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ABSTRACT. It is shown that any cyclic group of odd prime order acts on 
any closed, simply connected topological 4-manifold, inducing the identity on 
integral homology. The action is locally linear except perhaps at one isolated 
fixed point. In the case of primes greater than three a more careful argument 
is used to show that the action can be constructed to be locally linear. 

Introduction. In this paper we shall show that every closed, simply connected 
topological 4-manifold M4 admits an action of any cyclic group Zp of odd prime 
order p. The action will be homologically trivial (that is, induce the identity on 
integral homology), be pseudofree (that is, have only isolated fixed points) except 
in certain cases when p = 3, and be locally linear except perhaps at one isolated 
fixed point. When p = 2 and the intersection form of M4 has even type, then the 
same conclusion holds. This is also due to S. Kwasik and P. Vogel [1985], by a 
somewhat different proof. If p = 2 and the intersection form of M has odd type, 
however, then an action of Z2 which is homologically trivial must have a fixed point 
set containing two-dimensional components (see §7). Further it is harder to control 
the Kirby-Siebenmann triangulation obstruction, which is then not determined by 
the intersection form. It is interesting to ask whether these actions can be locally 
linear or smooth (when M4 is smooth). The existence of a locally linear Z2 action 
implies the vanishing of the Kirby-Siebenmann obstruction (see Kwasik and Vogel 
[1984]). We shall show, however, that (for p > 3 in general) these actions can be 
constructed to be locally linear. In a recent preprint Kwasik has shown that this is 
the case for the fake CP2 when p is odd by a rather different proof. These actions 
are homologically trivial and have only isolated fixed points (except sometimes 
when p = 3). (The G-Signature Theorem shows that not every simply connected 
4-manifold admits pseudofree, locally linear actions when p = 3. We shall see, 
for example, that neither the Es manifold, the Kummer surface, nor a nontrivial 
connected sum of copies of CP2 admits such an action for p = 3.) 

In broad outline our construction goes as follows. Let a closed, oriented, simply 
connected 4-manifold M be given. By studying equivariant framed links, we con-
struct a compact smooth 4-manifold with boundary, having the intersection form of 
M, and admitting a smooth Zp action which is pseudofree and homologically triv-
ial. The action is free on the boundary homology sphere ~. In a paper primarily 
focused on equivariant plumbing diagrams for high dimensional, highly connected 
manifolds with even intersection forms, Weintraub [1975] carried out most of this. 
We give an independent development because we need to be able to better control 
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the Kirby-Siebenmann triangulation obstruction. We show (using an argument first 
noticed by D. Ruberman and, independently, Vogel and Kwasik [1985]) that any 
such free action can be extended to a topological action on a contractible 4 mani-
fold W with oW = L:. In the case when the intersection form of M has odd type 
one can change the original equivariant link to realize both a zero and a nonzero 
Kirby-Siebenmann invariant. One can analyze exactly when the action on L: can 
be extended to W in a locally linear way. With care this locally linear extension 
can always be found (for suitable equivariant links) in the case of primes greater 
than three. The second construction for p > 3 almost makes the first construction 
irrelevant. But it does show clearly how to construct many actions which cannot 
be locally linear. 

The remainder of this paper is as follows. In §l we describe the operation of 
equivariant surgery on an equivariant link for the cases we need. §2 is devoted 
to the algebra necessary to produce appropriate equivariant linking matrices. The 
topological extension theorem is proved in §3. In §4 we show how to vary the 
triangulation obstruction, and complete the argument for the first existence result. 
In §5 we investigate the problem of making these actions locally linear, which 
involves trying to replace the homology sphere L: mentioned in the sketch above 
with the standard 3-sphere with a standard free action. (The obstruction to doing 
this consists of an Atiyah-Singer signature invariant and a Reidemeister torsion.) 
In §6 we extend these arguments to construct locally linear actions on arbitrary 
simply connected 4-manifolds for any prime p > 3, or, more generally, for any odd 
period not divisible by 3. Finally, in §7 some observations are made concerning 
the problem of constructing involutions on manifolds with intersection form of odd 
type. 

ACKNOWLEDGMENT. Conversations with John Ewing, Slawomir Kwasik, Chuck 
Livingston, Danny Ruberman, Jim Davis, and Shmuel Weinberger were important 
at various stages of this work. 

1. Equivariant surgery. Let Zp act linearly on the 4-ball D 4 , freely off of the 
origin O. (A convenient choice of this action, which we shall use particularly in §4, is 
the one naturally embedded in the Hopf circle action.) Let K C 8 3 be an invariant, 
smooth, simple closed curve. Then the framings of the normal bundle of K are 
indexed by the integers and each framing may be represented by an equivariant 
embedding 8 1 x D2 --t 8 3 for some standard action on 8 1 x D2. In particular, 
the "O-framing" is represented by an equivariant embedding fo: 8 1 X D2 --t 8 3 

such that fo(8 1 x {O}) = K, fo(8 1 x {I}) has linking number 0 with K, and such 
that the induced action of Zp on 8 1 x D2 is given by g(z, w) = ().a Z, ).bw), where 
). = e21ri / p • It follows easily from covering space theory and the linking number 
condition that the integers a and b, which are defined modulo p, cannot be 0 mod p. 

An arbitrary integer framing of K may be represented by a map fn: 8 1 X D2 --t 

8 3 , where fn(z, w) = fo(z, znw) for some integer n. Then fn is an equivariant map 
for the action of Zp on 8 1 x D2 given by gn(z, w) = ().a z , ).b-naw ). 

Equivariant n-framed surgery on K produces the 4-manifold W 4 = D4 Ufn D2 x 
D2, where D2 x D2 has the action given by gn. Note that Zp acts by the identity 
on the homology of W 4 and has only isolated fixed points unless b == na mod p. In 
the latter case the fixed point set contains the 2-disk {O} X D2. The framings n 
with na == b modp will be referred to as forbidden framings for the given O-framing 
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action. The action given by gn will be called the n-framing action. The ordered 
pair {a, b - na} will be referred to as the type of the n-framing action. Note that 
the n-framing action depends only on K and the congruence class of n modp. 

A completely similar construction applies to a framed link in 8 3 , each of whose 
components is invariant under the free Zp action on 8 3 . 

