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1. Introduction 
Fundamental to any stated choice (SC) study is an underlying experimental design, the 
generation of which is directly under the control of the research analyst. Unfortunately, 
not all experimental designs are equal in terms of the statistical properties that they 
display and as such, it is up to the analyst to select an experimental design that enhances 
not only the statistical properties of the design itself as well as choice data collected 
using that design, but also a design that compliments the statistical properties of the 
models on which such data are applied. Several researchers have already addressed the 
issue of how to construct experimental designs that display favorable statistical 
properties (e.g., Bliemer and Rose, 2006; Bliemer et al., 2007; Carlsson and Martinsson, 
2002; Ferrini and Scarpa, 2007; Huber and Zwerina, 1996; Kanninen, 2002; Kessels et 
al., 2006; Sándor and Wedel, 2001, 2002, 2005; Rose and Bliemer, 2006). Central to 
this literature on generating experimental designs for SC data is the minimization of the 
standard errors obtained from data collected using the experimental design. With the 
minimization of the standard errors comes the maximization of the asymptotic t-ratios 
which in turn means more efficient estimators at a given sample size.  

With the exceptions of Bliemer et al. (2007), Ferrini and Scarpa (2007), and Sándor and 
Wedel (2002, 2005), research into the generation of SC experiments have largely 
assumed that data collected using the design will be limited in analysis to the use of the 
simple MNL model. The MNL model remains versatile and resilient many years after 
its introduction by McFadden (1974) however, it does suffer from a number of 
limitations. The three most important limitations of the MNL model are i) that the 
model does not easily accommodate the presence of preference heterogeneity within 
choice data, ii) that it does not allow for the fact that with SC data, each decision maker 
typically responds to multiple choice tasks, and iii) that the MNL model imposes a 
constant error variance assumption across all alternatives within the model.  

The incorporation of preference heterogeneity into the MNL model is possible given the 
inclusion of interaction terms, however incorporating these into the experimental design 
is a non trivial task, particularly as the interaction terms would likely be between the 
design attributes and the characteristics of individual respondents and not just simply 
between the design attributes themselves. Failure to accommodate such interaction 
terms into the design process will significantly impact upon the statistical properties of 
the design (see Rose and Bliemer, 2006). The second issue related to the presence of 
repeated choice observations has traditionally been handled using either bootstrapping 
or jackknife techniques to adjust the standard errors of the model. Nevertheless, Ortúzar 
et al. (2000) tested both methods and found using four different data sets that the 
standard errors varied inconsistently and against expectations and concluded that the use 
of these methods were unsatisfactory for correcting for the repeated choice observation 
problem. The final issue, that of constant error variances across alternatives may only be 
addressed by moving to alternative model forms, such as the nested logit (NL) model 
(see Carrasco and Ortúzar (2002) for a detailed discussion of the NL model and its 
history). 

Bliemer et al. (2007) extended the literature on designing SC experiments by addressing 
the third limitation of the MNL model mentioned above by accounting for differences in 
the error variances of alternatives when generating experimental designs by utilizing NL 
models. Ferrini and Scarpa (2007) also accounted for the same issue via an error 
components model structure, and in doing so also addressed the second issue of 



Construction of exp. designs for ML models allowing for correlation across choice observations  
Bliemer & Rose 
 

2 

repeated choice observations by allowing for a correlated error structure across choice 
situations. Sándor and Wedel (2002, 2005) address the first issue of accommodating 
preference heterogeneity by generating experimental designs expressly for mixed logit 
models, but did so without addressing the second issue of having repeated choice 
observations at the individual respondent level. 

One major benefit of using the mixed logit model is that depending on how the model is 
specified, the model may allow for i) the incorporation of preference heterogeneity (see 
e.g., Ben-Akiva et al., 1993; Ben-Akiva and Bolduc, 1996; Bhat, 1996; Boyd and 
Mellman, 1980; Cardell and Dunbar, 1980; Brownstone and Train, 1999; Hensher and 
Greene, 2003; McFadden and Train, 2000), ii) an accommodation of within respondent 
correlation across repeated choice observations (Revelt and Train, 1998) and iii) non-
constant error variances across alternatives via a relaxation of the IID assumption (see 
e.g., Hensher and Greene, 2003, or Train, 2003). The specification utilized in Sándor 
and Wedel (2002, 2005) addressed only the first and third issue. In SC experiments 
where respondents face multiple choice situations, particularly the second issue is of 
importance, and has so far not been accounted for in the design of these experiments. 

In this paper, we address the issue of designing SC experiments in a way that 
accommodates all three limitations of the MNL model. We do this by use of the panel 
formulation of the mixed logit model, a formulation that explicitly incorporates the 
possibility of correlations over the multiple choice observations made by individual 
respondents, whilst also allowing for preference heterogeneity and a relaxation of the 
IID assumption (see e.g., Revelt and Train, 1998, Train, 2003, or Ortúzar and 
Willumsen, 2001). The use of the panel formulation of the mixed logit model requires a 
different specification of the log-likelihood function of the mixed logit model to that 
used in Sándor and Wedel (2002, 2005). Unfortunately, the log-likelihood function for 
the panel specification of the mixed logit model introduces an increased degree of 
complexity into the generation processes of experimental designs, in that the analyst 
now has to deal not with summations, but rather with products. Where possible, 
however, we mitigate this complexity so as to make the problem of design generation as 
tractable as practicable. In addition to the incorporation of panel effects, we generalize 
the model to not only assume normally distributed random parameters, as has been done 
in the past within the SC experimental design literature, but also allow for other 
distributions such as the uniform distribution.  

The remainder of the paper is organized as follows. In the next section, we outline the 
panel formulation of the mixed logit model which precedes discussion on the issue of 
generating SC experiments using this model formulation. The paper then provides a 
brief discussion on the differences between the panel and the cross-sectional 
formulations of the model before we introduce three case studies in which we compare 
and contrast designs generated for different discrete choice models in order to 
demonstrate differences in the statistical properties of each. After the case studies, we 
discuss the issue of misspecification of prior parameters before we move onto a general 
discussion and concluding remarks. 
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2. The panel mixed logit model 
Let nsjU  denote the utility of alternative j perceived by respondent n in choice situation 
s, which consists of an observed component nsjV  and an unobserved component ,nsjε  
 

.nsj nsj nsjU V ε= +    (1) 

  
As is common practice, the observed component is assumed to be described by a linear 
relationship of observed attribute levels of each alternative, x, and their corresponding 
weights (parameters), ,β  
 

1
.

