ways to support segmentation. The most straightforward

way to do this is to make separate bond graphs like Figure 4.11 with 1; 2; � � � ; n lumps. This

has the disadvantage that the number of models for convection in the library has to be very

big.

A better option is to make bond graphs for pipe segments with one lump and provide decom-

positions of a pipe component into 1; 2; � � � ; n segments. This solution has the advantage that

the segments are modeled explicitly at the component level, the level that should describe

which tangible parts of the system are important for the model, but the problem of the large

number of models has not disappeared. It has just been shifted from the process models to

the decomposition structures.

Obviously, the solution is still not very practical and therefore, in the OLMECO library, a bond

graph for a pipe component contains only one lump and a decomposition of a pipe component
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in two others has been included. By recursive decomposition, pipes with arbitrary number of

segments can be formed.

Now we only have to design an appropriate process model for a pipe segment. There are

however some considerations that have to be kept in mind when these models are designed.

They concern the way large models can be constructed out of instantiated library model

fragments.

4.2.3 Design Considerations

The only constraint that OLMECO puts on the way model fragments are connected together to

form a large model is the type of the terminals in the component model. For a hydro-thermal

connection between two components this implies that the bond graphs of these components

must be connected by a hydraulic and a thermal bond. No other constraints apply. As a

consequence, when two models of convection (e.g. pipes) are connected together, it is not
assumed that the amount of heat that flows through this connection is properly related to the

water volume flow and the temperature of the water (according toW = Tcv�V
0). The process

models of the segments must take care of this. This is called the principle of independence.

A second concern is that the models for passive components such as pipes should be symmet-
rical: because the interfaces of a process model for a pipe are identical, the orientation of the

pipe in the larger model should not matter.

Next, we will discuss how given these properties usable process models for convection can

be designed.

4.2.4 Dealing with Independence

Basically, when we consider the model in Figure 4.11, we see that the lumps consist of inde-

pendent models for the thermal and the hydraulic domain that are connected by the convection

Sf elements. To comply to the principle of independence, a process model should include two

convection elements in the bond graph like in Figure 4.12a because only this will ensure that,

no matter what is connected to either side, the thermal and hydraulic energy flows from and

to the lumps will always be properly related to each other.

A problem is, that when two lumps (or two components with convection in general) are

connected, it leads to two Sf elements that impose exactly the same constraint on the hydraulic

and thermal energy flows between the segments. The only way that the modeling tool can

conclude that one of them is redundant and can be removed, is to infer that both elements

always impose the same heat flow. Unfortunately, the algebraic comparison of mathematical

relations that this requires is too much asked for most of these tools.

As a result, when the set of mathematical relations are passed to the simulator, it detects that

there are two relations that define onequantity. Because the simulator fails to detect that the

values are always the same it will abort with an error message.
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Figure 4.12: Symmetric bond graph for convection

Without computer algebra, the problem can only be solved by including just one Sf element in

a lump model, like in figure 4.13. Unfortunately this results in asymmetrical models. When

the right-hand side segment of Figure 4.13 is mirrored, the same problem as in Figure 4.12

occurs. We therefore have to find a way to deal with asymmetry.
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Figure 4.13: Asymmetric bond graph for convection.

4.2.5 Dealing with Asymmetry

Dealing with asymmetry requires an extra modeling assumption to assure that segments are

combined as indicated in Figure 4.12b. There is no way to handle this assumption explicitly

in the OLMECO library, so a trick has been used to handle it implicitly at the component level.

Every hydro-thermal plug for which the hydraulic and thermal energy flows are related by

W = Tcv�V
0 by an Sf element (the energy flows on the right hand sides of the lumps in

Figure 4.12b) are labeled out. Plugs for which it is assumedthat the energy flows are properly

related (the left-hand side energy flows) are labeled in. By requiring that in-plugs may only be
connected to out-plugs, it is ensured that models containing convection are constructed in the

right way.
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Figure 4.14: Bond graphs for two segments of a torsional shaft.

To show that the problems we have described above are not specific to the thermodynamic do-

main, we would like to mention the models for torsional shafts described by Wilson and Stein

(1992). When a torsional shaft is modelled, segmentation has to be applied when multiple

modes of vibration have to be taken into account. Independence and symmetry considera-

tions lead to models with lumps like in Figure 4.14. These models bear the same problem of

two relations prescribing the value of one quantity, just like the models for convection.

In the next section we will investigate the usability of the OLMECO library and the thermody-

namic model fragments it contains.

4.3 A Modelling and Simulation Experiment

The modelling experiment for our domain, thermodynamic systems, consisted of the mod-

elling and simulation of a large central heating system. This section describes this experiment.

The experiment has been performed to find answers to the following two questions:

1. What is the practical usability of the library?

2. Does the thermodynamic library form a sufficient basis for the modelling of real ther-

modynamic systems from the point of view of reuse?

4.3.1 The Schieland Hospital Heating System

The subject of the experiment is the modelling and simulation of the existing heating system

of the Schieland Hospital, a general hospital in Schiedam, The Netherlands. The schematic

drawing of the system that has been modelled is given in Figure 4.15. Clearly, the system con-

sists of two coupled subsystems: one subsystem around the heater (heater group, abbreviated

hg) and one around the radiator (radiator group or rg).

Compared to simulation models used in the design of thermodynamic systems in engineering,

the model designed here can be characterized as being large. The model contains a large
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p0 = 100 kPa
K1 = 100 l/s
n = 3

l = 4 * 0.96 m
h = 0.8 m
V = 4 * 4.2 l
4 * 1391 W
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Figure 4.15: The simplified Schieland Hospital heating system.

number of components from the thermodynamic library and the nature of the system results in

a complex mathematical model. The fact that both hydraulic and thermodynamic behaviour

are modelled also contributes to the complexity. The model statistics in Table 4.3 give an

impression of the complexity of the model.

statistics about the model

19 model components

1 user defined component

18 components from the library

9 component classes from the library

4 decompositions from the library

26 coupled differential equations

� 150 equations

Table 4.3: Some statistics on the model of the Schieland hospital heating system.

4.3.2 Modelling the System

The model of the system has been incrementally constructed in three stages. First the compo-

nent model has been made, then the physical model and finally the mathematical model. For

a detailed description of this we refer to Appendix B. In this section, only a global description

will be given.
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The Component Model The first step in the modelling of the system is to construct the

component model using generic components from the thermodynamic library. This has re-

sulted in the model shown in Figure 4.16. Names of the instantiated components are printed

in bold face. All components, except for the controller, are instantiations of generic library

components. The name of the library component a model component is instantiated from is

printed in italics at the top left corner of a component.

control room

heat sink

incontr

rgrpipe

hgsplitter

heater

hgpump

hgmixer

hgbpipe

rgmvalve rgpump rgpipe radiator rgsplitter

in1 outin2 in out in out in out in out1out2

rgbpipe

inout

rgspipe
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pipe

pipe w.e. cnd.

contr ext

Figure 4.16: Component model of the Schieland Hospital heating system. All components

but one are instantiated library components. The names of the generic library component a

model component is based on is printed in italics. Note the close similarity to the schematic

drawing of the system.

Three components need further explanation. Because the heater group pumpis considered to be

a top level component and not a subcomponent of the heater, the heater has a decomposition

according to Figure 4.5 (a). The controller is a user defined component (i.e. not based on

a library component) that supplies to the controlled mixing valve the information whether

it is open, closed or partially open. The radiator has been modelled as a pipe with external

conduction. In such a `pipe' , the water that runs through it can lose its heat through the

wall of the pipe to the environment, in this case the room. The abstraction from radiator to

pipe with external conduction has been specified in the library taxonomy by means of the

radiator keyword attached to the pipe with external conduction component (see Figure 4.4).
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Furthermore, to increase the accuracy of the model (see Section 4.1.2), the radiator has been

decomposed into four segments.

The Physical Process Model For the construction of the physical models, the physical

processes that have to be modelled in order to obtain an accurate model must be chosen.

Table 4.4 gives an overview.

component physical processes
type heat heat hydraulic hydraulic thermal pressure heat temperature

convection storage resistance inertia resistance source source sink

pipe
p p p p

pipe w.
p p p p p

ext. cond.
splitter

p p p

mixer
p p p

controlled
p p

C
mixer

pump
p p p

heat source C
heat sink

p

Table 4.4: Table of modelled physical processes for each type of component in the model.

Each row in this table is covered by a physical process description from the library that

models the indicated processes. A C instead of a checkmark indicates a controlled process.

The importance of this table is that for each row in this table, there must be a process descrip-

tion in the library that models all the physical processes that are marked. For example, the

process description used to model the pipes in the system can be found in Figure 4.7 (b). For

all rows in the table the library contains model fragments that take into account the specified

physical processes.

The Mathematical Model For most of the processes in the physical model there is only

one mathematical relation applicable. Only for the hydraulic resistances in the pipes, splitters

and mixers and the thermal resistance of the heater and radiator important choices had to be

made. For the hydraulic resistances for instance, the relations for pipes with a rough surface

and turbulent flow from Figure 4.8 were used. All relations required for the model were

available from the library.

Determination of Model Parameters Before a model can be used for simulation, the val-

ues of the parameters in the model need to be determined. The way this has to be done can

be found in engineering handbooks like the VDI Wärme Atlas (Verein Deutscher Ingenieure

1977), an atlas of relations for heating systems written by the society of German engineers.

The relations this handbook gives for the determination of the model parameters depend on

different types of data about the system. The required data can be classified as either charac-
teristic values of materials, geometricor measureddata.

Characteristic values of materials, like specific mass, specific heat capacity and heat transfer

coefficients can be found in engineering handbooks on materials. Geometric data includes
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values for volumes, areas, angles of incidence etc. For most components, these values are

easy to calculate from lengths, thicknesses and radii. Some mathematical relations use mea-

sured values of properties of the modelled component, measured under standardized condi-

tions. An example is the heat transferred by a radiator to air of 20�C when the incoming water

has a temperature of 90�C and the outgoing water a temperature of 70�C. Usually, the compo-

nent manufacturer supplies these values. Some of the parameters required for the Schieland

hospital model are shown in Figure 4.17. A full description of the process of determination

of the parameters can be found in Appendix B.

Pipes, splitters, (controlled) mixers, radiator and pumps (16 in total): specific mass,

specific heat capacity and viscosity of water; volume of the water and initially stored

heat; length, diameter and water flow area of the component; roughness of the

material the component is made of.

Pipes with bends (4 pipes, 22 bends): number and sharpness of the bends.

Radiator (4 segments): heat transfer at 90/70/20�C .

Controlled mixing valve (1): minimum and maximum volume flows at a pressure of

105Pa.

Splitters (2) and mixers (1): water flow areas and angles between in and out flows.

Pumps (2): supplied pressure.

Heat sources (2): supplied heat flow or temperature.

Figure 4.17: This figure gives an idea about the amount of information required to calculate

the parameters in the model of the Schieland hospital heating system.

The relatively large amount of time it took to compute the parameters for the modelled system

suggests that the next step to improve the support of engineers would be to help them with

this process. This requires an extension of PHYSSYS and the OLMECO library to make it

possible to specify the parameter relations from the atlas, characteristic values of materials,

measurement data and geometry.

4.3.3 Simulation

Two simulations have been carried out, a simulation of the hydraulic behaviour of the system

when the position of the valve changes and, secondly, a simulation of the thermodynamic

behaviour when the heating system is switched on. The prediction of the thermodynamic

behaviour can be found in Figure 4.18, that of the hydraulic behaviour in Appendix B. The

most striking fact that can be observed is that it takes close to ten hours for the water in

the system to heat up from room temperature up to the desired value of about 70�C. This

behaviour is exactly what can be seen in reality with large heating systems like this. In the

next paragraphs this behaviour will be qualitatively described.

Initially, when the heater is on, the heater temperature A will increase. At first it increases

quickly because the water that flows into the heater is of almost the same temperature as
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Figure 4.18: Predicted thermodynamic behaviour of the Schieland hospital heating system.

The plotted values are A: the temperature of the heater, D: the temperature of the radiator

pipe, both inK (Kelvin). G is the heat flow from the heater which has 0W (att) as minimum,

and 60 kW as maximum value. The horizontal axis is the time scale in seconds.

the water that flows out of it. The net heat flow to the heater will then be approximately

60 kW . As the temperature of the heater increases, the amount of heat that flows out of the

heater will become larger than the heat carried by the water that flows into it. The net heat

flow to the heater will become smaller than 60 KW and therefore the heater temperature will

increase at a slower rate. When the radiator gets hot, the temperature of the water from the

radiator group return pipe will increase and so will the temperature of the water that flows

back into the heater. This will cause the heater temperature to increase at a constant rate until

the maximum heater temperature is reached and the heater is switched off.

Next, the heater will be switched on and off repeatedly. The simulation shows that the periods

that the heater is on become shorter and that the on-off interval becomes longer. This can be

explained by the fact that the temperature of the water from the radiator group reaches a high

value. Because of this, the net heat flow out of the heater will become smaller, so that it takes

more time for the heater to cool down and less time to heat up again.

4.3.4 Findings from the Experiment

The first conclusion that can be drawn from this experiment is that the OLMECO library and

the evolutionary modelling approach that are based on the conceptualization formalized in

PHYSSYS, provide good assistance in the modelling process. This is reflected in amount of

the time it took to construct the large and complex model of the heating system and the
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quality of the result. Modelling the system took a small amount of time due to the fact that

the library contained most of the required model fragments and to the fact that the model

could be specified incrementally, starting with the component model which is very similar

to the schematic drawing of the system. The other steps to processes and mathematics were

guided very well by the suggestions the library contained for possible process descriptions

and mathematical relations. The quality of the model fragments in the library contributes

positively to the quality of the instantiated model.

The second conclusion is that the thermodynamic library is diverse enough to support com-

positional modelling of real world systems. The modelled system is considered to be large

and contains a variety of components typical for the whole domain.

Furthermore, it would be nice to have a way to let the simulator check the validity domains of

the submodels dynamically. The problem is that the validity of the model for hydraulic resis-

tance for instance, depends on dynamic model variables like the volume flows. This makes

it impossible to check the validity before simulation. In the present library, specification of

the validity domain for models are pure textual annotations. To be able to store the more

algorithmic checks, like the one for hydraulic resistance, these have to be formalized. So we

need an active form of management of model assumptions.

The experiment carried out suggests an extension of PHYSSYS and the OLMECO library. This

can be concluded from the time it took to determine the model parameters. Therefore we

suggest an extension of the library in which it is possible to specify the way the parame-

ters of a model component can be determined, like it is described in engineering handbooks.

The parameter relations in the library could then be used for automatic parameter computa-

tion from geometric data supplied by the user. The present way to store parameter relations

in the library is not sufficient because the parameter relations that have to be used can de-

pend on geometric aspects of the component that is modelled. For instance, cylindrical and

non-cylindrical pipes are modelled by the same component and the same equation for the

hydraulic resistance, but the way to determine the parameters is different. This at least sug-

gests a fourth view on the domain of physical modelling, that of geometry, and implies an

additional ontology projection. The same holds for the material properties of components. In

the next section, we will elaborate on this subject.

4.4 Parameters and Parameter Relations Determination

The OLMECO library gives a significant increase of modeling productivity and quality, at

least concerning the dynamics of a system. However, as the example in Section 4.3 shows, in

practice the parameters that determine dynamic behaviour are determined by other parameters

that relate to geometrical, material and other data. For example, the constitutive relations for

heat transfer through the wall of a pipe depend on geometrical (shape, length, diameter)

and material properties (density, viscosity, surface roughness) of the components and fluids

involved. Although the OLMECO library supports parameter relations in general, no structured

framework for maintaining and retrieving these relations is defined yet. Consequently, the
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bottleneck in the modeling process now is concentrated in finding and relating the proper

parameters for each application. We claim that the introduction of the component level in the

library facilitates a structured approach for storing parameter relations as well.

The first principle to be respected when setting up a more organized way to handle parameter

relations is that conceptualcategoriesmust be respected. In other words, one should realize that

dynamic behaviour, geometry, material specification etc.are different areas of information. Each

of these areas specifies a certain view of the components in the system and requires its own

tools. Different views should only be related through a well defined set of linking parameters.

In the bond graph model the parameters for capacitance, resistance, inertia, transformation

ratio, etc.are the linking parameters (interface) to geometrical and material data. Ideally, one

should specify the geometrical parameters in a CAD-system and link them automatically to

the simulator.

A second structuring principle is that parameters have different levels of generality. For ex-

ample, we distinguish between constants and parameters. Constants are supposed to have a

fixed value across many applications (e.g. the Stefan-Boltzmann constant), whereas param-

eters may differ from one simulation run to another. Note that there is another category of

variables, which usually are referred to as signals, which do not have fixed values within a

simulation run, but are not energetic variables (effort, flow, displacement etc.) either. In our

view, signal variables should be considered as part of the dynamics domain, although they

may depend on each other through relations from the geometrical or material domain (for

example, the volume of a piston).

The component level of the OLMECO library provides a suitable framework for organizing

parameter data and parameter relations. The idea is to consider different sets of variables and

parameters as being part of different perspectives of a single component: energetic-dynamic,

geometrical, material, etc. By disconnecting these perspectives, an independent selection can

be made for each perspective. Consider for example the case of flow through a pipe. From

the dynamics perspective the modeller must decide about which dynamic effects are relevant:

friction, inertia. On the other hand, independently he or she must decide whether cylindrical

or rectangular shapes are to be modeled. In particular for design problems it is useful to

make these decisions separately and to be able to quickly change selections in one area (for

example, from cylindrical to rectangular pipes) without affecting the other.

The component level in particular supports hierarchical structuring of parameters according

to their degree of generality, or scope. Some parameters are common to all components in the

system, others vary from one component to another. For example, in the heater example there

is only one type of fluid, and this fluid is considered to be incompressible. Hence, the density

� can be defined at the top level of the model. When setting up the actual simulation model

(set of equations used by a solver), the system first checks for parameters at the lowest level

(that of bond graph elements), than that of the components containing the bond graphs. This is

repeated up to the highest level, until all parameters and parameter relations are known. Note

that this can be considered as a form of inheritance, as defined in object oriented modeling

(Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen 1991).
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At the moment no commercial tools are available that support the component level prop-

erly. Hence, no support for maintaining parameters and parameter relations along the lines

sketched above can begin yet. However, once such tools become available, the bottleneck of

getting the proper parameter relations can significantly be reduced, in particular if an interface

to CAD systems is realized.

4.5 Conclusions about OLMECO and Using PHYSSYS

In this chapter we have shown that it is relatively straightforward to derive a database specifi-

cation for a library of model fragments that supports the construction of simulation models for

engineering and design from the PHYSSYS ontology. We have demonstrated in a modelling

experiment that the knowledge specified in PHYSSYS is adequate for simulation of real-life

systems. Some minor changes and additions to the specifications in PHYSSYS were required

because a model library should not only know which physical models are valid, but should

also consider at what points the modeller makes decisions during the modelling process.

This has lead to a library structure with model fragmentsfor generic components, decomposi-

tion structures, process descriptions and mathematical relations and links from components to

alternative decompositions, from components to process descriptions and from mechanisms

in these process descriptions to alternative mathematical relations. Furthermore, a compo-

nent taxonomy has been introduced to support the retrieval of model fragments in an intuitive

way.

A modelling and simulation experiment for a real life system showed that it is possible to

construct valid simulation models. This proves the validity of the knowledge formalized in

PHYSSYS.

It can also be concluded that the OLMECO library significantly increases modelling productiv-

ity an quality through reuse of validated model fragments. However, a bottleneck in the use

of the OLMECO library has been the determination and specification of the model parameters

for large models. To deal with this problem in the future we have shown that the component

level is a good place for the specification of parameters on a global level, or on the level of

subsystems. By means of parameter inheritance from systems and subsystems to components

and process descriptions, the parameters are passed to the appropriate mathematical relations.

Due to constraints on the mathematical relations numerical simulation algorithms can work

with, some restrictions on the use and design of the library model fragments were neces-

sary. We have proposed two alternative ways to work around these problems: introduction of

computer algebra and the introduction of constraints on the assembly of component models.

The work on the OLMECO library suggests several extensions of the PHYSSYS ontology. First

of all, it could be extended with formalizations of the extensions that were required to design

the OLMECO library: the idea of generic model fragments, the alternative modelling decisions

and the component taxonomy. Furthermore, the proposed idea of parameter inheritance, the

restrictions on the mathematical relations imposed by the simulation software, as well as the

possible solutions to overcome these problems could be included in the ontology.
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Chapter 5

Reusing and Extending an

Ontology for Product Disassembly

Analysis

In this Chapter we will investigate what happens when instead of an ontology for simula-
tion of technical devices, an ontology for a totally different task in a different engineering
domain is constructed. This new task is the ecological impact assessment of product dis-
assembly. We will try to find an answer to the question whether it is possible to reuse
parts ofPHYSSYS, or that we are forced to start from scratch.

The organization of this chapter is as follows. Section 5.1 gives an introduction to ecological

product disassembly analysis. In Section 5.2 we introduce the basic concepts needed to build

product models for disassembly, and illustrate them by various examples. In order to test the

validity of this theory and to provide a basis for a full ecological disassembly tool, the theory

has been implemented in a knowledge based system called PROMOD. Section 5.3 describes

the functionality and use of PROMOD. The way PROMOD has been implemented is described

in Section 5.4. Section 5.5 gives some references to related research and discusses important

issues regarding improvements of the theory and prototype. We conclude this chapter with a

summary of the issues relevant for ontological engineering, and answer the question whether

PHYSSYS could be reused.

5.1 Ecological Product Disassembly Analysis

In recent years, growing ecological concern has prompted for `design for environment' (Fik-

sel 1996; Umeda, Tomiyama, Kiriyama, and Baba 1995). One way to achieve this is to design

products that are easy to disassemble, because this improves the ability to reuse or recycle

81
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parts of a product. In analyzing these aspects, one needs to determine all feasible ways to dis-

assemble a product. They can be jointly represented in an AND/OR graph(Fazio and Whitney

1987; Sturges Jr and Kilani 1992), with the fully assembled product as the root, the and-nodes
indicating a disassembly operation splitting the product into subassemblies, and the or-nodes
representing different applicable operations that give rise to alternative ways to break up a

(sub)product. In such an AND/OR graph, each subtree that has and-nodes as its leaves, and

contains exactly one out of the alternative branches at each or-node it contains, describes a

distinct disassembly sequence.

Figure 5.1 gives an example of an AND/OR graph for a very simple product that is the root

of the graph. Subassemblies form the and-nodes whereas black bullets mark the or-nodes.

One of the alternative disassembly sequences has been marked in the figure using thick lines.

Usually, identical subassemblies in an AND/OR graph are merged, thus forming a graph

instead of a tree.

or

and and

and and

Figure 5.1: Disassembly sequences of a simple product visualized in an AND/OR graph.

In eco-design, an important goal is to determine the cost of disassembly as well as the environ-

mental benefit of the parts that are separated. The energy required to perform the disassembly

operations might be used as a measure for the disassembly cost. All parts that are separated

in a disassembly process are candidates for recycling or reuse and have a positive impact

on the benefits of disassembly. The degree to which the materials in a separated part of the

product can be recycled is determined by the mix and the amounts of materials in that part.

With such a cost-benefit analysis applied to the AND/OR graph, the disassembly sequence

having the best cost-benefit ratio can be determined, as well as the impact of design decisions

by comparing alternative product designs.

It is a common misunderstanding that the best disassemblysequence is simply the assembly
sequence in reverse. It can be demonstrated that this is not the case by looking at Figure 5.1.

If we assume that the assembly sequence of the product is indicated by the thick lines, and

assume that the darkest block has to be separated for recycling, it becomes clear that the right

branch in the tree is better than the left. To find the best disassembly sequence, we have to

consider all possibilities. This becomes even more important when more than one part can

be recycled or reused.
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Therefore, in this chapter we will present a general ontology-based approach to two important

tasks in product disassembly analysis:

1. automatically generating the AND/OR graph from a topological product model;

2. obtaining from the AND/OR graph the disassembly sequence having the best ecologi-

cal cost-benefit ratio.

An ontological approach to this problem appears helpful, because it is evident in disassembly

analysis that a notion of `connectedness' plays a crucial foundational role (Clarke 1981). As

we will see, the standard topological relation, that expresses that two objects are connected

or in contact, as incorporated in formal topological ontologies such as in 3, proves to be not

adequate for this purpose. Nevertheless, we show that by extending a standard topological

ontology with a small number of new ontological primitives regarding the typeof connec-

tions, we can build product models that provide the knowledge to automatically carry out the

mentioned tasks.

5.2 Theory of Product Models for Disassembly

In disassembly analysis, a product is conceived of as an assemblyconsisting of objectswith

mutual connections. In this section, the way product models for disassembly can be con-

structed with the basic model elements objectsand connectionsis explained. We will see that

other concepts like connection types and loops through connections must be introduced to be

able to carry out a disassembly analysis. Section 5.2.5 discusses the way this analysis can

be performed. In Section 5.2.6 more sophisticated model elements are introduced that allow

complex product structures to be modelled.

5.2.1 Connected Objects

As has been mentioned before, a product is conceived of as an assemblyconsisting of objects
with mutual connections. Objects are the smallest parts of a product that are relevant in a

disassembly context. The most important attributes are the materials they are made of and

the amount of these materials. With these attributes it is possible to determine to what degree

the materials of a group of objects can be reused or recycled.

Connectionsspecify the places of contact between objects. It is allowed that there are more

than one connection between two objects. Connections have properties beyond standard

topology that are important for disassembly analysis. When an object is situated between

other objects, these objects may be in the way during disassembly. It can also be the case that

the object in the middle can be removed by pulling it in another direction. But in order to do

this, there may not be a rigid connection between the objects. Two properties of connections

are therefore of importance: how rigid connections are (in the sense of physical forces) and

how constrained (in a spatial or geometric sense) the directionof movement of objects is.



84 CHAPTER 5. REUSING AND EXTENDING AN ONTOLOGY

bolt

A

B

nut

rigid against

loose

rigid

loose sideways

sideways

against

Figure 5.2: The four connection types and an associated disassembly model of a bolt-and-nut

system.

Unfortunately, this implies that generally we have to deal with many, both geometric and

chemical/physical concepts. This we want to avoid, practically because in the design stage

of a product detailed models like 3D CAD drawings are often not yet available, and compu-

tationally because it involves strong and complex ontological commitments. However, it is

possible in disassembly modeling and analysis to define task-oriented abstractions of geomet-

ric and physico-chemical connection properties that do the job. These abstractions are then

brought into a topological ontology of disassembly models by means of different connection

types.

Distinguishing four types of connections is already sufficient to be able to perform practically

useful disassembly analyses. These types are based on a dichotomy within two important

orthogonal dimensions. The first discriminating dimension is the mentioned rigidnessof a

connection. A useful dichotomy here is whether a connection is rigid or loose, and relates to

the distinction of force-based versus shape-based connections:

rigid: A physical or chemical forcekeeps the objects together, so this force must be overcome

first to break the connection. (Example: objects screwed or sticked together.)

loose: Objects are in contact with each other, but in a purely spatialsense without an addi-

tional binding force, so the connection disappears when the objects are moved apart.

(Example: a glass standing on a table.)

The second distinguishing dimension is the directionin which a connection restricts the move-

ment of the connected objects. The simplest possible conceptualization is to introduce the

following dichotomy:

against: The connection restricts movement in the direction perpendicularto the surface of

contact.

sideways: The connection restricts movement in a direction within the planeof the surface of

contact.
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This gives a two-by-two matrix, leading to four types of connections: rigid-against, rigid-
sideways, loose-against, loose-sideways. Figure 5.2 depicts graphical representations of these

types, and an example how these types are used in a product model for disassembly. When

the rigid connection between the bolt and nut is broken (which requires applying a physi-

cal force), the loose-against connections in the model can be simple undone by moving the

connected objects away from each other.

A straightforward way to give an ontological definition of connected objects is to construct

it using the ontology of systems theory from PHYSSYS (Chapter 3). Objects are instances of

individuals from systems theory and connections are typed topological connections. Because

a model for disassembly is a systemof disassembly objects, systems theory has been reused

instead of topology. The ontology projection is of the include-and-specialize type. Figure 5.3

gives an idea of what the an ontology of disassembly models could look like.

1 define-theory disassembly-models

2 include-theory systems-theory

3 define-class d-object(x)

a d-object(x) -> simple-m-individual(x)

4 define-class d-connection(c)

a d-connection(c) ->

connection(c) and

connects(c,o1,o2) -> d-object(o1) and d-object(o2)

b d-connection(c) ->

d-con.type(c,a-loose) or d-con.type(c,a-rigid) or

d-con.type(c,s-loose) or d-con.type(c,s-rigid)

5 define-class d-model(m)

a d-model(m) -> system(m) and

in-system(m,o) -> d-object(o)

Figure 5.3: Proposal for an ontology for disassembly models (i). Disassembly objects and

connections are defined in terms of system theoretic concepts.

Line 2 includes the ontology of systems theory which is projected onto disassembly models

in Definition 3–4. Objects are defined as atomicmereological individuals because they are the

smallest objects relevant for disassembly. Disassembly connections are topological connec-

tions between disassembly objects, and must have a connection type (Definition 4). Given

these definitions, a disassembly model is a system of disassembly objects.

5.2.2 Force Loops

In the example in Figure 5.2, the two plates are in between the two bolt and nut. In this

case, the direction of all connections are the same, but generally they are not. Objects can

be restricted in different directions when they are in between several pairs of objects. We

must therefore model which connections of an object are in the same direction, but do not

want to do this using 3D vectors. Therefore, it is done using the topological concepts of paths
and loopsthrough connections. These paths encode the geometric information in an abstract
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way. The paths can be constructed by linking the connections that are in one direction. In the

model in Figure 5.2 we then see one loop running through all connections.

sideways

pull

sideways

pull

against

push

against

pull

against

push

against

push

against

push/pull

against

pull

sideways

pull

against

against

pull

against

pullpush

Figure 5.4: The possible transitions in force loops through connected objects in a disassembly

model.