Let us look more closely at a specific example, a link in 8 3 consisting of fibers 
in the Hopf fibering. Viewing 8 3 as the unit sphere in C 2 , these fibers have the 
form {(s-zo, S-wo): S- E 8 1}. Every pair of fibers has linking number 1. The actions 
of Zp in the corresponding circle action yield the action g(z, w) = (>.z, >.w) in 
the 8 1 x D2 coordinates given by the O-framing. In particular, the "forbidden" 
framings (for producing actions with only isolated fixed points) are those n with 
n == 1 modp. Note that if one of the components of the link is altered by a Zp-
equivariant isotopy (which is allowed to cross other components of the link), then 
the O-framing action remains the same, although the mutual linking numbers may 
be changed by multiples of p. 

Observe that if invariant knots K and K+ are equivariantly isotopic, then they 
have the same n-framing actions for all framings n. We will need the following 
lemma about framing actions and connected sums of knots. 

LEMMA 1. 1. Let Zp act freely on a homology 3-sphere and let K c E be an 
invariant knot. Let K+ be obtained by equivariantly inserting into K p copies of 
another knot Ko in 8 3 . Then for any framing n, the type of the n-framing action 
for K+ is the same as that for K. 

PROOF. Let Q = E/Zp and K (respectively K+) be the image of K (respectively 
K+) in Q. Then (Q,K+) ~ (Q,K)#(8 3 ,Ko). Since all framings and framing 
actions may be induced from any given framing with its corresponding action, by 
standard self-maps of 8 1 x D2, it suffices to prove this result for any single given 
framing n. The simplest choice seems to be the forbidden framing n that gives an 
action of type {a, O}, which leaves the n-framing curve invariant. Clearly one can 
explicitly construct K+ so that its n-framing curve is invariant as well. The result 
follows. 0 

It seems likely that Lemma 1.1 remains true if K+ is only assumed to be equi-
variantly homotopic into K. 

We shall show (with certain exceptions for p = 2 or 3) that for a symmetric 
bilinear form cP: zm X zm ~ Z of determinant ±1 there is a basis for zm with 
respect to which the matrix of cP is the linking matrix of a framed link with all 
components invariant (and in fact unknotted) under the Zp action on 8 3 discussed 
above, with the O-framing action as above, and with no forbidden framings (in this 
case, those congruent to 1 mod p). 

2. The algebra of intersection forms. A key to the construction in this 
paper is that the complicated classification of integral bilinear forms simplifies con-
siderably upon reduction modulo a prime p. The following fundamental result is 
known, but we include a sketch of a direct and elementary proof. In the case of odd 
primes it appears as a corollary of more general results in Hirzebruch, Neumann, 
and Koh [1971, 1.15]. 
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LEMMA 2. 1. A nonsingular, symmetric bilinear form over the field Zp is de-
termined up to equivalence by rank and determinant (the latter being understood 
modulo squares in Zp), and, in the case p = 2, the type (odd or even). 

PROOF. First suppose that p f. 2. The form may certainly be diagonalized, so 
that with respect to a suitable basis it has a matrix which is an orthogonal sum 
(ad EB··· EB (an), where the ai are units. If ai is a square, then a scaling change of 
basis changes ai to 1; if ai is not a square, then a scaling change of basis changes 
ai to some given nonsquare a. Thus one may assume that the form has matrix (1) 
EB··· EB (1) EB (a) EB··· EB (a). Consider the rank 2 form W with matrix (a) EB (a). 
One can show that every element of Zp is a sum of two squares; this easily shows 
there is an ordered pair v = ( a, b) such that w( v, v) = 1. It follows that there is a 
basis such that W is given by (1) EB (/J). Thus one eventually achieves a basis such 
that the given form has matrix (1) EB ... EB (1) EB (8), where 8 equals 1 or a and is 
equal to the determinant of the form modulo p and squares in Zp. This completes 
the proof when p is odd. 

Now suppose that p = 2. Let <P be the given form, defined on (Z2)n. If there is a 
vector v such that <p( v, v) = 1, then one may split off a one-dimensional orthogonal 
summand (v) by the Gram-Schmidt procedure. If <p(v,v) = 0 for all v, then there 
are v and w such that <p(v,w) = 1; and the Gram-Schmidt procedure shows that 
<P is equivalent to a form H EB W, where H is the hyperbolic plane [~~l. 

By induction, <P has matrix a(1) EB bH with respect to a suitable basis, where 
a + 2b = n. But the form (1) EB H is easily seen to be equivalent to 3(1). It follows 
that an odd form is equivalent to m(1), while an even form is equivalent to a sum 
of hyperbolic planes. 0 

LEMMA 2.2. For any prime p, any nonsingular, symmetric bilinear form over 
the integers Z is equivalent to one whose reduction modulo p is any given nonsingu-
lar, symmetric bilinear form over Zp having the same rank and determinant modulo 
p, if p is odd, and when p = 2 having the type of the given form. 

PROOF. This uses Lemma 2.1 plus the well-known surjectivity of the homo-
morphism SLm(Z) -+ SLm(Zp) induced by reduction modp. (Use elementary row 
operators to write a matrix in SLm(Zp) as a product of elementary matrices of the 
form the identity plus one nonzero off-diagonal entry. Such matrices clearly lift.) 
First "suppose that p is odd. Let A be an m x m symmetric integral matrix with 
determinant ±1, and let B be an m X m symmetric matrix with entries in Zp such 
that det A == det B (mod p). According to Lemma 2.1 there is an m X m change 
of basis matrix X over Zp such that XTAX == B (modp), where A denotes the 
reduction of A modp. Then there is Y E SLm(Z) reducing to Xmodp, and yT AY 
is the required integral matrix reducing to B mod p. The case p = 2 is similar. 0 

Compare Weintraub [1975, §1]. We now discuss some useful families of matrices. 
We note that at the expense of being somewhat less explicit one could refer to the 
results of §6 for the existence of matrices with the required properties, except when 
p = 2 or p = 3. 

PROPOSITION 2.3. Let p > 3 be a prime, m ~ 2 be a positive integer, and 
E; E {±1}. For integers Xl,X2"",Xm let A = (aij) = A(m,1;xl,X2, ... ,Xm ) be 
the m x m matrix with aii = Xi and aij = 1 for i f. j. Then there exist Xi -=1= 1 
modp, 1::::: i ::::: m, such that the matrix A has determinant E; modulo p. 
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Addendum for p = 3. The proposition holds for p = 3 provided that m ;::: 3 or 
m = 2 and c = -1. It is easily seen to be false for p = 3, m = 2, and c = 1. 

Addendum for p = 2. If p = 2 and m is even, then det A(m, 1; 0, ... ,0) == 1 
mod 2. (When m is odd, the corresponding determinant is ° mod 2.) 