K

nsj k nsjk
k

V xβ
=

= ∑  (2) 

 
In case a certain parameter kβ  appears in the utility function of multiple alternatives j, it 
is said to be generic over these alternatives. Otherwise, the parameter is called 
alternative-specific. In our notation, if a certain attribute k does not appear in the utility 
function of a certain alternative j, then we assume that 0.nsjkx =  
 
When the unobserved components are assumed to be identically and independently 
extreme value type 1 (EV1) distributed, then the probability nsjP  that respondent n 
chooses alternative j in choice situation s is given by the multinomial logit model (see 
McFadden, 1974), 
 

( )
( )

exp
,

exp
ns

nsj
nsj

nsii J

V
P

V
∈

=
∑

 (3)

 
where nsJ  is the set of alternatives presented to respondent n in choice situation s. 
Typically, the parameters β  are unknown and one is interested in estimating these 
parameters from data, being either revealed choice data, or in our case, stated choice 
data. Let nsjy  equal one if j is the chosen alternative in choice situation s shown to 
respondent n, and zero otherwise. In other words, y represents the outcomes of a stated 
choice experiment. Then the parameters can be estimated by maximizing the likelihood 
function L, 
 

( )
1

.nsj

n ns

N y

nsj
n s S j J

L P
= ∈ ∈

=∏∏∏  (4)

 
where N denotes the total number of respondents and nS  is the set of choice situations 
faced by respondent n. 
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In case of a mixed logit model, we assume that (some of) the parameters are random, 
following a certain probability distribution. In that case, the expected likelihood 
function is maximized in order to estimate the distributional parameters, with 
 

( )

( )

1

1

( )

,

nsj

n ns

nsj

n ns

N y

nsj
n s S j J

N y

nsj
n s S j J

E L E P

E P

= ∈ ∈

= ∈ ∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∏∏∏

∏ ∏∏
 (5)

 
in which the second term holds since we assume that all respondents make their 
decisions independent of each other. If two random variables, say p and q, are 
independent, then ( ) ( ) ( ).E pq E p E q=  However, in a SC experiment, we cannot assume 
that the probabilities for a single respondent in multiple choice situations are 
independent, as they have the same underlying behavior. The above formulation that 
explicitly takes into account this dependency is called the panel mixed logit model. The 
expectation is over the random β  values, which make the probabilities nsjP  random as 
well. 
 
Instead of maximizing the likelihood, commonly the log-likelihood function is 
maximized, being given by 

 

( )
1

log ( ) log .nsj

n ns

N y

nsj
n s S j J

E L E P
= ∈ ∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∏∏  (6)

 
If the choice observations from a single respondent over a series of choice situations are 
assumed independent, then the likelihood function can be written as 
 

( )
1

( ) ,nsj

n ns

N y

nsj
n s S j J

E L E P
= ∈ ∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∏∏ ∏  (7)

 
such that the log-likelihood function can be simplified to 
 

( )
1

log ( ) log .
n ns

N

nsj nsj
n s S j J

E L y E P
= ∈ ∈

= ∑∑ ∑  (8)

 
This equation represents the log-likelihood function of well-known cross-sectional 
mixed logit model. In the remainder of this paper we will primarily focus on the panel 
mixed logit model, as this provides the correct modeling framework taking into account 
that a single respondent makes multiple choices. However, we will use the cross-
sectional mixed logit model for comparison in our case studies.  
 
Define the probability *

nP  that a certain respondent n has made a certain sequence of 
choices { | 1}

nnsj s Sj y ∈=  with respect to the set of choice situations, ,nS  by 
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( )* ,nsj

n ns

y

n nsj
s S j J

P P
∈ ∈

=∏∏  (9)

 
such that the (panel) log-likelihood function can be written as 
 

( )*

1
log ( ) log .

N

n
n

E L E P
=

= ∑  (10)

 
This probability *

nP  depends on the random parameters ,β  such that the expected 
probability can be written as 
 
( )* *( ) ( | ) ,n nE P P f d

β
β β θ β= ∫  (11)

 
where ( | )f β θ  is the multivariate probability density function of ,β  given the 
distributional parameters .θ  By using a transformation of β  such that the multivariate 
distribution becomes non-parametrical, we can write Eqn. (11) as 
 
( ) ( )* * ( | ) ( ) ,n nz

E P P z z dzβ θ φ= ∫  (12)

where ( | )zβ θ  is a function of z with parameters ,θ  and where ( )zφ  is the multivariate 
non-parametrical distribution of z. It is common to use several (independent) univariate 
distributions1 instead of using a single multivariate distribution, such that Eqn. (12) can 
be written as 
 
( ) ( )

1

* *
1 1 1 1 1 1( | ), , ( | ) ( ) ( ) .

K
n n K K K K K Kz z

E P P z z z z dz dzβ θ β θ φ φ= ∫ ∫L K L L  (13)
 
Having separate univariate distributions for each parameter has the benefit that different 
distributions can be easily mixed. For example, if 1 ~ ( , ),Nβ μ σ  and 2 ~ ( , ),U a bβ  then 

( )*
nE P  is written as 

 
( ) ( )

1 2

* *
1 1 2 2 1 1 2 2 1 2( | , ), ( | , ) ( ) ( ) ,n nz z

E P P z z a b z z dz dzβ μ σ β φ φ= ∫ ∫  (14)
 
where 1 1 1( | , )z zβ μ σ μ σ= +  with 1 ~ (0,1)z N  following a standard normal distribution, 
and 2 2 2( | , ) ( )z a b a b a zβ = + −  with 2 ~ (0,1)z U  following a standard uniform 
distribution. Other distributions can be used as well, such as the log-normal distribution 
in which the transformation ( | , ) zz e eμ σβ μ σ =  is used, with ~ (0,1).z N  Note that a 
fixed parameter is a special case of a random parameter, such that all equations also 
hold in the case that only some of the parameters are considered random. For a fixed 
parameter kβ  we simply take ( | ) ,k k k kzβ μ μ=  and ( ) 1.k zφ =  

 
                                                           
1 Note that if one would not like to assume independent random variables, then one can sample directly from the multivariate 
distribution. In case of a multivariate normal distribution, this is possible through a Cholesky decomposition, see e.g., Greene 
(2002). 
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3. Efficient designs for the panel mixed logit model 
Given the attribute levels x and the survey outcomes y, the model (distributional) 
parameters θ  can be estimated by maximizing the log-likelihood function (Eqn. 10), see 
e.g., Train (2003). In a SC experiment, the attribute levels x are given by the underlying 
experimental design. Creating an efficient design is actually the inverse problem, in 
which the (distributional) parameter estimates are assumed given (as fixed or Bayesian 
priors), and one would like to determine optimal attribute levels x which will maximize 
the so-called design efficiency, which in turn is a measure for the reliability of the 
parameter estimates. This inverse problem of finding an efficient design is far more 
complex than the estimation problem. Generating efficient designs have been discussed 
in Huber and Zwerina (1996), Kanninen (2002), and Sándor and Wedel (2001) for 
multinomial logit models with all generic parameters, and in Carlsson and Martinsson 
(2002) and Rose and Bliemer (2005) for multinomial logit models with generic and 
alternative-specific parameters. Furthermore, efficient designs for the cross-sectional 
mixed logit model are discussed in Sándor and Wedel (2002), for the nested logit model 
in Bliemer et al. (2007), and for the error components model in Ferrini and Scarpa 
(2007). With the exception of the work by Ferrini and Scarpa, each of these models 
assume independent observations from different choice situations, which is in a SC 
experiment not the case when giving multiple choice situations to the same respondent. 
In estimation this is well-known, and panel mixed logit estimation procedures exist. 
However, in design generation, the dependency between choice situations has always 
been ignored. In this paper, we will discuss the generation of design SC experiments for 
panel mixed logit models, such that this dependency is taken into account for the first 
time. 

