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Abstract In this work, we establish the exact solutions to the modified forms of Degasperis–Procesi (DP) and Camassa–
Holm (CH) equations. The generalized (G’/G)-expansion and generalized tanh-coth methods were used to construct solitary
wave solutions of nonlinear evolution equations. The generalized (G’/G)-expansion method presents a wider applicability for
handling nonlinear wave equations. It is shown that the (G’/G)-expansion method, with the help of symbolic computation,
provides a straightforward and powerful mathematical tool for solving nonlinear evolution equations in mathematical
physics.
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1. Introduction

In the recent years, the investigation of the traveling wave solutions for nonlinear partial differential equations plays
an important role in the study of nonlinear physical phenomena. During the past decades, both mathematicians
and physicists have devoted considerable effort to the study of exact and numerical solutions of the nonlinear
ordinary or partial differential equations corresponding to the nonlinear problems. Many powerful methods have
been presented. For instance, Hirota’s bilinear method [1], the inverse scattering transform [2], F-expansion method
[3], sine-cosine method [4], homotopy perturbation method [5], homotopy analysis method [6, 7], variational
iteration method [9], tanh-coth method [10, 11], Exp-function method [12, 13, 14, 15], central difference and
Newton iteration method [16], septic B-spline collocation method [17] and so on. Here, we use of an effective
method, (G’/G)-expansion method, for constructing a range of exact solutions for the nonlinear partial differential
equations, first proposed by Wang et al [19]. Zhang et al. [20] examined the generalized (G’/G)-expansion method
and its applications. Authors of [21] obtained the exact solutions for the symmetric regularized long wave equation
using the (G’/G)-expansion method. Fazli and Manafian [22] applied the (G’/G)-expansion method for solving the
couple Boiti-Leon-Pempinelli system. Also, Bekir [23] used to application of the (G’/G)-expansion method for
nonlinear evolution equations. In [24], solitary wave and periodic wave solutions via (G’/G)-expansion method
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have been obtained. The CH equation

ut − uxxt + 3uux = 2uxuxx + uuxxx, (1)

has been investigated in the literature in [25, 40] and the references therein. However, changing the coefficients 3
and 2 in Eq. (1) to 4 and 3, respectively, gives the DP equation

ut − uxxt + 4uux = 3uxuxx + uuxxx. (2)

The CH equation has peaked solitary wave solutions of the form [40]

u(x, t) = ce−|x−ct|, (3)

where c is the wave speed. The name ’peakon’, that is, solitary wave with slope discontinuities, was used to single
them from general solitary wave solutions since they have a corner at the peak of height c [40]. In this article an
application of the proposed method to the modified forms of Degasperis–Procesi and Camassa–Holm equations is
illustrated. we will investigate modified forms of the DP and the CH equations given by

ut − uxxt + 4u2ux = 3uxuxx + uuxxx, (4)

and

ut − uxxt + 3u2ux = 2uxuxx + uuxxx, (5)

respectively. In [25] Mustafa studied DP equation. Multi-peakon solutions of DP equation was investigated by
Lundmark [26]. Shen have obtained the new integrable equation with peakon and compactons [27]. Chen have
acquired the new type of bounded waves for DP equation [28]. In [29, 30] have obtained the integrable shallow
water equation and completely integrable shallow water equation respectively. In [31, 32] Liu and et al. have
studied the CH equation and have obtained peaked wave solutions [31] and peakons [32]. Peakons and periodic
cusp waves of the generalized CH equation have been studied by [33]. Also in [34] Tian and et al. have studied
the generalized CH equation and obtained new peaked solitary wave solutions. Boyd [35] derived a perturbation
series which converges even at the peakon limit, and gave three analytical representation for the spatially periodic
generalization of the peakon, called ”coshoidal wave”. Cooper and Shepard [36] derived approximate solitary wave
solution by using some variational functions. Constantin [37] gave a mathematical description of the existence of
interacting solitary waves. Wazwaz [38] derived a solitary wave solutions for modified forms of Degasperis-Procesi
and Camassa-Holm equations. A class of nonlinear fourth order variant of a generalized Camassa-Holm equation
was investigated by [39] where have obtained compact and noncompact solutions. Recently, CH equation and some
its generalized forms have been studied by many authors, for instance, Wazwaz [40] have obtained new solitary
wave solutions to the modified forms of DP and CH equations. He [41] derived exact travelling wave solutions of
a generalized CH equation using the integral bifurcation method. In [42] an integrable shallow water equation has
been discussed with linear and nonlinear dispersion. Also, new integrable equation with peakon solutions has been
studied by Degasperis [43]. Explicit solutions of the Camassa-Holm equation have been obtained in [44]. Guo
[45] obtained periodic cusp wave solutions and single-solitons for the b-equation. Bäcklund transformation has
been applied for the modified DGH equation by [46]. In [47] bifurcations of travelling wave solutions for a variant
of CH equation investigated by He. In [48] Rui et. al, applied the integral bifurcation method and its application
for solving a family of third-order dispersive PDEs. Finally, Liu and Qian [49] have derived peakons and their
bifurcation for the generalized CH equation. The article is organized as follows: In Section 2, first we briefly give
the steps of the methods and apply these methods to solve the nonlinear partial differential equations. In Section
3, the application of the (G’/G)-expansion method to the modified DP equation will be introduced briefly. Also,
Section 4 by using the results obtained in Section 2, the corresponding solutions of the modified CH equation can
be obtained. Also a conclusion is given in Section 5. Finally some references are given at the end of this paper.
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2. Basic ideas of two methods