We leave it to the reader to check the addendum for p = 2. (Prove by in-
duction on m that, in the notation of Proposition 2.4, det A(m, b; X, •.. , x) = 
[x + (m - 1)b](x - b)m-l.) To prove the results for odd primes we formulate a 
general proposition more amenable to a proof by induction. 

PROPOSITION 2.4. Let p be an odd prime, m ;::: 2 a positive integer (with 
m;::: 3 ifp = 3), c E Z; (the nonzero residues modp), and b E Zp. Then there exist 
Xl, X2,.··, Xm E Zp such that Xi =1= b modp, 1 ::::: i ::::: m, and det A(m, b; Xl,"" Xm) 
== c mod p, where A( m, b; Xl, ... ,xm) is the m x m matrix (aij) with aii = Xi and 
aij = b for i =1= j. 

PROOF. We proceed by induction on m. Consider the case m = 2. It is required 
to solve the equation XIX2 - b2 = c in Zp, with neither Xl nor X2 equal to b. If 
b = 0, then take Xl = 1, X2 = C. If b =1= ° but b2 + c = 0, then take Xl = X2 = 0. 
(These two cases work for p = 3 as well.) If b =1= ° and b2 + c =1= 0, then there are 
p - 2 ordered pairs (Xl, X2) with XIX2 = b2 + c and Xl =1= b. At most one of these 
uses X2 = b. Therefore, there are at least p - 3 solutions when m = 2. (This last 
does not work for p = 3.) 

For p = 3 we separately check the case m = 3. (The situation when m = 2 is 
left to the reader to analyze.) If b = ° this is easy. The cases b = 1 and b = -1 are 
equivalent under the correspondences 1 ...... -1 and c ...... -c. So suppose b = 1. One 
may then check that detA(3, 1;0,0,0) = -1 mod3 and detA(3, 1; -1, -1, -1) = 1 
mod3. 

Now suppose inductively that m > 2 (m > 3 if p = 3). If b =1= -1, set Xm = -1. 
Then using row operations to clear all entries in the last column except the bottom 
entry, we find that detA(m, b; X!, ... , xm) = -detA(m-1, b+b2; Xl +b2, ... , Xm-l + 
b2). By induction we may choose Ul, ... , Um-l such that Ui =1= b + b2 modp and 
det A(m - 1, b + b2; UI,"" um) = -c modp. Set Xi = Ui - b2. Then Xi =1= b modp 
and det A(m, b; Xl, ... , Xm) = c modp, as required. 

Finally, if b = -1 mod p, set Xm = 1. Then again using row operations 
to clear all entries in the last column except the bottom entry, we find that 
det A(m, -1; Xl, ... , Xm) = det A(m - 1, -2; Xl - 1, ... , Xm-l - 1). By induction 
there exist UI,"" Um-l with Ui =1= -2 modp such that 

det A(m - 1, -2; UI, ... , um-d = c. 

Set Xi = Ui + 1. Then Xi =1= -1 and det A(m, -1; Xl,"" Xm) = C. 0 
REMARK. Some related computations, given by Weintraub [1975J for plumbing 

matrices, provided important motivation for the preceding observations. 

3. A topological extension theorem. The following proposition is the main 
result of this section. 

PROPOSITION 3.1. Let Zp act freely on a homology 3-sphere~. Then there is 
a contractible 4-manifold N with aN = ~ to which the action extends with exactly 
one isolated fixed point. 
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We now proceed toward the proof of Proposition 3.1. Let Q be the orbit space 
'L,jZp. 

LEMMA 3.2. There is an integer q prime to p lor which there is a degree one 
map I: Q --+ L(p,q). 

PROOF. Note that Hl(Q; Zp) ~ Zp. Let x be a generator of this group. The 
Bockstein j3: HI (Q; Zp) --+ H2 (Q; Zp) is easily seen to be an isomorphism. Poincare 
duality then implies that the cup product xUj3(x) is some multiple q[Q] of the modp 
fundamental class [Q], with q nonzero modp. Viewing the lens space L = L(p, q) 
as the 3-skeleton of a K(Zp, 1) space, we may assume by cellular approximation 
that the classifying map I: Q --+ K(Zp, 1) for the regular covering 'L, --+ Q maps 
Q into L(p, q). When p is odd the modp cohomology ring of K has the form 
E(y) ® P(j3(y)), where y is a one-dimensional class, E(y) is the exterior algebra on 
y, and P(y) is the modp polynomial algebra on the Bockstein of y. When p = 2 the 
mod 2 cohomology algebra has the form P( x), where x is the generator in dimension 
one (and j3(x) = x 2 ). We have f*(y) = x, so that 

q[Q] = xU j3(x) = f*(y U j3(y)) = f*(q[L]) = qf*[LJ, 

so that [QJ = f*[LJ (modp). Here [LJ represents the fundamental class of L, and 
the relation y U j3(y) = q[LJ is well known (compare Greenberg and Harper [1981, 
p. 295]). Thus we have a map I: Q --+ L of degree congruent to 1 modp. It is easy 
to change the degree of I by any multiple of p, by a composition Q --+ Q V 8 3 --+ 

LV L --+ L. 0 

LEMMA 3.3. There is a Z[Zp] h-cobordism V with 8V = QU-Q and 71"1 (V) = 
Zp. 

Recall that to say that V is a Z[ZpJ h-cobordism means that H * (V, Q; Z[Zp]) = 0, 
where the local coefficients are induced by the natural homomorphism 71"1 (V) --+ 
HI (V) ~ Zp. This is equivalent to requiring that the Zp cover be a Z h-cobordism. 

PROOF. Let I: Q --+ L be a degree one map, L = L(p, q) as above. Then I 
induces an isomorphism of integral homology and in fact of homology with coeffi-
cients in Z[ZpJ. Consider the map g: Q x 1--+ L x I given by g = I x id, as a degree 
one normal map on which to attempt surgery relative to the boundary to obtain a 
homotopy equivalence. The surgery obstruction in Li(Zp) is clearly zero, since it 
is the same as that to obtain a Z[ZpJ homology equivalence (d. Cappell and Shane-
son [1974]), which we already have. According to Freedman [1983J Wall surgery 
theory for target manifolds with finite fundamental groups works in dimension 4 in 
the topological category. Then V is the result of this surgery. 0 

PROOF OF PROPOSITION 3.1. Let Vb V2 , . .. , Vn , ... be a sequence of copies 
of the manifold V guaranteed by Lemma 3.3. Let X be the manifold VI U V2 U ... 
obtained by identifying the copy of -Q in 8l1,; with the copy of Q in 8l1,;+1 for 
each positive integer i. By Van Kampen's theorem, 71"1 (X) ~ Zp. Let Y be the 
universal covering of X. Then 8Y = 'L, with the original group action. Moreover, 
H 2 (Y) = 0, Y is simply connected, and the end of Y is tame and simply connected. 
By results of Freedman the end of Y is homeomorphic to 8 3 x R. Thus the one 
point compactification of Y is the required manifold N, to which the group of 
covering transformations extends fixing the added point. 0 
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REMARKS. In the case p = 2, a version of this argument was first shown to me 
by D. Ruberman. It was also known in this case to Kwasik and Vogel. In §5 we 
shall address the question of when the extension of Proposition 3.1 can be done 
locally linearly. 