 

3.1  Efficiency measures 

In order to find an efficient design, the design efficiency has to be expressed in a 
quantitative way using a certain measure. Several measures have been proposed in the 
literature. All measures use the asymptotic variance-covariance (AVC) matrix of the 
estimates to determine the design efficiency. In simple terms, each of these measures 
aims to minimize the (asymptotic) standard errors, or alternatively, maximize the t-
ratios, in case the model parameters are estimated using the design under consideration 
in a stated choice experiment. Rephrasing, if the design is used to construct a SC 
experiment and is given to a large number of respondents, then the resulting variance-
covariance matrix (where the standard errors are the roots of the diagonals) when 
estimating the model parameters will give this AVC matrix. Hence, the AVC matrix 
typically depends on the survey outcomes y. However, it has been shown that for the 
multinomial logit model this AVC matrix can be determined independent of y (e.g., 
Huber and Zwerina, 1996; McFadden, 1974; Rose and Bliemer, 2005). Also, for the 
nested logit model (Bliemer et al., 2007) and the cross-sectional mixed logit model 
(Sándor and Wedel, 2002, 2005), the AVC matrix can be determined independent of y. 
As we will show in this section, the AVC matrix for the panel mixed logit model cannot 
be determined independent of y (the same issue exists for the error components model 
allowing for correlated choice situations; see Ferrini and Scarpa, 2007). We will 
propose to create a hypothetical sample of respondents, such that the design efficiency 
can still be approximated. However, this comes at the cost of much longer computation 
times. Considering the fact that, in order to find an efficient design, thousands – if not 
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millions – of potential experimental designs need to be evaluated, computation time is 
an issue.  

The most widely used measure is the D-error measure (see Huber and Zwerina, 1996), 
which describes the inefficiency of a design, i.e., the lower this D-error, the more 
efficient the design, and is computed by taking the determinant of the AVC matrix (and 
scaled according to the number of parameters). Similarly, the A-error is the (scaled) 
trace of the AVC matrix, which is simply the sum of the diagonal elements representing 
(the squares of) the standard errors. Other measures can be found in e.g., Kessels et al. 
(2006). Let NΩ  denote the AVC matrix for a sample size (number of respondents) N. 
Then the D-error and A-error are defined as 

( )( )1/
D-error det ,

K
N= Ω  (15)

 
( )tr

A-error .N

K
Ω

=  (16)

 
While in minimizing the A-error scaling of the parameters may lead to different results 
(standard errors of large-valued parameters are typically larger, which may overshadow 
the minimization of the standard errors of small-valued parameters), the D-error is not 
sensitive to parameter scaling by means of the determinant. In this paper we will 
concentrate on minimizing the D-error, such that the following problem needs to be 
solved: 

( )( )1/
min det

s.t. .

K
N

x X

Ω

∈
 (17)

 

The attribute levels x are constrained to the feasible set of attribute levels X. This 
feasible set is determined by the experimental design dimensions chosen by the analyst 
and some constraints on the attribute levels. Besides the model specification (in which 
the number of alternatives, attributes, and parameters is chosen), the analyst has to 
decide on the number of choice situations for each respondent (the size of set nS ), the 
number of attribute levels per attribute, and the range of allowed attribute levels. In the 
design literature, the possible attribute levels are typically given and fixed, although 
approaches that pivot around respondent-specific base values exist (Rose et al., 2008). 
Other constraints that can be put on the attribute levels are attribute level balance (over 
all choice situations, each attribute level should appear an equal number of times), and 
orthogonality (independence between attribute levels of different attributes). For a more 
detailed discussion on the generation of SC experiments, see Rose and Bliemer (2008). 

 

3.2  Deriving the AVC matrix for the panel mixed logit model 

The main complexity is to determine NΩ  for a given design x. The remainder of this 
section will be devoted to the derivation of .NΩ  The AVC matrix NΩ  can be 
determined as the inverse of the Fisher information matrix, ,NI  which in turn can be 
computed using the second derivatives of the log-likelihood function (10) (see Train, 
2003). Mathematically, 
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2
1 log ( ), with  ,

'N N N N
E LI I E

θ θ
− ⎛ ⎞∂

Ω = = − ⎜ ⎟∂ ∂⎝ ⎠
 (18)

 

where ( )NE ⋅  is used to express the large sample population mean. Hence, the AVC 
matrix can be determined by calculating the Hessian matrix of the log-likelihood 
function for the panel mixed logit model. Let the vector of kM  parameters for the 
probability distribution of parameter kβ  be denoted by [ ],k kmθ θ=  assuming 

1, , .km M= K  Using Eqn. (10), the first derivatives are 

 

( )
( )*

*
1

log ( ) 1 ,
N

n

nkm kmn

E PE L
E Pθ θ=

∂∂
=

∂ ∂∑  (19)

  

such that the second derivatives can be written as 

 

( )
( )

( )( )
( ) ( )

( ) ( )( )

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

2 * * *2

2* *1

2 * * *

2* *1

log ( ) 1 1

1 1 .

N
n n n

nk m k m k m k m k m k mn n

N
n n n

n k m k m k m k mn n

E P E P E PE L
E P E P

P P PE E E
E P E P

θ θ θ θ θ θ

θ θ θ θ

=

=

⎛ ⎞∂ ∂ ∂∂ ⎜ ⎟= −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎜ ⎟= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

∑

 (20)

Note that we have reversed the order of derivation and expectation, as the derivative of 
the expected value is the same as the expected value of the derivative since the 
expectation is over ,z  not over .θ  In Eqn. (20), two terms remain to be determined,  
 

*
* ,

n ns

nsj nsjn k
n

s S j Jkm km nsj k

y PP P
P

β
θ θ β∈ ∈

∂∂ ∂
=

∂ ∂ ∂∑ ∑  (21)

 
and 
  

1 1

1

1 1 2 2 1 1 2 2 1 1 2 2 2

1

1 1 2 2 1

2 * * *
*

*

2
*

1

,

n ns

n ns

k k nsjn n n
n nsjk

s S j Jk m k m n k m k m k m k m k

k nsj nsj
n

s S j Jk m k m nsj k

PP P P P x
P

y P
P

P

β β
θ θ θ θ θ θ β

β
θ θ β

∈ ∈

∈ ∈

∂ ∂ ∂∂ ∂ ∂
= −

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
+

∂ ∂ ∂

∑ ∑

∑ ∑
 (22)

 
where /njs kP β∂ ∂  is the first derivative of the multinomial logit probability, 
 

.
ns

nsj
nsj nsjk nsi nsik

i Jk

P
P x P x

β ∈

⎛ ⎞∂
= −⎜ ⎟

∂ ⎝ ⎠
∑  (23)
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Suppose we would like to evaluate the design efficiency of design x. Assuming some 
prior values for parameters ,θ  we can compute the multinomial logit probabilities .nsjP  

