
Research Article

Construction of Gene Regulatory Networks Using Recurrent
Neural Networks and Swarm Intelligence

Abhinandan Khan,1 Sudip Mandal,1 Rajat Kumar Pal,1 and Goutam Saha2

1Department of Computer Science and Engineering, University of Calcutta, Acharya Prafulla Chandra Roy Siksha Prangan,
JD-2, Sector III, Salt Lake City, Kolkata, West Bengal 700 098, India
2Department of Information Technology, North Eastern Hill University, Umshing-Mawkynroh, Shillong, Meghalaya 793 022, India

Correspondence should be addressed to Abhinandan Khan; khan.abhinandan@gmail.com

Received 28 December 2015; Revised 19 April 2016; Accepted 24 April 2016

Academic Editor: Matthias Futschik

Copyright © 2016 Abhinandan Khan et al. 
is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal
genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We
have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression
data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters.

e proposed methodology has been �rst applied to a small arti�cial network, and the results obtained suggest that it can produce
the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our
proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in
silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we
have implemented our proposed algorithm with half the number of time points. 
e results indicate that a reduction of 50% in the
number of time points does not have an e�ect on the accuracy of the proposed methodology signi�cantly, with a maximum of just
over 15% deterioration in the worst case.

1. Introduction

With the ongoing evolution of technology, massive amounts
of temporal genetic expression data for di�erent diseases
are becoming available to researchers. 
e analysis of these
data can potentially reveal many unknown cellular activities
of living organisms [1, 2]. 
ese data have enough hidden
information embedded in them that if suitably analysed can
revolutionise biological science and its allied applications like
drug design. Accordingly, this has attracted and motivated
the research fraternity to undertake detailed investigations in
this domain and subsequently develop computational tools
required for biologically credible analysis of these data [3–
6]. In this paper, we have examined the reverse engineering
of gene regulatory networks (GRNs) from temporal genetic
expression datasets. 
ese types of datasets contain crucial
underlying information concerning the network dynamics
among the genes (through protein).

A GRN represents the complex interregulatory relation-
ships among genes. 
e transcriptional regulation of genes
by other genes involves DNA, RNA, and protein as well as
other molecules. 
e genetic interactions are indirect; that
is, a gene does not interact with other genes directly. 
e
indirect interactions take place with the help of proteins
(a.k.a. transcription factors). 
e regulatory relationships
(depending on the nature of the control) may be of two
types, namely, activation (where there is an increase in the
expression value of the target gene) and repression (where the
expression value of the target gene decreases). 
e various
processes involved in genetic regulation have been shown in
Figure 1.

Genetic expression datasets deal with the expression
values of a vast number of interacting genes. Moreover, the
number of genes in a dataset is generally two to three times
more than the number of time points, at the very least.

is imposes a well-known computational problem known as
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Figure 1: Gene regulation with both positive and negative feedback.

the curse of dimensionality [7]. Another di�culty imposed by
microarray datasets is considerable noise contamination [8].

e current work deals with small to medium sized networks
and hence is not faced with the former problem. However,
the authors do focus on the performance of the proposed
methodology in the presence of noise.

In this paper, we have proposed a new methodology
for the accurate extraction of the topology of a GRN from
any given noisy temporal genetic expression dataset using a
statistical paradigm based on the theory of combination.
e
methodology has an underlying hybrid swarm intelligence
framework which is basically a Bat Algorithm (BA) inspired
Particle Swarm Optimization (PSO) algorithm christened
BAPSO by the authors. Here, better results have been
obtained compared to the contemporary literature for the
benchmark networks considered. 
e proposed methodol-
ogy uses the Recurrent Neural Network (RNN) for modelling
the required network dynamics.

According to Bolouri and Davidson [9], a gene in a
GRN is usually regulated by 4 to 8 other genes. We have
proposed a novel GRN construction strategy (based on
this concept) that generates candidate architectures with a
limit to the maximum number of regulators for each gene
in the network. Since, in this work, we have studied only
small-scale and medium-scale networks, we have assumed
the maximum number of regulators to be 4 [9]. 
e fun-
damental mathematical theory of combination has been
applied to search all the candidate solutions in the discrete
search space of network constructions exhaustively. 
e
corresponding RNN model parameters have been trained
by the proposed hybrid metaheuristic technique that can
replicate the original network dynamics faithfully.
e quality
of a solution architecture depends on the quantum of error
in the predicted dynamics. 
e authors have observed in
this investigation that biologically plausible candidate archi-
tectures return much-reduced prediction errors compared
with those which are far removed from real-world network
structures.

We have implemented our proposed algorithm on three
di�erent types of data:

(i) A synthetic dataset generated from an arti�cial net-
work which has been studied quite extensively con-
cerning reverse engineering of GRNs.

(ii) A real-world experimental dataset (in vivo), that is,
the DNA SOS repair network of E. coli.

(iii) An arti�cial dataset generated in silico from a real-
world network of E. coli.

(iv) Another arti�cial dataset generated in silico from a
real-world network of yeast.

Also, we have incorporated networks from small to
medium scale in this work (i.e., 4-gene to 20-gene net-
works). In the case of the synthetic dataset, GRNs predicted
by our proposed methodology generate improved results
concerning the prediction of correct as well as incorrect
regulations, compared to the best existing results in the
contemporary literature (to the best of our knowledge). In
the case of the in silico experiments, the results suggest that
our proposed algorithm is robust enough to return fewer
incorrect predictions along with an increase in the number of
correct predictions compared to the best available outcomes
in recent research endeavours. For the real experimental
datasets, it has been observed that the proposedmethodology
can identify all the possible gene regulatory relations, some
of which are quite elusive to the contemporary as well as
previous researchers.


e rest of the paper has been organized as follows. 
e
background of temporal genetic expression dataset study
has been presented in the next section with an outline of
the existing methodologies for reverse engineering of GRNs.

e subsequent section presents our proposed framework
in detail. Experimental results have been presented and
discussed next. 
e �nal section concludes the paper, high-
lighting some future research scopes.
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2. Preliminaries

2.1. Background. Traditional investigations in the domain
of molecular biology provide vital information about the
functioning of the genetic system in a living cell. Regrettably,
this information so far is inadequate for us to comprehend
the complex gene regulatory mechanisms fully. Among
such techniques, southern blotting was �rst reported by
Augenlicht and Kobrin [10], and it is the origin of DNA
microarray technology [11]. Improvements in this technology
have allowed us tomeasure the expression levels of thousands
of genes simultaneously under various circumstances. 
ese
data help us in the pursuit of disclosing the knowledge
about the regulatory interactions between genes of the entire
genome of a living organism. Despite these advancements,
there remain numerous open challenges in system biological
research domain.