4. The topological existence theorem. This section is devoted to the proof 
of the first existence result for actions on 4-manifolds. 

THEOREM 4.1. Let M4 be a closed, simply connected topological 4-manifold 
and p be a prime. If p is odd or if p = 2 and the intersection form of M has 
even type, then M4 admits an action of Zp that is homologically trivial, pseudofree, 
and locally linear except perhaps at one isolated fixed point. (In one exceptional 
case when p = 3 and M has the homotopy type of Cp2 # CP2, the fixed point set 
contains a 2-sphere.) 

According to Freedman, closed, simply connected 4-manifolds are classified up 
to homeomorphism by their intersection forms, and, in the case of odd forms, the 
Kirby-Siebenmann triangulation obstruction in H 4 (M; Z2) ~ Z2. Any unimodular 
form and (in the case of odd forms) a zero or nonzero triangulation obstruction 
may be realized. 

First consider the case that p > 3. Let <I>: zm X zm ---+ Z be the intersection form 
of M4. If m > 1, then the results of §2 imply that, with respect to a suitable basis, 
<I> has a matrix A = (aij) which reduces modp to the matrix A(m, 1; XI, ... , xm) 
of Proposition 2.3, with no Xi == 1 modp. If m = 1, we may, by a reversal of 
orientation if necessary, assume that det <I> = -1; then let A = (-1). Let K be the 
link in 8 3 which consists of m fibers of the right-hand Hopf fibering, with framings 
aii, 1 :s:: i :s:: m. This link is invariant under the standard Zp action described in 
§2. 

For each component of K the forbidden framings, for which equivariant surgery 
leads to a two-dimensional fixed point set, are those congruent to 1 mod p, so none 
of the framings aii are forbidden (since p i- 2,3). By equivariant isotopies of the 
various components of K, which push a small arc on one component and its p - 1 
translates across another component, one may alter the off-diagonal entries of the 
linking matrix by arbitrary multiples of p, maintaining symmetry. 

Thus we arrive at a framed link K with linking matrix A which is invariant 
under a free action of Zp on 8 3 , such that none of the framings are forbidden. 

Equivaraint surgery on K produces a compact, simply connected, smooth 4-
manifold W 4 which has intersection form given by the matrix A and which has a 
smooth Zp action inducing the identity on homology and having only isolated fixed 
points in the interior of W 4 . Since A is a unimodular matrix, duality implies that 
aw4 is a homology sphere. Then by Proposition 3.1 the action on aw4 extends 
to one on a contractible manifold N 4 with aN4 = aW4 . Then Ml = W 4 Ua N 4 

is a closed, simply connected 4-manifold with intersection form equivalent to <I> , 
admitting a Zp action which is the identity on homology, which has only isolated 
fixed points, and which is locally linear except perhaps at one point. According to 
Freedman, Ml is homeomorphic to M 4 , except perhaps when <I> has odd type, in 
which case M4 and Ml may have different Kirby-Siebenmann classes. It suffices in 
this case to show how to alter the link K to reverse the Kirby-Siebenmann class. 
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The framed link K contains a characteristic sublink Ko (such that if K 1 is a 
component of K, then the framing of K1 is the linking number Ik(K1' Ko) (mod 2)). 
The triangulation obstruction for the resulting 4-manifold will change if one inserts 
into a component of Ko a small trefoil (with framing 0), hence also if one inserts p 
such small trefoils (since p is odd). (In Freedman [1982, p. 371], it is assumed that 
Ko is connected, but this is clearly unnecessary.) This can be done equivariantly 
to obtain a framed link K' with the same linking matrix as K. It follows from 
Lemma 1.1 that the framing actions on tubes about the components of K' are not 
forbidden, since those for K are not. 

Now assume p = 2 and that the intersection form of M4 has even type. It follows 
that the rank of H2 (M) is even. The argument then proceeds just as in the case p 
is odd, using the matrix A(m, 1; 0, ... ,0), except that the triangulation obstruction 
is determined completely by the intersection form. 

It remains to consider the case p = 3. Unless m = 2, and det <I> = 1 the first 
addendum to Proposition 2.3 shows that the proof given above works. Suppose, 
however, that p = 3, m = 2, and det <I> = 1. In this case there is no 2 X 2 
matrix for <I> that does not have + 1 on the diagonal! Up to a change of orientation 
there are exactly two manifolds to consider: CP2 # Cp2 and Ch # CP2, where Ch 
denotes the "Chern manifold," the unique topological 4-manifold that is homotopy 
equivalent, but not homeomorphic, to CP2. Now CP2 admits standard linear Z3 
actions with three isolated fixed points, and (by the previously discussed cases) 
Ch admits a Z3 action with three isolated fixed points at least two of which are 
locally linear. One may not construct the (oriented) equivariant connected sum of 
two of these actions because all the local representations at isolated fixed points 
are exactly the same, given by the pair of rotation angles (271-j3, 47rj3). (Compare 
Lemma 5.4.) There is another standard action on CP2 fixing CP1 U Cpo, with 
the local representation at the isolated fixed point given by (27r j p, 27r j p). One may 
now construct the equivariant connected sum Cp2 # Ch by taking the action with 
a two-dimensional fixed point set on the first summand. Similarly one constructs 
the required action on Cp2 # Cp2. 0 

REMARK. It follows easily from the G-signature theorem that neither CP2 # 
Cp2 nor Cp2 # Ch admits a locally smooth Z3 action which is the identity on 
homology and has only isolated fixed points. Is there a purely topological action? 