An easy way to determine the direction of connections and the paths that go through them is

to imagine what happens when objects connected by a loose connection are pulled apart. For

example, in Figure 5.2, when the connection between A and B is pulled, this implies that plate

A is pushed against the bolt, the bolt is pulled away from the nut, the nut is pushed against

plate B and finally (although this may sound as a contradiction) plate B is pushed against

plate A. The outcome of this sequence of forces depends on the geometry of the product and,

as we will see later, turns out to be exactly the information required for disassembly analysis.

In a rigidly connected product, i.e. a product of which all parts are firmly connected together,

the geometric structure is such that the objects connected by loose-against connections are

pushed against each other. This will result in paths through connections that make a full

cycle, as is the case Figure 5.2. Therefore, we will speak of force loops. In cases where a path

does not make a full cycle, we will say that the loop is broken or not intact.

Because the sequence of forces in a force loop depends on geometry, only certain force tran-

sitions are possible when a path is followed. This is shown in Figure 5.41. These restrictions

imply that the forces on connections in an intact force loop comply to the following rules:

� Loose-against connections are always pushed.

� Rigid-against connections are pushed or pulled.

� Sideways connections are always pulled.

1Note that torque has to be modelled as a combination of sideways and against connections.
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When two objects connected by a loose connection are pushed together, we will say that the

connection is enforced. This can only be the case when there is an intact loop going through

the connection.

In more complex situations, there might be more than one connection in the same direction

on one side of an object, like in the model in Figure 5.5. This can be modeled by two

force loops going through one connection. In other situations, a group of connections in

different directions collectively form a virtual connection in another direction. The way these

situations can be dealt with will be explained in Section 5.2.6.

A

B

C D

loop 1 loop 2

A

B

C D

3

1
pushpush

4

pull

push

pull

5

push

loop 1 loop 2

2

Figure 5.5: Each loop individually enforces the loose connection numbered 1.

For the definition of force loops it is convenient to look upon a disassembly model as being

a graph (Skvarcius and Robinson 1986) in which the objects are the vertices and the connec-

tions the edges. In such a graph a force loop is a path or cycle. This approach is formalized

in Figure 5.6.

5 include-theory graph-theory

6 define-relation model-graph(m,g)

a d-model(m) -> exists g: graph(g) and model-graph(m,g)

b model-graph(m,g) ->

(graph.vertex(g,v) <-> in-system(v,m)) and

(graph.edge(g,e) and edge.from-to(e,o1,o2) <->

in-system(o1,m) and in-system(o2,m) and connects(e,o1,o2))

7 define-class force-loop(l)

a force-loop(l) -> exists m,g: model-graph(m,g) and

graph.path(g,l)

8 define-relation loop.conn.force(l,c,f)

a force-loop(l) and loop.vertex(l,c)

-> loop.conn.force(l,c,push) or

loop.conn.force(l,c,pull)

Figure 5.6: Proposal for an ontology for disassembly (ii). Force loops can be looked upon as

paths through a graph when connected disassembly objects are regarded as vertices connected

by edges.

Line 5 includes an ontology of graph theory. This ontology defines a graph as a tuple of a

set of vertices and a set of edges. Edges can be either directed or undirected, which leads

to the concepts of undirected graphs (or simply graphs) and directed graphs (or digraphs).
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Furthermore it defines pathsand cyclesthrough the edges of a graph. We also assume that it

defines the classes of connected graphsin which there is a path between every two vertices in

the graph and unconnected graphswhere there this is not the case. A graph is a subgraphof

another graph when the sets of vertices and edges of the first are subsets of the second.

In Definition 6 is stated that each disassembly model must be related to a graph where the

vertices are the objects in the model and the edges the connections. An example of the

model-graph relation, instantiated for a simple model, can be seen in Figure 5.7. A force

loop can then be viewed upon as a path through the connections of a model-graph. The

relation loop.conn.force specifies the force a loop exercises on each connection in the

loop. The projection of graph theoretical paths to force loops makes sure that the connections

in a force loop form one continuous chain. The dependency between the type of a connection

and the allowed forces on it have not been formalized in Figure 5.6.

model-graph

A B

C

A

C

B

Figure 5.7: An example of the model-graph relation instantiated for a simple model.

The question may rise whether the system–subsystem relation is really different from the

graph–subgraph relation. The answer lies in the semantics of being a graph or being a sys-

tem. Because systems are made out ofthe entities they contain, systems are mereological

individuals. This poses restrictions on the system–subsystem relation. For example, a system

cannot be made out of a single subsystem. Furthermore, there are rules concerning the over-

lap of systems (see Section 3.1.1). For subgraphs there are no such restrictions. A graph does

not consistof subgraphs, a subgraph is just a selection of vertices and edges in a graph.

The type of ontology projection performed in Figure 5.6 is a combination of specialization

and mapping. Two abstract viewpointson disassembly models (i.e. systems theory and graph

theory) were included and specialized into product models for disassembly. Furthermore,

the interdependencies were specified. The difference with domain viewpoints is that abstract

viewpoints do not contain different categories of domain concepts, but represent knowledge

in different forms. For the definition of some parts of the domain knowledge (d-model and

connection types), system theoretical concepts are the most convenient starting point, and for

other parts (force loops) concepts from graph theory.



5.2. THEORY OF PRODUCT MODELS FOR DISASSEMBLY 89

5.2.3 Disassembly Operations

Disassembly operations performed on a product require changes in its disassembly model.

Based on the different connection types, two kinds of modification operators are distin-

guished: looseningoperations that change a connection type from rigid to loose, and dis-
connectingoperations that delete loose connections. The first require applying a force to undo

the rigidness, while the latter refer to changing the spatial location of objects by moving the

objects apart.

Disassembly operations like cutting, sawing and unscrewing change the types of the connec-

tions involved from rigid to loose. In the bolt-nut example, loosening the bolt is modeled by

replacing the rigid-sideways connection by a loose-sideways connection. Loosening opera-

tions can cause force loops to break. As a result, some loose connections will no longer be

enforced and certain parts of the product (called subassemblies) can be separated from the

rest of the product, by disconnecting operations. Again, the bolt-nut example in Figure 5.2

illustrates this. When the connection between the bolt and the nut has been loosened, the bolt

(or the nut) can be removed from the product. This actually disconnects the bolt from the nut

and the plate so the connections vanish.

Formalizing these changes in the product we encounter the problem of the extensionality

of Mereology. We cannot reason about the modelled product after a disassembly operation

because it will have the same parts as the product before and will therefore be considered to

be the the same individual. A new concept has to be introduced to be able to capture these

product changes. This is the stateconcept: a product after a disassembly operation is in a

different state than before. States and events that cause state changes are usually represented

as directed graphs in which the vertices represent the states and the edges the events. In these

terms, a state space diagram is a directed graph (acyclic in the case of product disassembly).

We can imagine a general state space ontology that defines the concepts of states, events and

state space in terms of graph theory. Because the meaning of being in a state depends on the

nature of domain entities, the projection of the state space on domain concepts must include

this knowledge.

This is what has been done in Figure 5.8. In Line 2 the ontology of product models is

included. Line 3 includes the general state space ontology. The fact that a model has a state

space is formalized in Line 4. Because a disassembly operation only affects connections, the

connection types are a good description of a state. The relation state.con.type relates

for each state a connection type to every product connection. The connection types that

are distinguished are extended with the type disconnectedto model disconnected connections.

Line 5b states that for the initial state in the state space, the connection types correspond to

the types specified with pcon.type. Axiom 5c is a very important axiom. It defines the

equalrelation for state descriptions. It is used in the state space ontology to ensure that there

can be no two states in a state space having the same state description.

What remains to be formalized is the interpretation of the disassembly operations as events

that cause state transitions in the state space. This will be presented in the following sections.
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1 define-theory product-disassembly

2 include-theory disassembly-models

3 include-theory state-space

4 define-relation model-statespace(m,ss)

a d-model(m) -> exists ss: model-statespace(m,ss) and

state-space(ss)

5 define-relation state.con.type(s,c,t)

a model-statespace(m,ss) and graph.vertex(ss,s) and

model-graph(m,g) and graph.edge(g,c) ->

exists t: state.con.type(s,c,t)

b model-statespace(m,ss) and statespace-istate(ss,s) and

model-graph(m.g) and graph.edge(g,c) and pcon.type(c,t) ->

state.con.type(s,c,t)

c exists s1,s2: forall c: exists t:

(state.con.type(s1,c,t) <-> state.con.type(s2,c,t)) ->

equal-states(s1,s2)

Figure 5.8: Proposal for an ontology for product disassembly (i). The ontology includes the

ontologies of disassembly models and state space and defines what it means for a product to

be in a state of the state space.

5.2.4 Subassemblies

Loosening of rigid connections can make it possible that groups of objects can be removed

from the product. If this is the case, there may be no enforced connections between such a

group and the rest of the product. Furthermore it is required that the group does not contain

smaller groups of objects that can be separated. In other words, internal connections in a

group have to be enforced. In the ontology for disassembly, groups of components having

these properties are called subassemblies.

Figure 5.9 gives an illustration of the concept of subassemblies. The model on the left-hand

side consists of one subassembly because the enforced force loop holds all objects together.

This changes when the sideways connection is loosened, as can be seen in the model on the

right-hand side. Objects B and C still form a subassembly because there is a rigid connection

between them. All other objects form individual subassemblies because they are loosely

connected to other subassemblies.

For a formal definition of subassemblies, again it is convenient to switch to a graph theoretical

view on a product model. When we consider the objects as vertices and enforcedconnections

as the edges of a graph, the subassemblies of a product correspond to the so called connectiv-

ity components (the maximal connected subgraphs) of this graph. During product disassembly,

the subassemblies change. Therefore they have to be defined for each product state. Fig-

ure 5.10 illustrates these definitions. For each product state an assembly graphis defined in

which the maximal connected subgraphs specify the product subassemblies.

The ontology that is the result of this scheme can be found in Figure 5.11. The relation

state-asygraph (Definition 6) relates every product state to a graph of the type described
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Figure 5.9: Subassemblies.
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Figure 5.10: The relation between disassembly models, model state space, (sub)assembly

graphs and model subassemblies.
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6 define-relation state-asygraph(s,ag)

a d-model(m) and model-statespace(m,ss) and

graph.vertex(ss,s) and model-graph(m,g) ->

exists ag: state-asygraph(s,ag) and

(graph.vertex(g,o) <-> graph.vertex(ag,o)) and

(graph.edge(g,c) and enforced(c) <-> graph.edge(ag,c))

7 define-relation state-subasy(s,sa)

a d-model(m) and model-statespace(m,ss) and

graph.vertex(ss,s) and state-asygraph(s,ag) and

max-connected-subgraph(ag,sag) ->

exists sa: state-subasy(s,sa) and subsystem-of(sa,m) and

(graph.vertex(sag,o) <-> in-system(o,sa))

Figure 5.11: Proposal for an ontology for product disassembly (ii). The ontology defines

product subassemblies in terms of maximal connected subgraphs which are defined in the

ontology of graph theory.

above. The subassemblies of a product in a certain state can then be defined (Definition 7)

using concepts from the ontology of graph theory.

In the literature methods can be found to determine graph properties and paths and subgraphs

having a certain property (Skvarcius and Robinson 1986). Examples are the computation of

the number of maximal connected subgraphs in a graph, finding a (sub)optimal path covering

all vertices of a graph (traveling salesman problem), finding a minimal spanning tree, finding

a shortest path in a weighted digraph (Dijkstra' s Algorithm) etc. A method to determine the

maximal connected subgraphs (MCS) of a graphG is presented in Figure 5.12. In Section 5.4

it is used in the design of a prototype KBS that performs disassembly analysis.

MCS = {}

while there is a vertex v in graph G

that is not in a graph in MCS

create new graph S({v},{})

while there is a vertex v' in G that is

connected to a vertex in S

add all edges between v' and vertices

in S to the edges of S

add v' to the vertices of S

end

add S to MCS

end

Figure 5.12: A method to compute the set of maximal connected subgraphs MCS of a graph

G.

Each subassembly is a candidate for removal, but a direction has to be found in which the

subassembly can be moved away from the rest of the product. The geometric information

captured in the force loops can be reused to find the desired direction. Three cases can be

distinguished, as follows.

1. When a subassembly has a loose external connection that is not linked to another exter-

nal connection of the subassembly by a force loop, it means that no object blocks the

subassembly in the direction of the connection. Because any other external connection
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Figure 5.13: Situations where a subassembly (represented by the gray shapes) can be removed

(left of the vertical line) or is blocked (right of the line).

of the subassembly has a different direction and is not enforced, the subassembly can

be removed.

2. When the removal of the subassembly in the direction of a connection is blocked by ex-

ternal objects, a force loop goes through the connection and a second external connec-

tion of the subassembly. The subassembly is only blocked when this second connection

is on the opposite sideof the subassembly. The geometric information in the force loop

can be used to see whether this is the case. This can be seen in Figure 5.13. Situations

where a force loop leads to a connection on the opposite side so the subassembly is

blocked appear on the right-hand side of the vertical line.

3. It may also be the case that there are more than one loopgoing through the external con-

nection that lead to other external connections of the subassembly. Each external object

connected by these other external connections may then be blocking the subassembly.

Therefore, the subassembly can only be removed in the direction of the first external

connection when all force loops through the connection match a situation depicted on

the left hand side of the vertical line in Figure 5.13.

A subassembly is called a freesubassembly when it can be removed. To see whether a sub-

assembly is free, an external connection has to be found that matches one of the three cases

described above. Figure 5.14 gives the formalization.

Note that this definition only takes into account the blocking of subassemblies caused by

direct physical contact with other subassemblies. For situations where objects that are not

in direct contact prevent subassemblies to be removed (or connections to be loosened), such
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8 define-relation free(sa)

free(sa) <->

exists m,ss,s:

model-statespace(m,ss) and graph.vertex(ss,s) and

state-subassembly(s,sa) and

exists c1:

in-boundary(c1,sa) and

not(state.con.type(s,c1,disconnected)) and

forall fl,c2:

path.edge(fl,c1) and path.edge(fl,c2) and

in-boundary(c2,sa) and c1 != c2 ->

state.con.type(s,c2,disconnected) or

state.con.type(s,c1,s-loose) or

state.con.type(s,c2,s-loose) or

(state.con.type(s,c1,a-loose) and

state.con.type(s,c2,a-loose) and

not exists f: loop.con.force(fl,c1,f) and

loop.con.force(fl,c2,f))

Figure 5.14: Proposal for an ontology for product disassembly (iii). The relation free spec-

ifies which subassemblies can be removed from the rest of the product.

as closed covers or lids, the disassembly stateconcept (not to be confused with a state in state

space) has been introduced. This makes it possible to specify for instance that the lid has to

be opened or that the cover has to be removed before subassemblies can be removed from the

product.

5.2.5 Disassembly Analysis

Given a product model at any point in the disassembly process, physical disassembly opera-

tions effectuate one of two kinds of changes in the model:

� connections can be loosened, or

� free subassemblies can be removed, disconnecting the external connections.

For a realistic environmental analysis of product disassembly, the edges of the state space

should correspond to physical disassembly operations like sawing, unscrewing, breaking etc.

However, for simplicity we will abstract from physical operations and relate loosening and

removing operations to the edges in state space. This has been formalized by the relation

edge-op in Figure 5.15.

The ternary relation edge-op relates the operation type (t:loosen/remove) and the object

being handled (a: a connection or a subassembly) to an edge. Axiom 9a states that every

edge in a model' s state space must have a disassembly operation associated to it. The depen-

dency between the type of disassembly operation and the type of the object being handled is

formalized by Axiom 9b. Axiom 9c models the fact that an edge in the state space graph can

be related to only one disassembly operation. Axiom 9d and 9e ensure that for each product

state in which a connection can be loosened or a subassembly can be removed, an edge exists
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9 define-relation edge-op(e,t,a)

a model-statespace(m,ss) and graph.edge(ss,e) ->

exists t,a: edge-op(e,t,a)

b edge-op(e,t,a) ->

(t = loosen <-> d-connection(a)) and

(t = remove <-> exists s: state.subasy(s,a))

c edge-op(e,t1,a1) and edge-op(e,t2,a2) ->

t1 = t2 and a1 = a2

d model-statespace(m,ss) and graph.vertex(ss,s1) and

(state.con.type(s1,c,a-rigid) or

state.con.type(s1,c,s-rigid)) ->

exists e,s2:

edge-op(e,loosen,c) and graph.edge(ss,e) and

graph.edge(ss,s2) and edge.from-to(e,s1,s2)

e model-statespace(m,ss) and graph.vertex(ss,s1) and

state-subasy(s1,sa) and free(sa) ->

exists e,s2:

edge-op(e,remove,sa) and graph.edge(ss,e) and

graph.edge(ss,s2) and edge.from-to(e,s1,s2)

f model-statespace(m,ss) and graph.edge(ss,e) and

edge.from-to(e,s1,s2) and edge-op(e,loosen,c) ->

forall ci:

(ci = c and state.con.type(s1,ci,a-rigid) ->

state.con.type(s2,ci,a-loose)) and

(ci = c and state.con.type(s1,ci,s-rigid) ->

state.con.type(s2,ci,s-loose)) and

(ci != c and state.con.type(s1,ci,t) ->

state.con.type(s2,ci,t))

g model-statespace(m,ss) and graph.edge(ss,e) and

edge.from-to(e,s1,s2) and edge-op(e,remove,sa) ->

forall ci:

(in-boundary(ci,sa) ->

state.con.type(s2,ci,disconnected)) and

(not in-boundary(ci,sa) ->

(state.con.type(s1,ci,t) <-> state.con.type(s2,c,t)))

Figure 5.15: Proposal for an ontology for product disassembly (iv). The relation edge-op

relates edges in the state space to operations that change disassembly models.
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in the state space. Axioms 9f and 9g define the relationship between edges in state space

and the transformation of the state description of the states that are linked. Note that the re-

sult of the projection of the state space onto the process models for disassembly is similar to

situation calculus (Davis 1990).

The benefit of the definition of the state space is that there are various general search algo-

rithms defined in terms of state space graphs (Bolc and Cytowski 1992). Some of these have

the precondition that the entire state space graph must be in memory beforehand, others can

build the state space graph themselves using functions that generate successor states.

The algorithms can also be different in the stop criterium they use. For some tasks it is

sufficient to find a state that matches a certain criterium. As soon as one such state is found,

the search can be stopped. The most straightforward approach to find an optimal state in

the state space is to examine every state in it. Smarter methods use knowledge to cancel the

examination of states in a branch of the tree when it can be deduced that every state in this

branch is suboptimal.

In heuristic approaches, the search is guided by an estimation of the effectiveness of the

edges leading out of the state being examined. Edges with a high estimated effectiveness can

be search first, edges with a lower estimation later and edges with a very low estimation can

even be disregarded.

One can also differentiate between finding the best state disregarding the cost to reach that

state, or finding the best state with minimal cost. In the first case, a state-benefit function has

to be specified whereas in the second case, not only the benefit of a state is important, but

also the cost of reaching that state from the initial state.

These methods can be used to accomplish certain tasks (such as finding a good disassembly

sequence). Each method has a certain competencein accomplishing the task and requirements

on the knowledge it uses. These aspects can be formally specified in so called method ontolo-

gies. For a more detailed explanation of method ontologies, see (Gennari, Tu, Rothenfluh,

and Musen 1994; Tu, Erikson, Genari, Shahar, and Musen 1995; Fensel, Schönegge, Groen-

boom, and Wielinga 1996).

For disassembly analysis, a search method can used that searches the entire state space (all

disassembly sequences) to find the optimal state with the lowest cost. Figure 5.16 shows such

a method in pseudo-code. We can see that tree types of domain knowledge are required by

the method. This knowledge is expressed in terms of concepts from the state space ontology.

� the initial state

� a method to determine the edges out of a given state

� a method to compare paths starting from the initial state to any other state in the state

space

The ontology of product disassembly we have constructed so far contains the first two types

of required domain knowledge. We only have to add a relation to compare disassembly

sequences, i.e. acyclic paths through the state space.
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statespace = {initial-state}

best-path = {}

find-optimal-path(initial-state,{})

find-optimal-path(s,p)

if better-path(p,best-path)

best-path = p

endif

foreach state s' that can be reached from s following edge e

add state s' to statespace

add edge e from s to s' to statespace

add e to p

find-optimal-path(s',p)

remove e from p

end

end

Figure 5.16: Exhaustive, depth-first state space search method to find an optimal path.

Our formal definition of the relation better-path (which defines a total order over state

space paths) is very simple and unfortunately not realistic for practical disassembly analysis.

Nevertheless we have chosen it because it allows to build a prototype to assess the validity

and usability of the theory presented in this chapter. Figure 5.17 gives a (partial) specification

of the relation.

10 include-theory engineering-mathematics

11 define-relation model-clump(m,c)

a model-clump(m,c) ->

d-model(m) and subsystem-of(c,m)

12 define-relation better-path(p1,p2)

a better-path(p1,p2) <-> rating(p1) < rating(p2)

Figure 5.17: Proposal for an ontology for product disassembly (v). The relation

better-path specifies a total order over paths in the state space. It is required by the

method in Figure 5.16 to find the best disassembly sequence.

The comparison of two disassembly sequences is based on a specification of objects that

have to be removed for recycling or reuse. Such a group of objects is called a clumpand a

relation that associates a clump to a model can be found in Definition 11a. Each loosening

or removal operation applied to the model accounts for some given ecological cost (e.g. 5

units for loosening a connection, 1 unit for removing a subassembly). The ecological benefits

depend on the degree to which the clump objects have been separated from the product. For

simplicity, the cost-benefit analysis does not calculate an ecological benefit, but instead a

penalty (e.g. 15 units) for each unwanted (non-clump) object that is still attached the clump.

The total rating of a situation in the disassembly process is then defined as 1=(cost+penalty).

Figure 5.17 does not show the function that defines this rating. We suffice to say that it is

possible using the EngMath ontology of engineering mathematics and previously introduced

concepts and relations. What the figure does show is the way the rating function is used to

define the better-path relation required by the search method.
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max. con. subgr.

exh. search

disassembly models state space EngMath

ProMoD

graph theorysystems theory

topology

mereology

Figure 5.18: Inclusion lattice of the application ontology of PROMOD. Boxes represent on-

tologies and arrows indicate ontology inclusion. Rounded boxes are method ontologies.

Together with the definitions in Figure 5.8, 5.11,5.14 and 5.15, Figure 5.17 gives a proposal

for an application ontology for product disassembly analysis. Figure 5.18 shows its inclusion

lattice. Boxes with rounded corners are method ontologies defining the competence and

knowledge requirements for the problem solving methods used.

5.2.6 Model Extensions

Based on the application ontology defined in the previous section it is possible to implement

a prototype KBS that performs disassembly analysis on a product model. Before we will

describe this prototype in Section 5.3, some extensions will be introduced that allow com-

plex product structures to be modelled. We will not give ontological definitions of these

extensions, so readers who are mainly interested in ontology construction can proceed with

Section 5.3 from this point.

Three new model elements will be described in this section. First, the disassembly statecon-

cept will be introduced. With disassembly states, preconditions for loosening connections

can be defined. After that, concepts to handle dependencies between connections will be

described. An example of dependent connections are rigid sideways connections based on

friction that are formed by clamping an object between two other objects. Finally, we will

explain how situations where connections in different directions form a `virtual' connection

can be modelled.

Conditional Disassembly

Sometimes, breakable connections can be loosened and disconnected only when some parts

of the product have been removed. For many products the case has to be opened before

connections inside the case can be loosened. Therefore, connections that can be loosened

only under a certain condition have been introduced. This condition can best be looked upon

as a statethe (partially disassembled) product has to be in for further disassembly. Note that
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this notion of product state is different from the states introduced in Section 5.2.5. We will

therefore call the states that are conditions for the loosening and disconnection of connections

disassembly states.

A disassembly state can be defined as a logical expression of other disassembly states (with

the logical operators and, or and not) and the predicates disconnectedand separated. The predi-

cate disconnectedis true for all connections that are disconnected in a situation. The predicate

separatedis true for tuples of objects of which one object has been removed from the other,

i.e. when they are part of separated subassemblies.

In situation where, for instance, a front panel has to be removed, separated(front,case)could

be the condition for breakable connections inside the case. In the situation where there is

a lid connected to the case by a hinge and a fastening, there is no need that the lid is com-

pletely separated from the case, so the condition can be weaker. Here, the condition discon-
nected(fastening)is sufficient as the hinge may still be intact.

Dependent Connections

Up to now, there has not been any consideration about the fact that a sideways connection in

one direction can form an against connection in a perpendicular direction. This has not been

necessary because usually connections are independent. However, there are two common

situations where there is such a dependency: against connections that form sideways connec-

tions based on friction and sideways connections that form against connections. Figure 5.19

gives two examples.

B

D

CA A B C

D

A

B
C

A

B

C

Figure 5.19: Two different dependencies between connections.

In this figure, the top model shows a construction where an object B is connected in the

horizontal direction as long it is pressed by object A in the vertical direction. The open arrows
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therefore have to be interpreted as: the connection pointed to is rigid as long as the connection

that is pointed from is enforced by a force loop. The two rigid sideways connections become

loose sideways connections when the screw is unscrewed. Object B then becomes a free

subassembly and can be removed.

The bottom part of the figure shows a construction where an object B is clamped between two

pins (objects A and C) that are tight-fitted in object D. When the rigid sideways connection

between a pin and object D in the vertical direction is disconnected, it means that the pin is

pulled out of object D. As a result, the loose against connections in the horizontal direction

are also disconnected. This is modelled with the solid arrows: the connection the arrow points

to is disconnected when the connection that it points from is disconnected.

Dependent Force Loops

In the models encountered so far, all directions of the connections were independent or per-

pendicular to one another. Now, situations are considered where there is a dependency be-

tween the direction of connections. An example of such a situation can be found in Fig-

ure 5.20 where a disc (A) is fixed by three objects (B, C and D) that are attached to a plate

(object E). In this situation, it is easy to find the loops that exist by imagining what forces

must apply to the connections to cause the fact that loose against connections are pushed. The

only difference with previous situations is that here, in order to be enforced, all loops going

through the loose against connections have to be intact instead of just one.

A

B C

D

E

loop 2

loop 1

loop 3

A

B C D

E

loop

1

loop

3

loop 2

Figure 5.20: Two loops collectively enforce a loose connection.

A model extension that allows these situations to be handled is the introduction of so called

groups of dependent force loops, or just groups. In the example of Figure 5.20, the three loops

form one group and only if all loops in the group are intact, the loose connections in the loops

are enforced. The introduction of groups requires some changes in the theory that has been

presented.

The amount of changes to the theory can be kept to a minimum when it is required that all

loops belong to at least one group. This means that in all previous examples, each loop forms

a group that contains only that loop. This also means that in the new situation a connection is

enforced iff it is a rigid connection or a loose against connection that has a loop going through

it that belongs to an intact group. A group is intact when all of its loop are intact.
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5.2.7 Related Work in Mechanical Engineering

The problem to obtain the AND/OR graph of a product has also been considered in compu-

tational (mechanical) engineering, and several approaches are reported in the literature.

In the reversed fishboneapproach (Ishii and Lee 1996), the designer has to come up with the

preferred way to disassemble the product him/herself. This is graphically specified in a re-

versed fishbone diagram which can be considered as a sub-graph of the AND/OR graph. The

disadvantage of this approach is that when the design of the product changes, possibly large

parts of the diagram have to be changed. This makes this method less suited for comparison

of alternative designs.

A method to obtain the AND/OR graph automatically is to generate it from a geometric model

of the product. This is done in the degrees of freedom(Dof) approach (Khosla and Mattikali

1989) where a 3D CAD drawing of the product is utilized. After a design modification the

AND/OR graph can automatically be recomputed, but the drawback is that it needs extensive

input information, which is not always available in the early stages of product design.

The third approach uses a topological liaison diagram(Fazio and Whitney 1987; Sturges Jr and

Kilani 1992) in which nodes denote objects and edges physical connections. The AND/OR

graph is generated from this diagram plus additional relations specifying a partial ordering

over the breaking of connections. A tool based on this approach is LASER (Ishii, Eubanks,

and Marks 1993; Ishii, Lee, and Eubanks 1995).

Our theory is related to the last approach. Its novel and distinguishingaspect is that by a clever

choice of connection types, it can capture geometric information otherwise only available in

3D geometric models. The use of these new models is what makes the PROMOD system that

will be described in the next section different from a tool like LASER.

5.3 The PROMOD System for Disassembly Analysis

PROMOD is a prototype KBS that implements the product models for disassembly as well as

the AND/OR tree generation algorithm described in Section 5.2. In addition, it contains a

simple form of ecological cost-benefit analysis. This section describes the functionality of

PROMOD. Most importantly, the syntax of the input file that specifies a disassembly model

will be defined. An example session will be given to demonstrate PROMOD' s usage.

5.3.1 Functionality of PROMOD

PROMOD first reads in a product model and then generates the AND/OR tree. The ecological

cost-benefit analysis is then performed on each situation in the disassembly process defined

by the AND/OR tree. It uses a list of objects (called the clump) that have to be removed from

the product for recycling or reuse. Each loosening or removal operation applied to the model
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accounts for some given ecological cost (e.g. 5 units for loosening a connection, 1 unit for

removing a subassembly). The ecological benefits depend on the degree to which the clump

objects have been separated from the product. For simplicity, the cost-benefit analysis does

not calculate an ecological benefit, but instead a penalty (e.g. 15 units) for each unwanted

object that is still attached to one of the clump objects. The total evaluation score of a situation

in the analysis process is then defined as 1=(cost + penalty).

5.3.2 Syntax of PROMOD Models

We will describe the syntax of the PROMOD model files using the BNF technique (Naur

1963) for syntax definitions. A short overview of the notation can be found in Figure 5.21.