2.1. The (G
′

G )-expansion method

Step 1. For a given NLPDE with independent variables X = (x, t) and dependent variable u:

P(u, ut, ux, uxx, uxt, ...) = 0, (6)

can be converted to an ODE

M(u,−cu′, u′, u′′,−cu′′, ...) = 0, (7)

by transformation ξ = x− ct is wave variable. Also, c is constant to be determined later.
Step 2. We seek its solutions in the more general polynomial form as following

u(ξ) = a0 +

m∑
k=1

ak

(
G′(ξ)

G(ξ)

)k

, (8)

where G(ξ) satisfies the second order LODE in the form

G′′(ξ) + λG′(ξ) + µG(ξ) = 0, (9)

where a0, ak(k = 1, 2, ...,m), λ and µ are constants to be determined later, am = 0, but the degree of which is
generally equal to or less than m− 1, the positive integer m can be determined by considering the homogeneous
balance between the highest order derivatives and nonlinear terms appearing in Eq. (7).
Step 3. Substituting Eq. (8) and Eq. (9) into Eq. (7) with the value of n obtained in Step 1. Collecting the coefficients

of
(

G′(ξ)
G(ξ)

)k

(k = 0, 1, 2, ...), then setting each coefficient to zero, we can get a set of over-determined partial
differential equations for a0, ai(i = 1, 2, ..., n), λ, c and µ with the aid of symbolic computation Maple.
Step 4. Solving the algebraic equations in Step 3, then substituting ai, ..., am, c and general solutions of Eq. (9)
into Eq. (8) we can obtain a series of fundamental solutions of Eq. (6) depending of the solution G(ξ) of Eq. (9).

2.2. The generalized tanh–coth method

Step 1. For a given NLPDE with independent variables X = (x, t) and dependent variable u:

P(u, ut, ux, uxx, uxt, ...) = 0, (10)

can be converted to an ODE

M(u,−cu′, u′, u′′,−cu′′, ...) = 0, (11)

which transformation ξ = x− ct is wave variable. Also, c is constant to be determined later.
Step 2. We introduce the Riccati equation as following

Φ′ = r + pΦ+ qΦ2, Φ = Φ(ξ), ξ = x− ct, (12)

leads to the change of derivatives

d

dξ
=

(
r + pΦ+ qΦ2

) d

dΦ
, (13)

d2

dξ2
=

(
r + pΦ+ qΦ2

) [
(p+ 2qΦ)

d

dΦ
+ (r + pΦ+ qΦ2)

d2

dΦ2

]
, (14)
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d3

dξ3
=

(
r + pΦ+ qΦ2

) [(
6q2Φ2 + 6pqΦ+ 2rq + p2

) d

dΦ
+ (15)