REMARK. If M4 has an odd intersection form and p = 2, then one may follow 
the first part of the preceding argument, using the matrix A(m, 1; 1,0, ... ,0), to 
produce a smooth Z2 action on a compact, simply connected manifold W 4 whose 
intersection form is equivalent to that of M 4 , such that Z2 acts by the identity on 
homology, with fixed point set consisting of isolated points, except for one compo-
nent which is a 2-disk dictated by the forbidden framing encountered. One is left 
with two questions: Can an involution on a homology 3-sphere which fixes a simple 
closed curve be extended to an involution on a contractible 4-manifold? Can one 
effectively control the triangulation obstruction? 

5. A locally linear extension theorem. In this section we investigate the 
problem of carrying out the construction of §4 in such a way as to produce a 
locally linear action on a given 4-manifold, acting by the identity on homology and 
having only isolated fixed points. The fundamental problem turns out to be one 
of deciding in an effective way when a 3-dimensional Z[Zp] homology lens space is 
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Z[Zp] h-cobordant to a classical lens space. This is accomplished by transferring 
Wall's classification of fake lens spaces in higher dimensions to the 3-dimensional 
situation. 

THEOREM (WALL [1970, § 14]). Two homotopy lens spaces (of dimension 
five or higher) with odd order fundamental group Zp are homeomorphic if and only 
if they have the same a-invariants and equivalent Reidemeister torsions. 

We will explain the terms "a-invariant" and "Reidemeister torsion" below; for 
the moment it suffices to know that they are certain algebraic integers in Q[e27T'i/p]. 
Moreover, these two invariants are perfectly well defined for a homology lens space 
occurring in dimension three as the quotient of a homology 3-sphere by a free 
Zp action. Wall describes which invariants are realizable, as well as the precise 
relationship between them. If two homotopy lens spaces are h-cobordant, then 
they have the same a-invariants, but their Reidemeister torisons differ by a factor 
of the square of the Whitehead torsion of the h-cobordism. Thus we may apply 
Wall's classification theorem, Milnor's duality theorem for Reidemeister torsion, 
and the realizability of Whitehead torsion by h-cobordisms to prove the following 
result. 

COROLLARY. Two homotopy lens spaces (of dimension five or higher) with odd 
order fundamental group Zp are h-cobordant if and only if they have the same a-
invariants, and their Reidemeister torsions differ, up to equivalence, by the square 
of a unit of Z[e27T'i/p] that has augmentation congruent to 1 modulo p. 0 

We now transfer Wall' theory to the 3-dimensional setting by applying Freed-
man'results. Let ~ be a homology 3-sphere with free Zp action, and let Q = ~jZp
Let L = L(p, q) be the lens space such that there is a Z[Zp] homology equivalence 
f: Q ~ L inducing a preferred isomorphism of fundamental groups, covered by 
an equivariant Z homology equivalence ~ ~ S3. Because 3-manifolds are par-
allelizable, we may view the map f as a normal map, covered by a bundle map 
b: v(Q) ~ veL). 

The set of smooth (or equivalently piecewise linear) normal cobordism classes of 
normal maps to L is in one-to-one correspondence with the set of homotopy classes 
[L; G jPL]. But since L is 3-dimensional, [L; G jPL] = 0 for p odd. (Compare 
Wall [1970, p. 210]). Therefore there is a normal cobordism F: (V; Q, L) ~ 
(L X [0, IJ; Lx {O}, L X {I}] (covered by a suitable bundle map B) from f: Q ~ L 
to the identity 1£: L ~ L. By surgery on circles in V one may assume that 
7f1 (V) = Zp-

The Wall obstruction ()(F) E Li(Zp) is detected by two invariants: the g-
signature sign(g, V) of the deck transformation on the Zp cover of V and a ratio 
!:::t.(Q)j!:::t.(L) of Reidemeister torsions. (If f: Q ~ L were a simple Z[ZpJ homology 
equivalence, then the surgery obstruction would live in L4CZp), and no discussion 
of Reidemeister torsions would be required.) 

The g-signature sign(g, V) can be expressed as the difference of two a-invariants 
(or "multisignatures") a(L) - a(Q), defined by Atiyah and Bott for any even-
dimensional manifold M with preferred homomorphism 7f1M ~ Zp using the G-
Signature Theorem, as follows. The covering ~ ~ Q is classified by a map Q ~ 
K(Zp, 1). Since the oriented bordism group 03(K(Zp, 1)) 0 Q = 0, some integral 
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multiple rQ of Q bounds over K(Zp, 1). In other words there is a manifold X with 
ax = rI: having a free Zp action extending that on rI:. Let g: X ----> X denote 
the generator of the action. We set n:(Q) = sign(g,X)/r. This is easily seen to be 
independent of the value of r chosen, and is well defined since the g-signature is 
zero for free actions on closed manifolds. The fact that sign(g, V) = n:(L) - n:(Q) 
follows for the same reason. Clearly this invariant exists for any 3-manifold with 
homomorphism of its fundamental group onto Zp. 

To compute n:( Q) one need not restrict attention to free actions; one may apply 
the G-Signature Theorem to correct for the presence of fixed points. (It follows from 
results of Wall [1970, §14B]' and Freedman [1983J that the G-Signature Formula 
remains valid for locally linear actions on topological 4-manifolds.) Thus, if X 
is any oriented manifold with locally linear Zp action, and ax = I: as oriented 
manifolds with group actions, then 

n:(Q) = sign(g, X) - L e(F2)cosec2(7jJ(F2)/2) + L cot(OI(P)/2)cot(B2(P)/2). 

Here the two sums run over the two-dimensional components F2 of the fixed point 
set and the isolated fixed points P in X, respectively. The Euler number of the 
normal bundle of F2 is denoted e(F2); 7jJ(F2) denotes the rotation angle for g in 
the normal bundle of F2; and Bl (P), B2 (P) denote the rotation angles for g near P 
(well defined up to order or changing the sign of both). The G-Signature Theorem 
says that n:( Q) is well defined. It follows, for example, that if L(p; a, b) denotes the 
standard lens space arising from the linear action of Zp on C 2 of type {a, b}, then 
n:(L(p;a,b)) = cot(a7f/p)cot(b7f/p), One may use n:-invariants to classify standard 
lens spaces up to homeomorphism. 