Various approaches exist in the contemporary literature
for the construction of GRNs from time series genetic expres-
sion datasets. At the outset, researchers attempted to employ
clustering algorithms on temporal expression data based on
pairwise correlation coe�cients [12] and Euclidian distances
[13] for the reconstruction of GRNs. Information theory
based approaches that made use of “mutual information”
between di�erent expression pro�les have also been imple-
mented by researchers for de�ning similarity between genes
[14–16]. Application of Bayesian networks for modelling of
GRNs is also quite popular among the researcher fraternity
[17–20].

GRNs can be e�ectively constructed using the dynamical
modelling formalisms [21] such as Boolean networks [22],
where Boolean variables are used to represent the interaction
between genes, and the ordinary di�erential equations based
method, �-systems [23–25], where in-depth biochemical
kinetic models are used to simulate gene network architec-
tures. All of the above can reproduce the structure as well
as the temporal expression pro�les from temporal genetic
expression pro�les.

Additive regulation networks have also been used by
researchers to represent the dynamics of a GRN [26]. 
e
collective regulatory e�ect of a group of genes on a target gene
can be represented in this formalism. 
e intensity and type
of a particular interaction between a target (�) and a regulator
(�) are de�ned by ���: a positive value denotes expression
(facilitation) and a negative value denotes repression while
a zero (0) value implies that there is no interaction between� and �. 
us, a GRN can be represented by a weight matrix� = [���]�×�, where the number of genes in the GRN is

equal to � [27, 28]. Another model somewhat analogous to
this model is the Recurrent Neural Network (RNN) model,
which has been e�ectively used in the reconstruction ofGRNs
from temporal expression data by several contemporary
researchers [29–35]. 
e theoretical background of the RNN
formalism has been discussed in detail in the next section.

is forms the basis of our proposed modi�ed framework.
Figure 2 shows the representation of a GRN by an RNN
model.
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Figure 2: RNNmodel description of a genetic network.
enetwork
shown is unfolded from � = �1 to � = �4. Here, all possible
connections have been shown among the genes whereas, in reality,
such networks are only sparsely connected.

2.2. Recurrent Neural Networks. 
e regulation of the expres-
sion of any particular gene, by another gene or a group of
genes, can be expressed with the help of the Recurrent Neural
Network formalism [30, 36–38] as shown in Figure 2. Each
node symbolises a particular gene and the edges between the
nodes represent the regulatory interactions among the genes.
Each tier of the neural network de�nes the genetic expression
level of the genes at a speci�ed time ��. 
e level of expression
of any particular gene at a time ��+1 = �� + 	� depends
upon the genetic expression level of all the genes (
�) at
the preceding time �� and the weights of their corresponding
connecting edges (��,�) with that particular gene. 
us, the
total regulatory e�ect of all the genes in a network, on any
gene �, can be summarised as follows:

�� = �∑
�=1
��,�
� + 
�. (1)


is can be transformed using a sigmoid function, within an
interval [0, 1], as has been shown by Vohradsky [31]. Here,
� symbolises an external input, which may be visualised as
a reaction delay parameter. A higher (large) value of this
parameter indicates a reduction of the e�ect (in�uence) of��,� on ��. 
e actual genetic expression rate is subsequently
modulated by a multiplicative constant �1 that de�nes the
peak expression level of a particular gene [31]. 
e rate
of expression of any gene � can be de�ned as the total of
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the regulatory e�ects of other genes on it �� minus its
degradation ��. 
is is represented by

	��	� = �� − ��, (2)

where the degradation factor �� can be modelled based on
the kinetic framework of a �rst-order biochemical equation
represented as �� = �2� ⋅ �� [31]. 
e term �� represents
the entire regulatory e�ect on the expression of the gene, �
(represented as �� = �1� ⋅ �(��)). 
e constant �2 signi�es the
rate constant of degradation of the gene product �. 
us,

	��	� = �1� ⋅ �( �∑
�=1
��,�
� + 
�) − �2���, (3)

where � denotes the sigmoid transfer function and 
�
signi�es the concentrations of the elements of the given
system (for � = �; 
� = ��). 
e above expresses the dynamics
of expression of a gene � and denotes a “node” function
[31]. Each node can be connected with all the other nodes
to form a neural network (Figure 2). 
e weight matrix �
describes the connection between the nodes of the network; a
nonzero value of ��� means that a connection between nodes� and � exists. 
e magnitude of the weight ��� signi�es the
strength of an interaction, or a regulatory e�ect, between the
two nodes. 
e neural network is completely de�ned by the
di�erential equations respective to the particular nodes, and
the number of equations is determined by the number of
nodes. 
e quantum of genetic expression at any arbitrary
time � can be calculated by solving the set of di�erential
equations. Equation (3) represents a special case of a class of
RNNs described by the more general equation:

�� 	
�	� = ��( �∑
�=1
��,�
� + 
�) − 
�, (4)

�� 	
�	� = 11 + exp (∑��=1 ��,�
� + 
�) − 
�. (5)


is is a continuous model that has been used for modelling
brain activity pattern and the study of its dynamics. If the
weight matrix ��,� is symmetrical in nature, the network it
represents reaches stability in �nite time. Now, in real world,
time series data are obtained at discrete time points only for
which (5) can be rewritten in its discrete format as follows:

�� 
� (� + Δ�) − 
� (�)Δ�
= 11 + exp [− (∑��=1 ��,�
� + 
�)] − 
� (�) ,

or 
� (� + Δ�)
= Δ��� {1 + exp [− (∑��=1 ��,�
� + 
�)]}
− (1 − Δ��� )
�.