Furthermore, given the probability distributions of ,β  /β θ∂ ∂  and 2 / 'β θ θ∂ ∂ ∂  can be 
determined. Note that the latter term is zero in case of the normal and uniform 
distribution, such that the last term in Eqn. (22) would drop out. The only unknowns are 
y  and therefore also *.nP  For other model types, such as the multinomial, nested, and 
cross-sectional mixed logit models, the outcomes y could be replaced by probabilities, 
since ( )N nsj nsjE y P=  (y follows a multinomial distribution). However, ( )*

N nE P  cannot 
be approximated that easily, as it describes a generalized multinomial distribution 
(Beaulieu, 1991). Rewriting it to a multinomial distribution in which an alternative is 
redefined as a sequence of chosen alternatives over multiple choice situations is 
theoretically possible; however the number of possible sequences grows exponentially,2 
such that this is not practically feasible. Instead, we will generate a hypothetical sample 
based on the design x as follows. For each respondent n, we draw a random parameter 

kβ  from each given parameter distribution, then determine the observed utility nsjV  for 
each choice situation s based on design x, then draw a separate unobserved component 

nsjε  for each alternative in each choice situation, and determine nsjy  by selecting the 
alternative with the highest utility in each choice situation. Note that the same random 
draw for kβ  is used over all choice situations for each respondent, representing the 
panel formulation. 
 

The expected values in Eqn. (19) can be approximated using simulation, similar to 
approximations in estimation (see Train, 2003). Instead of pseudo-random simulation 
taking pseudo-random draws for each parameter ,kβ  closer approximations with the 
same number of draws can be achieved by using more intelligent quasi-random draws 
(e.g., using Halton or Sobol sequences) or polynomial cubature methods (e.g., Gaussian 
quadrature). A discussion and comparison of these simulated approximations can be 
found in the estimation context in e.g., Bhat (2001, 2003), Hess et al. (2005), Sándor 
and Train (2004), and in the design context in Bliemer et al. (2008). 

 

3.3  Cross-sectional mixed logit as a special case 

The cross-sectional mixed logit model is a special case of the mixed logit model in 
which all choice observations from a single respondent are treated independently. 
Instead of using the log-likelihood function (10) we will now use Eqn. (8), yielding a 
first derivative of 

 

( )
( )

1

log ( ) 1 ,
n ns

N
nsj

n s S j Jkm kmnsj

E PE L
E Pθ θ= ∈ ∈

∂∂
=

∂ ∂∑∑ ∑  (24)

 
                                                           
2 If for a certain respondent n, the number of choice situations is 10 and the number of alternatives is 2nsJ =  for all choice 

situations s, then there are already 102 1,024=  possible choice sequences. Practical problems typically have larger numbers of 
alternatives and choice situations. Multinomial distributions of these large dimensions lead to prohibitive computational problems 
in determining *( ).N nE P   
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and a second derivative of 
 

( ) ( )( )1 1 2 2 1 1 2 2 1 1 2 2

22

2
1

log ( ) 1 1 .
n ns

N
nsj nsj nsj

nsj
n s S j Jk m k m k m k m k m k mnsj nsj

P P PE L y E E E
E P E Pθ θ θ θ θ θ= ∈ ∈

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑∑ ∑ (25)

 

When taking the large sample mean of this second equation, conform Eqn. (18), we can 
use the substitution ( ) ( ),N nsj nsjE y E P=  where ( )NE ⋅  is again the large sample mean, 
such that the outcomes y completely drop from the equation and collapses to the 
formula stated in Sándor and Wedel (2002). This makes computing the AVC matrix for 
the cross-sectional mixed logit model a much easier task than for the panel mixed logit 
model, as there is no need to generate a sample, significantly reducing the computation 
time. 

4. Case studies 
In this section we generate designs for three different case studies. In each of the three 
case studies, we compare and contrast three different experimental designs; the first 
represents an experimental design optimized assuming an MNL model, the second a 
design optimized for a cross-sectional mixed logit model (assuming independent choice 
observations) and the last design assuming the panel formulation of the mixed logit 
model. In the second case study, a fourth design is also generated, that being an 
orthogonal design3.  

In all cases, we have optimized the designs on the D-error criteria; however, for 
completeness we also report the efficiency of the designs using other efficiency criteria. 
Gaussian quadrature with 5 abscissas is being used (see e.g., Bliemer et al., 2008) for 
simulating the probabilities in the mixed logit models, and an additional sample of 500 
respondents is generated (using Halton draws for the EV1 error terms in the utility 
functions) for computing the panel mixed logit results. The procedures described in this 
report have been implemented in the Ngene4 software, which is used to generate the 
efficient designs in all case studies. Reported computation times are for evaluating 
100,000 designs in a randomize-and-swap algorithm, based on a notebook computer 
running Windows XP with a 2.0Ghz Pentium M processor and 1GB RAM. 

 

4.1  Case study 1 
The first case study follows that of Kessels et al. (2004) in terms of the design 
dimensions that we have chosen to explore. The experiment assumes each respondent 
observes two alternatives described by four attributes. The utility specification for the 
case example is given as: 

                                                           

3 In this paper, we have deliberately avoided discussion of orthogonal designs. Orthogonal designs are only optimal for linear 
models (which does not describe models within the logit class of models), or when all prior parameters are assumed to be zero for 
linear models (see Bliemer and Rose (2006) for a detailed discussion of this). Street and Burgess (2004) and Street et al. (2005) 
claim to generate optimal SC designs which are orthogonal. A careful examination of their research suggests that these designs 
are only optimal under the zero prior parameter assumption (indeed, they do not assume any priors) and that the designs that they 
generate can only be used for models assuming generic parameters. 

4 Ngene is being developed by Econometric Software. Prototype version 0.9 was used.  
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1 1 2 2 3 3 4 4 , 1,2,j j j j jV x x x x jβ β β β= + + + =  (26) 

 

where each attribute takes on three levels (i.e., { }1, 2,3 ).jkx =  For the case example 
however, we select different priors to those examined in Kessels et al. (2004). In the 
original work, Kessels et al. choose to use priors drawn from a uniform Bayesian 
distribution ranging between -1 and 1, thus suggesting that the analyst had no 
information as to the expected parameters, not even direction. For the present study, 
parameters 3β  and 4β  are treated as fixed parameters, whilst the first two parameters 
are specified as a random parameters drawn from normal distributions, i.e., 

1 1 1~ ( , )Nβ μ σ  and 2 2 2~ ( , ).Nβ μ σ  The following priors are used: 1 0.6,μ =  1 0.2,σ =  

1 0.9,μ = −  2 0.2,σ =  3 0.2,β = −  and 4 0.8.β = 5  

Three designs were generated for the first case example and are shown in Table 1. The 
first design was generated assuming that the model was an MNL model (computation 
time: 43 seconds to evaluate 100,000 designs), in which the two random parameters are 
assumed to be fixed and their priors equal to the means. The second and third designs 
were generated using the mixed logit model, where in the second design independence 
of choice observations is assumed (computation time: 19 minutes) whilst the third 
design assumes the panel formulation of the model (computation time: 67 hours).   