We now discuss the Reidemeister torsion ~(Q) of the Z[ZpJ homology lens space 
Q, again understood to have a preferred homomorphism of 7fl (Q) onto Zp. The ba-
sic reference is Milnor [1966J. Let Q be given a cell structure (arising, for example, 
from a triangulation) and let I: be given the induced cell structure. The cellular 
chain complex C*(I:) is then a complex of free Z[ZpJ modules with a class of pre-
ferred bases determined by the cell structure. There are natural homomorphisms 
Z[ZpJ ----> Z[>.J ----> Q[).]' where). = e27ri/ p, and C*(I:) (>9 Q[>.J is an acyclic complex 
of free based Q[>.J modules. This complex then has a torsion 7 E Kl(Q[>.]). But 
Kl(Q[>.]) may be identified with the units Q[).Jx of the ring Q[).J. Then ~(Q) 
is the element of Q [>' J x corresponding to the torsion To The symbol ~ is used to 
signify multiplicative notation, as opposed to T which connotes additive notation. 
We also adopt the convention that ~1 ~ ~2 if ~2 = ±>.i~1 for some i. As a 
specific computation one may verify that ~(L(p; a, b)) ~ ().a -l)(>.b -1). One may 
use Reidemeister torsion to classify standard lens spaces up to homeomorphism. 

Corresponding to Wall's classification of fake lens spaces in higher dimensions 
we have the following classification of homology lens spaces in dimension 3 up to 
Z[ZpJ s-cobordism. 

PROPOSITION 5.1. Let p be an odd prime and let a three-dimensional Z[ZpJ 
homology lens space Q be given. Then Q is Z[ZpJ s-cobordant to a classical lens 
space L = L(p, q) if and only if n:(Q) = n:(L) and ~(Q) ~ ~(L). 

PROOF SKETCH. Note that L is uniquely determined by Q with its preferred 
homomorphism 7fl(Q) ----> Zp, as in Lemma 3.2. If Q and L are just Z[ZpJ h-
cobordant, then one easily sees from the comments above and the G-Signature 
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Theorem that a(Q) = a(L). In this case it further follows from considerations of 
duality, as in Milnor [1966, Theorem 12.8]' that fl(Q) ~ u 2 fl(L), where u is the 
image in Q[,\] of the Whitehead torsion of the h-cobordism. (Since u corresponds 
to a unit of Z[Zp], u is a unit of Z['\] of augmentation in Zp congruent to ±l.) This 
proves the necessity of the two conditions. 

Conversely, suppose that a(Q) = a(L) and fl(Q) ~ fl(L). Then, applying 
Lemma 3.2 and the discussion above, there is a degree one map f: Q -+ L that is 
a Z[Zp] homology equivalence inducing the identity on H1 (identified with Zp in 
each case) and is normally cobordant to the identity L -+ L. The map f is a simple 
Z[Zp] homology equivalence, by Milnor [1966, Lemma 12.5]. Therefore the normal 
cobordism has a well-defined surgery obstruction in Li(Zp) that may be assumed 
to vanish by the hypothesis on a-invariants. Applying Freedman [1983], one may 
perform surgery to obtain a normal cobordism (V; Q, L) with 71"1 (V) ~ Zp which 
maps by a simple Z[Zp homology equivalence to (L x [0,1]' Lx {O}, L x {I}). Then 
V is a Z[Zp] homology s-cobordism, as required. 0 

COROLLARY 5.2. If p is an odd prime, then a three-dimensional Z[Zp] homol-
ogy lens space Q is Z[Zp] homology h-cobordant to a classical lens space L if and 
only if a(Q) = a(L) and fl(Q) ~ u2 fl(L), where u is the image in Q[>.] of a unit 
of Z[Zp]. 

PROOF. The necessity of the conditions is included in the preceding proof. 
Suppose now that the two conditions hold. The usual proof of the realization of 
Whitehead torsions by h-cobordisms in high dimensions may be modified to show 
that there is a Z[Zp] homology h-cobordism (W; Q, Q') with torsion T E Wh(Zp) 
corresponding to u. Then Q' is a Z[Zp] homology lens space, and by Milnor [1966, 
Theorem 12.8]' we have fl(Q') ~ u 2 fl(Q). Moreover, a(Q') = a(Q), so that 
Q' is Z[Zp] homology s-cobordant to L. Concatenation of the two homology h-
cobordisms proves the corollary. 0 

PROPOSITION 5.3. Ifp is an odd prime, then a free action ofZp on a homology 
3-sphere ~ extends to a locally linear action on a contractible manifold N with 
aN = ~ if and only if the a-invariant of ~/Zp equals the a-invariant of some lens 
space L, and fl(~/Zp) ~ u 2 fl(L), where u is the image in Q[,\] of a unit of Z[Zp]. 

PROOF. First suppose the action on ~ does extend locally linearly to a con-
tractible manifold N. Let D be a small, flat invariant ball on which the action is 
equivalent to a linear action. Let W = N - D. One easily sees that W /Zp is a 
Z[Zp] homology h-cobordism from ~/Zp to a classical lens space. The corollary 
implies the conclusion. 

Now suppose that the action on ~ satisfies the hypotheses on a-invariants and 
Reidemeister torsions. The corollary implies that there is a Z[Zp] homology h-
cobordism V from ~/Zp to a classical lens space L. Let W be the corresponding 
p-fold covering of V with deck transformation group Zp. Then W is a Z homology 
cobordism from ~ to 8 3 . We need to arrange for W to be simply connected, or 
equivalently 71"1 (V) ~ Zp. Then we can cone off the linear action on 8 3 to get the 
required action on a contractible (as opposed to just acyclic) manifold. Now V 
was obtained as the result of surgery on a normal map to L x I with vanishing 
surgery obstruction, concatenated with a suitable Z[Zp] homology h-cobordism 
with prescribed torsion. In particular there is a normal map V -+ L x I which 
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clearly has vanishing absolute surgery obstruction in Lj(Zp). Perform preliminary 
surgeries to obtain a normal map V' --+ L x I, where 1T1(V') :::::: Zp. Then apply 
Freedman [1983] to surger 2-spheres to obtain a homotopy equivalence V" --+ L x I, 
as required. 0 

6. The locally linear existence theorem. In this section we shall show that 
if p is a prime greater than three, then Zp acts locally linearly with only isolated 
fixed points on any closed, simply connected 4-manifold M, inducing the identity 
on H2 (M; Z). We begin with a discussion of some model actions on connected sums 
of copies of CP2 and CP2. 

LEMMA 6.1. Let p be an odd prime and a and b be integers which are nonzero 
and distinct modp. Then there is a smooth map T: CP2 --+ Cp2 of period p with 
three isolated fixed points at which the induced actions on the tangent spaces have 
types {a, b}, {a - b, -b}, and {b - a, -a}. 

