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Abstract— Welch bound equality (WBE) signature sequences
maximize the uplink sum capacity in direct-spread synchronous
code division multiple access (CDMA) systems. WBE sequences
have a nice interference invariance property that typically holds
only when the system is fully loaded and the signature set must be
redesigned and reassigned as the number of active users changes
to maintain this property. An additional equiangular constraint
on the signature set, however, maintains interference invariance.
Finding such signatures requires imposing equiangular side con-
straints on an inverse eigenvalue problem. This paper presents an
alternating projection algorithm that can design WBE sequences
that satisfy equiangular side constraints. The proposed algorithm
can be used to find Grassmannian frames as well as equiangular
tight frames. Though one projection is onto a closed but non
convex set, it is shown that this algorithm converges to a fixed
point, and these fixed points are partially characterized.

I. INTRODUCTION

Signature sequences that maximize the sum capacity in the
uplink of direct-spread synchronous code division multiple
access (CDMA) systems in Gaussian noise are known to
satisfy Welch’s bound on the total squared correlation with
equality [1]. These sequences, known as Welch bound equality
(WBE) signature sequences, are determined by the number
of users and the dimensionality of the signature space. They
have the interesting interference invariance property in that
each signature sees exactly the same interference power. Thus
the interference experienced by a user is independent of
the signature assigned to that user. Unfortunately, when the
number of active users changes, the signatures must generally
be recomputed and reassigned to maintain the interference
invariance [2].

Recently a class of signatures, known as Grassmannian
signatures, were introduced that satisfy interference invariance
even when subsets of the available users are active [3]. This
signature construction is intimately related to the problem of
sphere packing in the Grassmann manifold, in this case one-
dimensional subspaces (lines), and more specifically to the
construction of Grassmannian tight frames [4]. The interfer-
ence invariance properties comes from the fact that because
Grassmannian signatures satisfy Welch’s lower bound on the
maximum correlation with equality, they are equiangular (the
correlation is the same for all distinct signature pairs) and
maximally spaced with the smallest possible inner product.
The equiangular property provides interference invariance.
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nately, signatures that are both equiangular and max-
spaced are quite rare. Some explicit constructions are
le in the articles [3], [4], [5]. Signatures derived from
ackings in the Grassman manifold, even the best line
s tabulated by Sloane [6], do not generally satisfy the
roperty when they are not equiangular. In cases where
gnatures do not exist, we would be satisfied with a
hose constituent signatures are close to equiangular.

ly proposed numerical algorithms for finding WBEs
7], [8], [9], [10]), however, do not easily incorporate
ular side constraints.
is paper, we present an algorithm for finding Welch

equality signature sequences that are exactly (or nearly)
ular. Our approach builds on our recently proposed

e algorithm for constructing CDMA signature se-
s [11], which has also been used to find signatures
ng peak-to-average ratio constraints [12]. The idea is
nately solve two matrix nearness problems, one that
e closest signature set satisfying Welch’s bound with
and the other that finds the nearest set of equiangular

res. This algorithm is related to a method used by
r solving an inverse eigenvalue problem [13]. Our
m can also be used to find Grassmannian frames as
equiangular tight frames. We argue that our algorithm
es to a fixed point, and we claim that the class of fixed
ontains the desired sequences. Detailed proofs of these
are deferred due to space constraints [14].

II. SIGNATURE DESIGN PRELIMINARIES

ider the uplink of a single cell, short code, synchronous
system with N total signatures and a processing gain
k denote the d×1 signature, code, or sequence, of user
alized as ‖xk‖ = 1 for k = 1, . . . , N . We assume that
imum number of active users allowed in the system is
> 1.
e signatures xk form an orthogonal set, the length d
ines the allowable number of users. It has been shown
northogonal signature sets where N > m users may be
ry to achieve the full sum-capacity of the synchronous
ell CDMA channel [1]. These sequences are called
bound equality sequences [15] since they satisfy the
bound on the total squared correlation with equality.