(
6q2Φ3 + 9pqΦ2 + 3(p2 + 2rq)Φ + 3rp

) d2

dΦ2
+
(
r + pΦ+ qΦ2

)2 d3

dΦ3

]
,

which admits the use of a finite series of functions of the form

u(ξ) = S(Φ) =

m∑
k=0

akΦ
k +

m∑
k=1

bkΦ
−k, (16)

where ak(k = 0, 2, ...,m), bk(k = 1, 2, ...,m), p, r and q are constants to be determined later. But, the positive
integer m can be determined by considering the homogeneous balance between the highest order derivatives and
nonlinear terms appearing in Eq. (11). If m is not an integer, then a transformation formula should be used to
overcome this difficulty. For aforementioned method, expansion (16) reduces to the standard tanh method for
bk = 0, 1 ≤ k ≤ m.
Step 3. Substituting Eqs. (12) –(15) into Eq. (11) with the value of m obtained in Step 2. Collecting the coefficients
of Φk (k = 0, 1, 2, ...), then setting each coefficient to zero, we can get a set of over-determined partial differential
equations for a0, ai(i = 1, 2, ...,m), bi(i = 1, 2, ...,m) p, q and r with the aid of symbolic computation Maple.
Step 4. Solving the algebraic equations in Step 3, then substituting a0, a1, b1, ..., am, bm, c in Eq. (16).
Step 5. We will consider the following twenty seven solutions of generalized Riccati differential equation (12) are
given in [10, 11].
Case 1: For each pq ̸= 0 or qr ̸= 0 and ∆ = p2 − 4qr > 0, Eq. (12) has the following solutions

Φ1(ξ) =
−1

2q

[
p+

√
∆tanh

(√
∆ξ/2

)]
, (17)

Φ2(ξ) =
−1

2q

[
p+

√
∆coth

(√
∆ξ/2

)]
, (18)

Φ3(ξ) =
−1

2q

[
p+

√
∆
[
tanh

(√
∆ξ

)
± isech

(√
∆ξ

)]]
, i =

√
−1, (19)

Φ4(ξ) =
−1

2q

[
p+

√
∆
[
coth

(√
∆ξ

)
± csch

(√
∆ξ

)]]
, (20)

Φ5(ξ) =
−1

4q

[
2p+

√
∆
[
tanh

(√
∆ξ/4

)
± coth

(√
∆ξ/4

)]]
, (21)

Φ6(ξ) =
1

2q

[
−p+

√
(A2 +B2)∆−A

√
∆cosh

(√
∆ξ

)
A sinh

(√
∆ξ

)
+B

]
, (22)

Φ7(ξ) =
1

2q

[
−p−

√
(B2 −A2)∆ +A

√
∆cosh

(√
∆ξ

)
A sinh

(√
∆ξ

)
+B

]
, (23)

where A and B are two nonzero real constants and satisfy B2 −A2 > 0

Φ8(ξ) =
2r cosh

(√
∆ξ/2

)
√
∆sinh

(√
∆ξ/2

)
− p cosh

(√
∆ξ/2

) , (24)

Φ9(ξ) =
−2r sinh

(√
∆ξ/2

)
p sinh

(√
∆ξ/2

)
−
√
∆cosh

(√
∆ξ/2

) , (25)

Φ10(ξ) =
2r cosh

(√
∆ξ/2

)
√
∆sinh

(√
∆ξ

)
− p cosh

(√
∆ξ

)
± i

√
∆
, (26)
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Φ11(ξ) =
2r sinh

(√
∆ξ/2

)
−p sinh

(√
∆ξ

)
+
√
∆cosh

(√
∆ξ

)
±
√
∆
, (27)

Φ12(ξ) =
4r sinh

(√
∆ξ/4

)
cosh

(√
∆ξ/4

)
−2p sinh

(√
∆ξ/4

)
cosh

(√
∆ξ/4

)
+ 2

√
∆cosh2

(√
∆ξ/4

)
−
√
∆
. (28)

Case 2: For each pq ̸= 0 or qr ̸= 0 and ∆ = p2 − 4qr < 0, Eq. (12) has the following solutions

Φ13(ξ) =
−1

2q

[
p−

√
−∆tan

(√
−∆ξ/2

)]
, (29)

Φ14(ξ) =
−1

2q

[
p+

√
−∆cot

(√
−∆ξ/2

)]
, (30)

Φ15(ξ) =
−1

2q

[
p−

√
−∆

[
tan

(√
−∆ξ

)
± sec

(√
−∆ξ

)]]
, (31)