At the base of Table 1 are the efficiency results for the three designs calculated as if the 
designs were used to estimate different model forms. The bold values represent the 
optimized D-errors. If the estimated model is of the MNL type, then the MNL design 
will perform best, with a D-error of 0.160 (which is smaller than the D-errors of the 
other two designs, 0.169 and 0.165). Similarly, the cross-sectional ML design will 
perform best when estimating a cross-sectional ML model (with a D-error of 0.745), 
and the panel ML design and will perform best for estimating the panel ML model (with 
a D-error of 0.248). Also shown are the associated A-errors and the minimum sample 
sizes required for each design to obtain significant asymptotic t-ratios for all parameters 
(see Bliemer and Rose, 2005, for a discussion of how to calculate these sample sizes).  

Whenever a design is not optimized for the model to be estimated, the design will loose 
efficiency. Reading across the rows for example, one can observe that when the design 
generated for the cross-sectional ML model is used to estimate a panel ML model, the 
design obtains a D-error of 0.278, 12 percent larger than when the panel ML design is 
used (with a D-error of 0.248). Reversely, when estimating the cross-sectional ML 
model, it is much more efficient to use a design specifically designed for this model 
than using a panel ML design (a D-error of 0.745 versus a D-error of 0.933, an increase 
of 25 percent). Note that D-error values down the columns cannot be compared, as they 
are dependent on the model estimated (with possibly different numbers of parameters, 
for example between the MNL and ML models).  

                                                           

5 Note that any parameters could have been chosen. These were selected purely for demonstrative purposes only. Had different 
prior parameters been chosen instead, the results reported may have varied considerably. We discuss this in the discussion 
section of the paper. 
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Table 1: Case Study 1 designs 

  MNL Model Cross-Sectional ML Model Panel ML Model 

  Attributes Attributes Attributes 

s j 1jx  2jx  3jx  4jx  1jx  2jx  3jx  4jx  1jx  2jx  3jx  4jx  

1 1 1 2 1 1 1 3 2 2 1 1 1 1 2 3 3 2 3 3 3 1 1 2 3 3 3 
1 2 2 2 1 2 2 2 1 2 3 3 3 2 2 2 2 2 3 2 2 2 3 2 1 1 1 
1 3 1 2 1 2 3 2 1 2 3 2 2 3 2 1 3 2 3 2 2 2 3 2 1 2 2 
1 1 2 1 3 1 2 3 2 1 2 2 2 4 2 3 2 3 1 3 2 1 2 3 2 2 2 
1 1 3 1 3 2 1 2 2 2 1 2 1 5 2 3 2 3 1 2 3 2 2 2 3 2 3 
1 3 3 1 2 3 3 1 3 2 2 1 3 6 2 1 1 3 2 1 1 3 1 2 2 3 1 
1 1 1 3 2 3 3 1 2 3 3 3 3 7 2 3 3 1 2 1 1 3 3 1 1 1 1 
1 2 3 1 2 3 3 3 2 3 3 1 2 8 2 2 1 3 2 1 1 1 2 1 1 3 2 
1 3 2 2 1 3 2 3 1 1 2 2 2 9 2 1 1 2 3 1 3 1 3 3 2 2 3 
1 2 1 3 1 1 3 2 3 3 1 2 1 10 2 2 3 1 3 3 1 2 1 1 3 2 3 
1 3 2 2 2 1 1 1 1 1 2 1 3 11 2 1 3 2 2 3 3 3 3 3 2 3 1 
1 2 1 1 2 3 2 2 3 1 2 3 3 12 2 2 2 3 2 1 2 2 2 3 2 1 1 
1 3 3 3 3 2 1 3 3 3 1 3 1 13 2 1 1 1 1 2 1 1 1 1 3 1 3 
1 2 3 3 3 2 1 1 1 3 3 1 1 14 2 2 1 1 1 2 3 3 2 1 1 3 2 
1 1 2 3 3 1 2 1 3 1 1 3 2 15 2 3 2 1 1 3 2 3 1 3 3 1 2 

  Efficiency results when design is applied to different model forms 
  Model Assumed for Design 

  MNL Model Cross-Sectional ML Model Panel ML Model 

   D-error  D-error  D-error 
  MNL 0.160  MNL 0.169  MNL 0.165 
  Cross-Sectional ML 0.884  Cross-Sectional ML 0.745  Cross-Sectional ML 0.933 

  Panel ML 0.249  Panel ML 0.278  Panel ML 0.248 

  A-error  A-error  A-error 
  MNL 0.258  MNL 0.210  MNL 0.270 

  Cross-Sectional ML 8.550  Cross-Sectional ML 4.672  Cross-Sectional ML 9.774 

  Panel ML 0.341  Panel ML 0.360  Panel ML 0.337 

  Sample Size  Sample Size  Sample Size 
  MNL 12  MNL 13  MNL 14 

  Cross-Sectional ML 2781  Cross-Sectional ML 1387  Cross-Sectional ML 2932 
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 Panel ML 44  Panel ML 67  Panel ML 40 
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A further point worthy of discussion is the minimum sample sizes suggested for each of 
the different designs. In all cases the cross-sectional ML model – treating each choice 
observation as an independent pseudo individual – performs particularly badly, even 
when the generated design is optimized for this model form. Although not presented 
here, a more detailed investigation shows that particularly the standard deviations 1σ  
and 2σ  need large sample sizes to be statistically significant in estimation, which 
explains the difference in the minimum sample sizes between estimating the MNL 
model and the ML models. The panel ML model accepts a much lower sample size than 
the cross-sectional ML model in order to estimate these standard deviations, requiring 
only 40 respondents at a minimum (and only a sample size of 14 is needed to estimate 
the means and fixed parameters to a statistically significant level). 

It is interesting to see, that the sample sizes between the MNL model and the panel ML 
model are much more similar than the sample sizes between the two ML models. This 
could be explained by the fact that both the MNL as well as the panel ML model 
assume constant respondent behavior over the choice situations, while the cross-
sectional ML model assumes varying respondent behavior over the design. In this case 
study, it turns out to be much better to use the MNL design than the cross-sectional ML 
design in order to estimate the panel ML model. This is an important finding, as 
currently in the state-of-the-art literature, one focuses on designs for the cross-sectional 
ML model (e.g., Sándor and Wedel, 2002; Kessels et al., 2006), while clearly the 
correct model to estimate in case of stated choice experiments is the panel ML model.  