PROOF. Define T in homogeneous coordinates by T(zo, ZI, Z2) = (.\a zo , .\bZ1 , Z2)' 
o 

Note that the same action, when viewed on CP2, has fixed points of types 
{a,-b},{a - b,b}, and {b - a,a}. The standard Morse function f: Cp2 --+ R 
defined by f(zo,zl,z2) = IZl12 + 21z212 shows that CP2 with this action may be 
described as being obtained from the 4-ball D4 with a standard linear action of type 
{a, b} by adding a 2-handle along an invariant simple closed curve (as described in 
§1), and adding a linear 4-handle along the resulting 3-sphere boundary with linear 
action. 

LEMMA 6.2. Let p be a prime greater than three and let M be the connected sum 
of m copies of CP2 and n copies of CP2. Then M admits a smooth, pseudofree, 
homologically trivial action of Zp. 

PROOF. The argument is by induction on m+n. Lemma 6.1 starts the induction. 
Inductively we may assume (by reversal of orientation if necessary) that M = 
N #CP2 and that N admits a smooth, pseudofree, homologically trivial action of 
Zp. Additionally assume that the action on N does not have all its fixed point 
types of the form {x, -x}. This holds for the standard actions on CP2 and CP2 
above, provided that p > 3. We show that M admits such an action. 

Let P be a fixed point of the action on N of type {x,y}, where y =1= -x (modp). 
Consider a standard action on Cp2 with fixed points of types {x, -y}, {x + y, y}, 
and {y + x, x}, as given by Lemma 6.1. Let Q be the fixed point of type {x, -y} in 
Cp2. One may then construct the connected sum N #CP2 in an equivariant way, 
yielding the required action. 0 

Consideration of a standard Morse function on M above shows that these model 
actions may also be described as being obtained by equivariant surgery on an ap-
propriate framed link, each component of which is invariant under a certain linear 
action on 8 3 , capping off the resulting linear action on the final boundary 3-sphere 
wth a linear 4-handle. 

Addendum for p = 3. Suppose that M is a closed, simply connected 4-manifold 
with a locally linear Z3 action that is pseudofree and homologically trivial. Then the 
signature defect formula (see Hirzebruch and Zagier [1973], for example), says that 
2lT = 2xj3, where IT is the signature of M (= the signature of the orbit space), and x 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTION OF GROUP ACTIONS ON FOUR-MANIFOLDS 167 

is the number of fixed points of type {I, 2} minus the number of type {I, I}. Now I x I 
is at most the total number of fixed points, which is X(M) = f32(M) + 2. Therefore 
we must have 31al :::; f32(M) + 2, or lal :::; (f32(M) + 2)/3. This shows that many 
manifolds do not support such Z3 actions: the Es manifold, the Kummer surface, a 
connected sum of n > 1 copies of +CP2 or +Ch, etc. For a connected sum of copies 
of CP2 and CP2, it is not hard to see that the inequality lal :::; (f32(M) + 2)/3 
is in fact sufficient to construct (by equivariant connected sums) a locally linear, 
pseudofree, homologically trivial action of Zp. The proof of Theorem 6.4 shows 
that this last statement holds true for any closed, simply connected 4-manifold. 

We shall need the following technical lemma about the behavior of Reidemeister 
torsion under equivariant surgery. 

LEMMA 6.3. Let Zp act smoothly on the homology 3-sphere~. Let K+ = 
Kt U K:j U ... U K~ and K- = Kl U K:; U ... U K;;. be two framed links of m 
components, with unimodular linking matrices, each component invariant under the 
Zp action. Suppose that for i = 1, ... , m the framing action for Kt is the same as 
that for K i- and is not forbidden. Let ~+ and ~- denote the results of equivariant 
surgery on the two framed links. Then ~(~+ /Zp) ~ ~(~- /Zp). 

PROOF. Let Q, Q+, and Q- denote the quotients of ~,~+, and ~- by Zp. Let 
K ± denote the image in Q of K±; and denote by X(K ±) the exterior of K ± in 
Q, that is, Q minus the interior of a small regular neighborhood of K ±. Let the 
action of Zp on K; be given by rotation by 27rrdp; and the framing action on Ki± 
be of type {ri' Si}, where Si is nonzero modp by the hypothesis of no forbidden 
framings. 

First note that ~(Q) ~ (.Ar! - 1)··· (.Ar", - l)~(X(K ±)). To see this, observe 
that the action induced on the homology of ~ - K± is clearly trivial, implying that 
~(X(K ±)) is defined. The asserted formula then follows easily from seeing how 
the 2-cells and 3-cells are attached to a cell complex for X(K ±) to build up Q. 

Next note that ~ is obtained from ~± by equivariant surgery on a complementary 
invariant link K-± with X(K* ±) = X(K ±), such that on the typical component 
k; the action is given by rotation by 27rsdp. Thus we also have 
~(Q±) ~ (.AS! - 1)· .. (.As", - l)~(X(K* ±)) ~ (.AS! - 1)··· (.As", - l)~(X(K ±)). 

From this it follows that ~(Q+) ~ ~(Q) Di(.ASi - l)/(.A ri - 1) = ~(Q-). D 

THEOREM 6.4. Let p > 3 be a prime and M be a closed, simply connected 
4-manifold. Then there is a locally linear, pseudofree, homologically trivial action 
ofZp on M. 

PROOF. Let m = f32(M) be the rank of H2(M) and s = sign(M) be the signature 
of M. By Lemma 6.2 there is a manifold M' with f32(M') = m and sign(M') = s 
which supports an action of the sort in the statement of the theorem. More precisely 
M' is an equivariant connected sum at fixed points of standard actions on copies of 
CP2 and CP2. As noted above, this action may be described as being obtained by 
attaching m 2-handles equivariantly to the 4-ball D4 along a framed link K' in 8 3 

invariant under a linear action of Zp on D 4 , and then coning off the linear action 
on the resulting boundary. Let A' be the linking matrix of K'. 

According to Lemma 2.2 there is another unimodular, symmetric m x m matrix 
A such that A == A' (modp) and the intersection form of our given manifold M has 
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matrix A with respect to a suitable basis for H2 (M; Z). As in the proof of Theorem 
4.1, we may change the framings of the components of K' by multiples of p, and, 
by equivariant isotopies of the individual components of K', change the linking 
numbers of pairs of components by multiples of p, so as to arrive at a new framed 
link K in 53 invariant under the same linear action on D4 having linking matrix 
A. Note in particular that the image of each component of K in the lens space 
5 3/Zp represent the same element of 1rd53/Zp) as the corresponding component 
of K' does. Moreover, the framing action associated with Ki is the same as that 
associated with K:. 