Φ16(ξ) =
−1

2q

[
p+

√
−∆

[
cot

(√
−∆ξ

)
± csc

(√
−∆ξ

)]]
, (32)

Φ17(ξ) =
−1

4q

[
2p−

√
−∆

[
tan

(√
−∆ξ/4

)
− cot

(√
−∆ξ/4

)]]
, (33)

Φ18(ξ) =
1

2q

[
−p+

±
√

(A2 +B2)∆−A
√
−∆cos

(√
−∆ξ

)
A sin

(√
−∆ξ

)
+B

]
, (34)

Φ19(ξ) =
1

2q

[
−p−

±
√

(B2 −A2)∆ +A
√
−∆cos

(√
−∆ξ

)
A sin

(√
−∆ξ

)
+B

]
, (35)

where A and B are two nonzero real constants and satisfy B2 −A2 > 0

Φ20(ξ) =
−2r cos

(√
−∆ξ/2

)
√
−∆sin

(√
−∆ξ/2

)
+ p cos

(√
−∆ξ/2

) , (36)

Φ21(ξ) =
2r sin

(√
−∆ξ/2

)
−p sin

(√
−∆ξ/2

)
+

√
−∆cos

(√
−∆ξ/2

) , (37)

Φ22(ξ) =
−2r cos

(√
−∆ξ/2

)
√
−∆sin

(√
−∆ξ

)
+ p cos

(√
−∆ξ

)
±
√
−∆

, (38)

Φ23(ξ) =
2r sin

(√
−∆ξ/2

)
−p sin

(√
−∆ξ

)
+
√
−∆cos

(√
−∆ξ

)
±

√
−∆

, (39)

Φ24(ξ) =
4r sin

(√
−∆ξ/4

)
cosh

(√
−∆ξ/4

)
−2p sin

(√
−∆ξ/4

)
cos

(√
−∆ξ/4

)
+ 2

√
−∆cos2

(√
−∆ξ/4

)
−

√
−∆

. (40)

Case 3: For r = 0 and pq ̸= 0 Eq. (12) has the following solutions

Φ25(ξ) =
−pd

q[d+ cosh(pξ)− sinh(pξ)]
, (41)

Φ26(ξ) =
p[cosh(pξ) + sinh(pξ)]

q[d+ cosh(pξ) + sinh(pξ)]
, (42)
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where d is an arbitrary constant.
Case 4: For r = p = 0 and q ̸= 0 Eq. (12) has the following solution

Φ27(ξ) =
−1

qξ + c
, (43)

where c is an arbitrary constant.
But from (G’/G )-expansion method, we have(

G′

G

)′

=
G′′G−G′2

G2
=

(−λG′ − µG)G−G′2

G2
= −µ− λ

(
G′

G

)
−
(
G′

G

)2

, (44)

we set F = G′

G , then

F ′ = −µ− λF − F 2. (45)

Thus we obtain that the exact solutions derived by (G’/G)-expansion are same as ones by the generalized tanh-coth
methods. Hence we use only the generalized (G’/G)-expansion method.

3. Applications of the (G’/G)-expansion method

3.1. The modified Degasperis–Procesi equation

In this section we employ the (G’/G)-expansion method to the modified DP equation as

ut − uxxt + 4u2ux = 3uxuxx + uuxxx. (46)

The wave variable ξ = x− ct PDE transforms to an ODE

−cu′ + cu′′′ + 4u2u′ = 3u′u′′ + uu′′′. (47)

Integrating Eq. (47) with respect to ξ and considering the zero constants for integration, we obtain

c(u′′ − u) +
4

3
u3 − uu′′ − (u′)2 = 0. (48)

To determine the index, m, we balance the linear term of the highest order with the highest order nonlinear
terms. Therefore, in Eq. (48) we balance uu′′ with u3, so that 2m+ 2 = 3m, and this gives us m = 2. Hence,
the expression for u(ξ) now simplifies to:

u(ξ) = a0 + a1

(
G′(ξ)

G(ξ)

)
+ a2

(
G′(ξ)

G(ξ)

)2

, a2 ̸= 0, (49)

and therefore

u2(ξ) = a22

(
G′(ξ)

G(ξ)

)4

+ 2a1a2

(
G′(ξ)

G(ξ)

)3

+ (a21 + 2a0a2)

(
G′(ξ)

G(ξ)

)2

+ (50)

2a0a1

(
G′(ξ)

G(ξ)

)
+ a20,

and

uξξ(ξ) = 6a2

(
G′(ξ)

G(ξ)

)4

(51)
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+(2a1 + 10a2λ)

(
G′(ξ)

G(ξ)

)3

+ (8a2µ+ 3a1λ+ 4a2λ
2)

(
G′(ξ)

G(ξ)

)2

+(6a2λµ+ 2a1µ+ a1λ
2)

(
G′(ξ)

G(ξ)

)
+ 2a2µ

2 + a1λµ.