 

4.2  Case study 2 

The second case study follows that of Huber and Zwerina (1996) in terms of the number 
of alternatives (three), attributes (three per alternative), attributes levels (three per 
attribute) and choice situations (nine) chosen. In the original study, Huber and Zwerina 
used as attribute levels 1, 2 and 3 which were dummy coded but did not use priors, 
working directly with the choice probabilities. In the present study, we use a generic in 
the parameters utility specification and do not dummy code such that the utility 
specification of the model is: 

 

1 1 2 2 3 3, 1,2,3,j j j jV x x x jβ β β= + + =  (27) 

 

with attribute levels { }1 10, 20,30jx = and { }2 3 5,10,15 .j jx x= =  As such, we break 
slightly from the original example. For the present study we that all parameters are 
randomly distributed. The first and second parameter are assumed to be uniformly 
distributed, 1 1 1~ ( , )U a bβ  and 2 2 2~ ( , ),U a bβ  while the third parameter is assumed to 
be normally distributed, 3 ~ ( , ).Nβ μ σ  The prior parameters for this case study are 
taken as 1 0.9,a = −  1 0.5,b = −  2 1.5,a = −  2 1.0,b = −  0.8,μ = −  and 0.2.σ =   
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Table 2: Case Study 2 designs 
  MNL Design Cross-Sectional ML Design Panel ML Design Orthogonal Design 

    Attributes Attributes Attributes Attributes 

s j 1jx  2jx  3jx  1jx  2jx  3jx  1jx  2jx  3jx  1jx  2jx  3jx  

1 20 10 15 30 10 10 20 15 5 10 5 5 
2 30 15 5 30 15 5 20 10 10 20 10 10 1 
3 20 10 15 20 5 15 10 5 15 30 15 15 
1 10 15 10 30 10 5 30 10 5 20 15 5 
2 10 5 15 30 10 5 10 15 15 30 5 10 2 
3 20 15 5 10 15 10 20 15 10 10 10 15 
1 30 5 5 10 5 15 30 10 10 30 10 5 
2 30 10 5 10 15 10 20 15 10 10 15 10 3 
3 10 5 15 30 10 5 30 10 10 20 5 15 
1 30 15 5 30 5 5 10 5 15 20 10 10 
2 20 10 15 10 10 15 10 15 10 30 15 15 4 
3 10 15 15 20 10 10 30 10 5 10 5 5 
1 10 10 15 20 15 5 20 15 15 30 5 10 
2 30 5 5 20 5 15 30 5 15 10 10 15 5 
3 10 15 10 10 15 15 30 10 10 20 15 5 
1 20 5 15 10 15 10 30 5 5 10 15 10 
2 20 5 15 20 10 10 10 5 15 20 5 15 6 
3 30 10 5 20 5 10 20 15 5 30 10 5 
1 20 10 10 20 10 15 10 10 10 30 15 15 
2 10 15 10 20 5 15 30 5 5 10 5 5 7 
3 30 5 5 30 15 5 10 5 15 20 10 10 
1 10 15 10 10 15 15 10 5 15 10 10 15 
2 20 10 10 30 5 10 20 10 5 20 15 5 8 
3 20 5 10 30 10 5 10 15 5 30 5 10 
1 30 5 5 20 5 10 20 15 10 20 5 15 
2 10 15 10 10 15 5 30 10 5 30 10 5 9 
3 30 10 10 10 5 15 20 5 15 10 15 10 

  Efficiency results when design is applied to different model forms 
  Model Assumed for Design 
  MNL Model Cross-Sectional ML Model Panel ML Model Orthogonal Design 

   D-error  D-error  D-error  D-error 
  MNL 0.023  MNL 0.042  MNL 0.037  MNL 3.604 

  Cross-Sect. ML 0.414  Cross-Sect. ML 0.104  Cross-Sect. ML 0.114  Cross-Sect. ML 55.468 

  Panel ML 0.096  Panel ML 0.082  Panel ML 0.080  Panel ML 0.782 

  A-error  A-error  A-error  A-error 
  MNL 0.262  MNL 0.220  MNL 0.166  MNL 34462 

  Cross-Sect. ML 2.800  Cross-Sect. ML 0.970  Cross-Sect. ML 1.633  Cross-Sect. ML 5.1·109 

  Panel ML 0.433  Panel ML 0.324  Panel ML 0.298  Panel ML 7012 

                         Sample Size                          Sample Size   Sample Size                               Sample Size
  MNL 1  MNL 1  MNL 1  MNL 275809 

  Cross-Sect. ML 24  Cross-Sect. ML 31  Cross-Sect. ML 61  Cross-Sect. ML 1.1·1012 
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 Panel ML 8  Panel ML 7  Panel ML 7  Panel ML 72147 

 

As with the first case study, three designs were generated, each having nine choice 
situations. The first design was generated assuming an MNL functional form (taking the 
priors equal to the means of the random distributions), the second a cross-sectional ML 
form, and the third a panel ML form. The final designs and their respective efficiencies 
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are given in Table 2. The design generation computation times were 29 seconds, 63 
minutes, and 250 hours, assuming the MNL, cross-sectional ML, and panel ML model, 
respectively. 

For the first three designs, the results for the second case study mirror those of the first. 
Models estimated using designs specifically generated for that model outperform 
designs generated for different model forms. Again, for all designs, the minimum 
sample size for estimating the cross-sectional ML model is much larger than the sample 
size for estimating the panel ML model. The MNL model and panel ML model sample 
sizes are more similar, although the latter one needs a higher sample size again due to 
the harder to estimate standard deviation .σ  

Table 2 also contains a fourth design, that being an ‘optimal’ orthogonal design 
generated using the principles outlined by Street et al. (2005). Following their 
procedure, the design is orthogonal within alternatives, not across alternatives. It is 
constructed such that within each choice situation, for every attribute each attribute 
level never appears twice across any of the alternatives. As such, the design is generated 
to force respondents to make trade-offs for each and every attribute in each and every 
choice situation of the experiment (this is the definition of design optimality put forward 
by Street et al.). 

Clearly, the design process put forward by Street et al. (which does not consider any 
information on the priors) produced significantly substandard results for this case study. 
Indeed, the sample size requirements for all models are substantially large compared 
with the other designs shown in Table 2, suggesting that this design should not be used 
in practice. Nevertheless, the warning message here should be somewhat tempered, 
given that the orthogonal design chosen performed badly given the prior parameters we 
selected. Whilst these priors were chosen purely for descriptive reasons for the case 
only, it is feasible that the design may perform better given a different set of population 
parameter estimates.  

Further, the orthogonal design was constructed using the procedures outlined in Street et 
al. (2005), which do not necessarily reflect the generation processes followed by most 
researchers in constructing orthogonal designs. As such, another orthogonal design may 
be expected to perform much better than that used here. The best orthogonal design we 
could find (not reported here), generated assuming an MNL model, had a D-error of 
0.081, which is still significantly higher than 0.023, but clearly much better than the 
‘optimal’ orthogonal design following Street et al. 

All three efficient designs perform relatively under each model form, while the 
orthogonal design performs very poorly. The MNL design, which is the easiest to 
generate, could be used to estimate all models with a relatively high efficiency. 

 

4.3  Case study 3 
The final case study was constructed to demonstrate the ability of the design generation 
process outlined within this paper to handle both alternative specific and generic 
parameter estimates. The utility specification used in generating the design for the third 
case example is given in Eqn. (28).  

1 0 1 11 2 12 4 13

2 1 21 2 22 3 23

,

       .

V x x x

V x x x

β β β β

β β β

= + + +

= + +
 (28)
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For the first alternative, we include a fixed constant term. For the first and second 
attributes, generic parameters are assumed whilst for the third attribute of each 
alternative, the parameters are assumed alternative-specific. Parameters 1,β  2 ,β  and 3β  
are assumed random, following a normal distribution, ~ ( , ),k k kNβ μ σ  1,2,3.k =  The 
attribute levels used are { }1 5,10,15 ,jx =  { }2 23 0,1, 2jx x= =  and { }13 0,1,2,4 .x =  The 
following prior values are used: 0 0.5,β = −  1 0.05,μ = −  1 0.02,σ =  2 0.9,μ = −  

2 0.2,σ =  3 0.8,μ = −  3 0.2,σ =  and 4 0.2.β = −  We generate each design with 12 choice 
situations. The final designs are replicated in Table 3. The computation times for design 
generation are 28 seconds, 104 minutes, and 332 hours, for the MNL, cross-sectional 
ML, and the panel ML model, respectively. 