(6)


e dynamics of a GRN can be parametrically modelled
using appropriate dynamical methodologies such as Bayesian
networks, Boolean networks, Recurrent Neural Networks,
and �-systems.
is indicates the signi�cance of identi�cation
of the underlying information regarding genetic interactions
present in the temporal expression data of a regulatory
network. 
e purpose of any reverse engineering framework
is the accurate inference of the applied model’s parameters
for the faithful reproduction of the given time series data.

is can be viewed as an optimization problem, where the
model parameters are trained to minimise the di�erence
between the simulated and the original time series data.
Determination of the mean square error (MSE) from the
above can be a suitable measure of this speci�cation:

MSE = 1�!
�∑
�=1

�∑
�=1
(
� (�) − 
̃� (�))2 . (7)

Here,� is the total number of genes (nodes) in the network,! is the total number of time points available, 
�(�) is the
original expression data, and 
̃�(�) is the simulated data at any
point of time �.
2.3. Major Concerns. One of the major hurdles in the reverse
engineering of GRN from temporal gene expression data is
the curse of dimensionality. It arises from the fact that the
number of genes in a dataset is usually two to three orders
higher than the number of time points, and it severely reduces
the prediction capacity of the given formalisms. Researchers
have attempted to solve this problem to some extent in [28,
30, 32, 33, 39, 40]. 
e present work focuses on small- to
medium-scale networks only (4 genes to 20 genes) and thus
does not face the entire severity of this problem.


e RNN methodology has been implemented, in this
paper, to model the temporal expression data. For that
purpose, the RNNmodel parameters require training, which,
in essence, is an optimization problem. Several metaheuris-
tic techniques, like Simulated Annealing [30, 41], Genetic
Algorithm (GA) [32, 33, 40, 42, 43], Di�erential Evolution
[44], Particle Swarm Optimization [34, 45, 46], and so forth,
have been and are being implemented for this purpose
with various levels of accuracy. 
e proposed methods,
however, have largely been ine�ective to accurately infer
even small-scale real-life GRNs. A few have been able to
identify all the true regulations but in the process have also
inferred unwanted false regulations. Moreover, the “No Free
Lunch” (NFL) theorem [47] rationally states that there is no
single metaheuristic that is most appropriate for solving all
types of optimization problems. 
erefore, �nding out the
most suitable and e�cient optimization techniques for the
accurate inference of small GRNs is still an open problem for
researchers.

Nevertheless, the number of parameters in need of train-
ing undergoes quadratic scaling with respect to the number
of genes in a GRN. 
is fact imposes severe hindrance in
keeping the dimension of the optimization problem at a
reasonable computational limit. As a result, optimization of
model parameters becomes implausible for practical values
of � (i.e., � = 100, 1000, etc.). To solve this di�culty,
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researchers have proposed strategies like decomposition of
the problem of global optimization of parameters into local
problems of parameter optimization for a single target gene
only [40, 43, 48, 49]. Other strategies, such as interpolation
[36, 50, 51], the addition of noisy duplicate copies [52], anduse
of suitable thresholds [37, 52], have also been implemented
to limit the number of optimizable parameters. Interpolation
strategies usually have a drawback: they are incapable of
faithfully summarising the dynamics between any two time
points. According to van Someren et al., such strategies can
bring about only a minimal reduction in the dimension
of the optimization problem, irrespective of the number
of additional time points [52]. Other strategies also fail to
improve upon the situation as they also fail to add any
supplementary information to the network dynamics.

Fortuitously, extensive biological research, in the per-
spective of reverse engineering of GRNs, con�rms that there
exist only a handful of genes that act as regulators in a
GRN [7, 9, 19, 36, 37]; that is, GRNs are connected sparsely.
Mathematically, this implies that we can assign a zero value
to a large number of the model parameters that represent
the one-on-one regulatory relationships.
us, a considerable
reduction in the dimensionality of the optimization problem
can be achieved.

Researchers strived to develop a suitable optimization
environment integrating this sparseness concept and achieve
a signi�cant improvement in the problem solution. 
is
entailed some form of architectural constraint to be imposed
on the predicted networks. Researchers have also found that
it is possible to decouple the structural and the dynamic
aspects of the given reverse engineering problem. In other
words, there is scope for the application of a suitable tech-
nique that can decouple the problem into two independent
subproblems: the search for candidate architectures in the
discrete search space of network structures and the search for
suitable model parameters in the corresponding continuous
search space of parameters of dynamical formalisms [34,
35, 45, 46, 53, 54]. 
us, an endeavour to locate suitable
model parameters may supervise the pursuit of detection of
the candidate networks. 
e accuracy of a trained model,
assessed from the perspective of reproducing the original
dynamics, determines the appropriateness of a predicted
architecture. 
e level of precision can be ascertained from
the MSE calculated for the predicted models as per (7). A
genetic interaction is appended to a predicted architecture or
removed from it based on the value of the calculated MSE.

us, the extra burden of searching the biologically plausible
network architectures within a separate discrete search space
of candidate network architectures is compensated by a
considerable reduction in the dimension of the problem of
training the dynamic model parameters.

3. Methods

3.1. Decoupled Strategy. In this section, we have explained in
detail the methodology implemented in this work. Firstly, we
have represented aGRNwith the help of a directed graph;% =(&, ') represents a GRN, where& denotes the set of all nodes
(genes) and ' is the set of all edges (the interaction between

a pair of genes). An edge, *�,�, is present in the set ' if and
only if there exists an interaction between node (gene) � and
node (gene) �. Here, *�,� signi�es that gene � regulates gene �,
and this convention has been used right through this work. A
directed graph can be represented by an adjacency matrix for
computational purposes. An adjacencymatrix% = [��,�]�×�,
where� is the number of nodes in the graph (i.e., the number
of genes in the network).
e element ��,� can take any value, 0
or 1, depending on the absence or presence of a directed edge
from node � to node �, respectively.

