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ABSTRACT

Construction of Generalized Integral Formulas By Means of 
Laplace Transformations
Adam C. Buss, Department of Physics, Indiana University - Northwest
Faculty Mentor: Dr. Axel Schulze-Halberg

generalized integral formula, Laplace transform, definite integralKEYWORDS:

We present a method for the construction of integral identities that contain an undetermined function. Except for mild 
restrictions, this function can be chosen arbitrarily. Our method is illustrated by several examples leading to new integral 
identities.

1. INTRODUCTION

The closed-form resolution of integrals is one of the 
standing issues in calculus. Integrals appear in many 

areas of mathematics and in the natural sciences, particularly 
in physics and engineering. Existing resources for integral 
tables, such as the monographs (Abramowitz & Stegun, 1964; 
Brychkov, 2008; Gradshtevn & Ryzhik, 2015) or online data 
bases (Shapiro, 2015; Wolfram Alpha, 2016), are continuously 
extended as new methods for the resolution of integrals are 
discovered. An example for such a new method is presented 
in the recent work by Glasser (2013). Starting from a known 
identity, the Laplace transform is used to construct the 
following integral formula:

(1)

In contrast to the vast majority of identities involving integrals, 
(1) contains a function F that can be chosen arbitrarily with 
only slight restrictions. As a result, formula (1) can be used to 
generate an infinite number of integrals, together with their 
closed-form resolution. Consequently, generalized integral 
formulas like (1) are much more versatile than their standard 
counterparts, such that it is desirable to determine methods 
for obtaining them. The purpose of the present research is to 
develop an approach for constructing a class of generalized 
integral formulas. We start out by considering a group of 
functions that have a common class of indefinite integrals. 
By imposing condition on the latter indefinite integrals, we 
can build integral identities that allow for the construction 
of generalized integral formulas (Section 2). As a result, in 
Section 3 we obtain several of such formulas, each of which 
produces new integral identities.

2. GENERALIZED INTEGRAL FORMULAS
In what follows we will first present an example of a generalized 
integral formula and how to obtain it from an identity that 
can be found in standard tables. Afterwards, we extend the 
example, leading to a scheme of construction for generalized 
integral formulas.

2.1. GENERALIZED INTEGRAL FORMULAS
For t > 0 we consider the following identity (Gradshtevn & 
Ryzhik, 2014):

(2)

We will now multiply both sides by a continuous function f in 
the variable t. Further restrictions on the properties of f will 
be developed as our calculation proceeds. After multiplication 
by f and reordering terms, we obtain:

(3)
In the next step we integrate this relation with respect to the 
variable t over the interval (0, ∞). Furthermore, we require 
f to be such that the order of integration can be exchanged. 
This leads to the result:

(4)

The terms in curly brackets can be interpreted as Laplace 
transforms of the function f. Assuming that f admits such a 
transform F, we can rewrite (4) as follows:

(5)

We refer to this identity as a generalized integral formula 
because it contains a function F that can be chosen arbitrarily, 
as long as it admits an inverse Laplace transform such that the 
order of integration in (4) is interchangeable and the integral 
exists.
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2.2 . GENERALIZATION AND METHOD OF 
CONSTRUCTION
Before we proceed, let us formulate four standing 
assumptions that we will make throughout this work. While 
these assumptions will be illustrated using our example in 
Section 2.1, they extend to subsequent considerations in a 
straightforward manner. First, it is assumed that the function 
f, as it appears in the role of a function that is to be integrated in 
(3), is continuous. Second, it is assumed that double integrals 
that arise during the scheme in (4) allow to change their order 
of integration. Third, it is assumed that all integrals converge, 
in particular sums or differences of integrals such as in (4). 
Last, it is assumed that the function F contained in the final 
result (5) admits an inverse Laplace Transform.

The construction of our integral formula (5) is possible 
solely due to a particular structure of our initial identity (2). 
In general, the latter identity must be of the form:

(6)

where n is a natural number, Aj, Bj, j = 1, ..., n, are functions 
and C, D denote constants. However, for several reasons 
relation (6) cannot serve as a starting point when it comes 
to the practical construction of formulas like (5). This is so 
because only very particular choices of functions Aj, Bj, j = 
1, ..., n, will permit a closed-form resolution of the integral 
on the left side of (6). In addition, even if such a resolution 
is possible, the integral does not necessarily take the form 
shown on the right side of (6). In order to overcome these 
issues and construct integral formulas like (5), we will focus 
on the function that results from indefinite integration on the 
left side of (6).

For the sake of simplicity let us revisit and analyze our example 
(2). Indefinite integration gives:

(7)

where Ei stands for the exponential integral (Abramowitz & 
Stegun, 1964) and a constant of integration was set to zero. 
Next, we must substitute the integration limits. Starting out 
with infinity, we make use of the limit relation:

(8)

Applying this to the right side of (7) while taking the limit 
gives:

					     (9)

It remains to evaluate the right side of (7) at x = 0. Since Ei 
tends to infinity as its argument approaches zero, we recall 
the following series expansion:

(10)

where γ stands for the Euler-Mascheroni constant. On 
substituting the arguments of the exponential integral given 
in (9), we obtain:

	

Consequently, we arrive at the expected result:

	

Let us now consider the following function A that generalizes 
the right side of (7):

(11)

where a1, a2, b and c are functions that are to be determined. 
We have:

Now, according to the left side of (6), we want each of the 
terms in curly brackets to be a product of an exponential and 
a factor that is independent of the variable t. Since we already 
have an exponential in both terms, it is reasonable to require:

These conditions are fulfilled if the following choice for b and 
c is employed:

(12)

where bj and cj, j = 1, 2, are functions depending on 
a single variable that will be determined further. 
Upon substituting (12) into (11), we obtain:

(13)

and:

	 (14)
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Comparison of this expression with the integrand on the left 
side of (6) shows that the functions a1, a2, can be chosen as 
follows:

where kj, j = 1, ..., 4, are constants. These settings render (13) 
in the form:

	 (15)

while for its partial derivative (14) we find:

In the next step we will substitute the limits of integration 
into (15). Starting out with infinity, we take our identity (8) 
into account. This gives the constraints:

(16)

Taking the limit of (15) at zero is more complicated because 
the behavior of the functions b2 and c2 at zero is not known. 
While we are unable to give a general criterion for the limit to 
exist, in the example section we will discuss typical scenarios 
that lead to a finite limit.