Once again, the results for the third case study mirror those of the first two case studies. 
As would be predicted, an econometric models would be expected to be statistically 
more efficient when applied to data collected using experimental designs constructed 
specifically for that design. Also the MNL and panel ML model perform again in a quite 
similar fashion, while in the cross-sectional ML model very large sample sizes are 
required to be able to obtain reliable parameter estimates for the standard deviations. 
The panel ML design performs poorly when estimating the cross-sectional ML model, 
and vice versa, the cross-sectional ML design performs poorly when estimating the 
panel ML model. The MNL design looses some efficiency when estimating the ML 
models, but performs relatively well. 

5. Misspecification of the prior parameter values 
In constructing each of the designs, we have assumed that the prior parameter values 
correspond to the true parameter values held by the population. This represents a strong 
assumption that is unlikely to hold in practice, but it is necessary for creating efficient 
designs. To test the impact misspecification of the prior parameters has on an 
experimental design once generated, it is possible to fix the design and apply different 
sets of priors to it and in doing so recalculate the expected AVC matrix.   

Let us assume that the true population parameters for the third case example were really 
0 0.5,β = −  1 ~ ( 0.07,0.03),Nβ −  2 ~ ( 1.1, 0.8),Uβ − −  3 ~ ( 0.6,0.15),Nβ − and 4 0.3.β = −  

As such, for the first random parameter, the mean of the parameter is larger in 
magnitude as is the standard deviation relative to that assumed in the design generation. 
For the second random parameter, we assumed a normal distribution with some given 
priors in the design construction, but now we not just assume different priors, but 
actually a whole different random distribution, namely a uniform distribution. The third 
random parameter is assumed to have a smaller mean and standard deviation than 
assumed in constructing the design, while the final parameter is maintained as fixed but 
has an increased magnitude. Table 4 details the new efficiency measures for the three 
designs given in Table 3, as well as the percentage change of these values.  
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Table 3: Case Study 3 designs 

   MNL Design Cross-Sectional ML Design Panel ML Design 

    Attributes Attributes Attributes 

s j 1jx  2jx  3jx  1jx  2jx  3jx  1jx  2jx  3jx  

1 5 2 1 10 0 2 5 2 4 
1 

2 15 0 2 10 1 2 15 0 2 
1 15 0 3 5 0 1 15 0 4 

2 
2 5 2 0 15 2 0 5 1 2 
1 10 2 3 15 1 1 5 0 2 

3 
2 10 0 1 5 1 0 15 1 0 
1 10 2 3 15 1 4 5 1 2 

4 
2 5 0 1 5 0 2 15 2 1 
1 5 1 1 5 2 3 15 1 1 

5 
2 15 1 0 15 1 2 10 0 2 
1 15 2 2 10 2 2 5 1 3 

6 
2 10 0 1 10 0 1 15 1 1 
1 15 0 1 10 2 3 15 0 4 

7 
2 5 2 0 10 0 1 5 2 0 
1 10 1 2 10 1 1 15 1 1 

8 
2 10 2 2 10 2 1 5 2 0 
1 5 1 4 5 1 4 10 2 2 

9 
2 15 2 0 15 1 0 10 0 1 
1 15 1 4 15 0 3 10 2 1 

10 
2 5 1 2 5 2 2 10 0 2 
1 10 0 2 5 2 2 10 0 3 

11 
2 10 1 2 15 0 1 5 2 1 
1 5 0 4 15 0 4 10 2 3 

12 
2 15 1 1 5 2 0 10 1 0 

  Efficiency results when design is applied to different model forms 
  Model Assumed for Design 
  MNL Model Cross-Sectional ML Model Panel ML Model 

   D-error  D-error  D-error 
  MNL 0.137  MNL 0.149  MNL 0.146 

  Cross-Sect. ML 2.026  Cross-Sect. ML 1.007  Cross-Sect. ML 1.567 

  Panel ML 0.242  Panel ML 0.282  Panel ML 0.222 

  A-error  A-error  A-error 
  MNL 0.368  MNL 0.362  MNL 0.445 

  Cross-Sect. ML 196.281  Cross-Sect. ML 9.542  Cross-Sect. ML 31.883 

  Panel ML 0.700  Panel ML 0.655  Panel ML 0.622 

                            Sample Size                            Sample Size                            Sample Size
  MNL 30  MNL 35  MNL 34 

  Cross-Sect. ML 252448  Cross-Sect. ML 21518  Cross-Sect. ML 104965 
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From Table 4, it can be seen that misspecification of the prior parameter values can 
have a significant impact upon the overall efficiency of different designs. Indeed, the D-
errors increase for all designs when applied to the appropriate model forms, hence all 
designs are loosing efficiency due to incorrect priors. Although the D-error for the MNL 
design applied to the MNL model increases, the sample size actually decreases. There 
are two reasons for this. First, the D-error represents a form of average over all 
parameters, while the sample size requirements relate only to parameter that is most 
difficult to estimate (see Bliemer and Rose, 2005). Thus, it is possible that on average, 
the standard errors for each design are decreasing, but that the largest standard error 
within the AVC matrix actually decreases, thus requiring smaller sample sizes for all 
asymptotic t-ratios to be statistically significant. Secondly, the most difficult to estimate 
parameter was the standard deviation of the first normal distribution, and since this 
value has increased from 0.02 to 0.03 it will lead to the similar t-ratios with lower 
sample size.  

Nevertheless, for design efficiency to be truly translated into estimation efficiency, the 
parameter priors assumed during the generation process should be as close to possible to 
the true, but as yet unknown, population level parameters. To ensure that this is the 
case, a number of strategies are available to the analyst. Firstly, a literature review or a 
pilot study (e.g., using an orthogonal design) conducted on a small sample may yield 
sufficient priors for use in constructing the design. Secondly, the analyst may consider 
updating the design throughout the data collection process based on priors obtained 
from sequential analysis of accumulated data, as suggested by Kanninen (2002). This 
latter strategy should not be confused with adaptive conjoint however, as no within 
respondent design updating occurs. Rather, more efficient designs are given to newer 
respondents. Thirdly, more robust efficient designs can be generated, so-called Bayesian 
efficient design, that are not optimized on a set of fixed priors, but rather on a set of 
prior distributions, reflecting the fact that priors are not known with certainty, see e.g., 
Bliemer and Rose (2008), Kessels et al. (in press), Sándor and Wedel (2001). This last 
strategy can be combined with the first strategy, where a pilot study is conducted and 
the parameter estimates together with their standard errors can be used as Bayesian 
priors to construct a Bayesian efficient design. Unfortunately, this adds significantly to 
the design generation time again, as the Bayesian efficiency needs to be simulated with 
draws over the random priors. In the panel ML context, due to huge computational 
complexity, this does not seem feasible within reasonable time constraints. 
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Table 4: Case Study 3 Impact of Misspecification of Prior Parameter Values 