Now, the methodology proposed in this work, for the
reverse engineering of GRNs from temporal expression
datasets, employs the decoupling strategy discussed in the
previous section [34, 35, 45, 46, 53, 54]. Here, we have �rst
reduced the search space of candidate network structures by
restricting the number of regulators [9] on a particular gene
in a GRN. Subsequently, we have implemented the theory
of combination to exhaustively search the reduced candidate
network architecture space. In other words, if there are �
genes in a GRN and- is the maximum number of regulators
allowed for a gene, then the search space dimension is,

by de�nition, �/� or (�� ). 
is is much less than the

original search space dimension of 2�. Additionally, since our
proposed algorithm is performing exhaustive search in the
reduced space, it has a high chance of obtaining biologically
plausible candidate network architectures. Mathematically,

there are �/� GRN structures, each represented by %� (� =1, 2, . . . ,�/�).
In the next phase, the RNN formalism has been imple-

mented tomodel the underlying dynamics from the temporal
genetic expression pro�les based on the candidate network
structures obtained in the previous phase. In other words, the
weight matrix�� of the RNN formalism has been initialised
based on all %�’s de�ned. We have used the proposed BAPSO
technique to train the RNNmodel parameters, that is,���, 
�,
and ��, accurately such that the predicted expression pro�les
match the original expression pro�les faithfully. 
e MSE
de�ned by (7) determines the quality of a candidate solution%�, and the candidate solution with the least MSE has been

chosen as the most reasonable from all the �/� or (�� )
candidates.

It would be interesting to note here that each of the genes
in a GRN may not always be regulated by the maximum
number of allowed regulators; that is,- = 4 genes.
erefore,
we have gradually incremented the value of- from 1 to 4, and
theMSEhas been calculated for each case. A satisfactorily low

value of MSE ∼ 10−3 has been used as the selection criterion
for a candidate solution.

A further problem encountered in this endeavour is
the dimensionality of the RNN model parameter training
problem. For � genes in a GRN, there are � × (� + 2)
parameters to be trained for a particular RNN instance
with the help of the BAPSO technique, and this essentially
becomes computationally unrealistic for large values of �.
To further reduce the computational load, in this work, we
have decomposed this problem into � subproblems where,
in each subproblem, (� + 2) parameters are trained for
each of the � genes, independently. In case of each of
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the independent subproblems, the aim is to minimise the
error term er� de�ned as

er� = 1!
�∑
�=1
(
� (�) − 
̃� (�))2 . (8)

Here, er� ∈ ' and' = [er�]1×�which is subsequently used
for the calculation of MSE. Hence,

MSE = 1�
�∑
�=1
er�. (9)


e MSE governs the overall quality of the candidate
solutions. 
e lower the value of the term er�, the more
e�cient the reduction in the di�erence between the predicted
temporal expression pro�le and the original one and themore
suitable the candidate network architecture. It is, therefore,
the ultimate objective of the proposedmethodology to recon-
struct a network architecture that is biologically plausible and
at the same time capable of replicating the original network
dynamics more accurately.

3.2. 	e Proposed Metaheuristic. 
e training of the model
parameters of the RNN instances has been achieved using the
proposed BAPSO algorithm. Among all the proposed swarm
intelligence techniques to date, Particle Swarm Optimization
(PSO) [55–58] is conspicuous for being simple yet e�cient,
robust, easily tractable, and easy to code. PSO yields solutions
that are of the same or better quality compared to GA for a
wide array of problems and possesses a faster convergence
rate. A particle swarm comprises some particles arbitrarily
dispersed in a search space. 
e positions of these individual
particles denote candidate solutions.
e intention of any par-
ticle is to �nd the optimum solution utilising the knowledge
acquired through social interactions with its neighbours.
Each particle in a swarm is speci�ed by its position 6pso, its
velocity Vpso, and its memory of the best solution achieved by

it so far 6	pso. Another memory element �	 denotes the best
solution attained thus far by the swarm and is shared among
all particles.


e position of a particle signi�es the vector containing
all the parameters of an RNN instance. 
e �tness of a
particle is calculated using either (8) or (7), depending upon
whether the decoupled strategy has been implemented or not,
respectively. In other words, if someone chooses not to use
the decoupled strategy, then the quality of the solution is
determined by (7). However, since, in the decoupled strategy,
each gene is dealt with separately, the quality of a solution
is determined by (8), and we have used this only. For each
generation, the updated position 6
pso and velocity V



pso of a

particle for the next generation are calculated based on its best
solution achieved so far and the best solution obtained by the
entire swarm thus far. Hence,

V


pso�

= � ⊗ Vpso�
+ 8191 ⊗ (6	pso� − 6pso�) + 8292

⊗ (�	 − 6pso�) ,
(10)

6
pso� = 6pso� + V


pso�

, (11)

where � is the inertia weight term, and it controls the
dynamic balance between exploration and exploitation
undertaken by a particle. Again, 81 and 82 are random
numbers in the range [0, 1] and usually 91 = 92 = 2.
e terms8191 and 8292 determine the e�ect (on the particle velocity)
of the best solutions achieved by a particle and the swarm,
respectively. 
e terms are all in a matrix format and thus it
is sensible to point out that elementwise multiplications are
necessary here and have been symbolised by ⊗.