Substituting (49)-(51) into Eq. (48) and equating the coefficients of (G′/G)i; i = 0, ..., 6 to zero, leads to the
following nonlinear system of algebraic equations:

(G′/G)0 : 2a2µ
2 +

4

3
a30 − a0a1µλ+ ca1µλ− a21µ

2 − ca0 − 2a0a2µ
2 = 0, (52)

(G′/G)1 : ca1λ
2 + 4a20a1 − 3a21µλ+ 6ca2λµ− ca1 − a0a1λ

2 − 2a0a1µ− 6a0a2λµ− 6a1a2µ
2 + 2ca1µ = 0,

(G′/G)2 : −2(λ2 + 2µ)a21 + 3a1λ(c− a0) + 4a20a2 − 6a22µ
2 + 4(2cµ+ λ2)a2(c− a0) + 4a0a

2
1 − 15a1a2λµ− ca2 = 0,

(G′/G)3 : −2a0a1 − 14a22λµ− 18a1a2µ+ 10ca2λ− 9a1a2λ
2 +

4

3
a31 + 8a0a1a2 − 10a0a2λ+ 2ca1 − 5a21λ = 0,

(G′/G)4 : −6a0a2 + 6ca2 + 4a21a2 − 21a1a2λ− 8a22λ
2 + 4a0a

2
2 − 16a22µ− 3a21 = 0,

(G′/G)5 : 4a1a
2
2 − 12a1a2 − 18a22λ = 0,

(G′/G)6 : −10a22 +
4

3
a32 = 0.

Solving system (52) gives:

a0 =
15µ

2
, a1 =

15λ

2
, a2 =

15

2
, c =

5

2
, (53)

or

a0 =
−9±

√
15i

8
+

15µ

2
, a1 =

15λ

2
, a2 =

15

2
, c =

11∓
√
15i

8
, (54)

where λ and µ are arbitrary constants. Substituting (53) and (54) into expression Eq. (49), can be written as

u(ξ) =
15µ

2
+

15λ

2

(
G′(ξ)

G(ξ)

)
+

15

2

(
G′(ξ)

G(ξ)

)2

, ξ = x− 15

2
t, (55)

or

u(ξ) =
−9±

√
15i

8
+

15µ

2
+

15λ

2

(
G′(ξ)

G(ξ)

)
+

15

2

(
G′(ξ)

G(ξ)

)2

, ξ = x− 11∓
√
15i

8
t. (56)

Substituting the general solutions of Eq. (9) into (55) and (56) we have three types of exact solutions of Eq. (46)
as follows:
1. When λ2 − 4µ > 0, we obtain hyperbolic function solution

u1(ξ) =
15

8
(λ2 − 4µ)

C1 sinh

(√
λ2−4µξ

2

)
+C2 cosh

(√
λ2−4µξ

2

)
C1 cosh

(√
λ2−4µξ

2

)
+C2 sinh

(√
λ2−4µξ

2

)


2

(57)

−15

8
λ2 +

15µ

2
,

where ξ = x− 15
2 t and

u2(ξ) =
15

8
(λ2 − 4µ)

C1 sinh

(√
λ2−4µξ

2

)
+C2 cosh

(√
λ2−4µξ

2

)
C1 cosh

(√
λ2−4µξ

2

)
+C2 sinh

(√
λ2−4µξ

2

)


2

(58)
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−15

8
λ2 +

−9±
√
15i

8
+

15µ

2
,

where ξ = x− 11∓
√
15i

8 t.
2. When λ2 − 4µ < 0, we have trigonometric function solution

u3(ξ) =
15

8
(4µ− λ2)

−C1 sin

(√
4µ−λ2ξ

2

)
+C2 cos

(√
4µ−λ2ξ

2

)
C1 cos

(√
4µ−λ2ξ

2

)
+C2 sin

(√
4µ−λ2ξ

2

)