The definition of the syntax for PROMOD models can be found in Figure 5.22. The top-level

production rule is model.

model: rule production rule for non-terminal model
product the terminal product appears literally

f rule g group the definitions between curly brackets

[ rule ] the rule appears optionally

push j pull either push or pull appears

object: : : one or more appearances of object
f rule g: : : one or more appearances of the rule

[ rule ]: : : zero or more appearances of the rule

 - a newline character

EOF the end-of-file character

id an identifier

string a character string

Figure 5.21: Notational conventions of BNF syntax definitions.

A product line specifies the name of the modelled product. The name is a character string

that follows the product keyword and is ended by the end of the input line.

An object definition is an identifier defining its name followed by identifiers specifying addi-

tional information about the object. An identifier is a string of characters without whitespace

that is a name of a model element. All model elements must have a unique name. For the

moment, PROMOD disregards the extra information of objects.

Because the prototype has no knowledge of physical disassembly operations like unscrewing,

cutting, sawing etc. it cannot determine which rigid connections in the product model can

be loosened. Therefore, the fact that a (rigid) connection can be loosened and ultimately

be disconnected has to be specified explicitly with the optional breakable keyword in the

connection definition. The disassembly algorithm will only loosen rigid connections that

were marked as breakable. When a name of a disassembly state is specified in a connection

definition it means that the connection can only be loosened when the product has certain

properties (see below).
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model : product name -

fobject object whateverendg: : :

[connection connection type object object[breakable [state]] end]: : :

[loop loop node node: : : end]: : :

[group group loop: : : end]: : :

[state statefseparatej disconnectedj andj or j notg end]: : :

clump object: : : end

EOF

name : string
object : id

whatever : [id]: : :

connection : id
type : a-loose j a-rigid j s-loose j s-rigid

loop : id
node : connection force
force : push j pull

group : id
state : id

separate : separate object object
disconnected : disconnected connection

and : and state state: : :

or : or state state: : :

not : not state

Figure 5.22: BNF syntax definition of PROMOD models.

A force loop is formed by a collection of nodes. A node is a combination of a connection and

the force that is applied to the connection. In order to make it easy to check whether a loop

is properly defined, the connections in the nodes of a loop must be specified in the order in

which they are visited when the path is followed from object to object.

A disassembly state definition specifies states that parts of a model can have during the dis-

assembly process. There are five different kinds of states: separate, disconnected, and, or and

not states. A separatestate holds iff the objects are part of subassemblies that have been sepa-

rated. A disconnectedstate is true iff the specified connection has been disconnected. The and,
or and not states are true when the logical operators they represent are true when applied to

the specified states.

5.3.3 An Example Session

We will now discuss an example to give an indication of the usability and reasoning power of

the PROMOD system. Figure 5.23 shows a model of a coffee machine that has been analyzed

by the system. Connection c8 can only be loosened when the base has been separated from

the case. The object block has been marked as the clump.

Figure 5.24 shows part of the results of the disassembly analysis by PROMOD. For each

sequence of disassembly operations information is given on the subassemblies, the state of

the subassemblies, the groups of objects that are separated and on the ecological rating of the
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base
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screw2
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elementscrew2

screw1

block
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Figure 5.23: A disassembly model of a coffee machine.

situation. The rating consists of three numbers: the ecological cost of disassembly, the total

object penalty and the sum of these numbers. The ratings can also be visualized in a diagram

like in Figure 5.25.

5.4 Implementation of PROMOD

The PROMOD prototype has been implemented in the programming language C (Kernighan

and Ritchie 1988). To cater for easy prototyping, Lisp-like data structures and functions that

operate on lists have been used (Steele Jr. 1990). This section describes the most important

aspects of the implementation and the way the application ontology presented in Section 5.2

could be used as a specification of the prototype.

In Section 5.4.1, the data structures in PROMOD will be introduced using the OMT modelling

technique (Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen 1991). The actual implemen-

tation in terms of lists will be specified with BNF definitions (Naur 1963). Most of the con-

cepts, attributes and methods are implementations of what has been described in Section 5.2.

However, some new concepts were introduced to overcome combinatorial explosion that lead

to a poor performance of the prototype. Other extensions concern the extended model entities

for product states and force loop groups.

Section 5.4.2 describes the most important functions and procedures in PROMOD. A mixture

of pseudo-code and real function and procedure calls is used in these descriptions.
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Situations considered for `Coffee Machine'

sequence: ((loosen c5) (remove screw2) (remove base)

(loosen c8) (remove screw1) (remove block))

asies: ((free case) (blocked plate) (separate screw1)

(free element) (separate base) (separate block)

(separate screw2))

clumps: ((case plate element) (screw1) (base) (block)

(screw2))

rating: 14 0 14

sequence: ((loosen c5) (remove screw2) (remove base)

(loosen c8) (remove screw1))

asies: ((free case) (blocked plate) (separate screw1)

(free element) (separate base) (free block)

(separate screw2))

clumps: ((case plate element block) (screw1) (base)

(screw2))

rating: 13 75 88

[many sequences removed]

sequence: ((loosen c5))

asies: ((free case plate screw1 block) (blocked element)

(blocked base) (free screw2))

clumps: ((case plate screw1 element base block screw2))

rating: 5 150 155

sequence: NIL

asies: ((separate case plate screw1 element base block

screw2))

clumps: ((case plate screw1 element base block screw2))

rating: 0 150 150

Figure 5.24: Disassembly analysis result from the PROMOD system for the coffee machine.

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16

o
b
je

c
t 

p
e
n
a
lt
y

disassembly costs

Disassembly Analysis of ’Coffee Machine’

Figure 5.25: Cost-benefit analysis of the coffee machine. Diamonds represent disassembly

sequences from Figure 5.24 having the same disassembly costs and object penalty
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5.4.1 Data Structures

An OMT conceptual scheme of the data structures of PROMOD can be found in Figure 5.26.

A short overview of the OMT notation is given in Chapter 2 in Figure 2.4.

The data structures have been designed based on the definitions in the application ontology

in Section 5.2. For efficiency reasons, the two abstract viewpoints on the product models

(system theory and graph theory) have been combined to form compact data structures. Con-

straints on the models, as expressed by the axioms in the ontologies were used in the design

of the syntax of the input files and data consistency checks performed by the input parser.

The functions and procedures that modify the data structures have been designed in such a

way that model consistency is retained throughout the analysis process.
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Figure 5.26: Conceptual schema of the data structures in PROMOD.

In the following sections, the data structures will be described as well as the way they have

been implemented using lists.
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Models

In Figure 5.27 the BNF definitions of the Lisp data structures that implement the conceptual

scheme in Figure 5.26 are given.

model : (connections loops objects groups states clump name)

objects : ((object whatever): : :)

connections : ((connection type object object break[state]): : : )

loops : ([(loop intact node: : :)]: : :)

groups : ([(group loop: : : )]: : : )

states : ([(statefseparatej disconnectedj andj or j notg)]: : : )

clump : (object: : :)

name : string
object : id

whatever : [id j string j integerj float]: : :

connection : id
type : a-loose j a-rigid j s-loose j s-rigid

break : breakable j unbreakable j disconnected

loop : id
intact : intact j broken

node : (connection force)
force : push j pull

group : id
state : id

separate : separate object object
disconnected : disconnected connection

and : and state state: : :

or : or state state: : :

not : not state

Figure 5.27: BNF definition of PROMOD's model data structures.

The disassembly model, the objects, connections, loops, groups and loosening states all have

unique names as identifiers. The parser will generate an error message when model elements

with non-unique names are defined or a definition refers to an undefined model element.

The model definition consists of a list containing the definition of the objects, connections,

loops, groups, disassembly states and the clump of the modelled product. To avoid confu-

sion between product states in the state space and disassembly states defined for conditional

loosening, the product states in state space will be referred to as situationsfrom now on and

disassembly states as states.

The breakattribute of a connection is initialized with breakable or unbreakable depend-

ing on the occurrence of the breakable keyword in the definition of the connection in the

input file. During the disassembly analysis it can be changed to disconnected when a

subassembly is removed from the product.

The attribute intact of a loop indicates whether a loop is intact or broken. It is not a real

attribute because its value can always be determined by inspecting the connections that form

the loop. In PROMOD it is used to speed up the disassembly analysis. Its initial value is

determined as soon as the model has been read in. During disassembly analysis, its value is
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updated every time a connection in the loop is loosened or disconnected. Together with break

attributes and the typeattribute of a connection, that can be changed from rigid to loose, intact
attributes are the only thing in which the models in two situations can be different.

The methods is-enforced(of connections) and is-intact (of loops) are the implementations of

the definitions of the enforcedand intact predicates in Section 5.2.2.

The optional staterelation specifies the disassembly state in which a product must be before

a connection can be loosened. The method get-valuedetermines the truth value of a state.

The method is-breakablereturns true for connections that are in a state in which they can be

loosened. This includes checking whether the connection has breakableas break attribute

and whether the optional state related to the connection is true. Furthermore, the method

takes into account the fact that when an enforced against connection is loosened, it is still

not possible to move the connected objects away. The method is-breakabletherefore only

returns true when the connection is not enforced. This will reduce the number of equivalent

disassembly sequences generated.

Subassemblies

A subassembly is a list of the identifiers of objects in a group of objects. Therefore they

are more like subgraphs then subassemblies. However, the extra constraints the ontology

of systems theory puts on subassemblies are respected due to the way the subassemblies are

determined. This is done by a procedure that is an implementation of the maximum connected

subgraph method.

subassembly : (object: : :)

The object-classes freeasyand clumpasyare subassemblies with restrictions on the internal and

external connections of the objects in it.

A freeasyis a subassembly of the type defined in Section 5.2.2: internally connected by

enforced connections and externally by loose connections that are not enforced. A freeasy

is therefore a rigid group of objects that is connected loosely to other subassemblies in the

product.

A clumpasyis somewhat different: the internal connections may be of any kind as long as they

are not disconnected. The external connections however mustbe disconnected. The objects

in a clumpasy therefore are spatially (rigidly or loosely) connected, but as a group they are

disconnected from the rest of the product.

The reason for the introduction of clumpasies is that they can be used to determine the

truth values of the separatestates. Two objects are separated iff they are part of different

clumpasies. Furthermore, clumpasies are used to determine the object penalty. If a clumpasy

contains a clump object, every non-clump object in the clumpasy contributes to the object

penalty.



5.4. IMPLEMENTATION OF PROMOD 109

Freeasies can have two states. They can be freeaccording to the definition in Section 5.2.4, so

they can be removed, or they are separate, which means that they have been removed already.

When a freeasy also happens to be a clumpasy, its state is defined as separate. In all other

cases it is blocked. The method get-statedetermines the state of a freeasy.

Situations

The product disassembly state space is represented by a list of situations. Each situation

is a list containing a model definition, a pointer to the predecessor (parent) situation and a

specification of the disassembly operation (action) that formed the situation from its parent.

situation : (model parent action)
parent : model
action : (loosen connection) j (remove subassembly)

situations : (situation: : :)

Because the models in the situation list only differ in the definition of the connections and

force loops, these definitions are placed at the head of a model definition list. This speeds up

the check whether a disassembly operation leads to a situation that is already in the situation

list. Also, because the other definitions in the model of a situation are identical to those of the

initial model, they are implemented as pointers to the definitions in the initial model, rather

than copies.

A
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C

B

A

C

C

A B

A B

C

remove B remove A

remove B

remove C

remove A

Figure 5.28: Three paths lead to the fully disassembled situation.

The implication of the data structures chosen here is that it is impossible to store the informa-

tion that a situation can be reached from two alternative parent situations. A model in which

this occurs is shown in Figure 5.28 where two objects A and B are loosely connected to a

third object C. There are three paths to reach the fully disassembled situation, but a situation

can have only one parent situation, so it is impossible to represent the whole figure in the data
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structures. Fortunately this is not a problem because when a second path to the final situation

is found, the cost of path can be calculated and only the best path can be stored. When a

better path to the final situation is found, the action and parent situation of the final situation

gets updated.

5.4.2 Functions and Procedures

This section describes the main functions and procedures in PROMOD. We will describe the

main procedure, the implementation of the disassembly algorithm based on the state space

search method, the determination of the subassemblies based on the method to determine

the maximal connected subgraphs, the determination of the freeasy states based on the on-

tological definition in Section 5.2 and the determination of the truth value of product states.

For each function and procedure a detailed pseudo code specification will be given that is

explained further in the text.

Main

The main procedure (Figure 5.29) is straightforward. Disassembly analysis is started by in-

troducing the initial situation which consists of the model that is read from file, an empty

parent situation specification and an empty disassembly operation (action). The determina-

tion of the best disassembly sequence is delayed until all situations have been considered.

The reason for this will become clear when the disassembly procedures are described.

procedure main()

initialize cost/penalty constants

open input and output files

m = fread_model(fin) (read model)

write model to .out file

new_situation(m, NIL, NIL) (start disassembly analysis)

dump_situations(...) (determine best sequence and write all

results to output files)

dump_gnuplot(...) (write gnuplot file)

close files

remove data structures from memory

end

Figure 5.29: The main procedure of PROMOD.

Disassembly Algorithm

The procedures that perform the disassembly analysis have been adapted from the exhaustive,

depth first state space search algorithm to find an optimal path in Figure 5.16. The method

has been implemented with two procedures which build the search state space dynamically

by generation of successor situations which are added to the situation list.
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It is possible that a situation can be reached by application of alternative disassembly opera-

tion sequences, of which only one can be stored in the data structures. Therefore, it must be

checked whether a generated situation already exists in the situation list.

The procedure new situation in Figure 5.30 does this. It checks whether the new situation

has been analyzed before (get situation). If this is the case, the disassembly costs of

the two alternatives (paths through state space) are compared. When the new situation was

reached with lower costs, it replaces the old situation. Note that the disassembly cost of

situations which are successors of the old situation are also lowered by this replacement. For

this reason, the final cost-benefit analysis can only be performed when all situations have

been generated.

procedure new_situation(model, parent, action)

s = get_situation(model) (check whether situation already analyzed)

if s found

if disassembly cost of new situation < disassembly cost of s

replace the action and the parent situation of s by

action and parent

endif

else

ns = list(model, parent, action) (create new situation)

add_situation(ns) (add ns to situation)

disassemble_situation(ns)

endif

end

Figure 5.30: Procedure to handle a new situation.

New situations that are not already in the situation list are added to it and disassembled further

by the procedure disassemble situation. This procedure can be found in figure 5.31. It

generates the successor situations and calls new situation for each of them.

procedure disassemble_situation(sit)

m = model of sit

clumpasies = get_assemblies(any_connection, m) (determine clumpasies)

freeasies = get_assemblies(rigid_or_enforced, m) (determine freeasies)

freeasies = add_asy_state(freeasies, m) (add asy state to freeasies)

sts = eval_states(clumpasies, m) (determine disassembly states)

foreach connection c

if is-breakable(c)

action = loosen c

m' = loosen_connection(c, m) (m' = copy of m with c loosened)

new_situation(m', m, action)

endif

end

foreach freeasy a

if state of a is free

action = remove a

m' = remove_asy(a, m) (m' = copy of m with a removed)

new_situation(m', m, action)

endif

end

end

Figure 5.31: Procedure to disassemble a situation.
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The functionget assemblies is an implementation of the method to determine the maximal

connected subgraphs. It will be described in detail below. One of its arguments is a function

that must return true for connection that must be regarded as internal connections of the

subgraph. With the function any connection, which returns true for every connection that

is not disconnected, get assemblies returns a list of all clumpasies in the model. With the

function rigid or enforced, which returns true for rigid connections and enforced loose

connections, a list of all freeasies is returned.

The function add asy status prepends all subassemblies in freeasies with their state,

according to the definition in Figure 5.14. This function will be described below.

The functions loosen connection(c,m) and remove asy(a,m) both make a copy of the

model m and modify the connections in it. The former will change the connection type of the

connection to loose and the latter will change the break attribute of all external connections

of subassembly a to disconnected, as has been formalized with the relation state-op in

the ontology for disassembly. Both functions will update the intact attributes of the loops in

the model.

Determination of Subassemblies

The procedure that determines the subassemblies in a model can be found in Figure 5.32.

Clearly, it is an implementation of the method to determine the maximal connected subgraphs

in Figure 5.12. One difference is that the graph theoretical expression in the algorithm have

been implemented by functions that inspect PROMOD' s data structures. This caters for the

knowledge-representation integration. A second change is that the procedure takes a function

as argument that defines which connections have to be regarded as internal connections of

the subassemblies. This way, the algorithm can be used to determine freeasies (with property

function any connection) or subasies (with rigid or enforced). Furthermore, the iter-

ative constructs while there is in the method in Figure 5.32 have been worked out using

a nested while and foreach loop.

Determination of Freeasy States

In order to find out which freeasies can be removed, it must be checked which of them sat-

isfy the free predicate defined in Figure 5.14. Such an expression with logical operators

and universal and existential quantors can be implemented as a search over the quantified

variables. This is what is done in the algorithm in Figure 5.33. It is used by the function

add asy state to prepend the states to the freeasies in the freeasy list. A small extension

has made it possible to distinguish between subassemblies that are free to be removed, sub-

assemblies that cannot be removed because they are blocked by others, and subassemblies

that already have been removed (are separated from the rest of the product).

First it is checked whether there are external connections (that have not been disconnected) at

all. If not, the subassembly is separatedfrom the rest of the product. Otherwise, it is assumed
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algorithm get_subassemblies(property p)

subassemblies = {}

while exists object o that does not belong to a subassembly do

newassembly = {o}

changed = true

while changed do

changed = false

foreach object p that does not belong to a subassembly do

if p is connected to an object in newassembly

by connection c and c has property p

add p to newassembly

changed = true

endif

end

end

add newassembly to subassemblies

end

end

function any_connection(c)

return true iff c is not disconnected

end

function rigid_or_enforced(c)

return true iff connection c is rigid or c is enforced

and not disconnected

end

Figure 5.32: Algorithm to determine the subassemblies of a model.

that the subassembly is blocked. As soon a an external connection can be found for which all

loops going through it lead to disconnected connections or to connections on the same side

of the subassembly, the assumption is wrong and the subassembly is free. To determine this,

first it is assumed that there is no loop that leads to a blocking external object. All loops are

considered and when one loop is found that lead to an object that does block, the assumption

is withdrawn. When an external connection is found that has no loops leading to blocking

objects, the subassembly status is changed to free.

In the prototype, the force loop groups described in Section 5.2 have been implemented. With

that extension, groups have to play the role of the loops in the algorithm in Figure 5.33. A

new foreach-loop has to be inserted to check whether a group contains loops such that the

subassembly is blocked. This is done by first assuming that all loops of a group lead to

blocking objects. As soon as one loop is found for which this is not the case, the assumption

is withdrawn. Also, some speed up has been achieved by exiting from a loop as soon as an

assumption is withdrawn.

Determination of Disassembly State Values

The function eval states(clumpasies,m) in Figure 5.34 determines the truth values of

the states of model m. First, it computes the values of the separateand disconnectedstates.

Then, it tries to derive other state values. This will be repeated until no new state value can

be determined. When there are some states left for which the value could not be determined

an error message will be generated.
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algorithm to determine the state of subassembly s

ecs = all external connections of s

if ecs is empty or all connections in ecs are disconnected

state = separate

else

state = blocked (assume all connections are blocked)

foreach connection c1 in ecs that is not disconnected

no-loop-blocks = true (assume all loops are free)

foreach loop l that goes through c1

foreach connection c2 in ecs

if c1 <> c2 and c2 in l and c2 is not disconnected

((c1 is against push and c2 is against push) or

(c1 is against pull and c2 is against pull))

no-loop-blocks = false (a loop is blocking)

endif

end

end

if no-loop-blocks = true (all loops are free)

state = free (a connection is free)

endif

end

endif

end

Figure 5.33: An algorithm to determine the state of a subassembly.

function eval_states(clumpasies, m)

sts = ()

foreach disassembly state definition s in m

if s is a disconnected or separate state

determine the value of s and add

(s true) or (s false) to sts

end

changed = true

while changed = true

changed = false

foreach state definition s in m

if the value of s has not been determined yet and

all argument states of s are known

determine the value of s and add

(s true) or (s false) to sts

changed = true

endif

end

end

if the value of a state could not be determined

generate error message

endif

return sts

end

Figure 5.34: Function to determine the truth value of product states.
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5.5 Discussion and Related Research

This section discusses three important aspects of the modelling technique and the implemen-

tation of the prototype described in this chapter. In Section 5.5.1 we will discuss which exten-

sions of the modelling technique and prototype are required before it can be used to perform

realistic disassembly analyses. Section 5.5.2 discusses how our viewpoint on method ontolo-

gies relates to the literature on this subject. Finally, in Section 5.5.3 the way the geometric

abstractions in PROMOD models can be defined in terms of full geometry is discussed.

5.5.1 Disassembly Analysis

A more realistic cost-benefit analysis requires that physicaldisassembly operations are con-

sidered. In the present prototype, only the model changes that are caused by physical dis-

assembly operations are considered. The ecological cost of a physical disassembly opera-

tion depends on the type of the physical connection (weld, screw, glue, etc.), the size of the

connection, its orientation, the materials of the connected objects, the size and mass of the

objects, the previous operations performed and so on. This has to be studied further. Good

starting points might be (Ishii 1996; Ishii, Lee, and Eubanks 1995; Ishii, Eubanks, and Marks

1993; Sturges Jr and Kilani 1992). Disassembly analysis based on physical disassembly oper-

ations requires extension of the product models and changes in the procedure for disassembly

analysis in Figure 5.31.

To be able to deal not only with recycling, but also with reuse, the concept of components

must be added. A component is a group of objects that can perform a certain function, like

the components defined in the OLMECO library. For recycling of clumpswe are only interested

in the materials of the objects in the clump. For reuse of components, not only the objects

in it are of importance, but also the connections that hold these objects together. Unlike

clumps, components must be removed from the product intact, without breaking their internal

connections.

Instead of the object penalty that is used in the prototype to determine the (reciprocal of the)

benefits of disassembly, a true benefit analysis needs to be performed. This can be done by

assessing the ecological benefits for recycling or reuse with an ecological life cycle analysis

(LCA). Consequently, a realistic cost-benefit analysis can only be achieved by integration of

the prototype in LCA software.

The need to incorporate LCA analyses in the disassembly analysis process prompts us to have

a better look at the combinatoric complexity of the prototype. It is very likely that a search

strategy more intelligent compared to the brute force method used now has to be developed.

This method will have to estimate the effect of disassembly operations for the removal of the

clump, will try the most promising operations first, postpone the less promising and could

even disregard the least promising. Here, a balance has to be found between always finding

the best solution taking much time and finding a good solution in limited time.
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Another useful extension of the prototype would be the development of a library of commonly

used partial product structures, such as complex connections based on connector-objects

(bolts an nuts) and case structures (for instance for consumer electronics). A library like

OLMECO seems to be adequate for this purpose. Because product models can become large,

a kind of blackboxing could be used to create hierarchical product models where detailed

product structures are hidden from the top-level. This resembles OLMECO' s decomposition

structures.

5.5.2 Method Ontologies

Our view on method ontologies closely follows the literature on problem solving methods and

method ontologies (Angele, Decker, Perkuhn, and Struder 1996; Fensel, Schönegge, Groen-

boom, and Wielinga 1996; Gennari, Tu, Rothenfluh, and Musen 1994). There, method on-

tologies are described that provide the terminology for expressing the competence and knowl-

edge requirements of problem solving methods. In our opinion, the part of these method

ontologies that specifies the terminology for a class of methods has to be separated from the

parts that concern the competence and knowledge requirements for individual methods. The

principles of ontology construction can be used for this modularization. With this modulariza-

tion, the boundary between abstract ontologies, domain, method and application ontologies

becomes vague because the the context in which an abstract ontology is used determines its

characterization.

The terminological part of a method ontology is nothing more than an abstract ontology (for

instance the state space ontology) which is projected onto ontologies specifying the compe-

tence and knowledge requirements of the (state space search) methods. Together they form

a method ontology. But the same abstract ontology can be specialized to form a domain on-

tology. Then it becomes part of this domain ontology. An application ontology consists of

a domain ontology, which is projected onto, or constructed using an abstract ontology that

gives the terminological specification for the methods used for the application. Figure 5.35

gives an overview of these scenarios.
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Figure 5.35: The role of abstract ontologies in domain, method and application ontologies.
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5.5.3 Geometrical Ontologies

PROMOD' s connection types and force loops are abstractions of physical and geometrical

properties of connections and product structures. Although they form a sufficient basis for

disassembly analysis, it would be interesting to study how they are related to ontologies of

geometric and spatial reasoning. This would give us more information about the competence

of the modelling technique and provides the knowledge of how to generate PROMOD models

from CAD drawings in cases where these are available.

At least two approaches to formalize geometry can be found in the literature. One describes

geometry in a mathematical way: mathematical equations define shapes, surfaces, lines and

points in space. A system that uses a polygon representation of products to reason about me-

chanical assembly is described in (Wilson and Latombe 1994). The second approach extends

Clarke' s mereo-topology with relations to express congruency of objects (being aligned),

being enclosed by an object, overlapping the convex hull of an object and so on (Borgo,

Guarino, and Masolo 1996a; Randell and Cohn 1992). Because these approaches avoid the

introduction of points in space, the theories are called `pointless' theories. A good example

of the second approach to geometrical reasoning can be found in (Randell, Cohn, and Cui

1992).

For PROMOD' s geometric abstractions, rigidness and congruency are the key aspects. Con-

gruency is one of the basic relations in pointless approaches, so these theories are good can-

didates to specify PROMOD' s abstractions. It is also possible to define congruence in a mathe-

matical way. For congruent objects it is possible to find a straight line that crosses all objects.

The rigidness of connections can also be expressed in both approaches. In pointless theories

they coincide with so called strong connections. In mathematical approaches, connections

can be formalized with mathematical relations about the position of shapes, surfaces, lines

and points. The distinction between rigid and loose connections gives rise to two interpreta-

tions of these relations. For rigid connections the relation has to be interpreted as a constraint

that musthold, and for loose connections it is just an observation about the position of the

connected objects.

Both approaches seem to be suited for formalizing the physical and geometrical abstractions

used in PROMOD. Pointless approaches are well suited to gain insight on the actual meaning

of the abstractions whereas mathematical approaches are closer to solid model specifications

and therefore better for linking PROMOD models to CAD drawings.

5.6 Conclusions about PROMOD and Reusing PHYSSYS

Product disassembly is not simply a matter of carrying out the assembly process in reverse or-

der (see Section 5.1). Therefore, for disassembly analysis, specialized methods are required.

In this chapter a new computational theory for ecological product disassembly analysis has

been presented. Its most important feature is that it introduces unconventional geometrical

abstractions in a topological context. Thus, advantages of several existing techniques found

in the literature are combined.
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We have demonstrated how this theory can be formalized in an ontology using the design

principles described in Chapter 3. We were able to reuse the EngMath ontology as well as

the ontologies of mereology, topology and systems theory from PHYSSYS. Furthermore, two

new reusable abstract ontologies were introduced: that of graph theory and the state space

ontology based on graph theory.

Three views on product disassembly were distinguished: (i) a static view on product models

for disassembly, (ii) the way these models can be modified by disassembly operations and

form a disassembly state space and (iii) the ecological view on product disassembly. The

ecological cost of the disassembly has to be compared to the ecological benefits of recycling

or reuse of the parts removed from the product. At the moment, this cost-benefit relation

demonstrates the principles of ontology projection nicely, but is too limited for practical

purposes (see also Section 5.5).

The ontology for product models for disassembly has been constructed from ontologies of

systems theory and graph theory, enriched with physico-chemical connection properties and

force loops. The system theoretical point of view is convenient for expressing the model–

subassemblies–connected-objects hierarchy in the product models, which must comply to

the mereo-topological axioms. Graph theory on the other hand is better suited for express-

ing the force loop structures at the connected objects level and for expressing the depen-

dency between subassemblies and properties of the internal and external connections of these

subassemblies. Graph theory and systems theory are different abstract views to look upon

different parts of the knowledge captured in product models for disassembly.

We have also seen that in the literature, both in AI and general computer science, general

methods can be found that compute instances and properties of concepts defined in abstract

ontologies. The idea is that these methods specify how to perform certain tasks in a domain
independentway. Examples used in PROMOD are the computation of the maximal connected

subgraphs and the exhaustive state space search, but many others can be found. We have not

talked in detail about the exact specification of the competence and knowledge requirements

of these methods. More on this subject can be found in (Fensel, Schönegge, Groenboom,

and Wielinga 1996). The methods that were mentioned in this chapter were monolithic. In a

more complex view on methods, they can be decomposed into submethods (Puerta, Egar, Tu,

and Musen 1992; Fensel, Schönegge, Groenboom, and Wielinga 1996).

The most important question regarding the the use and reuse of general problem solving

methods is how to find a proper method for a domain specifictask. In the case of PROMOD

we have seen that some of them are found in a natural way because the abstract ontologies

for which the methods are defined appear also in the formalization of the domain knowledge.

This has been the case with the state space search methods. For the method used to find

the subassemblies something different has been the case. In order to find the method that

solves this task we had to discover that graph theory is a valid way to look upon a part of

the knowledge captured in the product models. In other words, the problem in the domain of

product disassembly had to be transformed into an equivalent problem in the abstract domain

of graph theory. Finding a method for a domain problem therefore requires four steps:
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1. Construct an initial domain ontology.

2. See whether the domain knowledge can be projected onto an abstract ontology which

has general problem solving methods defined for it.

3. Translate the domain independent task performed by the methods to domain concepts

and see whether this results in the domain problem to be solved.

4. Select a method with adequate competence for which the knowledge requirements can

be fulfilled.