WBE signature sequences have a number of nice properties
as summarized in [15], [16]. Perhaps the most interesting
property is that, using WBE sequences, the interference is
uniform across all users [16]. The sum total interference in
the system is given by

∑
k

∑
l �=k |〈xk,xl〉|2 − N2 which for

WBE sequences is simply N2

d − N . Using WBE sequences,
the total interference power experienced by user k is

I(k) =
N∑

l=1

|〈xk,xl〉|2−1 =
N − d

d
for k = 1, 2, . . . , N

(1)
and is the same for every user. Thus the SINR performance
for any user k is simply

SINRk =

[(
σ2

s

σ2
v

)−1

+
(

d

N − d

)−1
]−1

(2)

and the performance only depends on N and d. Unfortunately,
interference invariance only occurs when the system is fully
loaded [2], [15], i.e. N users are active. The reason is that
a WBE set for N > d users almost always ceases to be a
WBE set if any M < d sequences are removed from or added
to the set [3]. Thus if N̄ < N users are active, the whole
signature set will need to be recomputed for (d, N̄) and the
signatures reassigned or additional power control will have to
compensate for interference inequality.

III. EQUIANGULAR SIGNATURES FOR CDMA SYSTEMS

An interesting subclass of WBE signature sequences, known
as Grassmannian signatures, retains the interference invari-
ance property even when a subset of signatures are active
[3]. Grassmannian signatures are constructed from optimal
packings of lines on the Grassmann manifold. These signature
sequences satisfy two important properties:

1) They are equiangular, i.e.,

|〈xk,xl〉| = c for all k, l with k �= l (3)

for some constant c ≥ 0.
2) They are maximally spaced, i.e. c in (3) is as small as

possible.

The equiangular property means that every signature is equally
“far” from every other signature. This is the origin of the
interference invariance property. For example, if N is the set
that indexes the active signatures, then the total interference
experienced by any user k = 1, 2, . . . , N is

I(k) =
∑

l∈N/k

|〈xk,xl〉|2 = c (|N | − 1) (4)

which only depends on the cardinality of N .
The maximally spaced property implies that the signature

sequence minimizes the maximum angle between the lines
generated by xk and xl. Let

ρ(N, m) := max
k,l,k �=l

|〈xk,xl〉|
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cking given by (see [17] for example)

ρ(N, d) ≥
√

N − d

d(N − 1)
. (5)

, if equality holds in (5), then the signatures are
ular, maximally spaced, and form a WBE signature

ce set [4].
neral, it is torturous to find signatures that satisfy (5)
uality. Most of the current research has approached

ign problem with algebraic tools. A notable triumph of
e is the construction of Kerdock codes over Z2 and Z4

Calderbank et al. [5]. Other explicit constructions are
ed in the articles [4], [3]. In the numerical realm, Sloane
d his Gosset software to produce and study sphere
s in real Grassmannian spaces [6]. Sloane’s algorithms
en extended to complex Grassmannian spaces in [18].
not aware of any other numerical methods.

e examples of signatures that achieve the bound in (5)
ilable in [4] but generally they are hard to find. The
is that while good line packings have been tabulated for
d and N , these packings do not necessarily maintain

iangular property. On the other hand, some equiangular
re sets do not achieve the maximally spaced property,
is possible to find five equiangular vectors in R

3 but
e not maximally spaced. In both cases, the resulting

may not satisfy the WBE property enjoyed when
is satisfied and thus may no longer be capacity-

l.
n signature sequences are not available that satisfy (5)
uality, it is not possible to simultaneously obtain a

re sequence that is equiangular, maximally spaced, and
s Welch’s bound on the total squared correlation with
. Since the equiangular property provides interference
ce, it may be of practical interest to sacrifice the

ally spaced requirement but yet maintain the constraint
signature sequence forms a WBE sequence to ensure

pacity maximization. The objective of this paper is
ent an algorithm for finding WBEs that are nearly
ular.

X = [x1,x2, . . . ,xN ] be the signature matrix con-
from the signature set. It can be shown that a neces-

d sufficient condition for a signature sequence to satisfy
lch bound with equality is that the d positive singular
of S are identical. A matrix with this property is called
frame. Our goal, then, is to construct a signature matrix
the following properties.

he matrix is a tight frame: XX ∗ = α Id.
ach column has the correct norm: ‖xn‖ = 1.
he columns are equiangular: |〈xk,xm〉| = c for all
�= m and some c.

paper we present an algorithm that tries to calculate
quences that we call equiangular tight frames. In the
we summarize the method and its theoretical behavior.