2

(59)

−15

8
λ2 +

15µ

2
,

where ξ = x− 15
2 t and

u4(ξ) =
15

8
(4µ− λ2)

−C1 sin

(√
4µ−λ2ξ

2

)
+C2 cos

(√
4µ−λ2ξ

2

)
C1 cos

(√
4µ−λ2ξ

2

)
+C2 sin

(√
4µ−λ2ξ

2

)


2

(60)

−15

8
λ2 +

−9±
√
15i

8
+

15µ

2
,

where ξ = x− 11∓
√
15i

8 t.
3. When λ2 − 4µ = 0, we get rational solution

u5(ξ) =
15

2

C2
2

(C1 +C2ξ)2
− 15

8
λ2 +

15µ

2
, ξ = x− 15

2
t, (61)

u6(ξ) =
15

2

C2
2

(C1 +C2ξ)2
− 15

8
λ2 +

−9±
√
15i

8
+

15µ

2
, ξ = x− 11∓

√
15i

8
t.

If C1 ̸= 0,C2 = 0, λ > 0, µ = 0, then (57) and (58) give respectively

u7(ξ) = −15

8
λ2 sech2

[
λ

2

(
x− 15

2
t

)]
, (62)

u8(ξ) =
−9±

√
15i

8
− 15

8
λ2 sech2

[
λ

2

(
x− 11∓

√
15i

8
t

)]
.

In particular, If C1 ̸= 0,C2 = 0, λ = 0, µ > 0, then (59) and (60) can be written as respectively

u9(ξ) =
15

2
µ sec2

[
√
µ

(
x− 15

2
t

)]
, (63)

u10(ξ) =
−9±

√
15i

8
+

15

2
µ sec2

[
√
µ

(
x− 15

2
t

)]
.

But, if C1 ̸= 0,C2 = 0, λ = 0, µ < 0, then (57) and (58) get respectively

u11(ξ) =
15

2
µ sech2

[
√
−µ

(
x− 15

2
t

)]
, (64)

u12(ξ) =
−9±

√
15i

8
+

15

2
µ sech2

[
√
µ

(
x− 11∓

√
15i

8
t

)]
,

which are the exact solutions of the DP equation. It can be seen that some results are similar to the results in [40].
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3.2. The modified Camassa–Holm equation

We next consider the modified CH equation [40] as

ut − uxxt + 3u2ux = 2uxuxx + uuxxx. (65)

The wave variable ξ = x− ct PDE transforms to an ODE

−cu′ + cu′′′ + 43u2u′ = 2u′u′′ + uu′′′, (66)

where by integrating Eq. (66) with respect to ξ and considering the zero constants for integration, we get

c(u′′ − u) + u3 − uu′′ − 1

2
(u′)2 = 0. (67)

Applying the procedure given in the previous sections and balancing uu′′ and u3 in Eq. (67), we obtain m = 2.
Proceeding as before we get

(G′/G)0 : a30 + 2ca2µ
2 − ca0 + ca1µλ− 2a0a2µ

2 − a0a1µλ− 1

2
a21µ

2 = 0, (68)

(G′/G)1 : 6ca2λµ− 4a1a2µ
2 − a0a1λ

2 − 2a21µλ− 6a0a2λµ− ca1 + 3a20a1 + ca1λ
2 + 2ca1µ− 2a0a1µ = 0,

(G′/G)2 : (3a1λ+ 8a2µ)(c− a0) + 3a21(a0 − µ) + (4ca2 − 4a0a2 −
3

2
a21)λ

2 + a2(3a
2
0 − 4a2µ

2 − 11a1λµ− c) = 0,

(G′/G)3 : −10a0a2λ+ 2ca1 − 14a1a2µ− 2a0a1 + a31 − 10a22λµ+ 10ca2λ− 7a1a2λ
2 + 6a0a1a2 − 4a21λ = 0,

(G′/G)4 : 3a0a
2
2 − 12a22µ− 6a0a2 − 17a1a2λ− 6a22λ

2 + 3a21a2 + 6ca2 −
5

2
a21 = 0,

(G′/G)5 : −14a22λ− 10a1a2 + 3a1a
2
2 = 0,

(G′/G)6 : −8a22 + a32 = 0.