Once the application ontology has been constructed, it can be used as an information-system

specification. First, data structures have to be designed that can store the knowledge de-

fined in the application ontology. Usually, this means that abstract viewpoints on the domain

knowledge will be combined in one representation. Although this knowledge structure is then

no longer visible, it can be used to describe the implementation in the design documentation.

The selected methods in the application ontology are a great help for the implementation of

the functions and procedures of the application. Because the abstract viewpoints for which

the methods are defined are combined into one knowledge representation, the methods have

to be adapted to make inferences on this new representation. Another possibility is to write

functions that translate information from the data structures (e.g. in terms of lists) to the

abstract representation (e.g. vertices and edges). This way, less changes to the methods are

required.

During the design of the prototype, we have seen that the axioms that define what valid

models look like provide information for the design of the input parser, user interface, the

functions and the procedures. The parser and the user interface of the application are designed

in such a way that they only accept and store valid models. The design of the procedures and

functions that manipulate the data ensure that this initial consistency is preserved.
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Chapter 6

Conclusions

In this chapter we present the conclusions of our research. First we will draw the conclu-
sions about the usability and reusability of ontologies for largeapplications. In the next
parts we will present the advances of our work for ontological engineering, compare it to
the object patterns approach and describe the role ontologies may play in the future.

In this research we have investigated the usability and reusability of ontologies for a large

and complex domain. In Chapter 3 we showed that a complex ontology for the modelling

of physical systems called PHYSSYS can be constructed out of smaller, reusable ontologies.

In Chapter 4 we demonstrated that PHYSSYS can be usedas a specification of a library of

model fragments that supports the construction of simulation models in an industrial setting.

A modelling and simulation experiment of a large heating system proved the usability and

validity of PHYSSYS. In Chapter 5, parts of PHYSSYS were reusedin the construction of

an ontology for an application in a different engineering domain, that of ecological product

disassembly analysis.

6.1 Advances of the Research for Ontological Engineering

In this thesis we have shown that ontologies can be a useful instrument for knowledge sharing

and reuse. We have investigated the nature, construction and practical role of ontologies as

mechanisms for knowledge sharing and reuse for some real-life industrial applications. For

each of these three aspects we will summarize our main results and insights below.
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6.1.1 Modularization of Ontologies

Concerning the nature of ontologies, we have discussed the development of an ontology col-

lection called PHYSSYS (Chapter 3) that covers a wide, multidisciplinary range of physical

systems and their engineering. This collection contains different types similar to the dis-

tinctions proposed in (van Heijst, Schreiber, and Wielinga 1997): highly generic ontologies

(mereology, topology, systems theory), base ontologies valid for a whole field (e.g. technical

components, physical processes, representing natural categories or viewpoints within a broad

field) and domain ontologies (specializations of base ontologies to a specific domain, e.g.

thermodynamics). We have indicated how we can extend this to method ontologies (Chap-

ter 5) and how we can exploit the whole collection as the basis for application ontologies

(Chapter 4 and 5). Employing the distinctions between the mentioned types of ontologies is

a natural and operational way of organizing a library of ontologies in a modular fashion.

6.1.2 Ontology Construction

Concerning the construction of ontologies (Chapter 3 and 5) our main conclusions are:

1. Use and reuse of `super'theories. We have shown in detail that there are highly general `su-

per' theories which can be employed to gradually develop large domain ontologies in a

structured fashion. In our case, we have used and reused generic ontologies concerning

mereology, topology and general systems theory, but it is not difficult to imagine other

useful supertheories. This approach enhances both the modularity and the reusability

of ontologies.

2. Distinguishing natural `viewpoints' or base categories. In knowledge acquisition one finds

that it is often possible to distinguish broad natural `viewpoints' or base categories

within a field. These broad conceptual distinctions can then be exploited to develop

separate base ontologies which are valid and reusable across many subdomains and

tasks. In our application, these distinctions refer to groups of properties that are seen

as naturally belonging together. For example, we can view an engineering system as a

device configured out of known `hardware' components, or as a collection of physical

processes determining its dynamic behaviour, as a thing possessing a certain three-

dimensional shape, or as being composed out of different materials. Distinguishing

and separating such basic viewpoints appears to be an important structuring principle

in ontology building: giving rise to strong internal coherence and weak coupling.

3. Ontology projections. We have introduced `ontology projections' as a flexible mecha-

nism to link and configure ontologies into larger ones. There are different types of

ontology projections. First, we have a technique called include-and-extend, whereby

several theories are included and extended with axioms at the same level of abstraction

(example: the specification of topology and general systems theory). A second tech-

nique is include-and-specialize, whereby several ontological theories are included and

subsequently are specialized to a domain by instantiation, term and concept mappings
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and additional specific axioms (example: the process ontology). By taking different

abstract viewpoints on a domain (systems theory and graph theory viewpoints on dis-

assembly models), not only convenient ways to specify domain knowledge were found,

it also led to the method to find maximal connected subgraphs which could be used in

the application ontology of PROMOD. Finally, a third, new type is what we have called

`include-and-map' . Here, the connection between two ontologies itself assumes the

form of a full blown ontological theory. An example here is the connection between

the PHYSSYS process ontology and the EngMath ontology. This example is moreover

interesting because it exemplifies the reuse of an outside ontology developed by another

research group in a different context.

4. Piecemeal ontological commitment.Together, the above mechanisms provide a pragmatic

approach for handling piecemeal ontological commitments in ontology development.

In applications it is not so much strictly minimal ontological commitment that we want,

but achieving the right commitment. This, however, needs to be built up starting from

the minimal side, and step-by-step extending this by adding small additional commit-

ments.

We would like to underline the important role of abstract ontologies in the construction pro-

cess. Not only are they useful for the specification of domain knowledge, they are also the

`glue' between domain and method ontologies. It has been encouraging to see that useful

methods could be found in general computer science literature.

6.1.3 Practical Role of Ontologies

Concerning the practical role of ontologies, we believe that a key aspect is their capability to

explicate in detail tacit background knowledge required for real-life tasks. Acquiring and ana-

lyzing this background knowledge is hard, because it is often seen as `self-evident' by domain

experts and practitioners and much of it is implicitly shared by the associated community —

this is precisely why it is tacit knowledge. Bringing out this tacit knowledge is important for

two reasons: (i) to find out what is really shared by the community in order to enhance reuse

within this community; (ii) to develop more knowledgeable information systems that provide

intelligent support for end users that are less experienced, or are from a related but different

community, thus facilitating knowledge transfer betweencommunities. In this thesis, we have

given extensive and real-life illustrations of this for the domain of engineering modelling,

simulation and systems design (Chapter 4), and design for the environment (Chapter 5). We

have seen that from the PHYSSYS ontology the database schema of OLMECO could be deter-

mined in a quite natural way, with minor changes and extensions. In Chapter 5 we have seen

that the ontological definitions served as a specification for the data structures, input parser

and other procedures of the KBS prototype. The most important procedures could be imple-

mented using to off the shelf methods. A final note of interest is that our applications has

been implemented in various kinds of conventional information systems. Thus, the scope and

usefulness of knowledge engineering is much wider than knowledge-based systems alone.
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6.2 Ontologies and Object Patterns

Both ontologies and object analysis/design patterns are instruments for knowledge sharing

and reuse. Ontologies have a number of properties that make them, in our opinion, preferable

to object patterns:

� Ontologies cater for a much more detailed specification of the properties of objects and

relations between them. Conceptual schemata can be used to give overviews of the

contents of an ontology that match the clarity of object patterns.

� Unlike patterns, ontologies can exploit the internal structure of reusable knowledge by

distinguishing multiple levels of abstraction. This makes it possible that knowledge of

a higher degree of reusability can be specified.

� Ontologies can be constructed using ontology projections. For patterns, no such con-

struction operators have been defined. Ontology projections are important because they

allow complex bodies of reusable knowledge to be constructed out of smaller modules.

� Ontologies are not limited to object oriented knowledge representations and methods.

This shows that ontologies are a step forward for knowledge sharing and reuse. It would be

fruitful to combine the expressiveness and high reusability of ontologies with the suitability

for application implementation of object patterns.

6.3 The Role of Ontologies in the Future

We believe that ontologies can play an important role in future developments of information

technology. They can play a useful role when knowledge intensive applications are being

developed or have to be integrated. Because ontologies are specifications at the knowledge

level, their applicability is not limited to information systems and knowledge bases alone,

but includes knowledge intensive and possibly distributed databases, multi-agent systems,

knowledge exchange over the Internet, multimedia systems etcetera. In the following list of

future roles of ontologies we are referring to applications in this broader sense.

Application Integration: Because domain ontologies make explicit the similarities and differ-

ences between the knowledge used by applications, it will be easier to design interfaces

and translators that allow knowledge exchange between different applications.

Better Applications: A library of well thought of and validated ontologies will not only speed

up application development, but will also improve the quality of the applications. Fur-

thermore, the reuse of ontologies will lead to uniformity across applications in a do-

main and ensure that the knowledge of applications in related domains share a large

common base. In both situations, application integration will become easier.
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Open Applications: Ontology libraries will show application developers which applications in

other domains can benefit from an application' s knowledge. They can improve the us-

ability of their application by enabling it to cooperate with these other applications. For

instance, only minor additions to CAD drawing representations are required to include

product data for life cycle analysis, disassembly analysis, computer aided manufactur-

ing etc.

Innovative Applications: A library with abstract and reusable ontologies will be an excellent

basis for the development of ontologies for new domains. This will enable the devel-

opment of innovative applications. New applications can be expected in fields that can

benefit from a specification of the domain knowledge, such as knowledge extraction

from natural language, data mining, visualisation of numerical data and search engines

for on-line libraries and the Internet.

Application Generation: The development of method ontologies and better ontology specifi-

cation systems may result in tools that can automatically generate (the framework of)

applications from application ontologies.

Before these developments can take place, ontology specification systems need to be im-

proved in the following ways:

Support for Ontology Construction: Ontology specification systems have to be improved to

better support ontology construction. The different types of ontologies and the types

of ontology projections used for their construction have to be made explicit.

Better Libraries: A better way to access ontologies in an ontology library has to be developed.

The indexing mechanism to accomplish this has to take into account the knowledge-

content and applications of the ontologies. Furthermore, it must give an indication of

the similarities and differences between the ontologies in the library.

More Reusable Ontologies: More ontologies have to be incorporated in ontology libraries be-

cause they are the building blocks for ontologies for new domains.

Support for Application Generation: Mechanisms for (semi-)automatic generation of efficient

applications from application ontologies have to be developed.
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Appendix A

The PHYSSYS Library of

Ontologies

This appendix gives the Ontolingua 4.0 specification of thePHYSSYS library of ontolo-
gies for physical systems as described in Chapter 3.

The organization of this appendix is as follows.

A.1: Ontolingua implementation of Classical Extensional Mereology.

A.2: Topological extension to Mereology.

A.3: System theoretical concepts and relations on top of topology.

A.4: The technical component viewpoint of PHYSSYS.

A.5: The physical process viewpoint of PHYSSYS

A.6: The top-level ontology of PHYSSYS. This ontology includes the component, pro-

cess and mathematical viewpoints and defines the mapping relations that combines the

three viewpoint.

For a description of the EngMath ontology for engineering mathematics we refer to (Gruber

1994).
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A.1 Ontology of Mereology

; ----------------------------------------------------- ;

; Classical Extensional Mereology ;

; ;

; System SC of Classical Mereology: ;

; no sets; proper-part-of primitive; equal assumed ;

; Part of the PhysSys ontology ;

; ;

; Author: Pim Borst ;

; Date: 24-07-1997 ;

; ----------------------------------------------------- ;

(in-package :ol-user)

(define-theory classical-extensional-mereology

(frame-ontology kif-relations))

(in-theory 'classical-extensional-mereology)

(define-relation equal (?x ?y)

:axiom-def

(binary-relation equal))

(define-class m-individual (?i)

:iff-def

(equal ?i ?i))

(define-class m-individual-class (?C)

:iff-def

(and (class ?C)

(=> (instance-of ?i ?C) (m-individual ?i))))

(define-relation proper-part-of (?x ?y)

"SA1: proper-part-of is asymmetric.

SA2: proper-part-of is transitive.

SA3: a whole has at least two disjoint proper-parts.

SA24: general sum principle."

:when

(and (m-individual ?x) (m-individual ?y))

:axiom-def

((=> (proper-part-of ?x ?z) (not (proper-part-of ?z ?x))) ; SA1

(=> (and (proper-part-of ?x ?y) (proper-part-of ?y ?z)) ; SA2

(proper-part-of ?x ?z))

(=> (proper-part-of ?x ?y) ; SA3

(exists ?z (and (proper-part-of ?z ?y)

(disjoint ?z ?x))))

(=> (and (m-individual ?x) (instance-of ?x ?C)) ; SA24

(exists ?x

(forall ?y (<=> (overlap ?y ?x)

(exists ?z (and (instance-of ?z ?C)

(overlap ?y ?z)))))))))

; ---- Definitions ----

(define-relation part-of (?x ?y)

"SD1: ?x is a proper-part-of ?y or equal to ?y."

:when

(and (m-individual ?x) (m-individual ?y))

:iff-def

(or (proper-part-of ?x ?y)

(equal ?x ?y)))

(define-relation overlap (?x ?y)

"SD2: overlapping m-individuals share a part."
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:when

(and (m-individual ?x) (m-individual ?y))

:iff-def

(exists ?z (and (part-of ?z ?x)

(part-of ?z ?y))))

(define-relation disjoint (?x ?y)

"SD3: disjoint m-individuals do not have a common part."

:when

(and (m-individual ?x) (m-individual ?y))

:iff-def

(not (overlap ?x ?y)))

(define-function general-sum (?C) :-> ?x

"SD9: the general sum of the m-individuals in class ?C is that m-individual

which something overlaps iff it overlaps at least one m-individual

of ?C"

:when

(m-individual-class ?C)

:iff-def

(forall ?y (<=> (overlap ?x ?y)

(exists ?z (and (instance-of ?z ?C)

(overlap ?z ?y))))))

(define-function binary-product (?x ?y) :-> ?z

"SD4: the binary product of ?x and ?y is that m-individual which is part

of both and which is such that any common part of both ?x and ?y

is part of it."

:when

(and (m-individual ?x) (m-individual ?y))

:iff-def

(= ?z (general-sum (kappa (?v) (and (part-of ?v ?x)

(part-of ?v ?y))))))

(define-function binary-sum (?x ?y) :-> ?z

"SD7: the binary sum of ?x and ?y is that m-individual which something

overlaps iff it overlaps at least one of ?x and ?y."

:when

(and (m-individual ?x) (m-individual ?y))

:iff-def

(= ?z (general-sum (kappa (?v) (or (part-of ?v ?x)

(part-of ?v ?y))))))

(define-function general-product (?C) :-> ?x

"SD10: the general product of the m-individuals in class ?C is that

m-individual which is part of all m-individuals in ?C and which is

such that any common part of all m-individuals in ?C is part of it."

:when

(m-individual-class ?C)

:iff-def

(= ?x (general-sum (kappa (?v) (forall ?y (=> (instance-of ?y ?C)

(part-of ?v ?y)))))))

(define-function difference (?x ?y) :-> ?z

"SD11: the difference of ?x and ?y is the largest m-individual contained

in ?x which has no part in common with ?y."

:when

(and (m-individual ?x) (m-individual ?y))

:iff-def

(= ?x (general-sum (kappa (?v) (and (part-of ?v ?x)

(disjoint ?v ?y))))))

(define-class m-universe (?U)

"SD12: the m-universe is a unique m-individual of which

all m-individuals are part."

:when

(m-individual ?U)
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:iff-def

(= ?U (general-sum (kappa (?v) (m-individual ?v)))))

(define-function complement (?x) :-> ?c

"SD13: the complement of ?x is the unique m-individual comprising the rest

of the m-universe."

:when

(m-individual ?x)

:iff-def

(exists ?U (and (m-universe ?U)

(= ?c (difference ?U ?x)))))

; additional definitions

(define-relation direct-part-of (?x ?y)

:when

(and (m-individual ?x) (m-individual ?y))

:iff-def

(and (proper-part-of ?x ?y)

(not (exists ?z (and (proper-part-of ?z ?y)

(proper-part-of ?x ?z))))))

(define-relation proper-overlap (?x ?y)

"Two m-individuals properly overlap eachother when they overlap and neither

is part of the other."

:when

(and (m-individual ?x) (m-individual ?y))

:iff-def

(and (overlap ?x ?y)

(not (part-of ?x ?y))

(not (part-of ?y ?x))))

(define-relation upper-bound (?C ?z)

"SD5: ?z is an upper bound for m-individuals in ?C if

they are all part of ?z."

:when

(and (m-individual-class ?C) (m-individual ?z))

:iff-def

(and (exists ?x (instance-of ?x ?C))

(forall ?x (=> (instance-of ?x ?C)

(part-of ?x ?z)))))

(define-function general-least-upper-bound (?C) :-> ?x

:when

(m-individual-class ?C)

:iff-def

(forall ?y (<=> (part-of ?x ?y)

(forall ?z (=> (instance-of ?z ?C)

(part-of ?z ?y))))))

(define-function least-upper-bound (?x ?y) :-> ?z

"SD6: the least upper bound of ?x and ?y is that m-individual which is part

is part of something iff both ?x and ?y are also."

:when

(and (m-individual ?x) (m-individual ?y))

:iff-def

(forall ?w (<=> (and (part-of ?x ?w) (part-of ?y ?w))

(part-of ?z ?w))))

(define-relation atom (?x)

"SD14: an atom is an m-individual with no proper parts."

:when

(m-individual ?x)

:iff-def

(not (exists ?z (proper-part-of ?z ?x))))

(define-class simple-m-individual (?i)
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:iff-def

(and (m-individual ?i)

(atom ?i)))

A.2 Ontology of Topology

; ----------------------------------------------------- ;

; Topology ;

; ;

; Topological relations on top of mereology ;

; Part of the PhysSys ontology ;

; ;

; Author: Pim Borst ;

; Date: 24-07-1997 ;

; ----------------------------------------------------- ;

(in-package :ol-user)

(onto-load "mereology.lisp")

(define-theory topology (frame-ontology kif-relations

classical-extensional-mereology))

(in-theory 'topology)

(define-class t-connection (?c)

:iff-def

(and

(not (m-individual ?c))

(exists (?x ?y) (connects ?c ?x ?y))))

(define-relation connected (?x ?y)

:iff-def

(exists ?c (connects ?c ?x ?y)))

(define-relation unconnected (?x ?y)

:iff-def

(not (connected ?x ?y)))

(define-relation connects (?c ?x ?y)

:def

(and (t-connection ?c)

(m-individual ?x)

(m-individual ?y))

:axiom-def

((=> (connects ?c ?x ?y) ; Symmetry

(connects ?c ?y ?x))

(=> (connects ?c ?x ?y) ; Parts and wholes not connected

(not (or (part-of ?x ?y) ; Includes irreflexivity

(part-of ?y ?x))))

(=> (and (connects ?c ?x ?y) ; 'transivity'

(part-of ?x ?z)

(disjoint ?z ?y))

(connects ?c ?z ?y))

(=> (and (connects ?c ?x ?y) ; connection to whole also to parts

(not (simple-m-individual ?y)))

(exists ?z (and (part-of ?z ?y)

(connects ?c ?x ?z))))

(forall ?y1

(=> (and (connects ?c ?x1 ?y1) ; connection is _one_ line

(connects ?c ?x2 ?y2)) ; and it doesn't fork

(not (and (disjoint ?x1 ?x2)

(disjoint ?x1 ?y2)))))))
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A.3 Ontology of Systems Theory

; ----------------------------------------------------- ;

; System Theory ;

; ;

; System theoretic relations on top of topology ;

; Part of the PhysSys ontology ;

; ;

; Author: Pim Borst ;

; Date: 24-07-1997 ;

; ----------------------------------------------------- ;

(in-package :ol-user)

(onto-load "topology.lisp")

(define-theory system-theory (frame-ontology kif-relations

topology classical-extensional-mereology))

(in-theory 'system-theory)

(define-class system (?s)

:def

(m-individual ?s))

(define-relation in-system (?x ?s)

:iff-def

(and (proper-part-of ?x ?s)

(system ?s)

(simple-m-individual ?x)))

(define-relation in-boundary (?c ?s)

:iff-def

(and (t-connection ?c)

(system ?s)

(exists (?x ?y)

(and (connects ?c ?x ?y)

(part-of ?x ?s)

(not (part-of ?y ?s))))))

(define-relation subsystem-of (?sub ?sup)

:iff-def

(and (system ?sub)

(system ?sup)

(proper-part-of ?sub ?sup)))

(define-class open-system (?s)

:iff-def

(and (system ?s)

(exists (?c) (in-boundary ?c ?s))))

(define-class closed-system (?s)

:iff-def

(and (system ?s)

(not (open-system ?s))))
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A.4 Component Ontology

; ----------------------------------------------------- ;

; Component View ;

; ;

; Technical viewpoint on a physical system ;

; Viewpoint of the PhysSys ontology ;

; ;

; Author: Pim Borst ;

; Date: 24-07-1997 ;

; ----------------------------------------------------- ;

(in-package :ol-user)

(onto-load "systheory.lisp")

(define-theory

component-view

(frame-ontology kif-relations

classical-extensional-mereology topology system-theory))

(in-theory 'component-view)

(define-class component (?c)

"components are individuals, components are atomic or decomposed in more

than one subcomponent, components do not overlap (except for part-wholes)"

:def

(and

(value-type ?c comp.term terminal)

(>= (value-cardinality ?c comp.term) 1)

(value-type ?c comp.subcomp component)

(/= (value-cardinality ?c comp.subcomp) 1)

(m-individual ?c)

(not (exists ?c1 (proper-overlap ?c ?c1)))))

(define-relation comp.subcomp (?c ?s)

:iff-def

(and

(component ?c)

(component ?s)

(direct-part-of ?s ?c)))

(define-relation comp.term (?c ?t)

:axiom-def

(and (domain comp.term component)

(range comp.term terminal)

(function comp.term)))

(define-class terminal (?t)

:def

(and

(value-type ?t term.term-type terminal-type)

(value-cardinality ?t term.term-type 1)))

(define-relation term.term-type (?t ?tt)

:axiom-def

((domain term.term-type terminal)

(range term.term-type terminal-type)

(function term.term-type)))

(define-class terminal-type (?tt))

; some examples of terminal types

(define-instance mech-trans (terminal-type))

(define-instance mech-rot (terminal-type))

(define-instance electric (terminal-type))
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(define-instance pneumatic (terminal-type))

(define-instance hydraulic (terminal-type))

(define-instance thermal (terminal-type))

(define-instance hydro-thermal (terminal-type))

(define-class connection (?c)

"a connection is a topological connection connecting components

a connection connects two terminals of the same type

a connection establishes a topological connection between the components

a topolological connection between components needs a connection"

:def

(and

(t-connection ?c)

(=> (connects ?c ?c1 ?c2) (and (component ?c1) (component ?c2)))

(value-type ?c con.term terminal)

(value-cardinality ?c con.term 2)

(=> (and (con.term ?c ?t1)

(con.term ?c ?t2))

(exists ?tt (and (term.term-type ?t1 ?tt)

(term.term-type ?t2 ?tt)))))

:axiom-def

(and

(=> (and (connection ?c) (con.term ?c ?t) (comp.term ?c1 ?t))

(exists ?c2 (connects ?c ?c1 ?c2)))

(forall ?c2

(=> (and (component ?c1) (connection ?c)

(connects ?c ?c1 ?c2))

(exists (?t)

(and (terminal ?t)

(con.term ?c ?t)

(comp.term ?c1 ?t)))))))

(define-relation con.term (?c ?t)

:axiom-def

((domain con.term connection)

(range con.term terminal)

(function (inverse con.term))))

(define-relation con.type (?c ?t)

:iff-def

(exists (?t1 ?t2)

(and (con.term ?c ?t1)

(con.term ?c ?t2)

(/= ?t1 ?t2)

(term.term-type ?t1 ?t)

(term.term-type ?t2 ?t))))

(define-relation comp.con (?c ?con)

:iff-def

(exists ?t (and (comp.term ?c ?t)

(con.term ?con ?t))))

(define-class phys-system (?s)

:iff-def

(and (system ?s)

(=> (in-system ?c ?s) (component ?c))))
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A.5 Physical Process Ontology

; ----------------------------------------------------- ;

; Process View ;

; ;

; Physical process viewpoint on technical systems ;

; Viewpoint of the PhysSys ontology ;

; ;

; Author: Pim Borst ;

; Date: 24-07-1997 ;

; ----------------------------------------------------- ;

(in-package :ol-user)

; (onto-load "systheory.lisp")

(define-theory process-view

(frame-ontology kif-relations

classical-extensional-mereology topology system-theory))

(in-theory 'process-view)

; -- Stuff, effort and flow -- ;

(define-class stuff (?s)

"The class of different types of stuff.

Stuff are the things that can be stored.

Dynamic behaviour is change of stuff.")

(define-instance displacement (stuff))

(define-instance angle (stuff))

(define-instance volume (stuff))

(define-instance charge (stuff))

(define-instance entropy (stuff))

(define-class effort (?e)

"The class of different types of effort.

Effort is needed to bring about a change of stuff.")

(define-instance force (effort))

(define-instance torque (effort))

(define-instance pressure (effort))

(define-instance voltage (effort))

(define-instance temperature (effort))

(define-class flow (?f)

"The class of different types of flow.

Flow is change of stuff.")

(define-instance velocity (flow))

(define-instance ang-velocity (flow))

(define-instance volume-flow (flow))

(define-instance current (flow))

(define-instance entropy-flow (flow))

; -- Physical Domains -- ;

(define-class physical-domain (?d)

"The class of physical domains. Each domain must have one stuff type

associated to it with the relation phys-dom.stuff, one effort type

with phys-dom.effort and one flow type with phys-dom.flow."

:def

(and

(value-type ?d phys-dom.stuff stuff)
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(value-cardinality ?d phys-dom.stuff 1)

(value-type ?d phys-dom.stuff effort)

(value-cardinality ?d phys-dom.effort 1)

(value-type ?d phys-dom.flow flow)

(value-cardinality ?d phys-dom.flow 1)))

(define-relation phys-dom.stuff (?d ?s)

"Relates a kind of stuff to a domain."

:axiom-def

((domain phys-dom.stuff physical-domain)

(range phys-dom.stuff stuff)

(function phys-dom.stuff)))

(define-relation phys-dom.effort (?d ?e)

"Relates a kind of effort to a domain."

:axiom-def

((domain phys-dom.effort physical-domain)

(range phys-dom.effort effort)

(function phys-dom.effort)))

(define-relation phys-dom.flow (?d ?f)

"Relates a kind of flow to a domain."

:axiom-def

((domain phys-dom.flow physical-domain)

(range phys-dom.flow flow)

(function phys-dom.flow)))

; Now some physical domains are defined.

; This set is not exhaustive.

(define-instance mech-trans (physical-domain)

"Translational mechanics"

:axiom-def

((phys-dom.stuff mech-trans displacement)

(phys-dom.effort mech-trans force)

(phys-dom.flow mech-trans velocity)))

(define-instance mech-rot (physical-domain)

"Rotational mechanics"

:axiom-def

((phys-dom.stuff mech-rot angle)

(phys-dom.effort mech-rot torque)

(phys-dom.flow mech-rot ang-velocity)))

(define-instance electric (physical-domain)

"Electric"

:axiom-def

((phys-dom.stuff electric charge)

(phys-dom.effort electric voltage)

(phys-dom.flow electric flow)))

(define-instance pneumatic (physical-domain)

"Pneumatic"

:axiom-def

((phys-dom.stuff pneumatic volume)

(phys-dom.effort pneumatic pressure)

(phys-dom.flow pneumatic volume-flow)))

(define-instance hydraulic (physical-domain)

"Hydraulic"

:axiom-def

((phys-dom.stuff hydraulic volume)

(phys-dom.effort hydraulic pressure)

(phys-dom.flow hydraulic volume-flow)))

(define-instance thermal (physical-domain)
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"Thermal"

:axiom-def

((phys-dom.stuff thermal entropy)

(phys-dom.effort thermal temperature)

(phys-dom.flow thermal entropy-flow)))

; -- Mechanisms -- ;

(define-class mechanism (?m)

"A mechanism is a simple mereological individual"

:def

(simple-m-individual ?m))

(define-relation mech.ef (?m ?ef)

"This relation relates a mechanism to the energy flows

described by it"

:iff-def

(and (mechanism ?m)

(energy-flow ?ef)

(exists ?m2 (and (mechanism ?m2) (connects ?ef ?m ?m2)))))

(define-class one-port (?m)

"A one port mechanism describes one energy flow"

:iff-def

(and

(mechanism ?m)

(value-cardinality ?m mech.ef 1)))

(define-class two-port (?m)

"A two port mechanism describes two energy flows"

:iff-def

(and

(mechanism ?m)

(value-cardinality ?m mech.ef 2)))

(define-class multiport (?m)

"A multi-port mechanism describes two or more energy flows"

:iff-def

(and

(mechanism ?m)

(>= (value-cardinality ?m mech.ef) 2)))

; -- Energy flows -- ;

(define-class energy-flow (?ef)

"an energy flow is a topological connection between mechanisms

an energy flow is of a certain domain"

:def

(and (t-connection ?ef)

(=> (connects ?ef ?m1 ?m2)

(and (mechanism ?m1) (mechanism ?m2)))

(value-type ?ef ef.phys-dom physical-domain)

(value-cardinality ?ef ef.phys-dom 1)))

(define-relation ef.from-to (?ef ?f ?t)

"This relation defines energy flows. Topology is projected onto it

to incorporate the necessary ontological commitments."

:iff-def

(and (energy-flow ?ef)

(mechanism ?f)

(mechanism ?t)

(connects ?ef ?f ?t)))

(define-relation ef.phys-dom (?ef ?d)

"Relates physical domains to energy flows."
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:axiom-def

((domain ef.phys-dom energy-flow)

(range ef.phys-dom physical-domain)

(function ef.phys-dom)))

; -- Mechanism types -- ;

(define-class source (?s)

"A source defines the effort or flow of one energy flow.