IV. ALTERNATING PROJECTION PRELIMINARIES

Our technique is based on an alternating projection between
Property (i) and Properties (ii)–(iii). The algorithm attempts to
compute a nearby matrix (in terms of the Frobenius norm) that
satisfies Properties (i)–(iii).

Since the Gram matrix X ∗X displays all of the inner
products, it is more natural to construct the Gram matrix of an
equiangular tight frame than to construct the signature matrix
directly. Therefore, our algorithm will alternate between the
collection of Hermitian matrices that have the correct spectrum
and the collection of Hermitian matrices that have sufficiently
small off-diagonal entries.

Define a collection that contains the Gram matrices of all
d × N α-tight frames:

Gα
def= {G ∈ C

N×N : G = G∗ and

G has eigenvalues (α, . . . , α︸ ︷︷ ︸
d

, 0, . . . , 0)}. (6)

The set Gα is essentially the Grassmannian manifold that
consists of d-dimensional subspaces of C

N [17]. One may also
identify the matrices in Gα as rank-d orthogonal projectors,
scaled by α.

Theorem 1 shows how to find a matrix in Gα nearest to an
arbitrary Hermitian matrix.

Theorem 1: Suppose that Z is an N ×N Hermitian matrix
with a unitary factorization UΛU∗, where the entries of Λ are
arranged in algebraically non-increasing order. Let Ud be the
N × d matrix formed from the first d columns of U . Then
α UdUd

∗ is a matrix in Gα that is closest to Z with respect to
the Frobenius norm. This closest matrix is unique if and only
if λd strictly exceeds λd+1.

Proof: See [14] for details.
Let H be a closed collection of N ×N Hermitian matrices

that satisfy the structural constraint set motivated by the
equiangular property:

Hµ
def= {H ∈ C

N×N : H = H∗,
diag H = m1 and max

m�=n
|hmn| ≤ µ}.

It may seem more natural to require that the off-diagonal
entries have modulus exactly equal to µ, but our experience
indicates that the present formulation works better, perhaps
because Hµ is convex.

The following proposition shows how to produce the nearest
matrix in Hµ.

Proposition 2: Let Z be an arbitrary matrix. With respect
to Frobenius norm, the unique matrix in Hµ closest to Z has
a unit diagonal and off-diagonal entries that satisfy

hmn =
{

zmn if |zmn| ≤ µ and
µ ei arg zmn otherwise.

We use i to denote the imaginary unit.
Proof: The argument is straightforward.

The objective of alternating minimization is to find a
solution to the following question.
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o sets intersect, any solution to this problem will lie in
rsection. Otherwise, the problem requests a tight frame
it norm columns whose Gram matrix is “most nearly
ular.” We do not mention the problem of producing a
in H that is nearest to Gα because it is not generally
e to factor a matrix in H to obtain a frame with
ions d × N .

V. STATEMENT OF THE ALGORITHM

tically, implementing to proposed alternating minimiz-
olves alternately enforcing the two aforementioned
int sets until reaching a suitable stopping criterion.
gence is an issue since the tight frame constraint set
convex.
rithm 1 (Alternating Projection):

arbitrary matrix S0

e number of iterations J

T:

signature matrix XJ

DURE:

et j = 1 and H = S∗
0 S0 .

ind Gj , the Gram matrix nearest to Hj−1 in Frobenius
orm that has Property (i).
ind Hj , the nearest Gram matrix to Gj in Frobenius
orm that has Properties (ii) and (iii).
ncrement j. Repeat Steps 2–4 until j > J .
olve for XJ by factoring GJ using a finite-step method
uch as [19] for example.

VI. SUMMARY OF CONVERGENCE RESULTS

machinery of point-to-set maps is required to under-
e convergence of this algorithm, so we must refer the

to [14] for details. In this section we shall summarize
vergence results.

ic Convergence Results

ould be clear that alternating projection never increases
tance between successive iterates. This does not mean
will locate a point of minimal distance between the
int sets. It can be shown, however, that it is globally
ent in a weak sense.
e the distance between a point M and a set Y via

dist(M,Y ) = inf
Y∈Y

‖Y − M‖F .

rem 3 (Global Convergence of Algorithm): Let Y
be closed sets, one of which is bounded. Suppose

ernating projection generates a sequence of iterates
j)}. This sequence has at least one accumulation

ery accumulation point lies in Y × Z .