Solving system (68) gives:

a0 = 8µ, a1 = 8λ, a2 = 8, c = 2, (69)

or
a0 = 8µ− 1, a1 = 8λ, a2 = 8, c = 1, (70)

where λ and µ are arbitrary constants. Substituting (69) and (70) into expression (49), can be written as

u(ξ) = 8µ+ 8λ

(
G′(ξ)

G(ξ)

)
+ 8

(
G′(ξ)

G(ξ)

)2

, ξ = x− 2t, (71)

or

u(ξ) = 8µ− 1 + 8λ

(
G′(ξ)

G(ξ)

)
+ 8

(
G′(ξ)

G(ξ)

)2

, ξ = x− t. (72)

1. When λ2 − 4µ > 0, we obtain hyperbolic function solution

u1(ξ) = 2(λ2 − 4µ)

C1 sinh

(√
λ2−4µξ

2

)
+C2 cosh

(√
λ2−4µξ

2

)
C1 cosh

(√
λ2−4µξ

2

)
+C2 sinh

(√
λ2−4µξ

2

)


2

(73)

−2λ2 + 8µ, ξ = x− 2t,
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and

u2(ξ) = 2(λ2 − 4µ)

C1 sinh

(√
λ2−4µξ

2

)
+C2 cosh

(√
λ2−4µξ

2

)
C1 cosh

(√
λ2−4µξ

2

)
+C2 sinh

(√
λ2−4µξ

2

)


2

(74)

−2λ2 + 8µ− 1, ξ = x− t.

2. When λ2 − 4µ < 0, we have trigonometric function solution

u3(ξ) = 2(4µ− λ2)

−C1 sin

(√
4µ−λ2ξ

2

)
+C2 cos

(√
4µ−λ2ξ

2

)
C1 cos

(√
4µ−λ2ξ

2

)
+C2 sin

(√
4µ−λ2ξ

2

)


2

(75)

−2λ2 + 8µ, ξ = x− 2t,

and

u4(ξ) = 2(4µ− λ2)

−C1 sin

(√
4µ−λ2ξ

2

)
+C2 cos

(√
4µ−λ2ξ

2

)
C1 cos

(√
4µ−λ2ξ

2

)
+C2 sin

(√
4µ−λ2ξ

2

)


2

(76)

−2λ2 + 8µ− 1, ξ = x− t.

3. When λ2 − 4µ = 0, we get rational solution

u5(ξ) = 2
C2

2

(C1 +C2ξ)2
− 2λ2 + 8µ, ξ = x− 2t, (77)

u6(ξ) = 2
C2

2

(C1 +C2ξ)2
− 2λ2 + 8µ− 1, ξ = x− t.

If C1 ̸= 0,C2 = 0, λ > 0, µ = 0, then (73) and (74) can be written respectively as

u7(ξ) = −2λ2 sech2
[
λ

2
(x− 2t)

]
, (78)

u8(ξ) = −1− 2λ2 sech2
[
λ

2
(x− 2t)

]
.

In particular, If C1 ̸= 0,C2 = 0, λ = 0, µ > 0, then (75) and (76) give respectively

u9(ξ) = 8µ sec2[
√
µ(x− 2t)], (79)

u10(ξ) = −1 + 8µ sec2[
√
µ(x− t)].

But, if C1 ̸= 0,C2 = 0, λ = 0, µ < 0, then (73) and (74) get respectively

u11(ξ) = 8µ sech2[
√
−µ(x− 2t)], (80)

u12(ξ) = −1 + 8µ sech2[
√
−µ(x− t)],

which are the exact solutions of the CH equation. It can be seen that the results are similar to the results in [40].
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4. Conclusion

The generalized (G’/G)-expansion method was successfully used to establish periodic wave and solitary wave
solutions. The obtained results complement the useful works of others for this important equations. Generalized
(G’/G)-expansion method is a useful method for finding travelling wave solutions of nonlinear evolution equations.
These exact solutions include three types hyperbolic function solution, trigonometric function solution and rational
solution. The generalized (G’/G)-expansion method is more powerful in searching for exact solutions of NLPDEs.
Some of these results are in agreement with the results reported specially by [40]. Also, new results are formally
developed in this article. It can be concluded that the this method is a very powerful and efficient technique in
finding exact solutions for wide classes of problems.
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