When the energy flow is directed toward the mechanism it is a sink."

:def (one-port ?s)

:axiom-def

(exhaustive-subclass-partition

source

(setof effort-source flow-source)))

(define-class store (?s)

"A store stores the stuff or action (generalized momentum)

of one energy flow. The energy flow must be directed toward

the mechanism."

:def

(and (one-port ?s)

(exists (?ef ?f)

(and (energy-flow ?ef)

(mechanism ?f)

(ef.from-to ?ef ?f ?s))))

:axiom-def

(exhaustive-subclass-partition

store

(setof stuff-store action-store)))

(define-class dissipator (?d)

"A dissipator dissipates the energy of one energy flow that

must be directed toward the mechanism (otherwise it would be

a source)."

:def

(and (one-port ?d)

(exists (?ef ?f)

(and (energy-flow ?ef)

(mechanism ?f)

(ef.from-to ?ef ?f ?d)))))

(define-class convertor (?c)

"A convertor converts one kind of energy flow into another."

:def

(and (two-port ?c)

(exists (?efin ?efout ?f ?t)

(and (energy-flow ?efin)

(energy-flow ?efout)

(mechanism ?f)

(mechanism ?t)

(ef.from-to ?efin ?f ?c)

(ef.from-to ?efout ?c ?t))))

:axiom-def

(exhaustive-subclass-partition

convertor

(setof transformer gyrator)))

(define-class distributor (?d)

"A distributor distributes energy over energy flows

of the dame domain."

:def

(and (multiport ?d)

(forall (?ef)

(exists (?dom)
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(forall ?m

(=> (connects ?ef ?d ?m)

(ef.phys-dom ?ef ?dom))))))

:axiom-def

(exhaustive-subclass-partition

distributor

(setof effort-distributor flow-distributor)))

; -- Mechanisms -- ;

(define-class effort-source (?se)

:def (source ?se))

(define-class flow-source (?sf)

:def (source ?sf))

(define-class stuff-store (?c)

:def (store ?c))

(define-class action-store (?i)

:def (store ?i))

(define-class transformer (?tf)

:def (convertor ?tf))

(define-class gyrator (?gy)

:def (convertor ?gy))

(define-class effort-distributor (?je)

:def (distributor ?je))

(define-class flow-distributor (?jf)

:def (distributor ?jf))

; -- Processes -- ;

(define-class process (?p)

"A process is a system of mechanisms."

:iff-def (and (system ?p)

(=> (in-system ?m ?p) (mechanism ?m))))

A.6 Physical Systems Ontology

; ----------------------------------------------------- ;

; PhysSys Ontology ;

; ;

; Ontology for the modelling of physical systems ;

; ;

; Author: Pim Borst ;

; Date: 24-07-1997 ;

; ----------------------------------------------------- ;

(in-package :ol-user)

(onto-load "compview.lisp")

(onto-load "procview.lisp")

(onto-load "engineering-math/abstract-algebra.lisp")

(onto-load "engineering-math/physical-quantities.lisp")

(onto-load "engineering-math/scalar-quantities.lisp")

(onto-load "engineering-math/standard-dimensions.lisp")
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(onto-load "engineering-math/unary-scalar-functions.lisp")

(define-theory PhysSys

(frame-ontology kif-relations kif-numbers

classical-extensional-mereology topology system-theory

component-view process-view

abstract-algebra physical-quantities scalar-quantities

standard-dimensions unary-scalar-functions))

(in-theory 'PhysSys)

; -- Mapping of Components to Processes -- ;

(define-relation comp.proc (?c ?p)

"Maps every simple component to one process description.

Every mechanism must be in a process description of a component.

The process descriptions of components may not overlap."

:axiom-def

(and

(domain comp.proc component)

(range comp.proc process)

(one-to-one-relation comp.proc)

(=> (and (component ?c)

(simple-m-individual ?c))

(exists (?p) (comp.proc ?c ?p)))

(=> (mechanism ?m)

(exists (?c ?p)

(and (process ?p)

(in-system ?m ?p)

(comp.proc ?c ?p))))

(=> (and (comp.proc ?c1 ?p1)

(comp.proc ?c2 ?p2)

(/= ?c1 ?c2))

(disjoint ?p1 ?p2))))

; -- Mapping of connections to energy flows -- ;

(define-relation term-type.phys-dom (?t ?d)

"Relates the terminal types to the domains of the energy flows

going through a terminal of that type."

:axiom-def

(and (domain term-type.phys-dom terminal-type)

(range term-type.phys-dom physical-domain)

; some examples

(term-type.phys-dom mech-trans mech-trans)

(term-type.phys-dom mech-rot mech-rot)

(term-type.phys-dom electric electric)

(term-type.phys-dom pneumatic pneumatic)

(term-type.phys-dom hydraulic hydraulic)

(term-type.phys-dom thermal thermal)

(term-type.phys-dom hydro-thermal hydraulic)

(term-type.phys-dom hydro-thermal thermal)))

(define-relation conn.ef (?c ?ef)

"Maps every connection to one or more energy flows.

Each related energy flow belongs to exectly one connection.

Every connection is mapped to (an) energy flow(s).

Each energy flow between process descriptions is mapped to a connection."

:axiom-def

(and

(domain conn.ef connection)

(range conn.ef energy-flow)

(one-to-many-relation conn.ef)

(=> (and (con.term ?c ?t1) (con.term ?c ?t2) (/= ?t1 ?t2)

(comp.term ?c1 ?t1) (comp.term ?c2 ?t2)

(comp.proc ?c1 ?p1) (comp.proc ?c2 ?p2)

(con.type ?c ?t) (term-type.phys-dom ?t ?d))



A.6. PHYSICAL SYSTEMS ONTOLOGY 141

(exists (?ef)

(and (conn.ef ?c ?ef) (ef.phys-dom ?ef ?d)

(in-boundary ?ef ?p1) (in-boundary ?ef ?p2))))

(=> (and (comp.proc ?c1 ?p1) (comp.proc ?c2 ?p2) (/= ?c1 ?c2)

(energy-flow ?ef) (in-boundary ?ef ?p1) (in-boundary ?ef ?p2)

(ef.phys-dom ?ef ?d))

(exists (?c ?t)

(and (conn.ef ?c ?ef)

(con.term ?c ?t1) (con.term ?c ?t2) (/= ?t1 ?t2)

(comp.term ?c1 ?t1) (comp.term ?c2 ?t2)

(con.type ?c ?t) (term-type.phys-dom ?t ?d))))))

; -- Mapping of Processes to Mathematics -- ;

(define-relation effort.phys-dim (?e ?d)

"Relates effort types to physical dimensions"

:axiom-def

(and

(domain effort.phys-dim effort)

(range effort.phys-dim physical-dimension)

(function effort.phys-dim)

; some examples

(effort.phys-dim force force-dimension)

(effort.phys-dim torque (* force-dimension length-dimension))

(effort.phys-dim pressure (* force-dimension (expt length-dimension -2)))

(effort.phys-dim voltage

(* energy-dimension

(expt (* electrical-current-dimension time-dimension) -1)))

(effort.phys-dim temperature thermodynamic-temperature-dimension)))

(define-relation stuff.phys-dim (?s ?d)

"Relates stuff types to physical dimensions"

:axiom-def

(and

(domain stuff.phys-dim stuff)

(range stuff.phys-dim physical-dimension)

(function stuff.phys-dim)

; some examples

(stuff.phys-dim displacement length-dimension)

(stuff.phys-dim angle identity-dimension)

(stuff.phys-dim volume (expt length-dimension 3))

(stuff.phys-dim charge (* electrical-current-dimension time-dimension))

(stuff.phys-dim entropy

(* energy-dimension

(expt thermodynamic-temperature-dimension -1)))))

(define-relation flow.phys-dim (?f ?d)

"Relates flow types to physical dimensions"

:axiom-def

(and

(domain flow.phys-dim flow)

(range flow.phys-dim physical-dimension)

(function flow.phys-dim)

; some examples

(flow.phys-dim velocity (* length-dimension (expt time-dimension -1)))

(flow.phys-dim ang-velocity (* identity-dimension (expt time-dimension -1)))

(flow.phys-dim volume-flow (* (expt length-dimension 3) (expt time-dimension -1)))

(flow.phys-dim current electrical-current-dimension)

(flow.phys-dim entropy-flow

(* energy-dimension

(expt (* thermodynamic-temperature-dimension

time-dimension)

-1)))))

; -- Mapping of energy flows to physical quantities -- ;

(define-relation ef.effortq (?ef ?q)
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"Relates an effort quantity to an energy flow"

:axiom-def

(and (domain ef.effortq energy-flow)

(range ef.effortq physical-quantity)

(one-to-one-relation ef.effortq)

(=> (and (energy-flow ?ef)

(ef.phys-dom ?ef ?dom)

(phys-dom.effort ?dom ?e)

(effort.phys-dim ?e ?dim))

(exists (?q)

(and (physical-quantity ?q)

(ef.effortq ?ef ?q)

(quantity.dimension ?q ?dim))))))

(define-relation ef.flowq (?ef ?q)

"Relates an flow quantity to an energy flow"

:axiom-def

(and (domain ef.flowq energy-flow)

(range ef.flowq physical-quantity)

(one-to-one-relation ef.flowq)

(=> (and (energy-flow ?ef)

(ef.phys-dom ?ef ?dom)

(phys-dom.flow ?dom ?f)

(flow.phys-dim ?f ?dim))

(exists (?q)

(and (physical-quantity ?q)

(ef.flowq ?ef ?q)

(quantity.dimension ?q ?dim))))))

; -- Index Functions -- ;

(define-relation mech.ef-in (?m ?ef)

:iff-def (exists (?f) (ef.from-to ?ef ?f ?m)))

(define-relation mech.ef-out (?m ?ef)

:iff-def (exists (?t) (ef.from-to ?ef ?m ?t)))

;(define-relation mech.ef (?m ?ef)

; :iff-def (or (mech.ef-in ?m ?ef) (mech.ef-out ?m ?ef)))

(define-class index-function (?ixf)

"An index function maps integers to physical quantities."

:def

(and

(binary-relation ?ixf)

(function ?ixf)

(domain ?ixf integer)

(range ?ixf physical-quantity)

(value-type ?ixf min-index integer)

(value-cardinality ?ixf min-index 1)

(value-type ?ixf max-index integer)

(value-cardinality ?ixf max-index 1)

(=> (and (min-index ?ixf ?min)

(max-index ?ixf ?max))

(and (=> (and (integer ?idx) (< ?idx ?min))

(not (exists (?q) (holds ?ixf ?idx ?q))))

(=> (and (integer ?idx) (>= ?idx ?min) (=< ?idx ?max))

(exists (?q) (holds ?ixf ?idx ?q)))

(=> (and (integer ?idx) (> ?idx ?max))

(not (exists (?q) (holds ?ixf ?idx ?q))))))))

(define-relation min-index (?ixf ?min)

"Relates the minimal index to an index function"

:axiom-def

(and (domain min-index index-function)

(range min-index integer)

(function min-index)))
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(define-relation max-index (?ixf ?max)

"Relates the maximum index to an index function"

:axiom-def

(and (domain max-index index-function)

(range max-index integer)

(function max-index)))

(define-relation mech.ixf-e-in (?m ?ixf)

"Relates every mechanism to an indexfunction indexing the

effort quantities of the energy flows toward the mechanism."

:axiom-def

(and

(domain mech.ixf-e-in mechanism)

(range mech.ixf-e-in index-function)

(one-to-one-relation mech.ixf-e-in)

(=> (mechanism ?m)

(exists (?ixf)

(and (mech.ixf-e-in ?m ?ixf)

(forall (?ef ?q)

(=> (and (mech.ef-in ?m ?ef)

(ef.effortq ?ef ?q))

(exists ?idx (holds ?ixf ?idx ?q)))))))))

(define-relation mech.ixf-f-in (?m ?ixf)

"Relates every mechanism to an indexfunction indexing the

flow quantities of the energy flows toward the mechanism."

:axiom-def

(and

(domain mech.ixf-f-in mechanism)

(range mech.ixf-f-in index-function)

(one-to-one-relation mech.ixf-f-in)

(=> (mechanism ?m)

(exists (?ixf)

(and (mech.ixf-f-in ?m ?ixf)

(forall (?ef ?q ?f)

(=> (and (mech.ef-in ?m ?ef)

(ef.flowq ?ef ?q))

(exists ?i (holds ?ixf ?i ?q)))))))))

(define-relation mech.ixf-e-out (?m ?ixf)

"Relates every mechanism to an indexfunction indexing the

effort quantities of the energy flows from the mechanism."

:axiom-def

(and

(domain mech.ixf-e-out mechanism)

(range mech.ixf-e-out index-function)

(one-to-one-relation mech.ixf-e-out)

(=> (mechanism ?m)

(exists (?ixf)

(and (mech.ixf-e-out ?m ?ixf)

(forall (?ef ?q)

(=> (and (mech.ef-out ?m ?ef)

(ef.effortq ?ef ?q))

(exists ?i (holds ?ixf ?i ?q)))))))))

(define-relation mech.ixf-f-out (?m ?ixf)

"Relates every mechanism to an indexfunction indexing the

flow quantities of the energy flows from the mechanism."

:axiom-def

(and

(domain mech.ixf-f-out mechanism)

(range mech.ixf-f-out index-function)

(one-to-one-relation mech.ixf-f-out)

(=> (mechanism ?m)

(exists (?ixf)

(and (mech.ixf-f-out ?m ?ixf)
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(forall (?ef ?q)

(=> (and (mech.ef-out ?m ?ef)

(ef.flowq ?ef ?q))

(exists ?i (holds ?ixf ?i ?q)))))))))

; -- The mapping of Mechanisms to Relations: The Real Stuff -- ;

(define-class ascending (?r)

:iff-def

(=> (and (holds ?r ?x1 ?y1)

(holds ?r ?x2 ?y2)

(> ?x2 ?x1))

(> ?y2 ?y1)))

(define-relation mech.quant (?m ?q)

:axiom-def

(and

(domain mech.quant mechanism)

(range mech.quant physical-quantity)

(one-to-one-relation mech.quant)

(=> (and (effort-source ?m)

(mech.ef ?m ?ef)

(ef.effortq ?ef ?e)

(ef.flowq ?ef ?f))

(exists (?q)

(and (mech.quant ?m ?q)

(= ?e ?q)))) ; e = q

(=> (and (flow-source ?m)

(mech.ef ?m ?ef)

(ef.effortq ?ef ?e)

(ef.flowq ?ef ?f))

(exists (?q)

(and (mech.quant ?m ?q)

(= ?f ?q)))) ; f = q

(=> (and (transformer ?m)

(mech.ef-in ?m ?in)

(mech.ef-out ?m ?out)

(ef.effortq ?in ?ein)

(ef.flowq ?in ?fin)

(ef.effortq ?out ?eout)

(ef.flowq ?out ?fout))

(exists (?r ?q)

(and (mech.quant ?m ?q)

(= ?ein (* ?q ?eout)) ; e1 = q e2

(= ?fout (* ?q ?fin))))) ; f2 = q f1

(=> (and (gyrator ?m)

(mech.ef-in ?m ?in)

(mech.ef-out ?m ?out)

(ef.effortq ?in ?ein)

(ef.flowq ?in ?fin)

(ef.effortq ?out ?eout)

(ef.flowq ?out ?fout))

(exists (?r ?q)

(and (mech.quant ?m ?q)

(= ?ein (* ?q ?fout)) ; e1 = q f2

(= ?eout (* ?q ?fin))))) ; e2 = q f1

(=> (and (effort-distributor ?m)

(mech.ixf-e-in ?m ?ein)

(min-index ?ein ?minin)

(max-index ?ein ?maxin)

(mech.ixf-e-out ?m ?eout)

(min-index ?eout ?minout)
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(max-index ?eout ?maxout))

(and (= (summation ?ein ?minin ?maxin)

(summation ?eout ?minout ?maxout))

(exists (?q)

(and (mech.quant ?m ?q)

(=> (and (mech.ef ?m ?ef)

(ef.flowq ?ef ?f))

(= ?f ?q))))))

(=> (and (flow-distributor ?m)

(mech.ixf-f-in ?m ?fin)

(min-index ?fin ?minin)

(max-index ?fin ?maxin)

(mech.ixf-f-out ?m ?fout)

(min-index ?fout ?minout)

(max-index ?fout ?maxout))

(and (= (summation ?fin ?minin ?maxin)

(summation ?fout ?minout ?maxout))

(exists (?q)

(and (mech.quant ?m ?q)

(=> (and (mech.ef ?m ?ef)

(ef.effortq ?ef ?e))

(= ?e ?q)))))) ))

(define-relation mech.mathrel (?m ?r)

:axiom-def

(and

(domain mech.mathrel mechanism)

(range mech.mathrel relation)

(one-to-one-relation mech.mathrel)

(=> (and (dissipator ?m)

(mech.ef-in ?m ?ef)

(ef.effortq ?ef ?e)

(ef.flowq ?ef ?f))

(exists (?r)

(and (mech.mathrel ?m ?r)

(holds ?r ?e ?f) ; r(e,f)

(=> (holds ?r ?x ?y)

(and (>= (* ?x ?y) (* 0 energy-dimension))

(<=> (zero-quantity ?x) (zero-quantity ?y)))))))

(=> (and (stuff-store ?m)

(mech.ef-in ?m ?ef)

(ef.effortq ?ef ?e)

(ef.flowq ?ef ?f))

(exists (?r ?q)

(and (mech.mathrel ?m ?r)

(mech.quant ?m ?q)

(holds ?r ?q ?e) ; r(q,e)

(= (D/DT ?q) ?f) ; dq/dt = f

(ascending ?r))))

(=> (and (action-store ?m)

(mech.ef-in ?m ?ef)

(ef.effortq ?ef ?e)

(ef.flowq ?ef ?f))

(exists (?r ?q)

(and (mech.mathrel ?m ?r)

(mech.quant ?m ?q)

(holds ?r ?q ?f) ; r(q,f)

(= (D/DT ?q) ?e) ; dq/dt = e

(ascending ?r)))) ))
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Appendix B

The Thermodynamic Models in

the OLMECO Library

This appendix describes the thermodynamic model fragments developed for theOLMECO

design library (see Section 4). Its function is to support engineers in the construction of
large simulation models from library model fragments. This appendix is a revised version
of theOLMECO deliverable (Top, Borst, and Akkermans 1995) and describes work that
is part of the ECN contribution to theOLMECO project. The focus is on heat generation,
exchange and transport through thermal fluids (liquid or gas), where both convection and
conduction of thermal energy can play a role. The usability and reusability of the model
library is demonstrated by a large-scale evaluation experiment, modelling and simulating
the heating installation of a hospital in The Netherlands. It is concluded that theOLMECO

library approach leads to higher quality models, with less effort.

The organization of this appendix is as follows, Section B.1 gives an overview of the ther-

modynamic models in the library and the modelling assumptions that apply to them. In

Section B.2 the general physical process model for convective heat transport is described.

Many process models in the library are based on this general model. Section B.3–B.5 the

thermodynamic models themselves are described. Section B.6 gives a more detailed descrip-

tion of the modelling and simulation experiment compared to the description in Chapter 4.

Section B.6.6 gives detailed conclusions about the experiment.

B.1 Introduction

This appendix describes the generic model components in the thermodynamic domain for the

OLMECO library (see also Chapter 4). Figure B.1 gives an overview of the thermal compo-

nents, for which reusable library models for simulation and design will be presented in this

147
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thermal fluid

line

thermal fluid

flow controller

thermal fluid

junction

splitter

mixer

recuperative heat exchanger

regenerative heat exchangerheat exchanger

heat source (heater)

heat sink (atmosphere)

conduction

source

convection heater (boiler)

convection heat sink (atmosphere)

closed system heater (boiler)

convection

source

thermal

source

connector

thermal

component

thermal

heated space (room)

thermal barrier (wall, radiator)

pipe

pipe with ext. cond.

pump

(heat exch. pipe, radiator)

two-way valve (valve)

controlled splitter (valve)

controlled mixer (valve)

thermal store

Figure B.1: Taxonomy of thermal components.

report. The usability and reusability of the model library is demonstrated by a large-scale

evaluation experiment, modelling and simulating the heating installation of the Schieland

hospital in Schiedam, The Netherlands (see Section B.6 and also Chapter 4).

Our focus is on heat transport through thermal fluids (liquid or gas), where both convection

and conduction of thermal energy can play a role. At the physical process level, both pseudo-

bondgraphs and entropy-based bondgraphs will be considered. If the assumptions underlying

the pseudo-bondgraph approach are properly acknowledged, this representation has the ad-

vantage that it is closer to standard engineering practice, in particular in the building services

industry (den Ouden, Top, and Akkermans 1994). The basic consequences implied by a

pseudo-bondgraph representation for the underlying system dynamics are:

� Rather than entropy flow, the energy (enthalpy) flow is taken as the conjugate of tem-

perature. Note that this may introduce redundancy in the model since this energy term

also includes non-thermal contributions (e.g., convected kinetic energy).

� Since the entropy is not modelled explicitly, dissipation is assumed to be sufficiently

small such that it can be neglected.

� Since the half arrows do not represent power, it is not possible to connect them directly

to real power bonds. Hence, care must be taken when interaction with other domains

is involved.

� Often ad hocconstructions in terms of signals (active bonds) will have to be used, in

particular when linking to other domains.

� There is no way to find or check constitutive relations using energy functions: there is

no reciprocity condition for storage elements (Karnopp 1979).

� In general, the physical rationale behind the model is more implicit.
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If these consequences cannot be accepted, the entropy flows have to be modelled explicitly;

they are the conjugated variables of temperature. The explicit entropy approach is gener-

ally preferable from a theoretical point of view and provides more insight than the pseudo-

bondgraph approach.

In Section B.3–B.5 a number of library components for the heating systems domain will

be described. Each chapter covers a number of basic system components, physical process

descriptions in terms of bond graphs, and constitutive mathematical relations for design and

simulation (Top and Akkermans 1994; Top, Breunese, van Dijk, Broenink, and Akkermans

1994; Akkermans, Borst, Pos, and Top 1995; Top, Breunese, Broenink, and Akkermans

1995).

Note that at the component level only plugsare specified, which can be filled with any num-

ber of energybonds or signals. This allows one to describe the components independently

from the process level; hence, both pseudo- and entropy-bondgraphs can be used at the pro-

cess level. Further we note that decompositions may be applied recursively. For example,

when fluid flow through a pipe has to be modelled by multiple segments this can be done by

repeated decomposition.

At the level of physical processes some general assumptions will be made:

� Since our approach is based on reticulation(network modelling), we assume that fluids

mix instantaneously within each lump.

� When considering fluid flow we assume a global Eulerian (fixed volume) frame of

reference, with only local Lagrangian frames (e.g. a fixed amount of fluid passing

through a pipe).

� Except when compressibility is explicitly mentioned, fluids are assumed to be incom-

pressible.

� Substances (fluids) are assumed to consist of one chemical component only.

In the following chapters we use the following convention to indicate which domain is asso-

ciated with a bond:

symbol domain effort flow

th thermodynamic temperature (K) entropy flow (W=K)

tp thermal, pseudo temperature (K) energy (enthalpy) flow (W )

hy hydraulic pressure (N=m2) volume flow (m3=sec)

ma material (total) mat. potential (J) material flow (moles=sec)

In Section B.3–B.5, models belonging to one of the three-level `ontology' approach (Chap-

ter 4) is are presented: (i) technological level: system components and their decompositions;

(ii) physical level: process descriptions of physical behaviour; and (iii) mathematical level:

associated mathematical equations. The links between these library entries are indicated in

their descriptions. Subsequently, the use and reuse of the library is demonstrated by present-

ing a large-scale evaluation experiment, whereby the thermal as well as hydraulic behaviour
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of the heating installation of a hospital in The Netherlands is modelled and simulated. But

first, Section B.2 presents the background of the models for convective transport of thermal

energy used in the library. See also Section 4.2 for design considerations about the models in

the library.

B.2 Convective transport of thermal energy

Convection of internal energy occurs when matter flows from one place in a system to an-

other. For the representation of convection in terms of temperature and energy as pseudo-

conjugated variables, we build on the proposal made by Karnopp (Karnopp 1978). Here,

a two-port R-element determines the amount of convected energy (enthalpy), modulated by

the temperature of the upstream convection element and the fluid flow velocity, as shown in

Fig. B.2a. However, from the definition of the element and its fixed causality it appears that

actually a source element is used to `inject' an amount of heat. Therefore, we use the bond

graph description shown in Fig. B.2b. Also for the flow splitter and mixer alternative models

are proposed. The advantage of our proposal is that part of the underlying model can now

be obtained from the junction element, whereas in (Karnopp 1978) these relations have to be

given explicitly for the three-port R-element.

1

Sf

tp tp

ϕ,Τ

R tptp

ϕ,Τ

(a) (b)

Figure B.2: The convection process as suggested by Karnopp (Karnopp 1978): (a) original

representation; (b) our proposal.

C

0

0

TF

1

1

TFRS

Sf:0

N/S

I

V/N

th

ma

th

ma

Figure B.3: The convection process in full bond graph form (Breedveld 1984), simplified for

the case of a single component material flow.

The theoretical basis for description of convection in terms of thermodynamic bondgraphs

has been developed in (Breedveld 1984). Here we restrict ourselves to flows with a sin-

gle chemical component and only convection of entropy is considered. This means that the

general convection bond graph proposed in (Breedveld 1984) is simplified to the one shown

in Fig. B.3. The two 1-junctions and the modulated TF together represent the (discretized)
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Gibbs-Duhem relation �� = v�p � s�T , where �� is the difference in material potential

between this convective element and the next, v and s are specific volume and entropy, p is

pressure and T is temperature.
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B.3 Components and Decompositions

B.3.1 Thermal Conductor

Function: To provide thermal conduction or insulation between two systems.

Examples: wall, wire, tube wall

Process Models: heat conduction (B.4.1), heat radiation (B.4.2), free convection (B.4.3)

Component Model:

thermal

conductor outin

Possible Decompositions: thermal conductor (B.3.1)

thermal

conductor outin

thermal

conductor outin outin

B.3.2 Heated Space

Function: To store heat, to maintain a given temperature.

Examples: room, thick wall, dewar, tube wall

Process Models: heat storage (B.4.4)

Component Model:

space

heated

outin

Possible Decompositions: heated space (B.3.2)

space

heated

outinspace

heated

outinin out
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B.3.3 Heat Source

Function: To provide thermal energy to a system without being affected by it.

Process Models: temperature source (B.4.5), heat/entropy source (B.4.7)

Component Model:

heat

source out

B.3.4 Heat Sink

Function: To provide or consume thermal energy to a system without being affected by it.

Process Models: temperature sink (B.4.6), heat/entropy sink (B.4.8)

Component Model:

heat

sinkin

B.3.5 Pipe

Function: To provide transport of thermal energy by means of a fluid from one side of the

pipe to the other.

Process Models: convection (B.4.9)

Component Model:

pipe
in out

Possible Decomposition: pipe (B.3.5)

pipe
in out

pipe
in outin out
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B.3.6 Pipe with External Conduction

Function: To provide transport of thermal energy through a fluid from one side of the pipe to

the other and from the fluid to the system enclosing the pipe.

Process Models: convection with external conduction (B.4.10)

Component Model:

pipe w. ext.

conductionin out

ext

Possible Decomposition: pipe with external conduction (B.3.6)

pipe w. ext.

conductionin out

ext

pipe w. ext.

conductionin out

ext

ext

in out

B.3.7 Pump

Function: To provide transport of thermal energy by delivering a hydraulic pressure for ther-

mal fluid flow.

Process Models: convection through hydraulic source (B.4.11)

Component Model:

in out
pump

B.3.8 Two-Way Valve

Function: To control the amount of fluid transporting thermal energy.

Process Models: controlled convection (B.4.12)

Component Model:

valve

two-way

in out

control
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B.3.9 Splitter

Function: To split the transport of thermal energy and continue in two separate pipes.

Process Models: convection splitting (B.4.13)

Component Model:

splitter
in

out2

out1

B.3.10 Controlled Splitter

Function: To control the splitting of a fluid that proceeds in two separate pipes.

Process Models: controlled convection splitting (B.4.14)

Component Model:

controlled

splitterin
out2

out1

control

B.3.11 Mixer

Function: To merge two convective paths, proceeding as one.

Process Models: convection mixing (B.4.15)

Component Model:

mixerin1

in2
out

B.3.12 Controlled Mixer

Function: To control the mixing of two fluids that flow in a single pipe.

Process Models: controlled convection mixing (B.4.16)

Component Model:

controlled

mixer
in1

in2
out

control
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B.3.13 Convective Heater

Function: To provide thermal energy to a system by convection of-, or conduction through

fluid, without being affected by it.

Process Models: convective temperature source (B.4.17)

Component Model:

out

convective

heater

Possible Decompositions: convective heater (B.3.13), pipe (B.3.5)

out

convective

heater
pipe

in out out

B.3.14 Convective Heat Sink

Function: To provide or consume thermal energy by convection of, or conduction through,

fluid, without being affected by it.

Process Models: convective temperature sink (B.4.18)

Component Model:

convective

sinkin

B.3.15 Closed System Heater

Function: To provide thermal energy to a closed system by convection of, or conduction

through, fluid.

Component Model:

closed syst.

heaterin out
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Possible Decompositions: (a) heat source (B.3.3), pipe with external conduction (B.3.6), (b)

pump (B.3.7), heat source (B.3.3), pipe with external conduction (B.3.6), (c) heat source

(B.3.3), pipe with external conduction (B.3.6), pump (B.3.7)

heat

source

pipe w. ext.

conduction

out

in out

ext

in out

heat

source

pipe w. ext.

conductionin out
pump

in

out

in out

ext

out

(a) (b)

in

pipe w. ext.

conductionin out

ext

in out
pump

heat

source

out

out

(c)
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B.3.16 Basic Recuperative Heat Exchanger

Function: To transfer thermal energy from one flow to another via an intermediate path. Some-

times heat exchangers also serve as pressure vessels. Flows are parallel or opposite. Note that

improved heat transfer implies increased pressure drop, thus requiring more mechanical en-

ergy.