BA has been recently formulated by Yang based on the
echolocation property of real bats [59, 60]. In BA, the virtual
bats locate food and inform others about the food source
with the help of sound waves. 
e virtual bats are assumed
to have the ability to modulate the sound waves according
to the need, that is, locating food/prey or communicating
with others. 
e virtual bats are also scattered in the search
space, with the position of each virtual bat denoting possible
solutions. A virtual bat is completely speci�ed by its position6ba, its velocity Vba, loudness :, and frequency �. A memory
element6best stores the position of the best food source found
so far. 
e velocity and position of a virtual bat are updated
according to the following equations:

�� = �min + ; ⊗ (�max − �min) ,
V


ba�
= Vba�

+ �� ⊗ (6best − 6ba�) ,
6
ba� = 6ba� + V



ba�
,

(12)

where ; ∈ [0, 1] is a random vector. In this investigation,
if standalone BA had been used, then the pertinent values
would have been �min = 0 and �max = 1. At the outset,
each virtual bat is arbitrarily allocated a frequency from[�min, �max], drawn uniformly. 
is frequency term controls
the movement of the virtual bats in the search space, similar
to what the inertia weight term does in case of PSO, as can
be seen in (10).
ere are various ways of updating the inertia
weight for PSO.

In this paper, we have proposed a new technique based on
the update technique of frequency of virtual bats in BA. We
have proposed to update the inertia weight � in PSO in each
iteration using the following equation:

�� = �min + ; ⊗ (�max − �min) , (13)

where ; ∈ [0, 1] is also a random vector. We have assumed�min = 0 and �max = 1. In each iteration, for each particle,
an inertia weight is drawn uniformly from [�min, �max]. 
is
somewhat counterbalances the problem of being trapped at
localminima, which is one of the few butmajor shortcomings
of PSO. 
e proposed novel BAPSO algorithm, with the
new inertia weight update technique, used for the particular
problem domain dealt with herein, has been able to produce
better results than individual PSO or BA algorithms (as
suggested by other investigations carried out by the authors).

Another change, inspired by the virtual bats in BA that
has been incorporated in the proposed BAPSO algorithm,
is the initialization of the velocity vector of each particle to
zero instead of a random vector.
e authors observe that this
might help in preventing the particles from having an initial
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unguided velocity thatmay divert them away from a potential
optimal solution in the search space.

4. Experimental Results and Discussion

Owing to the stochastic nature of the proposed framework
implemented, it is quite normal that, for any given temporal
genetic expression dataset, the predicted GRN would vary
in its topology for each independent solution generated. To
circumvent this problem, we have employed, in this investi-
gation, a collaborative learning method. We have performed< independent experiments and have stored in memory each< inferred GRN. Additionally, a selection scheme has been
implemented based on a plausibility score ps�,�, assigned to

each edge *�,�, as given below. 
is has been done to identify
the most consistent predicted edges for the construction of
the �nal GRN:

ps�,� = 1<
�∑
1
��,�. (14)

In (14), ��,� ∈ % and ps�,� ∈ [0, 1]. On the evaluation of

ps�,� for all � and �, the �nal predicted network, thus, can be

generated and represented by %� = [�
�,�]�×�. Whether the

value of a particular element �
�,� is 0 or 1 can be evaluated

using the following relation:

�
�,� = {{{
1, if ps�,� ≥ B,
0, otherwise. (15)

In the above equation, B is a threshold de�ned for the
purpose of inclusion of an interaction in a GRN. In other
words, it governs whether an edge is included in %� or
omitted altogether. In order to estimate the accuracy of
the proposed methodology, we have compared %� with the
original GRN, denoted by %�. In addition, we have quan-
titatively compared the results of the proposed framework
with those from the contemporary literature based on certain
metrics. Before explaining the metrics, it would be prudent
to mention that an edge can be characterised into four types:
true positive (TP), false positive (FP), true negative (TN), and
false negative (FN), with their mathematical de�nitions as
follows:

TP: if ���,� = 1 and �
�,� = 1; TN: if ���,� = 0 and �
�,� = 0.
FP: if ���,� = 0 and �
�,� = 1; FN: if ���,� = 1 and �
�,� = 0.

Next, we have de�ned the metrics one by one based on
which the proposed methodology can be evaluated.

(i) True Positive Rate (TPR)/Sensitivity/Recall. 
is signi�es
the fraction of the total number of existing edges in the
original network, correctly predicted in the inferred network.

(ii) True Negative Rate/Speci
city (SPC). 
is signi�es the
fraction of the total number of nonexistent edges in the
original network, correctly identi�ed as nonexistent in the
inferred network as well.

(iii) False Positive Rate (FPR)/Complimentary Speci
city. 
is
signi�es the fraction of the total number of nonexistent edges,
incorrectly predicted in the inferred network.

(iv) False Negative Rate (FNR)/Complimentary Sensitivity.

is signi�es the fraction of the total number of nonexistent
edges in the original network, incorrectly guessed in the
predicted network.

(v) Positive Predictive Value (PPV)/Precision. 
is signi�es
the fraction of the total number of inferred edges, which is
correct.

(vi) False Discovery Rate (FDR)/Complimentary Precision.

is signi�es the fraction of the total number of inferred
edges, which is incorrect.

(vii) Accuracy (ACC). 
is signi�es the fraction of the total
number of all possible connections, in the original network,
truly predicted.

(viii) F-Score. 
is signi�es the harmonic mean of the preci-
sion and sensitivity.

Mathematically speaking,

TPR = TP

TP + FN
,

SPC = TN

FP + TN
,

FPR = FP

FP + TN
= 1 − SPC,

FNR = FN

TP + FN
= 1 − TPR,

PPV = TP

TP + FP
,

FDR = FP

TP + FP
= 1 − PPV,

ACC = TP + TN

TP + FP + FN + TN
,

C = 2TP2TP + FP + FN
.

(16)


e statistical BAPSO methodology has been applied pri-
marily on an arti�cial network (4 genes). Subsequently,
we have applied the proposed methodology on a group of
experimental (in vivo) time series genetic expression datasets
of a real-world network (the 8-gene E. coli SOS DNA repair
network). Finally, we have experimented with two networks
extracted from the genome of Saccharomyces cerevisiae (10
genes) and Escherichia coli (20 genes) with the help of
GeneNetWeaver [63]. Additionally, we have implemented our
proposed algorithm on each of these networks, but with half
the number of time points initially used for experimentation.

is has been done to observe the accuracy of the method if
a lesser number of time points are available for training.
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Table 1: RNN model parameters [32, 34].
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Figure 3: Network dynamics used for training the proposed model.

e four lines represent the expression pro�le of the four genes.