3. APPLICATIONS
We will first take our previous formula (2) and evaluate it 
for several particular cases. Afterwards, we construct a new 
generalized integral formula (15). In our final example we 
show that the latter indefinite integral can also be used to 
build formulas involving complex functions.

3.1. EXPONENTIAL AND HYPERBOLIC 
INTEGRANDS
We revisit our integral formula (2), which can be obtained 
by comparison of the indefinite integrals (7) and (15). Both 
coincide if the following settings are employed:

(17)

Let us now state a few particular cases of the generalized 
integral formula (5) resulting from (15) with the settings 
(17). Recall that we must choose the function F such that 
it admits an inverse Laplace transform and such that the 
resulting integral exists. Starting out with a simple example, 
we plug F(x) = 1/x into (5), which gives:

Another simple example is generated if we choose F(x) = 1/(x 
+ 1). We obtain after conversion of exponentials to hyperbolic 
functions:

Let us now generate a less elementary integral relation. Upon 
setting F(x) =erf(1/x), where erf denotes the error function 
(Abramowitz & Stegun, 1964), we get from (5):

Before we conclude this example, let us remark that our 
integral formula (2) can be generalized further if we leave 
the constants kj, j = 1, ...4, arbitrary.

3.2. LOGARITHMIC INTEGRANDS
Let us now make the following settings in (15):

where we further assume that k1, k3, k4 > 0. After substitution, 
(15) takes the form:

(18)

The partial derivative (14) of this function is given by:

(19)

Keeping this in mind, in the next step we substitute the limits 
of integration into the function (18). Starting with infinity, we 
make use of (16) in order to obtain:

Next, we observe that the arguments of both exponential 
integrals in (18) vanish as x tends to zero, such that (10) 
becomes applicable. We get after some simplification:

(20)

Now, combination of (19) and (20) gives the following identity 
for t > 0:

(21)
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We can now apply the same procedure as in our first example, 
that is, multiply (21) by a function f depending on the variable 
t, and integrate over the interval (0, ∞). Assuming that f is 
such as to allow an exchange of the integration order and 
to admit a Laplace transform, we arrive at the generalized 
integral formula:

(21)

Recall that this relation holds as long as F has an inverse 
Laplace transform. Let us now present a few particular cases 
of (22) for different choices of the function F. For the sake of 
brevity, we first apply the overall settings k1 = 4, k3 = 1 and k4 
= 2. Picking F(x) = 1/x renders (22) in the form:

(22)

Next, we plug F(x) = exp(4 − x) into our formula (22). We 
obtain:

Note that the right side does not change because we did not 
modify the constants k1, k3 and k4.

3.3. COMPLEX INTEGRANDS
Except for the introductory formula (1), throughout the 
preceding considerations we assumed that the indefinite 
integral (15) and the function it contains are real. In 
particular, our calculations of the integration limits are 
based on real-valued functions. In this section we will show 
that choosing complex functions b2 and c2 in (15) can lead 
to integral formulas that extend those previously studied 
here. It is important to point out that our criterion (16) for 
determining the limit of A at infinity does not hold anymore 
if b2 and c2 are complex-valued. While a general analysis of 
this case is beyond the scope of this note, we will present 
an example. Starting out from the indefinite integral (15), 
making the following settings:

This renders our function (15) in the form:

(23)

Its partial derivative (14) becomes:

(24)

We now evaluate the limit of (23) if x tends to infinity. We 
obtain:

(25)

Instead of taking zero as the lower limit of integration, this 
time we will use negative infinity:

(26)

Upon combining (24) and (25), (26) we get after multiplication 
by i/2 the relation:

The form of this identity is suitable for the construction of a 
generalized integral formula. Multiplication of both sides by 
a function f that has a two-sided Laplace transform F
and exchanging the order of integration yields:

(27)

Before we state particular cases of this identity, let us remark 
that due to the complex argument of F and the domain of 
integration being the whole real line, the choices for F are 
much more restricted than in the previous examples. As 
mentioned above, we will not go into details, but just evaluate 
(27) for a few cases. The simple setting F(x) = 1 gives the 
known relation:

Next, we choose F(x) = x2/(x + 1)2, which renders (27) in the 
form:

Finally, let us substitute F(x) = arctan(x4) into (27). We obtain 
the result:

As mentioned above, we restrict ourselves to the complex 
integral formula (27) because the criteria for choosing the 
function F become much more complicated than in the real 
case.
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4. CONCLUDING REMARKS
In this note we have presented a simple method for the 
construction of generalized integral formulas containing an 
almost arbitrary function rather than numerical parameters. 

It should be stressed that our method can be generalized by 
replacing the Laplace transform through a different integral 
transform, such as the bilateral Laplace transform or the 
Fourier transform. This broadens the choice of functions in 
the resulting generalized integral formula and it also allows 
to modify the domain of integration.
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