Component Model:

heat

exchanger
hot in

cold in cold out

hot out

Possible Decompositions: basic decompositions (a–c):pipe with external conduction (B.3.6),

thermal conductor (B.3.1), heated space (B.3.2); parallel flow (d): heat exchanger (B.3.16);

counter flow (e):heat exchanger (B.3.16)

pipe w. ext.

conductionin out

ext

thermal

conductor

pipe w. ext.

conduction

out

in out

ext

cold

hot

cold

hot

out

outin

in

in

pipe w. ext.

conductionin out

ext

pipe w. ext.

conduction

out

in out

ext

cold

hot

cold

hot

out

outin

in

in

heated

space

pipe w. ext.

conductionin out

ext

pipe w. ext.

conductionin out

ext

cold

hot

cold

hot

out

outin

in

(a) (b) (c)

heat

exchanger
hot in

cold in cold out

hot out
heat

exchanger
hot in

cold in cold out

hot outhot in

cold in

hot out

cold out

(d)

heat

exchanger

heat

exchanger
hot in hot out

hot in

cold in

hot out

cold out

hot in

cold in

hot out

cold out

cold in cold out

(e)



B.4. PHYSICAL PROCESSES 159

B.4 Physical Processes

B.4.1 Heat Conduction

Component Models: thermal conductor (B.3.1)

Mathematical Relations: heat conduction resistor (B.5.1), heat capacitor (B.5.4)

Pseudo Bondgraph:

1

R
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1
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R
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C
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C
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Entropy Bondgraph:
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0
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(a)
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010
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RS

(c)
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010

RS

(c)

C

B.4.2 Heat Radiation

Component Models: thermal conductor (B.3.1)

Mathematical Relations: heat radiation resistor (B.5.2)
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Pseudo Bondgraph:

00
tp tp

R

Entropy Bondgraph:

00
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R
th

B.4.3 Free Convection

Component Models: thermal conductor (B.3.1)

Mathematical Relations: free convection resistor (B.5.3)

Pseudo Bondgraph:

1

R

00
tp tp

Entropy Bondgraph:

1 00
th

RS

th

B.4.4 Heat Storage

Component Models: heated space (B.3.2)

Mathematical Relations: heat capacitor (B.5.4), heat conduction resistor (B.5.1)

Pseudo Bondgraph:

0
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Entropy Bondgraph:
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B.4.5 Temperature Source

Component Models: heat source (B.3.3)

Mathematical Relations: temperature source (B.5.5)

Pseudo Bondgraph:

Se 0
tp

Entropy Bondgraph:

Se 0
th

B.4.6 Temperature Sink

Component Models: heat sink (B.3.4)

Mathematical Relations: temperature sink (B.5.6)

Pseudo Bondgraph:

Se0
tp

Entropy Bondgraph:

Se0
th
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B.4.7 Heat/Entropy Source

Component Models: heat source (B.3.3)

Mathematical Relations: heat/entropy source (B.5.7)

Pseudo Bondgraph:

0Sf
tp

Entropy Bondgraph:

0
th

Sf

B.4.8 Heat/Entropy Sink

Component Models: heat sink (B.3.4)

Mathematical Relations: heat/entropy source (B.5.8)

Pseudo Bondgraph:

0
tp

Sf

Entropy Bondgraph:

0 Sf
th
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B.4.9 Convection

Component Models: pipe (B.3.5)

Mathematical Relations: hydraulic resistor (B.5.12), hydraulic inertance (B.5.9), heat capac-

itor (B.5.4), heat conduction resistor (B.5.1), convection source (B.5.10), convection trans-

former (B.5.11)

Pseudo Bondgraph: without internal conduction (a), with internal conduction (b),

with/without hydraulic inertance (I�)
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with/without hydraulic inertance (I�)
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B.4.10 Convection with External Conduction

Component Models: pipe with external conduction (B.3.6)

Mathematical Relations: hydraulic resistor (B.5.12), hydraulic inertance (B.5.9), heat capac-

itor (B.5.4), heat conduction resistor (B.5.1), radiator resistor (B.5.14), external conduction

resistor (B.5.18), convection source (B.5.10), convection transformer (B.5.11)

Pseudo Bondgraph: without internal conduction (a), with internal conduction (b),

with/without hydraulic inertance (I�), with/without external thermal resistance (R�)
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B.4.11 Convection through Hydraulic Source

Component Models: pump (B.3.7)

Mathematical Relations: hydraulic resistor (B.5.12), pressure source (B.5.15), pressure ref-

erence source (B.5.17), heat capacitor (B.5.4), heat conduction resistor (B.5.1), convection

source (B.5.10), convection transformer (B.5.11)

Pseudo Bondgraph: without internal conduction (a), with internal conduction (b),

with/without hydraulic resistance (R�), with/without reference pressure source (Se:0�)
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B.4.12 Controlled Convection

Component Models: two-way valve (B.3.8)

Mathematical Relations: controlled hydraulic resistor (B.5.13), heat capacitor (B.5.4), heat

conduction resistor (B.5.1), convection source (B.5.10), convection transformer (B.5.11)

Pseudo Bondgraph: without internal conduction (a), with internal conduction (b)
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Entropy Bondgraph: without internal conduction (a), with internal conduction (b)
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B.4.13 Convection Splitting

Component Models: splitter (B.3.9)

Mathematical Relations: hydraulic resistor (B.5.12), heat capacitor (B.5.4), heat conduction

resistor (B.5.1), convection source (B.5.10), convection transformer (B.5.11)

Pseudo Bondgraph: without internal conduction (a), with internal conduction (b)
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Entropy Bondgraph: without internal conduction (a), with internal conduction (b)
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B.4.14 Controlled Convection Splitting

Component Models: controlled splitter (B.3.10)

Mathematical Relations: controlled hydraulic resistor (B.5.13), heat capacitor (B.5.4), heat

conduction resistor (B.5.1), convection source (B.5.10), convection transformer (B.5.11)

Pseudo Bondgraph: without internal conduction (a), with internal conduction (b)
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Entropy Bondgraph: without internal conduction (a), with internal conduction (b)
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B.4.15 Convection Mixing

Component Models: mixer (B.3.11)

Mathematical Relations: hydraulic resistor (B.5.12), heat capacitor (B.5.4), heat conduction

resistor (B.5.1), convection source (B.5.10), convection transformer (B.5.11)

Pseudo Bondgraph: without internal conduction (a), with internal conduction (b)
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Entropy Bondgraph: without internal conduction (a), with internal conduction (b)
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B.4.16 Controlled Convection Mixing

Component Models: controlled mixer (B.3.12)

Mathematical Relations: controlled hydraulic resistor (B.5.13), heat capacitor (B.5.4), heat

conduction resistor (B.5.1), convection source (B.5.10), convection transformer (B.5.11)

Pseudo Bondgraph: without internal conduction (a), with internal conduction (b)
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Entropy Bondgraph: without internal conduction (a), with internal conduction (b)
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B.4.17 Convective Temperature Source

Component Models: convective heater (B.3.13)

Mathematical Relations: pressure source (B.5.15), temperature source (B.5.5), heat conduc-

tion resistor (B.5.1), convection source (B.5.10), convection transformer (B.5.11)

Pseudo Bondgraph: without internal conduction (a), with internal conduction (b)

0 1

Sf

1

0 1

Sf

1

tp

hy

1

0 R

tp

hy
Se

Se

(a) (b)

Se

Se

Entropy Bondgraph: without internal conduction (a), with internal conduction (b)

1
th

hy

TF

1

0RS

0Se

Se

(b)

1
th

hy

TF

1

Se

Se

(a)



172 APPENDIX B. THE THERMODYNAMIC MODELS IN THE OLMECO LIBRARY

B.4.18 Convective Temperature Sink

Component Models: convective heat sink (B.3.14)

Mathematical Relations: pressure source (B.5.15), temperature sink (B.5.6), pressure sink

(B.5.16)

Pseudo Bondgraph:
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Entropy Bondgraph:
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B.5 Mathematical Relations

B.5.1 Heat Conduction Resistor

geometry:

T1 T2

Q’,S’1 Q’,S’2

Ac

l

processes: heat conduction (B.4.1 a–d), heat storage (B.4.4 b–d), convection (B.4.9 b), con-

trolled convection (B.4.12 b), convection splitting/mixing (B.4.13/B.4.15 b), controlled con-

vection splitting/mixing (B.4.14/B.4.16 b), convective temperature source (B.4.17 b), con-

vection through a hydraulic source (B.4.11 b),

elements:

T21T
1

R

T

Q’Q’

1T T2

S’1 S’2

1

RS

T

0

S’

relations:

T = T1 � T2 (B.1)

Q
0 = T=R (B.2)

S
0
1 =

Q0

T + T2
=

T

(T + T2)R
(B.3)

S
0 =

TS01
T2

=
T 2

T2(T + T2)R
(B.4)

S
0
2 = S

0
1 + S

0
(B.5)

R =
l

�Ac

(B.6)

variables:

Q0[W ]: heat flow

S01[WK�1]: entropy in flow

S02[WK�1]: entropy out flow

S0[WK�1]: entropy flow produced by conduction process

T1[K]: temperature left side

T2[K]: temperature right side

T [K]: temperature difference left-right

R[KW�1]: thermal resistance

l[m]: thickness or length

Ac[m
2]: heat conduction area

�[WK�1m�1]: heat conduction coefficient
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parameters: Tables of heat conduction coefficients for various materials can be found in (Verein

Deutscher Ingenieure 1977):

water: chapter Db, tables 1 and 7

air: chapter Db, tables 14 and 20

construction materials: chapter Ea

notes: The heat conduction coefficient � is assumed constant although it depends on pressure, temper-

ature and humidity. For pipes with inner radius ri and outer radius ro , R becomes

R =
ln(ro=ri)

2��l

B.5.2 Heat Radiation Resistor

general geometry:

Q’,S’1

A1

T1 T2

Q’,S’2

A2

processes: heat radiation (B.4.2)

elements:

T21T 1T

S’1

T2

S’2

R

Q’Q’
R

relations:

Q
0

= g(T
4
1 � T

4
2 ) (B.7)

S
0
1 = g(T 3

1 � T
4
2 =T1) (B.8)

S
0
2 = g(T 4

1 =T2 � T
3
2 ) (B.9)

S0 = S02 � S01 (B.10)

g = �12A1�1�2Cs (B.11)

variables:

Q0[W ]: heat flow from surface 1 to 2

S01[WK�1]: entropy flow from surface 1

S02[WK�1]: entropy flow to surface 2

S0[WK�1]: entropy flow produced by radiation process

T1[K]: temperature surface 1

T2[K]: temperature surface 2

A1[m
2]: area radiating surface 1

A2[m
2]: area radiating surface 2

g[�]: situation dependent parameter

�12[�]: absorption coefficient

�1[�]: emission coefficient (luminosity) surface 1
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�2[�]: emission coefficient (luminosity) surface 2

Cs[Wm�2K�4]: Stefan-Boltzmann constant

parameters: The Stefan-Boltzmann constant is approximately 5:6697 � 10�8 . The values for �1 and �2
for construction materials can be found in (Verein Deutscher Ingenieure 1977) chapter Ka table 2. For

the determination of �12 for various geometries of specific situations the reader is referred to section

Kb in (Verein Deutscher Ingenieure 1977).

B.5.3 Free Convection Resistor

geometry:

At1T

Q’,S’1

T2

Q’,S’2

l

1T

Q’,S’1

T2

Q’,S’2

processes: free convection (B.4.3)

elements:

T21T
1

R

T

Q’Q’

1T T2

S’1 S’2

1

RS

T

0

S’

relations:

T = T1 � T2 (B.12)

Gr =

(
gl3�T

�2
= g�2l3�T

�2
for vert. walls

gdol
02�T

�2
= g�2dol

02�T

�2
for vert. tubes

(B.13)

l
0

=
�do

2
for vert. tubes (B.14)

Nu =

�
0:517(GrPr)1=4 104 < Gr; Pr < 108

0:10(GrPr)1=3 Gr; Pr > 109
(B.15)

Pr =
�

a
=
�cp

�
(B.16)

� =
�Nu

l
(B.17)

At = l�do for vert. tubes (B.18)

Q
0 = At�T (B.19)

S
0
1 =

Q0

T + T2
=

At�T

T + T2
(B.20)

S
0 =

TS01
T2

=
At�T

2

T2(T + T2)
(B.21)

S
0
2 = S

0
1 + S (B.22)
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variables:

T [K]: temperature difference wall-air (tube-air)

T1[K]: temperature wall (tube)

T2[K]: distant air temperature

Gr[�]: Grashof number

g[ms�2]: gravitational acceleration

l[m]: height of wall (length of tube)

do[m]: outer diameter of the tube

�[K�1]: heat expansion coefficient air

�[m2s�1]: kinematic viscosity air

�[kgm�1s�1]: dynamic viscosity air

�[kgm�3]: specific mass air

Nu[�]: Nußel number

Pr[�]: Prandtl number

a[m2s�1] temperature conduction coefficient air

cp[Jkg
�1K�1]: specific heat capacity air at constant pressure

�[WK�1m�1]: heat conduction coefficient air

�[Wm�2K�1]: heat transfer coefficient

At[m
2]: heat transfer area of wall or tube

Q0[W ]: heat flow wall to air

S01[WK�1]: entropy out flow wall (tube)

S02[WK�1]: entropy in flow air

S0[WK�1]: entropy flow produced by convection process

parameters: For ideal gases, � = 1=T2 . The values for �, �, �, �, � and cp depend on the temperature

and pressure of the air. For simulation, they are considered to be constant and can be obtained from the

tables in chapter Db in (Verein Deutscher Ingenieure 1977) (take average temperature and pressure).

The gravitational acceleration is normally taken as g = 9:81ms�2.

notes: The equations for both walls and tubes assume the movement of the air is solely caused by the
temperature differenceT .
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B.5.4 Heat Capacitor

geometry:

T

Q’, S’ V

processes: heat storage (B.4.4), heat conduction (B.4.1 b–d), convection (B.4.9), controlled con-

vection B.4.12), convection splitting/mixing (B.4.13/B.4.15), controlled convection splitting/mixing

(B.4.14/B.4.16)

elements:

C

Q’

T
C

S’

T V/S

relations:

T =

�
Q=C; Q =

R t
0
Q0 dt+Q0; Q0 = T0=C pseudo bond graph

T0e
S=C; S =

R t
0
S0 dt+ S0 S0 = C entropy bond graph

(B.23)

C = mcv (B.24)

m = �V (B.25)

variables:

t[s] : time parameter

Q[J ]: thermal energy stored

Q0[J ]: thermal energy stored at t = 0
Q0[W ]: heat flow to object

S0[WK�1]: entropy flow to object

S[JK�1]: entropy stored

T [K]: temperature object

C[JK�1]: heat capacity of object

m[kg]: mass of object

�[kg m�3]: specific mass material of object

V [m3]: volume of object

cv[JK
�1kg�1]: specific heat capacity material of object at constant volume

parameters: The values of �, cv and V of the object depend on temperature and pressure. The values

for � and cv are assumed to be constant (take average temperature and pressure) and can be chosen from

(Verein Deutscher Ingenieure 1977):

water: chapter Db, tables 1 and 4

air: chapter Db, tables 14 and 17

construction materials: chapter Ea, tables 1 and 2
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B.5.5 Temperature Source

processes: temperature source (B.4.5), convective temperature source B.4.17)

elements:

Q’

T

S’

T
Se Se

relations:

T = T (t) (B.26)

variables:

t[s] : time parameter

T (t)[K] : supplied temperature

Q0[W ] : heat flow from environment

S0[WK�1] : entropy flow from environment

B.5.6 Temperature Sink

processes: temperature sink (B.4.6), convective temperature sink B.4.18)

elements:

Q’

T

S’

T
Se Se

relations:

T = T (t) (B.27)

variables:

t[s] : time parameter

T (t)[K] : environment temperature

Q0[W ] : heat flow to environment

S0[WK�1] : entropy flow to environment
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B.5.7 Heat/Entropy Source

processes: heat/entropy source (B.4.7)

elements:

Q’

T

S’

T
Sf Sf

relations:

Q
0 = Q

0(t) (B.28)

S
0

= S
0
(t) (B.29)

variables:

t[s] : time parameter

T [K] : environment temperature

Q0(t)[W ] : heat flow from environment

S0(t)[WK�1] : entropy flow from environment

B.5.8 Heat/Entropy Sink

processes: heat/entropy sink (B.4.8)

elements:

Q’

T

S’

T
Sf Sf

relations:

Q
0 = Q

0(t) (B.30)

S
0 = S

0(t) (B.31)

variables:

t[s] : time parameter

T [K] : environment temperature

Q0(t)[W ] : heat flow to environment

S0(t)[WK�1] : entropy flow to environment
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B.5.9 Hydraulic Inertance

geometry:

A
p

V’
di

l

processes: convection (B.4.9), convection with external conduction (B.4.10)

elements:

I

p

V’

relations:

V
0 =

1

I

Z t

0

pdt (B.32)

I = �l=A (B.33)

A =
1

4
�d

2
i (B.34)

variables:

t[s] : time parameter

p[Pa] : pressure

V 0[m3s�1] : water volume flow

l[m] : tube length

di[m] : tube inner diameter

A[m2] : water flow area

�[kgm�3]: specific mass water

parameters: The value for � depend on the temperature and pressure of the water. For simulation, it

is considered to be constant and can be obtained from the tables in chapter Db in (Verein Deutscher

Ingenieure 1977), tables 1 and 4 (take average temperature and pressure).
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B.5.10 Convection Source

processes: convection (B.4.9), controlled convection (B.4.12), convection with external conduc-

tion (B.4.10), convection splitting/mixing (B.4.13/B.4.15), controlled convection splitting/mixing

(B.4.14/B.4.16), convection through hydraulic source (B.4.11), convective temperature source (B.4.17)

elements:

Sf

Q’
T

V’

relations:

Q
0 = cv�V

0
T (B.35)

variables:

T [K] : temperature

Q0[W ] : convective heat flow

V 0[m3s�1] : water volume flow

�[kgm�3]: specific mass water

cv[JK
�1kg�1]: specific heat capacity material of object at constant volume

parameters: The values of � and cv depend on temperature and pressure. The values for � and cv
are assumed to be constant (take average temperature and pressure) and can be chosen from (Verein

Deutscher Ingenieure 1977) chapter Db, tables 1 and 4 (take average temperature and pressure).

B.5.11 Convection Transformer

processes: convection (B.4.9), controlled convection (B.4.12), convection with external conduc-

tion (B.4.10), convection splitting/mixing (B.4.13/B.4.15), controlled convection splitting/mixing

(B.4.14/B.4.16), convection through hydraulic source (B.4.11), convective temperature source (B.4.17)

elements:

S’

V/S

T

V’

p
TF

relations:

V
0 = S

0
V=S (B.36)

T = pV=S (B.37)

variables:

T [K] : temperature

S0[W ] : convective entropy flow

V 0[m3s�1] : water volume flow
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B.5.12 Hydraulic Resistor

general geometry:

V’

p1

V’

p2
Af

S’T

i

l

d

processes: convection (B.4.9, convection with external conduction (B.4.10), convection through hy-

draulic source (B.4.11 *), convection splitting/mixing (B.4.13/B.4.15)

elements:

p21p
1

R

p

V’ V’

1p p2
1

RS

V’ V’

S’

T

p

relations:

p = p1 � p2 (B.38)

p = (�
l

di
+ �s)

�

2A2
f

V
0jV 0j (B.39)

S
0 =

pV 0

T
= (�

l

di
+ �s)

�

2A2
fT

jV 0j3 (B.40)

Re =
V 0di
�Af

=
V 0di�

�Af

(B.41)

Af =
1

4
�d

2
i (B.42)

variables:

p[Pa]: pressure difference left-right

p1[Pa]: water pressure left

p2[Pa]: water pressure right

V 0[m3s�1]: water volume flow

T [K]: water temperature

S0[WK�1]: entropy flow to water

Re[�]: Reynolds number

l[m]: length of pipe

Af [m
2]: water flow area

di[m]: inner diameter of pipe

�[�]: resistance factor (full length effects)

�s[�]: Bernoulli resistance factor (short length effects)

�[m2s�1]: kinematic viscosity water

�[kgm�1s�1]: dynamic viscosity water

�[kgm�3]: specific mass water
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parameters: The values for �, � and � depend on the temperature and pressure of the water. For

simulation, they are considered to be constant and can be obtained from the tables in chapter Db in

(Verein Deutscher Ingenieure 1977) (take average temperature and pressure).

Two types of resistance can be modelled: resistance due to effects that occur along the full length of

the pipe and due to effects that occur in a short section of the pipe. The first type of effects are internal

friction caused by turbulence and friction caused by a rough pipe surface. The influence of these effects

on the total resistance is taken into account by the value of �, which depends on the Reynolds number

and the diameter and roughness of the pipe. Short length effects, such as narrowings or broadenings of

the water flow area determine the value of �s.

parameter � for smooth surfaces:

Determine � with the equations below when the surface of the pipe is smooth.

� =

8<
:

64
Re

Re < 2300 (Hagen - Poiseuille)
0:3164
4
p
Re

3000 < Re < 105 (Blasius)

0:00540 + 0:3964

Re0:3
2 � 104 < Re < 2 � 106 (Hermann) (B.43)

For Re > 106 the following equation (Prandtl and Kármán) can be used to determine �:

� =
1

(�0:8 + 2 � 10log [Rep�])2 (B.44)

The value of � can be determined by using an estimate for � on the right hand side of this equation. When

the result differs too much from this estimate, the equation is applied again, but now with the previously

determined � value as the estimate. This is repeated until the computed value of � is sufficiently close

to the estimate. Hermann's equation (B.43) can supply the first estimation.

parameter � for rough surfaces:

Determine � with the equations below when the surface of the pipe is rough.

� =

� 64
Re

Re < 2300; K � 0:07 (Hagen - Poiseuille)
1

(2�10 log [di=K]+1:14)2
fully turbulent flow (see text) (Prandtl and Kármán)

(B.45)

For mixed laminar and turbulent the following equation (Colebrook and White) can be used to determine

�:

� =
1�

�2 � 10log
h

2:51

Re
p
�
+ K=di

3:71

i�2 (B.46)

The value of � can be determined by using an estimate for � on the right hand side of this equation.

When the result differs too much from this estimate, the equation is applied again, but now with the

previously determined � value as the estimate. This is repeated until the computed value of � is close to

the estimate. Prandtl's equation (B.45) can supply the first estimate.

The above scheme can also be used to determine whether Prandtl and Kármáns equation (B.45) can be

used, i.e. whether the flow is fully turbulent. This is the case when the determined � value is close to

the new value given by Eq. (B.46).
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parameter �s for narrowings:

A1 A2

d1

d2

2p1p

V’ V’

S’T

(a)

A1 A2

d1

d2

2p1p

V’ V’

S’T

(b)

α

S’T

1p

V’
A2

d2

2p

V’

(c)

A2

1p

V’
d2

2p

V’

S’T

(d)

s

s

s

For narrowings of the water flow area, determine �s as described below. For all kinds of narrowings,

use di = d2.

sharp narrowing: Take �s = �E from figure 2 on page Lc 1 in (Verein Deutscher Inge-

nieure 1977). Note that fi=fk = A2=A1 and that � depends on Re, so an estimate

has to be made for Re.

gradual narrowing: For gradual narrowings with 20� � � � 40� , use �s = 0:04. For

smooth surfaces and high Re values, �s can be even taken lower.

flow from reservoir: The fluid in the tank is assumed to be at rest. Use �s = �E with

�E from figure 4 on page Lc 1 in (Verein Deutscher Ingenieure 1977).

flow into a bundle of pipes: Use �s = �E with �E from figure 3 on page Lc 1 in (Verein

Deutscher Ingenieure 1977). These values hold for Re > 20000. For laminar flow,

use the values from the flow from reservoir case.
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parameter �s for broadenings:

2p1p
A1 A2

d1

d2

V’ V’

S’T

(a)

2p1p
A2A1

d2

d1

α
V’ V’

S’T

(b)

1p

V’

2p
A1

d1

S’T

(c)

V’

For narrowings of the water flow area, determine �s as described below. For all kinds of narrowings,

use di = d1.

Sharp broadening: For turbulent flow, take �s = (1�A1=A2)
2 .

Gradual broadening: For gradual broadenings use �s = �0(1� A1=A2)
2 with �0 from

figure 8 on page Lc 2 in (Verein Deutscher Ingenieure 1977). Note that �0 has a

minimum for a certain angle �, depending on Re and the roughness of the tube

surface.

Flow to reservoir: Take �s = 1 (turbulent flow).

parameter �s for bends:

d1

p1

V’
p
2

V’

δ

a

T S’

r d1

p1

V’
p
2

V’

δ

a

T S’

(a) (b)

For resistance caused by bends obtain the �s values as described below.

Smooth bends: Use �s = �u from figure 15 on page Lc 5 in (Verein Deutscher Inge-

nieure 1977). These values are for Re > 105. The distance to the next effect that

causes friction over a short length must be more than 10di (a > 10di). When there

is a cascade of smooth bends with � = 90� directly following each other, use figure

17 on page Lc 5 of (Verein Deutscher Ingenieure 1977) to get the �s value for the

whole cascade.

Sharp bends: For sharp bends with � = 90� use the tables in paragraph 7.2 on page

Lc 5 in (Verein Deutscher Ingenieure 1977) (Re > 500). For other angles see

figure figure 18 on page Lc 6 in (Verein Deutscher Ingenieure 1977). For cascades

of sharp bends see figure 19, also on page Lc 6 in (Verein Deutscher Ingenieure

1977).
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parameter �s for splitters and mixers

(a) (b) (c)

For symmetric T and Y splitters and mixers, use figure 12 and table 1 on page Lc 3 in (Verein Deutscher

Ingenieure 1977) to determine �s = �v. For an asymmetric splitter of 90 degrees, use �s = 0:1 for

the main flow resistance and �s = 1 for the flow that is tapped from the main flow. This is according

to figure 13 on page Lc 4 in (Verein Deutscher Ingenieure 1977). For asymmetric splitting with angles

other than 90 degrees and asymmetric mixing, �s depends on the water volume flows too much. This

makes an easy determination of �s impossible.

notes: For non-cylindrical tubes take di = 4Af=s, with Af [m
2] the water flow area and s[m] the

perimeter of Af .

B.5.13 Controlled Hydraulic Resistor

geometry:

p

V’

1

v

p

V’

2

T S’

processes: controlled convection (B.4.12), controlled convection splitting/mixing (B.4.14/B.4.16)

elements:

p21p 1p p2
1

R

p

V’ V’
1

RS

V’ V’

S’

T

p
vv
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relations:

p = p1 � p2 (B.47)

p =
p0

K2
v

V
0jV 0j (B.48)

Kv =

�
K0 + v(K1 �K0) for linear valves

K0e
nv for equipercentual valves

(B.49)

n = ln (K1=K0) (B.50)

S
0

=
pV 0

T
=

p0

TK2
v

jV 0j3 (B.51)

variables:

p[Pa]: pressure difference left-right

p0[Pa]: nominal pressure difference left-right

p1[Pa]: water pressure left

p2[Pa]: water pressure right

V 0[m3s�1]: water volume flow

v[�]: valve position 0 � v � 1; 0 is closed, 1 is opened

Kv[m
3s�1]: water volume flow for p = p0 and position v

K0[m
3s�1]: water volume flow for p = p0 and v = 0

K1[m
3s�1]: water volume flow for p = p0 and v = 1

n[�]: equipercentage number

T [K]: water temperature

S0[WK�1]: entropy flow to water

parameters: The valve manufacturer supplies the values for K0 and K1 or n for a certain p0 value.

Usually this value is p0 = 105Pa. For the controlled mixing/splitting processes, the mixing/splitting

valve is modelled as two valves. The valve controlling the main flow is equipercentual with v = vc and

the one for the bypass is linear with v = 1� vc (see (Recknagel and Sprenger 1979)).