All the simulations have been run on a desktop computer
running on a 3.4GHz Intel Core i7 processor with 8GB
1600MHz RAM. 
e codes have been run on Matlab 2014a,
running in a Windows 7 64-bit environment.

4.1. Arti
cial Network. 
is arti�cial network consists of
4 genes and 8 interactions. 
is network has been exten-
sively studied by researchers for the purpose of preliminary
validation of their methodologies with respect to reverse
engineering of GRNs from time series genetic microarray
data [32, 34, 46]. 
e time series expression data have been
generated using (3). 
e parameters and their related values
necessary for calculations have been given in Table 1. 
e
generated expression pro�les have been shown in Figure 3.
We have assumed Δ� = 0.1 for this case and have generated
500 time points with the help of (3).

However, in real-world experiments, such a high number
of time points do not typically exist. 
erefore, we have
sampled the data evenly into 50 time points and have
implemented our proposed methodology on the sampled
dataset. Further, we have evenly sampled this reduced dataset
to produce another dataset with 25 time points.


e reverse engineering initiative involves < = 10 inde-
pendent experiments. We have conducted each experiment
with a swarm population of 4/� (where - = 1, 2, 3, 4)
particles and 100000 iterations. 
e statistical properties of
the �nal inferred network have been shown in Figure 4, forB = 0.9. Utilising just a single time series, the results show
marked improvement over those published by Xu et al. [34]
and Kentzoglanakis and Poole [46], with respect to both true
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Figure 4: True positive (TP) and false positive (FP) counts obtained
by the proposed BAPSO model, compared with those obtained by
Xu et al. [34] and Kentzoglanakis and Poole [46] and PSO. 
e
results of the BAPSO model have been presented for two datasets:
one with 50 time points, represented as BAPSO full, and the other
with 25 time points, represented as BAPSO half.

and false positives albeit with a stricter threshold than that
used by the authors (G = 0.5) in [46]. 
e average MSE for

the experiments are ∼ 10−6 and ∼ 10−5 for the dataset with 50
time points and the one with 25 time points, respectively.
e
computational times for both experiments are 15.6 minutes
and 8.6 minutes, respectively.

4.2. E. coli DNA SOS Repair Network. In this section,
the proposed methodology for reverse engineering of
GRNs from temporal genetic expression pro�les has been
employed to identify the causal relationships among the
genes from an in vivo (experimental) microarray dataset.

e said dataset summarises the dynamics of the well-
illustrated transcriptional network involved in the SOS
DNA repair mechanism of E. coli studied experimentally
by Ronen et al. [64]. 
e study included eight genes
heavily involved in the SOS repair mechanism: recA,
lexA (the master repressor), uvrA, uvrD, uvrY, umuD,
ruvA, and polB. 
e original network has been shown in
Figure 5. Four experimental datasets had been generated
using two di�erent UV light intensities on E. coli (for

experiments 1 and 2: UV intensity used → 20 Jm−2; for
experiments 3 and 4: UV intensity used → 5 Jm−2). In each
of the experiments, expression data had been observed
for 50 time points each using temporal resolution of 6
minutes. 
ese datasets are one of the most useful ones
concerning the qualitative investigations on computational
methods for reconstruction of GRNs from time series
genetic expression data (which for ready reference is at
http://wws.weizmann.ac.il/mcb/UriAlon/sites/mcb.UriAlon/
�les/uploads/DownloadableData/sosdata.zip).

In this case also, < = 10 independent experiments
have been performed for each of the four datasets. A swarm
population of 8/� (where - = 1, 2, 3, 4) has been used
with a maximum number of iterations set to 5000. 
e
expression value of each gene in each dataset at the �rst time
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Table 2: Results of the E. coli experiments with all the available time points.

Dataset TP TN FP FN TPR SPC FPR FNR PPV FDR ACC C1-score Graph edges MSE CPU time

BAPSO full

1 7 46 9 2 0.78 0.84 0.16 0.22 0.44 0.56 0.83 0.56 16 0.0157 16.9m

2 7 40 15 2 0.78 0.73 0.27 0.22 0.32 0.68 0.73 0.45 22 0.0114 16.9m

3 7 45 10 2 0.78 0.82 0.18 0.22 0.41 0.59 0.81 0.54 17 0.0147 16.9m

4 4 43 12 5 0.44 0.78 0.22 0.56 0.25 0.75 0.73 0.32 16 0.0147 16.9m

BAPSO half

1 7 38 17 2 0.78 0.69 0.31 0.22 0.29 0.71 0.70 0.42 24 0.0042 9.1m

2 8 40 15 1 0.89 0.73 0.27 0.11 0.35 0.65 0.75 0.50 23 0.0025 9.2m

3 6 43 12 3 0.67 0.78 0.22 0.33 0.33 0.67 0.77 0.44 18 0.0048 9.1m

4 4 40 15 5 0.44 0.73 0.27 0.56 0.21 0.79 0.69 0.29 19 0.0039 9.1m

Table 3: Comparison of results obtained from the E. coli experiments with [46].

Dataset
TP FP

eDSF [46] PSO BAPSO full BAPSO half eDSF [46] PSO BAPSO full BAPSO half

1 3 5 7 7 10 9 9 17

2 8 4 7 8 5 10 15 15

3 4 5 7 6 9 8 10 12

4 0 3 4 4 9 8 12 15

polB

ruvA
umuD

uvrY

uvrA

uvrD

lexA

recA

Figure 5: 
e original structure of the SOS DNA repair transcrip-
tional network of E. coli.

point is zero and hence has been ignored. Subsequently, all
expression values have been normalised to the range [0, 1].

e dataset thus contains 49 time points. We have also taken
alternative timepoints and created a truncated datasetwith 25
points.
e statistical properties of the predictedGRN in each
experiment with a plausibility score threshold, set at B = 0.9,
have been shown in Table 2.