• Every accumulation point (Y ,Z ) satisfies∥∥Y − Z
∥∥

F
= lim

j→∞
‖Yj − Zj‖F .

• Every accumulation point (Y ,Z ) satisfies∥∥Y − Z
∥∥

F
= dist(Y ,Z ) = dist(Z ,Y ).

For a proof of Theorem 3, see the Appendix in [14].
The convergence of the proposed algorithm is geometric at
best [20], [21], [22], [23]. This is the major shortfall of
alternating projection methods.

Note that the sequence of iterates may have many accu-
mulation points. Moreover, the last condition does not imply
that the accumulation point (Y ,Z ) is a fixed point of the
alternating projection. So what are the potential accumulation
points of a sequence of iterates? Since the algorithm never
increases the distance between successive iterates, the set of
accumulation points includes every pair of matrices in Y ×Z
that lie at minimal distance from each other.

B. Convergence Results

Besides the general convergence result, Theorem 3, we also
obtain a local convergence result.

Theorem 4: Assume that the alternating projection between
Gα and Hµ generates a sequence of iterates {(Gj ,Hj)},
and suppose that there is an iteration J during which
‖GJ − HJ‖F < N/(d

√
2). The sequence of iterates possesses

at least one accumulation point, say (G ,H).
• The accumulation point lies in Gα × Hµ.
• The pair (G ,H) is a fixed point of the alternating pro-

jection. In other words, if we applied the algorithm to G
or to H , every iterate would equal (G ,H).

• The accumulation point satisfies∥∥G − H
∥∥

F
= lim

j→∞
‖Gj − Hj‖F .

• The component sequences are asymptotically regular, i.e.

‖Gj+1 − Gj‖F → 0 and ‖Hj+1 − Hj‖F → 0.

• Either the component sequences both converge in norm,∥∥Gj − G
∥∥

F
→ 0 and

∥∥Hj − H
∥∥

F
→ 0,

or the set of accumulation points forms a continuum.
Proof: See the Appendix in [14].

VII. NUMERICAL EXPERIMENTS

A. Example Construction

First, let us illustrate just how significant a difference there
is between vanilla signature matrices and equiangular signature
matrices. Here is the Gram matrix of a six-vector, unit-norm
tight frame for R

3:




1.0000 0.2414 −0.6303 0.5402 −0.3564 −0.3543
0.2414 1.0000 −0.5575 −0.4578 0.5807 −0.2902

−0.6303 −0.5575 1.0000 0.2947 0.3521 −0.2847
0.5402 −0.4578 0.2947 1.0000 −0.2392 −0.5954

−0.3564 0.5807 0.3521 −0.2392 1.0000 −0.5955
−0.3543 −0.2902 −0.2847 −0.5954 −0.5955 1.0000


.
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R R .. .. ..
C R R .. ..
.. . R R ..
.. R . R R

.. C C . R

.. . C . .

.. C . . C

0 .. .. . R .
1 .. .. . C C

2 .. .. . . C

3 .. .. C . .
4 .. .. . . .
5 .. .. . . .
6 .. .. C . R

7 .. .. .. . .
8 .. .. .. . .
9 .. .. .. . .

d
N 2 3 4 5 6

20 .. .. .. . .
21 .. .. .. C .
22 .. .. .. . .
23 .. .. .. . .
24 .. .. .. . .
25 .. .. .. C .
26 .. .. .. .. .
27 .. .. .. .. .
28 .. .. .. .. .
29 .. .. .. .. .
30 .. .. .. .. .
31 .. .. .. .. C

32 .. .. .. .. .
33 .. .. .. .. .
34 .. .. .. .. .
35 .. .. .. .. .
36 .. .. .. .. C

TABLE I

EQUIANGULAR WBE SIGNATURE SETS

tions R and C respectively indicate that alternating projection was
ompute a real, or complex, equiangular tight frame. Note that every
iangular tight frame is automatically a complex, equiangular tight
ne period (.) means that no real, equiangular tight frame exists, and
ds (..) mean that no equiangular tight frame exists at all.