 Efficiency results when design is applied to different model forms 
 Model Assumed for Design 

 MNL Model Cross-Sectional ML Model Panel ML Model 

D-error * 
 MNL 0.148 (+8%)  MNL 0.165 (+11%)  MNL 0.162 (+11%)
 Cross-Sect. ML 2.983 (+47%)  Cross-Sect. ML 1.723 (+71%)  Cross-Sect. ML 1.791 (+14%)

 Panel ML 0.256 (+6%)  Panel ML 0.254 (-10%)  Panel ML 0.272 (+23%)

A-error * 
 MNL 0.381 (+4%)  MNL 0.376 (+4%)  MNL 0.500 (+12%)
 Cross-Sect. ML 428.620 (+118%)  Cross-Sect. ML 44.721 (+369%)  Cross-Sect. ML 77.059 (+142%)

 Panel ML 0.735 (+5%)  Panel ML 0.659 (+1%)  Panel ML 0.839 (+35%)

Sample Size * 
 MNL 14 (-53%)  MNL 17 (-51%)  MNL 18 (-47%)
 Cross-Sect. ML 1749011 (+593%)  Cross-Sect. ML 146414 (+580%)  Cross-Sect. ML 84728 (-19%)

M
od
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 Panel ML 374 (-8%)  Panel ML 279 (-76%)  Panel ML 388 (+38%)
* Values between brackets are the percentage change 
 

6. Conclusion and discussion 
The generation of SC experiments has continued to evolve over the past two decades to 
become an increasingly significant but complex component of SC studies. We contend 
that the generation of SC experiments is critical to the success of any SC study and that 
failure to correctly construct an appropriate design may result in erroneous findings. 
This paper addresses the issue of how to generate efficient SC experiments for the panel 
formulation of the mixed logit model, which recognizes the fact a single respondent 
faces multiple choice situations. We have attempted to show via the use of three case 
studies, the importance of generating experimental designs specifically for econometric 
models for which they are likely to be applied to once data has been collected. It turns 
out that generating efficient designs for panel mixed logit models requires a much larger 
computational effort than generating designs for the MNL or cross-sectional mixed logit 
model, due to mandatory virtual sample generation. Furthermore, designs that are 
efficient for the cross-sectional mixed logit model are typically not efficient for 
estimating the panel mixed logit model, and vice versa. In the three case studies 
presented, the efficient design for the MNL model performed relatively efficient for 
estimating panel mixed logit models, although some efficiency will be lost. Given the 
fact that generation of panel mixed logit designs is much more computationally 
intensive, a good starting point would perhaps be to generate an efficient design for the 
MNL model and evaluate the efficiency this design under the panel mixed logit model 
assumption. 

A critical issue in the construction of efficient designs is what constitutes the best source 
for determining the priors used in generating the designs. This issue leads to several 
questions that analysts must address. Firstly, should a pilot study be conducted, and if 
so, what represents a sufficient sample size to obtain the priors? Alternatively, should 
the managers and other practitioner’s beliefs be incorporated into the generation process 
and how best should such beliefs be captured? These questions remain unanswered and 
are in urgent need of examination.  
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Further, the current literature on generating experimental designs has clearly 
demonstrated the requirement that efficient designs be constructed such that they relate 
to the final model likely to be estimated as part of the study (otherwise they loose their 
efficiency), making the generation of efficient designs difficult, a message mirrored 
within this paper. Firstly, the analyst may not know the final model form until after the 
data has been collected. Secondly, the rapid increase in the econometric modeling 
available to the analyst has left the experimental design literature well and truly behind. 
What is urgently required is a detailed study beyond the case studies here to determine 
the likely consequences of mis-specifying not only the priors, but also the model form 
used in generating efficient SC experiments. It is imperative that orthogonal designs not 
be immune from such a study. Further still, the work on efficient SC experiments has 
largely remained theoretical. Most research tends to use only one design, whether 
orthogonal or efficient, and as such, there exists little evidence in practice that efficient 
designs will outperform other designs, despite an expectation that they should do so. As 
such, practical research involving data collected using multiple designs is urgently 
required. Indeed, the question of statistical efficiency versus behavioral efficiency 
remains a fertile area for future research examination. 

This paper also suffers from a number of limitations. Firstly, although we have 
employed three different case studies, each involving designs with differing design 
dimensions, the paper fails to examine the impact different design dimensions play in 
terms of design efficiency for mixed logit designs. Does having more or less choice 
situations impact upon the statistical efficiency of mixed logit designs and in particular 
mixed logit designs constructed for panel data? Does having a wider attribute level 
range improve or detract from the efficiency of such designs? Similar questions can be 
asked as to the number of attributes and alternatives of designs? Whilst these questions 
have been asked about designs generated for other model types and answers attempted 
to be given (see e.g., Bliemer and Rose, 2005, and Rose and Bliemer, 2005), we have 
not attempted to address these issues here.  

Secondly, in constructing our designs, we have assumed that each prior parameter is 
known perfectly a priori. For example, we have specified an exact mean and standard 
deviation for varying random parameters used, or exact lower and upper bounds for 
uniform random parameters. Sándor and Wedel (2002) however, demonstrated for the 
MNL that significant gains can be achieved if prior parameters are drawn using 
Bayesian distributions, rather than fixed values, thus incorporating a degree of 
uncertainty into the prior parameters used during the design generation process. For the 
current study, we have not done this. At issue is the fact that for random parameters, 
two population moments may be unknown, thus requiring the analyst to impose a 
Bayesian distribution for both a mean and standard deviation parameter for example. 
This significantly adds to the complexity of the design process, however doing so may 
generate designs which are more robust to misspecification of the prior parameter 
estimates.  

Thirdly, in generating the designs within this paper, despite letting go of the principle of 
orthogonality, we have remained true to the wider experimental design literature in 
other ways. In particular, we have imposed attribute level balance within each of the 
designs. This means that each level of an attribute will appear an equal number of times 
over the course of the experiment. Whilst there may be reasons for doing this, there may 
also be arguments for not doing so. To understand the argument against this imposition, 
consider that attribute level balance acts as a constraint in terms of allocating 
appropriate attribute levels across a design. For example, a particular choice situation 
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may be improved if one particular level is swapped with that of another choice situation, 
however the swap may detract from the second choice situation. In this way, attribute 
level balance may cause a number of choice situations to include dominant alternatives, 
despite the design being overall more efficient. This problem was identified by 
Kanninen (2002) who proposed allowing one attribute to be continuous, and found for 
the MNL model that substantial efficiency gains were possible. Similar research for 
more advanced models is necessary.  

Finally, this paper has sought to address the issue of designing SC experiments allowing 
for correlation between choice responses across choice situations. The paper does not 
however seek to outline the algorithms, etc. for locating more efficient designs. For 
those interested in these algorithms, we refer the reader to other sources, in particular 
Bliemer and Rose (2006) and Kessels et al. (2006). 
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