Table 3 displays a quantitative comparison of the char-
acteristics of the predicted GRNs (with a plausibility score
threshold, B = 0.9) with those presented in a recent
investigative work (with an inclusion threshold, G = 0.9)
[46]. 
e proposed methodology is consistent regarding the
number of true (and false) positives predicted compared to
results presented in [46] for di�erent experimental datasets.

e method proposed in [46] fails to identify any true
positive in the fourth experiment whereas the framework
proposed in this paper does not fail to identify true positives
for any experiment. However, we have to concede that the

Table 4: Comparison with contemporary research [46] for the E.
coli experiments.

Known interactions
Predictions by

[13] [61] [34] [46] [62] PSO BAPSO

lexA→ lexA Yes Yes No Yes Yes Yes Yes

lexA→ recA Yes Yes Yes Yes Yes Yes Yes

recA→ lexA Yes Yes No No No Yes Yes

lexA→ uvrA Yes Yes Yes Yes Yes Yes Yes

lexA→ uvrD No No Yes Yes Yes Yes Yes

lexA→ uvrY No No No Yes No Yes Yes

lexA→ umuD No Yes Yes Yes Yes Yes Yes

lexA→ ruvA No No No Yes No Yes Yes

lexA→ polB No No Yes Yes Yes Yes Yes

Spurious edges (FP) 5 10 2 5 3 10 9

Precision (PPV) 0.44 0.33 0.71 0.62 0.70 0.47 0.44

proposed framework cannot match the isolated best result
obtained by the eDSF model [46] in the case of the second
experiment. However, it may be noted that the regulatory
relationship between recA and lexA was not inferred in
any of the experiments conducted by Kentzoglanakis and
Poole [46], whereas the proposed methodology can identify
this particular interaction in one of the four experiments.

is suggests that it probably is among a few proposed
computational frameworks that are capable of identifying
all the regulatory interactions present in the SOS response
network of E. coli. A qualitative comparison of several such
methodologies [19, 34, 46, 61, 62] is given in Table 4. 
e
performance of the methodology with half the number of
time points is also admirable and has been included in Tables
2 and 3.
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Table 5: Results for the yeast dataset extracted fromGNWwith 50 time points and 25 time points represented as BAPSO full andBAPSO half.

B TP TN FP FN TPR SPC FPR FNR PPV FDR ACC C1-score Graph edges MSE CPU time

BAPSO full

0.5 6 75 13 6 0.50 0.85 0.15 0.50 0.32 0.68 0.81 0.39 19

0.0034 27.4 minutes

0.6 6 75 13 6 0.50 0.85 0.15 0.50 0.32 0.68 0.81 0.39 19

0.7 6 76 12 6 0.50 0.86 0.14 0.50 0.33 0.67 0.82 0.40 18

0.8 6 76 12 6 0.50 0.86 0.14 0.50 0.33 0.67 0.82 0.40 18

0.9 5 78 10 7 0.42 0.89 0.11 0.58 0.33 0.67 0.83 0.37 15

1.0 5 79 9 7 0.42 0.90 0.10 0.58 0.36 0.64 0.84 0.38 14

BAPSO half

0.5 4 73 15 8 0.33 0.83 0.17 0.67 0.21 0.79 0.77 0.26 19

0.0048 14.7 minutes

0.6 4 73 15 8 0.33 0.83 0.17 0.67 0.21 0.79 0.77 0.26 19

0.7 4 74 14 8 0.33 0.84 0.16 0.67 0.22 0.78 0.78 0.27 18

0.8 4 74 14 8 0.33 0.84 0.16 0.67 0.22 0.78 0.78 0.27 18

0.9 4 76 12 8 0.33 0.86 0.14 0.67 0.25 0.75 0.80 0.29 16

1.0 4 77 11 8 0.33 0.88 0.13 0.67 0.27 0.73 0.81 0.30 15

YLL032C

YBR168C

YDR245W
YCR018C

YBR167C

YFR017C

YPL253C
YER169W

YLR338W

YPL251W

Figure 6: Network architecture extracted fromGNWto validate the
proposed framework as used in [46].

4.3. 10-Gene Network Extracted from GeneNetWeaver
(GNW). 
e in silico datasets have been extracted from the
genome of yeast and E. coli stored in GNW [63]. First, we
have considered the yeast network, made up of 10 genes and
12 genetic interactions as shown Figure 6. We have generated
the network dynamics with the help of GeneNetWeaver [63]
in keeping with DREAM4 settings [65]. Two sets of genetic
expression data have been generated, one with 50 time points
and the other with 25 time points (taking the alternate time
points of the former). 
e number of independently gener-
ated solutions is < = 10. Since there are 10 genes in the GRN,
the problem has been divided into 10 subproblems, each with
12 parameters to optimise. For each of the suboptimization
problems, a swarm population of 10/� (where- = 1, 2, 3, 4)
has been used, and the maximum number of iterations has
been set to 10000.


e results achieved in this experiment have been sum-
marised in Table 5. 
e proposed methodology can correctly
predict 5 (for B ≥ 0.9) out of a possible 12 interactions present
in the original network using the dataset with 50 time points.