B.5.14 Radiator Resistor

geometry:

T2 2Q’, S’

T1 1Q’, S’

processes: convection with external conduction (B.4.10)
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elements:

T21T
1

R

T

Q’Q’

1T T2

S’1 S’2

1

RS

T

0

S’

relations:

T = T1 � T2 (B.52)

Q
0 =

K

N
T
m

(B.53)

S
0
1 =

Q0

T + T2
=

KTm

N(T + T2)
(B.54)

S0 =
TS01
T2

=
KTm+1

T2(T + T2)N
(B.55)

S
0
2 = S

0
1 + S (B.56)

K =
Wn

Tmn
(B.57)

variables:

T1[K]: water temperature

T2[K]: air temperature

T [K]: temperature difference water-air

Tn[K]: nominal temperature difference water-air

Q0[W ]: heat flow water-air

Wn[W ]: nominal heat flow water-air

S01[WK�1]: entropy out flow water

S02[WK�1]: entropy in flow air

S0[WK�1]: entropy flow produced by transfer process

N [�]: number of segments

K[WK�m]: radiator dependent parameter

m[�]: radiator dependent parameter

parameters: The parameters Tn and Wn are supplied by the radiator manufacturer. In chapter Fb

in (Verein Deutscher Ingenieure 1977), _qn is the Wn value per physicalradiator segment. They use

Tn = 60K andm = 1:30.

notes: Ham (1988) measured that in some cases equation B.57 and the valuem = 1:30 are not accurate.
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B.5.15 Pressure Source

processes: convection through hydraulic source (B.4.11), convective temperature source (B.4.17)

elements:

Se

p

V’

relations:

p = p(t) (B.58)

variables:

t[s] : time parameter

p(t)[K] : supplied pressure

V 0[W ] : volume flow from environment

B.5.16 Pressure Sink

processes: convective temperature sink (B.4.18)

elements:

p

V’
Se

relations:

p = p(t) (B.59)

variables:

t[s] : time parameter

p(t)[K] : external pressure

V 0[W ] : volume flow to environment
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B.5.17 Pressure Reference Source

processes: convection through hydraulic source (B.4.11 *)

elements:

p

V’
Se:0

relations:

p = 0 (B.60)

variables:

p[K] : supplied pressure

V 0[W ] : volume flow from environment

B.5.18 External Conduction Resistor

Flat Geometry

geometry:

Af
Ac

T2 Q’, S’2

p

V’

1T 1Q’, S’

l

processes: convection with external conduction (B.4.10)

elements:

T21T
1

R

T

Q’Q’

V’

1T T2

S’1 S’2

1

RS

T

0

S’V’

relations:

T = T1 � T2 (B.61)

Q
0

= At�T (B.62)

S
0
1 =

Q0

T + T2
=

At�T

T + T2
(B.63)
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S
0 =

TS01
T2

=
At�T

2

T2(T + T2)
(B.64)

S
0
2 = S

0
1 + S

0
(B.65)

� =
�Nu

l
(B.66)

At = l�di (B.67)

Nulam = 0:664
p
Re

3
p
Pr (B.68)

Nuturb =
0:037Re0:8Pr

1 + 2:443Re�0:1(Pr2=3 � 1)
(B.69)

Nu =

8<
:

Nulam Re < 105; 0:6 < Pr < 2000p
Nu2lam +Nu2turb 105 < Re < 5 � 105; 0:6 < Pr < 2000

Nuturb 5 � 105 < Re < 107; 0:6 < Pr < 2000

(B.70)

Re =
V 0l

�Af

=
V 0l�

�Af

(B.71)

Af =
1

4
�d

2
i (B.72)

Pr =
�

a
=

�cp

�
(B.73)

variables:

T [K]: temperature difference water-surface

T1[K]: temperature water

T2[K]: temperature surface

l[m]: length of surface in flow direction

At[m
2]: heat transfer area

V 0[m3s�1]: water volume flow

Af [m
2]: water flow area

�[m2s�1]: kinematic viscosity water

�[kgm�1s�1]: dynamic viscosity water

�[kgm�3]: specific mass water

Nu[�]: Nußel number

Pr[�]: Prandtl number

a[m2s�1] temperature conduction coefficient water

cp[Jkg
�1K�1]: specific heat capacity water at constant pressure

Re[�]: Reynolds number

�[WK�1m�1]: heat conduction coefficient water

�[Wm�2K�1]: heat transfer coefficient water

Q0[W ]: heat flow water to surface

S01[WK�1]: entropy out flow water

S02[WK�1]: entropy in flow surface

S0[WK�1]: entropy flow produced by transfer process

parameters: The values for �, �, �, � and cp depend on the temperature and pressure of the water.

For simulation, they are considered to be constant and can be obtained from the tables in chapter Db in

(Verein Deutscher Ingenieure 1977) (take average temperature and pressure).
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Cylindrical Geometry

geometry:

1T 1Q’, S’
p

V’

T2 Q’, S’2

Af di

l

processes: convection with external conduction (B.4.10)

elements:

T21T
1

R

T

Q’Q’

V’

1T T2

S’1 S’2

1

RS

T

0

S’V’

relations:

T = T1 � T2 (B.74)

Q
0 = At�T (B.75)

S
0
1 =

Q0

T + T2
=

A�T

T + T2
(B.76)

S
0 =

TS01
T2

=
A�T 2

T2(T + T2)
(B.77)

S
0
2 = S

0
1 + S

0
(B.78)

At = l�di (B.79)

� =
�Nu

di
(B.80)

Nu =

8>>><
>>>:

3:65 + 0:19(RePrdi=l)
0:8

1+0:117(RePrdi=l)
0:467 Re < 2300; 0:6 < Pr < 2000

� 3

p
3:663 + 1:613RePrdi=l

�=8(Re�1000)Pr

1+12:7
p

�=8(Pr2=3�1)

�
1 +

�
di
l

�2=3�
2300 < Re < 106; 0:6 < Pr < 2000

(B.81)

� =
1

(1:8210 logRe � 1:64)2
(B.82)

Af =
1

4
�d

2
i (B.83)

Re =
V 0di
�Af

=
V 0di�

�Af

(B.84)

Pr =
�

a
=

�cp

�
(B.85)
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variables:

T [K]: temperature difference water-surface

T1[K]: temperature water

T2[K]: temperature surface

l[m]: length of cylinder

di[m]: inner diameter of cylinder

At[m
2]: heat transfer area

V 0[m3s�1]: water volume flow

�[m2s�1]: kinematic viscosity water

�[kgm�1s�1]: dynamic viscosity water

�[kgm�3]: specific mass water

Nu[�]: Nußel number

Pr[�]: Prandtl number

�[�]: pressure loss factor

a[m2s�1] temperature conduction coefficient water

cp[Jkg
�1K�1]: specific heat capacity water at constant pressure

Re[�]: Reynolds number

Af [m
2]: water flow area

�[WK�1m�1]: heat conduction coefficient water

�[Wm�2K�1]: heat transfer coefficient water

W [W ]: heat flow water to surface

S01[WK�1]: entropy out flow water

S02[WK�1]: entropy in flow surface

S0[WK�1]: entropy flow produced by transfer process

parameters: For non-cylindrical tubes take di = 4Af=s, with Af [m
2] the water flow area and s[m]

the perimeter of Af . The values for �, �, �, � and cp depend on the temperature and pressure of the

water. For simulation, they are considered to be constant and can be obtained from the tables in chapter

Db in (Verein Deutscher Ingenieure 1977) (take average temperature and pressure).

notes: These equations only hold for long pipes, i.e.di=l < 0:1
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B.6 A Large Scale Modelling and Simulation Experiment

B.6.1 Introduction

The OLMECO library is meant to support the compositional modelling of technical systems. To test the

usefulness of this library, large scale modelling experiments have been carried out. In this chapter, the

modelling of a real world thermodynamic system is described. The system that has been modelled is the

heating system of the Schieland Hospital, a hospital in Schiedam, the Netherlands. In this experiment

the model components for the OLMECO library described previously were used. This chapter tries to

find answers to the following questions:

1. How well does the OLMECO library support modelling?

2. Can a real life system be modelled with the thermodynamic model components in Section B.3–

B.5?

The outline of this section is as follows. First, the heating system of the Schieland Hospital will be

described. In section B.6.3 the composition of a simulation model of that system with components

from the OLMECO library will be explained. Before simulation runs can be made, the parameters in

the model have to be determined. This is done in section B.6.4. Two simulation experiments carried

out with the model, are described in section B.6.5. The conclusions of the modelling experiment can be

found in section B.6.6

B.6.2 The Schieland Hospital Heating System

The modelling experiment has been carried out on the Schieland Hospital heating system. This system

has been modelled before by R. Andringa and E. van der Laan and is described in (Andringa and van der

Laan 1991). This work has been done by the firm Kropman B.V., Rijswijk, one of the large building

services company in The Netherlands (see also (Zeiler 1994)). This firm designed and installed the

complete heating system of the Schieland hospital.

In the model of (Andringa and van der Laan 1991), the following simplifications have been incorpo-

rated:

� The heaters and boilers in the system are aggregated into one heater.

� Hot water supply has been left out of the system.

� The many radiator groups in the hospital have been aggregated into just one.

We have chosen to model the same system with the same simplifications for the following reasons:

� To be able to compare the results with (Andringa and van der Laan 1991).

� Because (Andringa and van der Laan 1991) gives a lot of information on the actual Schieland

system.

� Even with the simplifications, the model is a large scale model.
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Some data on the model described in this chapter support this last point:

statistics about the model

19 model components

1 user defined component

18 components from the library

9 component classes from the library

4 decompositions from the library

26 coupled differential equations

� 150 equations

The drawing of the simplified system can be found in Figure B.4. Clearly can be seen that the system

consists of two coupled subsystems: one subsystem around the heater (heater group, abbreviated hg)

and one around the radiator (radiator group or rg).

p0 = 100 kPa
K1 = 100 l/s
n = 3

l = 4 * 0.96 m
h = 0.8 m
V = 4 * 4.2 l
4 * 1391 W

l = 25 m
d = 0.1 m
2 bends of 90 o

rg bypass pipe

l = 100 m
d = 0.1 m
9 bends of 90o

rg return pipe

l = 2 m
d = 0.5 m
2 bends of 90o

hg bypass pipehg pump

60 kPa

rg pump

100 kPal = 150 m
d = 0.2 m
9 bends of 90 o

rg supply pipe

radiator

l = 1 m
d = 0.05 m
no bends

rg pipe

60 kW
on: 70 C
off: 80 C

o

o

hg splitter

hg mixer

heater

rg splitterrg mixing valve

Figure B.4: The simplified Schieland Hospital heating system.

B.6.3 The Model

From Figure B.4, a model was constructed using component types from the OLMECO library. This

model can be found in Figure B.5. For most components in the system the choice from the library

is pretty straightforward. For the modelling decisions that were not so obvious, this section gives an

explanation. But first the way that Figure B.5 has to be read needs further attention.

Because the model editor that was used to build the model lacks the concept of components, so word

bond graphs had to be used to mimic components. In that sense, Figure B.5 gives the component

structure of the system. The components in the system are the ovals which are in fact `misused' word

bond graphs. For simple components, i.e. components which are not composed out of subcomponents,

the upper label printed inside the oval is a label that identifies a process descriptionin the OLMECO

library that models the behaviour of the component. The lower label inside an oval is an abbreviation
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Figure B.5: Top level of the Schieland model.

of the model component name. For instance, the model component Heater Group Bypass Pipe has label

HGBPipe. Table B.20 lists all simple components in the model together with the type of the component,

a label that identifies this component type in the library, the primary and secondary processes that model

the behaviour of the component and a label that identifies the process description in the library.

For complex components, the lower label in the oval is the model component name. The upper label

is the name of a sub bond graph that is (mis)used to show the way the complex component is built

out of its subcomponents, just like the bond graph in Figure B.5 gives the component structure of

the system. Table B.21 lists the complex model components, their library component type, the model

names of the subcomponents and the label identifying the decomposition in the library that was used.

The subcomponents that are atomic (simple) can be found in table B.20.

Now that Figure B.5 is explained the modelling decisions can be given some attention.

At the bond graph level, pseudo thermal process descriptions are used. For process descriptions that are

not in the library, bond graphs are given here. For bond graphs of the standard library process descrip-

tions the reader is referred to the previous chapters. In all submodels used, no internal conduction is

present. Furthermore, it is assumed that, except for the radiator, there is no heat loss to the environment.

Hydraulic inertance is modelled for those components that contain a lot of water, i.e. the convection

pipe components. This enables to simulate the acceleration of the water when the pumps are switched

on. In other submodels, hydraulic inertance is neglected.

Hydraulic inertance is modelled mathematically with the linear equation V 0 = 1
I

R
p dt with volume

flow V 0 and pressure p. The mathematical relation for hydraulic resistance is p = RhV
0jV 0j. Section

B.6.4 discusses the way Rh can be determined and the validity of this relation.
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component type component modelled process
label processes label

HG Pump Pump Pump.1 Conv. through a Hydr. Source CHySrc.5
reference pressure

Heater.HSource Heat Source HSource.1 Temperature Source ESource.1
Heater.HPipe Pipe w. Ext. Cond. PipeEC.1 Conv. thr. a Pipe w. Ext. Cond. ConvEC.5

hydraulic inertance
HG Splitter Splitter Splitter.1 Convection Splitting CSplit.1
HG Bypass Pipe Pipe Pipe.1 Convection through a Pipe Conv.5

hydraulic inertance
HG Mixer Mixer Mixer.1 Convection Mixing CMix.1

RG Supply Pipe Pipe Pipe.1 Convection through a Pipe Conv.5
hydraulic inertance

RG Mixing Valve Controlled Mixer CMixer.1 Controlled Convection Mixing CCMix.1
RG Pipe Pipe Pipe.1 Convection through a Pipe Conv.5

hydraulic inertance
RG Pump Pump Pump.1 Conv. through a Hydr. Source CHySrc.1
Radiator.Left.Seg 1 Pipe w. Ext. Cond. PipeEC.1 Conv. thr. a Pipe w. Ext. Cond. ConvEC.13

hydraulic inertance
transfer resistance

Radiator.Left.Seg 2 Pipe w. Ext. Cond. PipeEC.1 Conv. thr. a Pipe w. Ext. Cond. ConvEC.13
hydraulic inertance
transfer resistance

Radiator.Right.Seg 1 Pipe w. Ext. Cond. PipeEC.1 Conv. thr. a Pipe w. Ext. Cond. ConvEC.13
hydraulic inertance

transfer resistance
Radiator.Right.Seg 2 Pipe w. Ext. Cond. PipeEC.1 Conv. thr. a Pipe w. Ext. Cond. ConvEC.13

hydraulic inertance
transfer resistance

Room Heat Sink HSink.1 Temperature Sink TSink.1

RG Splitter Splitter Splitter.1 Convection Splitting CSplit.1
RG Bypass Pipe Pipe Pipe.1 Convection through a Pipe Conv.5

hydraulic inertance
RG Return Pipe Pipe Pipe.1 Convection through a Pipe Conv.5

hydraulic inertance

Table B.20: Simple model components: the columns give 1) the name of the component

as used (abbreviated) in the model, 2) the component type from the library, 3) the library

label of the component type, 4) the modelled processes and 5) the library label of the process

description of the component.

component type subcomponents decomposition label

Heater Closed Syst. Heater HSource, HPipe CSHeater.2

Radiator Pipe w. Ext. Cond. Left, Right PipeEC.2

Radiator.Left Pipe w. Ext. Cond. Seg 1, Seg 2 PipeEC.2

Radiator.Right Pipe w. Ext. Cond. Seg 1, Seg 2 PipeEC.2

Table B.21: Complex model components: the columns give 1) the model component name,

2) the component type from the library, 3) the subcomponent names in the model and 4) the

library label of the decomposition.
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Figure B.6: Decomposition of the heater (left) and the heat source of the heater (right).

Splitters and Mixers The splitters and mixers connect pipes with different diameters. One possi-

bility is to model the required narrowings and broadenings as short pipe segments with high hydraulic

resistance. In this experiment however, the changes of diameter are viewed to be part of the splitters

and mixers. This means that there are no separate narrowing or broadening pipe segments and that the

friction is incorporated into the bond graphs for the mixers and splitters.

Pumps For the pumps in the heater and radiator groups, not surprisingly, the pump component was

chosen. More interesting is the fact that, for the heater group pump, a bond graph with a reference

pressure source was required to make simulation possible.

Heater The heater is a closed system heater component which is decomposed into a pipe with ex-

ternal conduction component and a heat source (Figure B.6). The pipe is 20m long, has a diameter

of 0:1m and has 50 bends of 180 degrees. Because the heat source connected to the heater pipe is

modelled as a controlled energy source (MSf), there is no need to model heat conduction in the heater

pipe or the heat transfer from the pipe to the water. Therefore, no transfer resistance element is present

in the bond graph. The bond graph of the heat source (Figure B.6) is an adapted version of the entropy

source process description in the library. It is a modulated flow source which supplies a constant flow

of energy when the temperature drops below a certain low temperature value. It is switched off as soon

as the temperature reaches some higher temperature value.

Radiator Group Mixing Valve The radiator group mixing valve is modelled with a controlled

mixer component. At the mathematical relation level, one modulated hydraulic resistance has an expo-

nential (or equipercentual) equation and the other a linear one. The constitutive relation for controlled

valves (Recknagel and Sprenger 1979) is given below. The value of v defines the state of the valve and

can vary from 0:0 to 1:0: from fully closed to fully open. The parameters K0 and K1 are the volume

flows through the valve at p = p0 and v = 0 and v = 1, respectively.

p =
p0

K2
v

V jV 0j

Kv =

�
K0 + v(K1 �K0) for linear valves

K0e
nv for exponential valves

n = ln (K1=K0)
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In order to prevent undue complexity of the model it is assumed that pressure losses due to the narrow-

ings and broadenings in the flow paths are included in the valve characteristics. The control signal is

taken from a specially constructed submodel (Figure B.7) which has a step output signal.

Figure B.7: The submodel of the radiator group mixing-valve controller.

Radiator According to (Ham 1988), the heat flow W from a radiator to the air can be determined

with:

W = KT
m
;

where T is the average temperature difference between the water and the air and m and K radiator

dependent parameters. The parameterK is defined as

K =
Wn

Tmn
;

where Wn is the heat flow at a nominal average temperature difference Tn. Usually Tn = 60K and

m = 1:30 are good values. In the Schieland model, not the average temperature difference of the whole

radiator is used, but instead the radiator is divided in N segments each causing a heat flow defined by:

Wi =
K

N
T
m
i :

The radiator is a pipe with external conduction connected to a heat source modelling the room. The

pipe is decomposed twice (Figure B.8). Thus, the radiator is split into four radiator segments. The bond

graphs of these segments include hydraulic inertance and a transfer resistance, with the mathematical

relation above. The heat sink has a temperature source as process description. This source supplies the

room temperature, which is assumed to be constant.

Figure B.8: First and second-level decomposition of the radiator.
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B.6.4 Determination of the Model Parameters

Basic calculations

The calculations to obtain numerical values for the model parameters are not very difficult but, be-

cause many parameters need to be determined, requires a lot of work. From geometric data from the

components, and characteristic values for water, air and the materials the components are made of, the

parameters can be computed. In the ideal case, the library contains the parameter relations to do so and

a modelling tool is able to obtain the geometric data and characteristic values from CAD drawings and

databases. At present, the OLMECO library has the ability to store parameter relations, but unfortunately

the modelling tool cannot work with them. Therefore, the parameters had to be determined by hand.

Because many components in the model are modelled as combinations of pipe segments, it is not very

surprising that the component parameters depend on the parameters of these pipe segments. For in-

stance, the heat capacity of a splitter is the sum of the heat capacity of the pipe segment where the water

flows into the splitter, and of the capacities of the two pipes where water can leave the splitter. To facil-

itate and speed up the determination of the model parameters, utilities have been written that determine

the parameters of the pipe segments. The utilities are pipe, ncpipe, short, narrow and broad.

They are short programs written in C that take input values from the command line and output a table

of the parameters of the segment which can be directly included in a LATEXdocument. In the paragraphs

below, these utilities are described.

The pipe utility The utility pipe computes parameters of a cylindrical pipe segment. Table B.22

shows the input values and the relations that are used.

The water flow area and water volume are calculated with the usual geometric relations. With formulas

(1) and (9) on page Lb1 and (1) on page Lc1 in (Verein Deutscher Ingenieure 1977), the hydro-kinetic

parameters are determined. The specific mass of water is assumed to be constant and is estimated to be

988kg m�3 (table 2 on page Db1 in (Verein Deutscher Ingenieure 1977)). The hydraulic resistanceRh

is used in the model to relate pressure p to volume flow V 0 according to

p = RhV
0jV 0j:

This relation holds for fully turbulent flow. To determine whether this assumption holds, an iterative

method for relation (10) on page Lb3 in (Verein Deutscher Ingenieure 1977) can be used to determine

a more accurate value for � (see table B.22). If this new value is close to the value computed by pipe,

the flow is fully turbulent. Unfortunately, the simulator offers no facilities to check this. Roughness

factors can be obtained from table 1 on page Lb3 in (Verein Deutscher Ingenieure 1977). A Bernoulli

resistance factor can be specified to account for bends in the pipe or other reasons for loss of pressure

such as flow into, or out of a reservoir, splitting/mixing losses, valves etc. (see chapter Lc in (Verein

Deutscher Ingenieure 1977)).

The hydro-thermal parameters that are computed relate to the following equations for heat storage:

T =

�
Q=C; Q =

R t
0
Q0dt +Q0; pseudo thermal

T0e
S=C; S =

R t
0
S0dt+ S0; thermodynamic

The parameters can be computed with the specific heat capacity c and the heat conduction coefficient

� of water. In these calculations, the influence of the material of the pipe on the heat storage and
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conduction are neglected. Tables 1 and 7 in (Verein Deutscher Ingenieure 1977) chapter Db were used

to estimate c to 4:18 � 103J K�1 and � to 0:66W K�1 m�1 . Note that these values are considered

to be constant although in reality they depend on temperature and pressure.

Long cylindrical pipe

geometry:

length l input value m

inner diameter di input value m

flow area A = 1
4
�d2i m2

volume V = lA m3

hydro kinetic:

mass m = �V kg

inertance I = �l

A
kg m4

roughness pipe surface K input value

resistance factor � = 1

[2�10 log(di=K)+1:14]2

bernoulli resistance factor �s input value

hydraulic resistance Rh = (� l
di

+ �s)
�

2A2
Pa2 m�6

hydro thermal:

heat capacity C = mc J K�1

initial temperature T0 input value K

initially stored heat Q0 = CT J

initially stored entropy S0 = C J K�1

thermal resistance Rt = l
�A

K W�1

Table B.22: Computation of parameters of long cylindrical pipes.

The ncpipe utility This utility works the same as pipe with one exception. The hydraulic

diameter dh is used instead of di, and is determined from the flow area A, which is now an input

value, and s, the perimeter of the flow area. This way, the parameters for non cylindrical pipes can be

calculated. The parameters are only valid for turbulent water flow.

The short utility The utility short computes parameters of a cylindrical pipe where the hy-

draulic resistance is caused by an effect that occurs in a short segment of a pipe. This is called a

Bernoulli resistance. Examples of Bernoulli resistances are resistances caused by bends, or other rea-

sons for loss of pressure such as flow into, or out of a reservoir, splitting/mixing losses, valves etc. (see

chapter Lc in (Verein Deutscher Ingenieure 1977)). The mathematical relations are the same as those

of the pipe utility when � is assumed to be zero. Figure B.24 shows the input values and the relations

which are used.

The broad utility The utility broad computes parameters of a cylindrical pipe which has a sharp

broadening. The water is assumed to flow from the narrow to the broad part of the pipe. The equation

used is (6) on page Lc2 in (Verein Deutscher Ingenieure 1977) which is valid for turbulent flow.

The narrow utility The utility narrow computes parameters of a cylindrical pipe which has a

sharp narrowing. The water is assumed to flow from the broad to the narrow part of the pipe. The
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Long noncylindrical pipe

geometry:

length l input value m

flow area A input value m2

perimeter flow area s input value m

hydraulic diameter dh = 4A
s

m

volume V = lA m3

hydro kinetic:

mass m = �V kg

inertance I = �l

A
kg m4

roughness pipe surface K input value

resistance factor � = 1

[2�10 log(dh=K)+1:14]2

bernoulli resistance factor �s input value

hydraulic resistance Rh = (� l
dh

+ �s)
�

2A2
Pa2 m�6

hydro thermal:

heat capacity C =mc J K�1

temperature T0 input value K

initially stored heat Q0 = CT J

initially stored entropy S0 = C J K�1

thermal resistance Rt = l
�A

K W�1

Table B.23: Computation of parameters of long noncylindrical pipes.

Short cylindrical pipe

geometry:

length l input value m

inner diameter di input value m

flow area A = 1
4
�d2i m2

volume V = lA m3

hydro kinetic:

mass m = �V kg

inertance I = �l

A
kg m4

bernoulli resistance factor �s input value

hydraulic resistance Rh = �s
�

2A2 Pa2 m�6

hydro thermal:

heat capacity C = mc J K�1

initial temperature T0 input value K

initially stored heat Q0 = CT J

initially stored entropy S0 = C J K�1

thermal resistance Rt = l
�A

K W�1

Table B.24: Computation of parameters of short cylindrical pipes.
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Sharply broadening short cylindrical pipe

geometry:

length narrow part l1 input value m

inner diameter narrow part d1 input value m

flow area narrow part A1 = 1
4
�d21 m2

length broad part l2 input value m

inner diameter broad part d2 input value m

flow area broad part A2 = 1
4
�d22 m2

volume V = l1A1 + l2A2 m3

hydro kinetic:

mass m = �V kg

inertance I = �l1
A1

+ �l2
A2

kg m4

bernoulli resistance factor �s = (1�A1=A2)
2

hydraulic resistance Rh = �s
�

2A2

1

Pa2 m�6

hydro thermal:

heat capacity C =mc J K�1

initial temperature T0 input value K

initially stored heat Q0 = CT J

initially stored entropy S0 = C J K�1

Table B.25: Computation of parameters of sharply broadening short cylindrical pipes.

equation used is derived from Figure!2 on page Lc1 of (Verein Deutscher Ingenieure 1977) and is valid

for Reynolds numbers of about 104 (in the narrow part).

Determination of the Model Parameters

Three assumptions have been made in the determination of the parameters:

� Where heat capacities and initially stored heat had to be determined, the heat capacity of the

water only was calculated. The capacity of the material of the various components was not taken

into account.

� Initial temperatures were assumed to be 293K (= 20� C , x� C � x+ 273 K).

� Initial water volume flows were assumed to be zero.

Heater Group Pump The heater group pump is modelled with the convection hydraulic source

submodel with a reference pressure. The pressure of the incoming water (reference) is defined to be

0Pa. The pump increases this pressure by 40 � 103Pa. The pump is assumed to be ideal, i.e. there is

no hydraulic resistance. The heat capacity of a 0:3m long tube with di = 0:1m serves as an of estimate

for the heat capacity of the pump (see table B.27).

Heater The heater can supply 60kW of heat at a maximum water temperature of 353K . It is mod-

elled as a temperature source connected to a convection pipe with external conduction. The pipe is

20m long and has di = 0:1m and do = 0:12m. The inner surface has a roughness factor of 0:05
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Sharply narrowing short cylindrical pipe

geometry:

length broad part l1 input value m

inner diameter broad part d1 input value m

flow area broad part A1 = 1
4
�d21 m2

length narrow part l2 input value m

inner diameter narrow part d2 input value m

flow area narrow part A2 = 1
4
�d22 m2

volume V = l1A1 + l2A2 m3

hydro kinetic:

mass m = �V kg

inertance I = �l1
A1

+ �l2
A2

kg m4

bernoulli resistance factor �s = 0:5� 0:4A2=A1

hydraulic resistance Rh = �s
�

2A2

2

Pa2 m�6

hydro thermal:

heat capacity C = mc J K�1

initial temperature T0 input value K

initially stored heat Q0 = CT J

initially stored entropy S0 = C J K�1

Table B.26: Computation of parameters of sharply narrowing short cylindrical pipes.

Short cylindrical pipe

geometry:

length l = 3:000000e � 01 m

inner diameter di = 1:000000e � 01 m

flow area A = 7:853982e � 03 m2

volume V = 2:356194e � 03 m3

hydro kinetic:

mass m = 2:327920e + 00 kg

inertance I = 3:773882e + 04 kg m4

bernoulli resistance factor �s = 0:000000e + 00

hydraulic resistance Rh = 0:000000e + 00 Pa2 m�6

hydro thermal:

heat capacity C = 9:730706e + 03 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 2:851097e + 06 J

initially stored entropy S0 = 9:730706e + 03 J K�1

thermal resistance Rt = 5:787452e + 01 K W�1

Table B.27: Parameters of the heater group pump.
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(table 1, page Lb3 in (Verein Deutscher Ingenieure 1977)). The pipe has 50 sharp bends of 180 degrees.

Each bend accounts for a Bernoulli resistance factor of 0:3 (Figure 15, page Lc5 in (Verein Deutscher

Ingenieure 1977)). Table B.28 shows the parameters computed.

Long cylindrical pipe

geometry:

length l = 2:000000e + 01 m

inner diameter di = 1:000000e � 01 m

flow area A = 7:853982e � 03 m2

volume V = 1:570796e � 01 m3

hydro kinetic:

mass m = 1:551947e + 02 kg

inertance I = 2:515921e + 06 kg m4

roughness pipe surface K = 5:000000e � 02

resistance factor � = 3:295139e � 01

bernoulli resistance factor �s = 1:500000e + 01

hydraulic resistance Rh = 6:479040e + 08 Pa2 m�6

hydro thermal:

heat capacity C = 6:487138e + 05 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 1:900731e + 08 J

initially stored entropy S0 = 6:487138e + 05 J K�1

thermal resistance Rt = 3:858302e + 03 K W�1

Table B.28: Parameters of the heater pipe.

The parameters of the heat source are a constant minimum temperature below which the heater is

switched on (343K), the heat flow when the heater is off (0W ), the heat flow when it is on (60kW ),

a 'dead zone' (0K), and a value for the hysteresis. This value determines the temperature at which the

heater is switched off again and must be the switch-off temperature minus the switch-on temperature

(353� 343 = 10K).

Heater Group Splitter This splitter has one inflow with di = 0:1m, one outflow to the radiator

group supply pipe with di = 0:2m and another outflow to the heater bypass pipe with di = 0:5m. It

is modelled with a convection splitter model. To estimate the heat capacity of the splitter, the capacity

of a pipe with l = 0:1m, di = 0:1m is added to the capacity of a pipe with l = 0:1m with a

sharp broadening from di = 0:1 to 0:2m in the middle and a pipe with l = 0:1m with a sharp

broadening from di = 0:1 to 0:5m in the middle. This gives 53518:881J K�1 for the heat capacity

and 15681029:6J for the stored heat.

To determine the two hydraulic resistances of the splitter, the resistance of a splitter with di = 0:1m
is calculated with the short utility (table B.29). The Bernoulli splitting resistance factor is estimated

with table 1 on page Lc3 in (Verein Deutscher Ingenieure 1977) at 0:03. This resistance is added to

the resistance of each of the sharp broadenings, obtained with the broad utility (table B.30 and B.31).