that the inner-products between vectors are quite dis-
ranging in magnitude between 0.2392 and 0.6303.

nner products correspond to acute angles of 76.2◦ and
In fact, this tight frame is pretty tame; the largest inner
ts in a unit-norm tight frame can be arbitrarily close
1. The Gram matrix of a six-vector, equiangular tight
or R

3 looks quite different:

00 0.4472 −0.4472 0.4472 −0.4472 −0.4472
72 1.0000 −0.4472 −0.4472 0.4472 −0.4472
72 −0.4472 1.0000 0.4472 0.4472 −0.4472
72 −0.4472 0.4472 1.0000 −0.4472 −0.4472
72 0.4472 0.4472 −0.4472 1.0000 −0.4472
72 −0.4472 −0.4472 −0.4472 −0.4472 1.0000


.

pair of vectors meets at an acute angle of 63.4◦. The
in this frame can be interpreted as the diagonals of an
dron [17].

mary of Basic Constructions

ave used alternating projection to compute equiangu-
t frames, both real and complex, in dimensions two

six. The algorithm performed poorly when initial-
ith random vectors, which led us to adopt a more
icated approach. We begin with many random vectors
nnow this collection down by repeatedly removing
er vector has the largest inner product against another
It is fast and easy to design starting points in this
, yet the results are impressive. These calculations are
rized in Table I. Alternating projection can locate every
uiangular tight frame signature matrix in dimensions

rough six; algebraic considerations eliminate all the

ee this, consider a tight frame that contains two copies of an
al basis, where one copy is rotated away from the other by an

y small angle.



d 4 8 16 32 64
N 5 9 18 36 70

Minimum Cor. 0.2500 0.1250 0.0021 0.0006 0.0000
Average Cor. 0.2500 0.1250 0.0765 0.0516 0.0326
Std. Dev. Cor. 0.0000 0.0000 0.0429 0.0301 0.0212

Max Cor. 0.2500 0.1250 0.1250 0.0966 0.0607
Max Cor. Packing 0.2500 0.1250 0.0911 0.0674 0.0427
Max Cor. Bound 0.2500 0.1250 0.0857 0.0598 0.0369

TABLE II

NEAR-EQUIANGULAR WBE SIGNATURE SETS

Summary of the correlation behavior of specific WBE sequences resulting
from the proposed algorithm. The last three lines compare the maximum cor-
relation of the candidate near-equiangular WBE with the maximum correlation
of the best line packing found for (d, N) without the tight frame constraint
and the lower bound on the maximum correlation (5).

remaining values of N [4]. In the complex case, the algorithm
was able to compute every equiangular tight frame that we
know of. Unfortunately, no one has yet developed necessary
conditions on the existence of complex, equiangular tight
frames aside from the upper bound, N ≤ d2, and so we have
been unable to rule out the existence of other ensembles.

C. Overloaded System Example

We have also constructed some WBEs in dimensions of
d = 2k for k = 2, 3, . . . , 6 and an overload factor of ten
percent. The results of this construction are illustrated in Table
II. Constructions (4, 5) and (8, 9) are exact equiangular tight
frames (corresponding to the simplex). In the other cases, the
WBEs are only nearly equiangular. Because of the tight frame
constraint, the maximum correlation is somewhat higher than
that of the best line packing for those combinations (without
the tight frame constraint), and is larger than the lower
bound. The standard deviation of the correlation between
two signatures provides a measure of “equiangularity.” Lower
values indicate the signatures are more equiangular. In the
proposed examples, there is some variability especially for
larger dimensions. This is because N is not much bigger
than d thus there are fewer degrees of freedom to enforce
the equiangular property. For d = 64 and N = 128, though, a
construction exists that is equiangular and maximally spaced
[3].

VIII. CONCLUSION

We have proposed an alternating minimization that is capa-
ble of finding optimal CDMA signature sequences that satisfy
equiangular side constraints and discussed convergence of the
algorithm. This algorithm can also be used to solve for uncon-
strained optimal CDMA signature sequences, sequences with
peak-to-average power ratio side constraints [12], and spec-
trum constraints. A major issue with the proposed algorithm
is that the resulting sequences are generally complex valued
and this may lead to implementation challenges. Incorporating
binary or finite alphabet constraints on the signatures is an
interesting topic for future research.
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