Let W be the result of equivariant 2-handle addition to D4 along K; let ~ = aw; 
and let g: W ---+ W be the generator of the Zp action. We must check that a(~/Zp) 
is that of some lens space. Let W',~', and g' be the corresponding objects for the 
action on the connected sum of copies of CP2 and CP2, yielding the lens space 
~'/Zp. It follows from the G-Signature Theorem that a(~/Zp) = a(~' /Zp). 

We claim that ~(~/Zp) = ~(~' /Zp) as well. This follows from Lemma 6.3, 
since the corresponding framing actions for the two links are the same. 

Then it is a consequence of Proposition 5.3 that the action on ~ extends locally 
linearly to a contractible 4-manifold V with av = ~. Thus one obtains an action 
of the sort required by the theorem on the manifold Mil = W UE V. 

Now Mil is a closed, simply connected 4-manifold with the same intersection form 
as M. If M has an even intersection form, then by Freedman [1982] Mil ~ M and 
we are done. If M has an odd intersection form, then Mil may have triangulation 
obstruction in H4(M"; Z2) :::::: Z2 distinct from that of M. So we must see how to 
alter the triangulation obstruction for Mil, just as we did in §4. 

As before the link K has a characteristic sublink Ko C K. Change K to K+ by 
equivariantly inserting into Ko p little trefoils with zero framing (so that K+ and 
K have the same framing). Let W+ be the result of equivariant handle addition 
to D4 along K+, with periodic map g+ and boundary ~+. Let M+ be the closed 
manifold obtained by capping off ~+ with a contractible manifold. 

By Lemma 1.1 the framing actions on corresponding components of K+ and K 
are the same. Therefore, consideration of sign(g+, W+) shows that a(~+ /Zp) = 
a(~/Zp) = a(~' /Zp). It remains to determine the effect of this last alteration on 
Reidemeister torsion. 

We claim that ~(~+ /Zp) = ~(~/Zp) = ~(~' /Zp), as well. Again this follows 
from Lemma 6.3. D 

7. Concluding remarks. We conclude with some observations about finding 
involutions on 4-manifolds with odd intersection forms and locally linear involutions 
on 4-manifolds with even intersection forms. 

PROPOSITION 7.1. If T is an orientation preserving involution on a closed, 
orientable 4-manifold M that has an odd intersection form, and T acts by the 
identity on H 2 (M; Z2), then the fixed point set F of T contains a 2-dimensional 
component. 

PROOF. For some u E H2(M; Z2) the intersection number u . u is nonzero 
mod2. On the other hand, if u E image[H2 (M - F2; Z2) ---+ H2 (M; Z2)], then 
u . T* (u) == 0 (mod 2). For this one can either give a direct geometric argument or 
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refer to the more general spectral sequence-Steenrod squares argument in Bredon 
[1972, §VII.7]. Then u· u = u· T.(u) = 0, a contradiction. 0 

Recall that if Zp acts on a manifold of the homotopy type of CP2, then the 
possibilities for the fixed point set are as follows: a point and a 2-sphere, three 
points (when p is odd only), or a real projective plane (when p = 2 only, and the 
action is nontrivial on H2 (M; Z)). See Bredon [1972, §VII.3]. 

PROPOSITION 7.2. Suppose that T is an involution on a 4-manifold M of the 
homotopy type of CP2, acting by the identity on H2(M; Z), such that T is locally 
linear at each point of the 2-dimensional part F2 of the fixed point set of T. Then 
M is homeomorphic to Cp2. 

PROOF. As noted above F2 is a 2-sphere that represents a nontrivial Z2 ho-
mology class, and which is locally flat by the local linearity hypothesis. According 
to Freedman [1983] F2 has a normal bundle in M. Wall's topological formulation 
of the G-Signature Theorem (Wall [1970, p. 188]) then applies to show that the 
arguments of Hsiang and Szczarba [1971] work in this situation to see that F2 
represents a generator of H2 (M; Z) ~ Z. It follows that the boundary of a tubular 
neighborhood N of F2 is the 3-sphere, and that cl(M - N) is the 4-ball, by the 
topological Poincare conjecture. Thus M is obtained from the Hopf 2-disk bundle 
over the 2-sphere by attaching a 4-ball. It follows that M is homeomorphic to Cp2 
as required. 0 

Proposition 7.2 thus shows that any involution on the fake CP2 which induces 
the identity on homology must have a point on its fixed 2-sphere where it is not 
locally linear. On the other hand, Kwasik and Vogel [1985] have constructed an 
involution on an odd manifold with nonvanishing triangulation obstruction and 
fairly large middle Betti number that is locally linear except at one isolated fixed 
point. 

PROPOSITION 7.3. Suppose that Z2 acts homologically trivially, pseudofreely, 
and locally linearly on a closed, simply connected 4-manifold M. Then A1 is home-
omorphic to a connected sum of copies of S2 x S2, and each such manifold admits 
such a Z2 action. 

PROOF. Since the action is locally linear and pseudofree, the G-Signature The-
orem applies to say that sign(g, M) = 0, where g generates the action. Since the 
action is homologically trivial, sign(M) = sign(g, M) = o. By Proposition 7.1, M 
must have an even intersection form. The intersection form is even and of signature 
zero. Therefore the classification theorem of Freedman applies to show that M is 
a connected sum of copies of S2 x 8 2 . One easily COIlstruCts the desired examples 
of involutions on the standard building blocks. Since the building blocks admit 
orientation reversing homeomorphisms, one may form equivariant connected sums 
at fixed points to construct the required actions. 0 

Finally we denote the analogue for p = 2 of the Locally Linear Extension Theo-
rem, Proposition 5.3. 

PROPOSITION 7.4. A free Z2 action on a homology 3-sphere ~ extends to a 
locally linear action on a contractible 4-manifold if and only if a(~/Z2) = O. 

PROOF SKETCH. The necessity of the a-invariant condition is just as before. 
By Lemma 3.2 there is a degree one normal map f: ~/Z2 ---+ RP3. By Taylor 
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[1984, Lemma 2.1], f is normally cobordant to the identity Rp3 --+ RP3. The 
normal bordism yields a 4-dimensional surgery problem mapping to Rp3 x I that 
is a simple Z[Z2J homology equivalence over the ends. The surgery obstruction is 
then completely captured by the a-invariant. 0 
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