This gives 4744992:8Pa2 m�6 for the heater to supply pipe resistance and 7620818:8Pa2 m�6 for

the heater to heater bypass pipe resistance.
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Short cylindrical pipe

geometry:

length l = 1:000000e � 01 m

inner diameter di = 1:000000e � 01 m

flow area A = 7:853982e � 03 m2

volume V = 7:853982e � 04 m3

hydro kinetic:

mass m = 7:759734e � 01 kg

inertance I = 1:257961e + 04 kg m4

bernoulli resistance factor �s = 3:000000e � 02

hydraulic resistance Rh = 2:402528e + 05 Pa2 m�6

hydro thermal:

heat capacity C = 3:243569e + 03 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 9:503656e + 05 J

initially stored entropy S0 = 3:243569e + 03 J K�1

thermal resistance Rt = 1:929151e + 01 K W�1

Table B.29: Parameters of the heater group splitter (i).

Sharply broadening short cylindrical pipe

geometry:

length narrow part l1 = 5:000000e � 02 m

inner diameter narrow part d1 = 1:000000e � 01 m

flow area narrow part A1 = 7:853982e � 03 m2

length broad part l2 = 5:000000e � 02 m

inner diameter broad part d2 = 2:000000e � 01 m

flow area broad part A2 = 3:141593e � 02 m2

volume V = 1:963495e � 03 m3

hydro kinetic:

mass m = 1:939933e + 00 kg

inertance I = 7:862254e + 03 kg m4

bernoulli resistance factor �s = 5:625000e � 01

hydraulic resistance Rh = 4:504740e + 06 Pa2 m�6

hydro thermal:

heat capacity C = 8:108922e + 03 J K�1

initial temperature T0 = 2:930000e+ 02 K

initially stored heat Q0 = 2:375914e + 06 J

initially stored entropy S0 = 8:108922e + 03 J K�1

Table B.30: Parameters of the heater group splitter (ii).
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Sharply broadening short cylindrical pipe

geometry:

length narrow part l1 = 5:000000e � 02 m

inner diameter narrow part d1 = 1:000000e � 01 m

flow area narrow part A1 = 7:853982e � 03 m2

length broad part l2 = 5:000000e � 02 m

inner diameter broad part d2 = 5:000000e � 01 m

flow area broad part A2 = 1:963495e � 01 m2

volume V = 1:021018e � 02 m3

hydro kinetic:

mass m = 1:008765e + 01 kg

inertance I = 6:541395e + 03 kg m4

bernoulli resistance factor �s = 9:216000e � 01
hydraulic resistance Rh = 7:380566e + 06 Pa2 m�6

hydro thermal:

heat capacity C = 4:216639e + 04 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 1:235475e + 07 J

initially stored entropy S0 = 4:216639e + 04 J K�1

Table B.31: Parameters of the heater group splitter (iii).

Heater Group Bypass Pipe This is a 2m long pipe with di = 0:5m and two sharp bends each

accounting for �s = 2:2 (section 7.2, page Lc5 in (Verein Deutscher Ingenieure 1977)). The roughness

is again estimated at 0:05. The parameter values can be found in table B.32.

Heater Group Mixer The heater group mixer has one inflow from the radiator group return pipe

with di = 0:1m, one from the heater group bypass pipe with di = 0:5m, and an outflow with di = 0:1.

It is modelled with a convection mixer submodel. The heat capacity and the initially stored heat are

obtained by addition of the parameters from one of the inflow pipes to one half of the capacity of the

outflow pipe. For the radiator group return pipe to heater group pump flow this means that the capacity

is one and a half times the capacity of a 0:1m long pipe with di = 0:1m (table B.33). This gives

4865:3535J K�1 for the heat capacity and 1425548:40J for the initially stored heat. For the heater

group bypass pipe to heater group pump flow this means that one half of the values for a 0:1m long

pipe with di = 0:1m (table B.33) has to be added to the parameters of a 0:1m long pipe with a sharp

narrowing in the middle from di = 0:5 to 0:1m (table B.34). This gives 43788:1745J K�1 for the

heat capacity and 12829932:80J for the stored heat.

The hydraulic resistance from the radiator group return pipe to the heater group pump consists only of

the mixing resistance computed by short (table B.33) with �s = 0:075 (table 1 on page Lc3 of (Verein

Deutscher Ingenieure 1977)). Its value is 600632:0Pa2 m�6. The narrowing resistance displayed in

table B.34 is added to this to obtain the resistance from the heater group bypass pipe to the heater group

pump. This value is 4476710:0Pa2 m�6.

Radiator Group Supply Pipe This is a 150m long pipe with di = 0:2m and 9 sharp bends

each accounting for �s = 1:8 (section 7.2 on page Lc5 in (Verein Deutscher Ingenieure 1977)). The

roughness is again estimated at 0:05. See table B.35 for the results.
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Long cylindrical pipe

geometry:

length l = 2:000000e + 00 m

inner diameter di = 5:000000e � 01 m

flow area A = 1:963495e � 01 m2

volume V = 3:926991e � 01 m3

hydro kinetic:

mass m = 3:879867e + 02 kg

inertance I = 1:006369e + 04 kg m4

roughness pipe surface K = 5:000000e � 02

resistance factor � = 1:014240e � 01
bernoulli resistance factor �s = 4:400000e + 00

hydraulic resistance Rh = 6:157770e + 04 Pa2 m�6

hydro thermal:

heat capacity C = 1:621784e + 06 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 4:751828e + 08 J

initially stored entropy S0 = 1:621784e + 06 J K�1

thermal resistance Rt = 1:543321e + 01 K W�1

Table B.32: Parameters of the heater group bypass pipe.

Short cylindrical pipe

geometry:

length l = 1:000000e � 01 m

inner diameter di = 1:000000e � 01 m

flow area A = 7:853982e � 03 m2

volume V = 7:853982e � 04 m3

hydro kinetic:

mass m = 7:759734e � 01 kg

inertance I = 1:257961e + 04 kg m4

bernoulli resistance factor �s = 7:500000e � 02

hydraulic resistance Rh = 6:006320e + 05 Pa2 m�6

hydro thermal:

heat capacity C = 3:243569e + 03 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 9:503656e + 05 J

initially stored entropy S0 = 3:243569e + 03 J K�1

thermal resistance Rt = 1:929151e + 01 K W�1

Table B.33: Parameters of the heater group mixer (i).
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Sharply narrowing short cylindrical pipe

geometry:

length broad part l1 = 5:000000e � 02 m

inner diameter broad part d1 = 5:000000e � 01 m

flow area broad part A1 = 1:963495e � 01 m2

length narrow part l2 = 5:000000e � 02 m

inner diameter narrow part d2 = 1:000000e � 01 m

flow area narrow part A2 = 7:853982e � 03 m2

volume V = 1:021018e � 02 m3

hydro kinetic:

mass m = 1:008765e + 01 kg

inertance I = 6:541395e + 03 kg m4

bernoulli resistance factor �s = 4:840000e � 01

hydraulic resistance Rh = 3:876078e + 06 Pa2 m�6

hydro thermal:

heat capacity C = 4:216639e + 04 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 1:235475e + 07 J

initially stored entropy S0 = 4:216639e + 04 J K�1

Table B.34: Parameters of the heater group mixer (ii).

Long cylindrical pipe

geometry:

length l = 1:500000e + 02 m

inner diameter di = 2:000000e � 01 m

flow area A = 3:141593e � 02 m2

volume V = 4:712389e + 00 m3

hydro kinetic:

mass m = 4:655840e + 03 kg

inertance I = 4:717353e + 06 kg m4

roughness pipe surface K = 5:000000e � 02

resistance factor � = 1:819870e � 01

bernoulli resistance factor �s = 1:620000e + 01

hydraulic resistance Rh = 7:642553e + 07 Pa2 m�6

hydro thermal:

heat capacity C = 1:946141e + 07 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 5:702194e + 09 J

initially stored entropy S0 = 1:946141e + 07 J K�1

thermal resistance Rt = 7:234316e + 03 K W�1

Table B.35: Parameters of the radiator group supply pipe.
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Radiator Group Mixing Valve This valve is modelled with a controlled mixer model in which

the mixing valve is considered a convection mixer with two coupled controlled valves at the in flows.

To estimate the two heat capacities of the mixing valve, the capacity of a 0:1m long pipe with di = 0:1

(table B.36) is multiplied by 1:5. This gives 4865:3535 for the heat capacities and 1425548:40 for the

stored heat parameters.

Short cylindrical pipe

geometry:

length l = 1:000000e � 01 m

inner diameter di = 1:000000e � 01 m

flow area A = 7:853982e � 03 m2

volume V = 7:853982e � 04 m3

hydro kinetic:

mass m = 7:759734e � 01 kg

inertance I = 1:257961e + 04 kg m4

bernoulli resistance factor �s = 0:000000e + 00

hydraulic resistance Rh = 0:000000e + 00 Pa2 m�6

hydro thermal:

heat capacity C = 3:243569e + 03 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 9:503656e + 05 J

initially stored entropy S0 = 3:243569e + 03 J K�1

thermal resistance Rt = 1:929151e + 01 K W�1

Table B.36: Parameters of the radiator group mixing valve.

For the valve of the Schieland Heating System is given that p0 = 105Pa, K1 = 0:1m3 s�1 and n = 3.

With these values K0 can be determined: 4:978706838 � 10�3m3 s�1. The hydraulic resistance

from the radiator group supply pipe to the radiator group pipe is exponential and controlled by v = vc
whereas the resistance from the radiator group bypass pipe to the radiator group pipe is linear and has

v = 1� vc. The radiator group control submodel defines vc to be 0:2 for t < 20s and 0:8 for t � 20s.

Radiator Group Pump The radiator group pump is modelled with the pump submodel, which

assumes the pump to be ideal, i.e. there is no hydraulic resistance. The pump increases the pressure of

the incoming water with 100� 103Pa. The heat capacity of a 0:3m long tube with di = 0:1m (table

B.37) serves as an of estimate of the heat capacity of the pump.

Radiator Group Pipe This is a 1m long straight pipe with di = 0:05m. The roughness is again

estimated at 0:05. See the results in table B.38.

Radiator The parameters of the radiator are calculated with the information given by Ham in (Ham

1988). He lists the parameters of radiators he measured in experiments. The radiator in the Schieland

system is much bigger than any of the radiators he mentions. Therefore, the parameters he measured

for the radiator R2 are used here as the parameters for a radiator segment. Thus the valuesm = 1:3 and

K = 1391=601:3 = 6:7878299 are obtained.
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Short cylindrical pipe

geometry:

length l = 3:000000e � 01 m

inner diameter di = 5:000000e � 02 m

flow area A = 1:963495e � 03 m2

volume V = 5:890486e � 04 m3

hydro kinetic:

mass m = 5:819800e � 01 kg

inertance I = 1:509553e + 05 kg m4

bernoulli resistance factor �s = 0:000000e + 00

hydraulic resistance Rh = 0:000000e + 00 Pa2 m�6

hydro thermal:

heat capacity C = 2:432677e + 03 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 7:127742e + 05 J

initially stored entropy S0 = 2:432677e + 03 J K�1

thermal resistance Rt = 2:314981e + 02 K W�1

Table B.37: Parameters of the radiator group pump.

Long cylindrical pipe

geometry:

length l = 1:000000e + 00 m

inner diameter di = 5:000000e � 02 m

flow area A = 1:963495e � 03 m2

volume V = 1:963495e � 03 m3

hydro kinetic:

mass m = 1:939933e + 00 kg

inertance I = 5:031843e + 05 kg m4

roughness pipe surface K = 5:000000e � 02

resistance factor � = 7:694675e � 01

hydraulic resistance Rh = 1:971912e + 09 Pa2 m�6

hydro thermal:

heat capacity C = 8:108922e + 03 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 2:375914e + 06 J

initially stored entropy S0 = 8:108922e + 03 J K�1

thermal resistance Rt = 7:716603e + 02 K W�1

Table B.38: Parameters of the radiator group pipe.
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The heat capacities and hydraulic resistances are determined as follows. From (Ham 1988) we know that

each segment contains 4:2l water. This implies that the water flow area is V=l = 4:2� 10�3=0:96 =

0:004375m2 . Assuming that the water flow area is rectangular, the depth of the radiator and the perime-

ter of the flow area can be determined: d = A=h = 0:00546875m and s = 2h + 2d = 1:6109375m.

This data can be fed into ncpipe (roughness 0:05) which then outputs the required parameters (table

B.40).

For the two segments in the middle, the hydraulic resistance from table B.40 can be used. For the first

and the last segments, the resistance caused by the in- and outflow has to be added. The inflow resistance

is calculated with the short utility (table B.40) with di = 0:05m and �s = 1 according equation (6)

on page Lc2 in (Verein Deutscher Ingenieure 1977). The outflow resistance is determined in the same

way (table B.41) but with �s = 0:25 from table 4 on page Lc1 in (Verein Deutscher Ingenieure 1977).

Summarizing, the resistances of the segments are given in table B.39.

segment Rh[Pa
2 m�6]

Radiator.Left.Seg 1 66039054800

Radiator.Left.Seg 2 65910920000

Radiator.Right.Seg 1 65910920000

Radiator.Right.Seg 2 65942953710

Table B.39: Summary of segment resistance parameters.

Long noncylindrical pipe

geometry:

length l = 9:600000e � 01 m

flow area A = 4:375000e � 03 m2

perimeter flow area s = 1:610937e+ 00 m

hydraulic diameter dh = 1:086324e � 02 m

volume V = 4:200000e � 03 m3

hydro kinetic:

mass m = 4:149600e + 00 kg

inertance I = 2:167954e + 05 kg m4

roughness pipe surface K = 5:000000e� 02

resistance factor � = 2:889846e + 01

hydraulic resistance Rh = 6:591092e + 10 Pa2 m�6

hydro thermal:

heat capacity C = 1:734533e + 04 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 5:082181e + 06 J

initially stored entropy S0 = 1:734533e+ 04 J K�1

thermal resistance Rt = 3:324675e + 02 K W�1

Table B.40: Parameters of a radiator segment (i).

Radiator Group Splitter The determination of the parameters for the radiator group splitter is

analogous to the heater group splitter. Here, the splitter has one inflow with di = 0:05m, one outflow

to the radiator group return pipe with di = 0:1m and another outflow to the radiator bypass pipe,
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Short cylindrical pipe

geometry:

length l = 1:000000e � 01 m

inner diameter di = 5:000000e � 02 m

flow area A = 1:963495e � 03 m2

volume V = 1:963495e � 04 m3

hydro kinetic:

mass m = 1:939933e � 01 kg

inertance I = 5:031843e + 04 kg m4

bernoulli resistance factor �s = 1:000000e + 00

hydraulic resistance Rh = 1:281348e + 08 Pa2 m�6

hydro thermal:

heat capacity C = 8:108922e + 02 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 2:375914e + 05 J

initially stored entropy S0 = 8:108922e + 02 J K�1

thermal resistance Rt = 7:716603e + 01 K W�1

Table B.41: Parameters of a radiator segment (ii).

Short cylindrical pipe

geometry:

length l = 1:000000e � 01 m

inner diameter di = 5:000000e � 02 m

flow area A = 1:963495e � 03 m2

volume V = 1:963495e � 04 m3

hydro kinetic:

mass m = 1:939933e � 01 kg

inertance I = 5:031843e + 04 kg m4

bernoulli resistance factor �s = 2:500000e � 01

hydraulic resistance Rh = 3:203371e + 07 Pa2 m�6

hydro thermal:

heat capacity C = 8:108922e + 02 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 2:375914e + 05 J

initially stored entropy S0 = 8:108922e + 02 J K�1

thermal resistance Rt = 7:716603e + 01 K W�1

Table B.42: Parameters of a radiator segment (iii).
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also with di = 0:1m. It is modelled with a convection splitter model. To estimate the heat capacity

of the splitter, the capacity of two pipes with l = 0:1m and a sharp broadening from d1 = 0:05m to

d2 = 0:1m in the middle (table B.43) is added to the capacity of a pipe with l = 0:1m and di = 0:05m

(table B.44). This gives 2838:1222J K�1 for the heat capacity and 831569:9J for the stored heat.

Short cylindrical pipe

geometry:

length l = 1:000000e � 01 m

inner diameter di = 5:000000e � 02 m

flow area A = 1:963495e � 03 m2

volume V = 1:963495e � 04 m3

hydro kinetic:

mass m = 1:939933e � 01 kg

inertance I = 5:031843e + 04 kg m4

bernoulli resistance factor �s = 1:500000e � 02

hydraulic resistance Rh = 1:922022e + 06 Pa2 m�6

hydro thermal:

heat capacity C = 8:108922e + 02 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 2:375914e + 05 J

initially stored entropy S0 = 8:108922e + 02 J K�1

thermal resistance Rt = 7:716603e + 01 K W�1

Table B.43: Parameters of the radiator group splitter (i).

To determine the two hydraulic resistances of the splitter, the resistance of a splitter with di = 0:05m
is calculated with the short utility (table B.43). The Bernoulli splitting resistance factor is estimated

with table 1 on page Lc3 in (Verein Deutscher Ingenieure 1977) at 0:015. The resistance parameter is

added to the resistance of one of the sharp broadenings, obtained with the broad utility (table B.44).

This gives 73997862Pa2 m�6 for both hydraulic resistances.

Radiator Group Bypass Pipe This is a 25m long pipe with di = 0:1m and 2 sharp bends each

accounting for �s = 1:5 (section 7.2, page Lc5 in (Verein Deutscher Ingenieure 1977)). The roughness

is again estimated at 0:05. The parameters can be found in table B.45.

Radiator Group Return Pipe This is a 100m long pipe with di = 0:1m and 9 sharp bends each

accounting for �s = 1:5 (section 7.2, page Lc5 in (Verein Deutscher Ingenieure 1977)). The roughness

is again estimated at 0:05. See table B.46 for the parameter values.

B.6.5 Simulation

Two simulation runs of the Schieland hospital heating system will be presented here:

� Prediction of the hydraulic behaviour of the system when the pumps are switched on with valve

control 0:2 which increases at t = 20s to 0:8.

� Prediction of the thermodynamic behaviour of the system when the heater is switched on with

valve control 0:8.
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Sharply broadening short cylindrical pipe

geometry:

length narrow part l1 = 5:000000e � 02 m

inner diameter narrow part d1 = 5:000000e � 02 m

flow area narrow part A1 = 1:963495e � 03 m2

length broad part l2 = 5:000000e � 02 m

inner diameter broad part d2 = 1:000000e � 01 m

flow area broad part A2 = 7:853982e � 03 m2

volume V = 4:908739e � 04 m3

hydro kinetic:

mass m = 4:849834e � 01 kg

inertance I = 3:144902e + 04 kg m4

bernoulli resistance factor �s = 5:625000e � 01

hydraulic resistance Rh = 7:207584e + 07 Pa2 m�6

hydro thermal:

heat capacity C = 2:027230e + 03 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 5:939785e + 05 J

initially stored entropy S0 = 2:027230e + 03 J K�1

Table B.44: Parameters of the radiator group splitter (ii).

Long cylindrical pipe

geometry:

length l = 2:500000e + 01 m

inner diameter di = 1:000000e � 01 m

flow area A = 7:853982e � 03 m2

volume V = 1:963495e � 01 m3

hydro kinetic:

mass m = 1:939933e + 02 kg

inertance I = 3:144902e + 06 kg m4

roughness pipe surface K = 5:000000e � 02

resistance factor � = 3:295139e � 01

bernoulli resistance factor �s = 3:000000e + 00

hydraulic resistance Rh = 6:837473e + 08 Pa2 m�6

hydro thermal:

heat capacity C = 8:108922e + 05 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 2:375914e + 08 J

initially stored entropy S0 = 8:108922e + 05 J K�1

thermal resistance Rt = 4:822877e + 03 K W�1

Table B.45: Parameters of the radiator group bypass pipe.
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Long cylindrical pipe

geometry:

length l = 1:000000e + 02 m

inner diameter di = 1:000000e � 01 m

flow area A = 7:853982e � 03 m2

volume V = 7:853982e � 01 m3

hydro kinetic:

mass m = 7:759734e + 02 kg

inertance I = 1:257961e + 07 kg m4

roughness pipe surface K = 5:000000e � 02
resistance factor � = 3:295139e � 01

bernoulli resistance factor �s = 1:350000e + 01

hydraulic resistance Rh = 2:747002e + 09 Pa2 m�6

hydro thermal:

heat capacity C = 3:243569e + 06 J K�1

initial temperature T0 = 2:930000e + 02 K

initially stored heat Q0 = 9:503656e + 08 J

initially stored entropy S0 = 3:243569e + 06 J K�1

thermal resistance Rt = 1:929151e + 04 K W�1

Table B.46: Parameters of the radiator group return pipe.

Hydraulic behaviour

Figure B.9 shows a plot of some of the water flows in the system when it switched on with the valve at

0:2. At t = 20s the valve control value is increased to 0:8. The initial water flows at t = 0 were set to

zero.

The plot shows that the flow through the radiator and the radiator bypass pipe (D and E) reach their

maximum almost directly. This is caused by the fact that the flow path from the RG-pump through

the radiator and via the RG-bypass pipe back to the pump contains a relatively small amount of water.

Because the RG-pump is the least powerful of the two and the flow path has a high hydraulic resistance,

the two volume flows do not become very large.

Although the heater group pump is the most powerful pump, the flow through the heater, and the heater

bypass pipe has a slow start because the flow path heater group pump, heater, heater bypass pipe, heater

group pump contains a relatively large amount of water. Because of the high power of the pump and

the fact that the flow path has a small hydraulic resistance, the flows become quite large.

The difference between flows A and B is exactly the water flow from the heater to the radiator group

(and vice versa). This volume flow stays rather small due to the fact that with one radiator group, there

is a great overcapacity. Flow C starts even slower than flows A and B because the radiator group supply

and return pipes are very long and therefore contain large amounts of water.

What can be seen when the valve is opened from 20 to 80 percent at t = 20 is that the increasing flow

through the radiator group supply pipe causes flows A and E to become smaller. It is interesting to see

that the flows through the heater and the radiator do not change noticeably when the valve is opened.
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Figure B.9: Predicted hydraulic behaviour of the Schieland hospital heating system. The

plotted values are water flows through A: the heater, B: the hg bypass pipe, C: the rg supply

pipe, D: the rg pipe and E: the rg bypass pipe. Note that for A and B the vertical scale is 0 to

0:01 m
3
s
�1 and for C, D and E 0 to 0:001m

3
s
�1. The horizontal axis is the time scale in

seconds.

The results of the simulation are close to the results obtained by Andringa and Van der Laan in (An-

dringa and van der Laan 1991). The small numerical differences can be explained by the fact that their

model is a simplification of the model used here. The differences are:

� The model described here models splitting/mixing resistances as well as hydraulic resistance

caused by broadening and narrowing of flow paths. Both types of resistance are neglected in

(Andringa and van der Laan 1991).

� The tables and formulas in (Verein Deutscher Ingenieure 1977) list slightly different character-

istic values and produce slightly different parameter values than the ones used in (Andringa and

van der Laan 1991).

� The dimensions of the radiator used here are different and a more accurate mathematical equation

for the heat emission of the radiator is used.

� One of the controlled hydraulic resistances in the valve is linear (this is more realistic than

two exponential valves, see (Recknagel and Sprenger 1979)) and an error in the relation of the

exponential resistance in (Andringa and van der Laan 1991) has been corrected.

Thermodynamic Behaviour

The prediction of the thermodynamic behaviour can be found in Figure B.10. The initial temperatures

were 293K and the initial water flow rates were zero. The control value of the valve was 0:8 throughout

the simulation.
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Figure B.10: Predicted thermodynamic behaviour of the Schieland hospital heating system.

The plotted values are A: the temperature of the heater, B: the temperature of the radiator

pipe, both inK. G is the heat flow from the heater which has 0W as minimum, and 60 kW

as maximum value. The horizontal axis is the time scale in seconds.

A notable result from the simulation is the big difference in time scales between the hydraulic and

thermodynamic behaviour. While in the hydraulic case equilibrium is reached in about twenty seconds,

in the thermodynamic case this time is more than twenty thousand seconds: more than five hours.

From t = 0, because the heater is on, the heater temperature A will increase. In the beginning it

increases quickly because the water that flows into the heater is of almost the same temperature as the

water that flows out of it. The net heat flow to the heater will then be approximately 60 kW . As the

temperature of the heater increases, the amount of heat that flows out of the heater will become larger

than the heat carried by the water that flows into it. The net heat flow to the heater will become smaller

than 60 KW and therefore the heater temperature will increase more slowly. When the radiator gets

warm, the temperature of the water from the radiator group return pipe will increase and so will the

temperature of the water that flows into the heater. This will cause the heater temperature to increase at

a constant rate until the maximum heater temperature is reached and the heater is switched off.

Next, the heater will be switched on and off repeatedly. The simulation shows that the periods that the

heater is on become shorter and that the on-off period becomes longer. This can be explained by the

fact that the temperature of the water from the radiator group reaches a high value. Because of this,

the net heat flow out of the heater will become smaller, so that it takes more time for the heater to cool

down and less time to heat up again.

The simulation results show the same qualitative behaviour as can be seen in plots in (Andringa and

van der Laan 1991). The numerical values produced do not seem to be the same, however. To explain

this the model that is used in (Andringa and van der Laan 1991) needs to be discussed in more detail.

The model of Andringa and Van der Laan use is a purely thermodynamic model that is decoupled from

the model that predicts the hydraulic behaviour. As a result of this, the water volume flows in the system
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are free parameters in the thermodynamic model. Usually, this is a valid method to simplify the model;

the time scale in the hydraulic part in the system is so much smaller than that of the thermodynamic

model that the volume flows can be assumed to be constant. The problem however is that the numerical

values for the volume flow parameters that Andringa and Van der Laan use, are not consistent with their

own results from the hydraulic model. Furthermore, the heat capacities they use are different from what

is to be expected from geometric data, i.e. different from what was computed by the pipe, ncpipe

etc. utilities. Another point of criticism to the model in (Andringa and van der Laan 1991) is that some

processes that could be of importance are neglected. An example of this is heat storage in the two

bypass pipes.

These observations lead to the conclusion that the numerical results for the thermodynamic part of

(Andringa and van der Laan 1991) are not valid and thus cannot be used for a comparison with our

simulation results in Figure B.10. Nevertheless, the end temperature of the radiator group pipe appears

realistic because the temperature of the water from the heater is approximately 348K and the ratio

between the water volume flow from the heater and the radiator bypass pipe is 0:0005 : 0:0001 = 5 : 1

(see Figure B.9).

B.6.6 Concluding Remarks

The remarks in this section can be put into three categories: first those that concern the thermodynamic

library, second those that concern the OLMECO library in general, and third the remarks that concern

the modelling tool that makes use of the library.

Thermodynamic Library The first conclusion that can be drawn from this experiment is that the

thermodynamic library is diverse enough to support compositional modelling of real world systems.

The modelled system is considered to be large and although it contained simplifications compared to

the real world system, it is expected that a model without these simplifications can be constructed

successfully because it will just have more components of the same types that were used here.

OLMECO Library The time it took to construct the model using the library components was short

and the model turned out to be more accurate than the model in (Andringa and van der Laan 1991).

The only step in the modelling process that took a lot of time was the determination of the model

parameters. This activity is not difficult, but the amount of parameters that has to be determined is very

large. Therefore we suggest an extension of the library in which it is possible to specify the way the

parameters of a model component have to be determined. For the thermodynamic library, the needed

parameter information base is given in Chapter B.6.4. The parameter relations in the library could then

be used for automatic parameter computation from geometric data supplied by the user. The present

way to store parameter relations in the library is not sufficient because the parameter relations that have

to be used can depend on geometric aspects of the component that is modelled. For instance, cylindrical

and non-cylindrical pipes are modelled with the same component and have the same equation for the

hydraulic resistance, but the way to determine the parameters are different.

Furthermore, it would be nice to have a way to let the simulator check the validity domains of the

submodels dynamically. The problem is that the validity of the model for hydraulic resistance, for

instance, depend on dynamic model variables like the volume flows. This makes it impossible to check

the validity before simulation. Changes in both the library and the simulator are required to incorporate

dynamic checking. In the present library, specification of the validity domain for models are pure textual
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annotations. To be able to store the more algorithmic checks like the one for hydraulic resistance this

has to be changed. So we need an active form of management of model assumptions. The simulator

must then be changed to be able to actually use these.

Modelling Tool In order to support modelling with the library optimally, the modelling tool must

understand all concepts and distinctions in the library. Practically, this means that the modelling tool

must be able to work with components, decompositions, processes and equations and that it must have

a library browser to access the component taxonomy, the components itself, the decompositions, the

process descriptions and the mathematical relations in the library. With such a browser, an index like

the one in the Appendix will not be needed anymore.

Nonlinear mathematical equations cannot be inverted automatically by the present model processor al-

though in many cases inversion is theoretically possible. An example of this is the relation for hydraulic

resistance. As a result, the model processor is not able to choose one of the causal forms freely. This

means that when causality cannot be assigned to the model, the user must replace some of the equations

for hydraulic resistance by their inverse relations and try again. For large models this is very tedious.

A solution would be to make the inversion algorithm used by the model processor more powerful. An-

other option is to make it possible to specify all causal forms of an equation in the library. The model

processor could then, instead of trying to invert the equations themselves, just choose one of the causal

forms.

The selection of physical processes that are modelled is very important. Selection of the wrong pro-

cesses or disregarding important processes can lead to models in which causality cannot be assigned.

This makes simulation impossible. The problem with the current model processor and simulator is that

in these cases they do not offer facilities to indicate what the problem is and to what part of the model

it refers. They just generates error messages that causality cannot be assigned, the model is algebraic

and cannot be solved or that the matrix is ill-conditioned. These error messages do not give a clue as to

what might be wrong with the model. In a future modelling tool, it would be nice if the messages were

stated in terms of model components or physical processes. This is a topic for further research.
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