YLR338W

YCR018C
YPL251W

YBR167C

YER169W

YLL032C
YPL253C

YFR017C

YBR168W

YDR245W

Figure 7: Inferred network obtained by the proposed model for 50
time points.


e proposed methodology can also correctly predict 4 (forB ≥ 0.9) out of a possible 12 interactions present in the
original network using the dataset with 21 time points. With
the increase in B, the number of incorrect predictions goes
down from 13 to 9, increasing the accuracy from 81% to 84%,
and from 15 to 11, increasing the accuracy from 77% to 81%,
respectively, in the two cases. 
e �nal predicted GRNs for
the two cases have been shown in Figures 7 and 8.


e results have been compared with previous similar
work published in [46] and have been shown in Table 6.

e proposed methodology indicates improvement from the
perspective of true predictions. Even for the most stringent
value of the threshold, that is, B = 1, the number of true
predictions is signi�cantly more (5 compared to 3) with
50 time points and still better (4 compared to 3) with 25
time points. 
e true positive rate and the precision of
the predicted network are almost always better than the
compared network. Considering the nature of the inferred
relationships (whether activation or repression), the pro-
posedmethodology has correctly identi�ed the nature of 80%
of the predicted relationships.
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Table 6: Comparison of BAPSO results for the GNW dataset of yeast with PSO and eDSF [46].


reshold PSO BAPSO full BAPSO half eDSF [46] PSO BAPSO full BAPSO half eDSF [46]

TPR FPR

0.5 0.42 0.50 0.33 0.50 0.14 0.15 0.17 0.19

0.6 0.42 0.50 0.33 0.42 0.13 0.15 0.17 0.14

0.7 0.42 0.50 0.33 0.42 0.08 0.14 0.16 0.14

0.8 0.42 0.50 0.33 0.42 0.08 0.14 0.16 0.15

0.9 0.42 0.42 0.33 0.42 0.06 0.11 0.14 0.13

1.0 0.42 0.42 0.33 0.25 0.05 0.10 0.13 0.08

Accuracy Graph edges

0.5 0.81 0.81 0.77

Not available

17 17 19 19

0.6 0.82 0.81 0.77 16 16 19 19

0.7 0.86 0.82 0.78 12 12 18 18

0.8 0.86 0.82 0.78 12 12 18 18

0.9 0.88 0.83 0.80 10 10 16 15

1.0 0.89 0.84 0.81 9 9 15 14

YDR245W

YLL032C

YER169W

YCR018CYPL253C

YFR017C

YBR168W

YBR167C

YPL251W

YLR338W

Figure 8: Inferred network obtained by the proposed model for 25
time points.

4.4. 20-Gene Network Extracted from GeneNetWeaver
(GNW). 
e second network extracted from GNW is a 20-
gene network consisting of 24 interactions. 
e datasets for
this network have been generated using the same settings as
the previous one. We have generated < = 10 independent
solutions. 
ere are 20 genes in this GRN, and hence the
problem has been divided into 20 subproblems, each with
22 parameters to optimise. For each of the suboptimization
problems, a swarm population of 20/� (where- = 1, 2, 3, 4)
has been used, and the maximum number of iterations has
been set to 10000. 
e original network is shown in Figure 9.


e proposed RNN based framework does not scale up
with the size of the GRN, e�ciently. For the 20-gene network
considered here, it was able to predict only 3 out of a possible
24 interactions correctly, but with a large number of false
positives. Fascinatingly, however, the proposed method can
correctly predict 5 interactions out of a possible 24, with 2
less false positives. 
e predicted correct relations have been
shown in Table 7.

metJ
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metE

folE

metF

yeiB

metQ

metI

metC

metN

metL

slyB

mgrB

metB

borD

yrbL

phoP

rstBybjG

Figure 9: Original 20-gene network extracted from the genome of
E. coli stored in GNW.

5. Conclusion

In this paper, we have investigated the domain of recon-
struction of GRNs from time series microarray datasets with
modi�cations in the existing methodologies. For this pur-
pose, we have implemented a decoupled technique based on
the novel BAPSO algorithm, the fundamental mathematical
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Table 7: True positives obtained for the GRN consisting of 20 genes.

Technique BAPSO full BAPSO half

Correct interactions
metJ→metN, metJ→ folE, and metR→

metL
metJ→metN, metJ→metC, metJ→
metQ, phoP→ yrbL, and phoP→ borD

Computational time 3.2 hrs 1.7 hrs

MSE 0.0031 0.0034

theory of combination, and RNN. 
e main objective of the
investigation is to detect the biologically relevant GRNs from
the large discrete network architecture search space. Prior
knowledge and the fundamental theory of combination have
been used for the purpose of reducing the dimension of the
optimisation problem, thus reducing the computational load.
Also, the proposedmethodology ensures a higher probability
of identifying a more biologically relevant network as it
searches all possible candidate architectures (i.e., all possible
combinations).


e proposed novel hybrid swarm intelligence scheme,
BAPSO, has been implemented in the present investigation
to train the RNN model parameters and the results obtained
show that the predicted networks reproduce the dynamics
of the given dataset to a better extent for small-scale GRNs.

e results suggest that the proposed decoupled reverse
engineering approach is robust and consistent with respect to
the number of correct and incorrect predictions while using
di�erent types of microarray datasets (synthetic, in silico, and
in vivo) for most of the small-scale GRNs studied in the
contemporary literature.

However, it is an entirely di�erent scenario for medium-
scale networks (20 genes). 
e methodology fails to repro-
duce any of the successes it had against smaller GRNs.

ere are too few true predictions and a large number of
incorrect predictions.
emethodology, implemented in this
paper, thus, needs to be enriched further by studying its
performance in larger networks. 
is provides a vital scope
for further research.

Also, the assumption of the value of the threshold, B, is
based on the knowledge of the �nal network to be obtained. In
real-world cases, where the �nal GRN is not known, the set-
ting of a suitable threshold for the ensemble learning scheme
used in this work needs further research. Additionally, the
reduction in false positives is also an important research
endeavour for the future.

Another point to be noted in this context is the perfor-
mance of the methodology with a lesser number of time
points, half to be exact. 
e results indicate that a 50%
reduction in the number of time points leads to only a small
drop in accuracy of the predicted models, a maximum of just
over 15% in the worst-case scenario. However, interestingly,
the methodology slightly improves upon the poor results
obtained for the 20-gene GRN, with a lesser number of time
points available.


is also provides an opportunity for future research into
the prediction of GRNs from genetic expression pro�les with
lesser time points and will surely help to reduce time and cost
of data generation in the future.
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