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Abstract

Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage

maps have been constructed using mainly microsatellite markers (SSRs) and, recently,

using single nucleotide polymorphism markers (SNPs) from a cherry 6K SNP array. Geno-

typing-by-sequencing (GBS), a new methodology based on high-throughput sequencing,

holds great promise for identification of high number of SNPs and construction of high den-

sity linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet

cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical po-

sition for each SNP was determined using the peach genome, Peach v1.0, as reference,

and a homogeneous distribution of markers along the eight peach scaffolds was obtained.

On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in

exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of

linkage maps. Parental and consensus high density maps were constructed by genotyping

166 siblings from a ‘Rainier’ x ‘Rivedel’ (Ra x Ri) cross. Using Ra x Ri population, 462, 489

and 985 markers were mapped into eight linkage groups in ‘Rainier’, ‘Rivedel’ and the Ra x

Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps

spanned 549.5, 582.6 and 731.3 cM for ‘Rainier’, ‘Rivedel’ and consensus maps, respec-

tively, with an average distance of 1.2 cM between adjacent markers for both ‘Rainier’ and

‘Rivedel’maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed

between obtained maps and with Peach v1.0. These new high density linkage maps provide

valuable information on the sweet cherry genome, and serve as the basis for identification

of QTLs and genes relevant for the breeding of the species.
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Introduction

Sweet cherry (Prunus avium L., 2n = 2x = 16) belonging to the Prunus genus, a member of

Rosaceae family, is an important tree fruit in Chile. Although Chile is the main producer in the

Southern Hemisphere, all sweet cherry cultivars grown in Chile are of foreign origin. Develop-

ment of sweet cherry cultivars well adapted to local growing conditions that satisfy post-harvest

requirements is important for the Chilean industry and represents a significant challenge. Ge-

netic and genomic tools can help mitigate these challenges by improving efficiency and reduc-

ing the time necessary to obtain new cultivars. Linkage maps are useful tools in the study of

sweet cherry genetics and breeding in that they facilitate the identification and characterization

of regions associated with trait(s) of interest and aid development of markers for marker-

assisted selection.

For sweet cherry, linkage maps were initially constructed using random amplified polymor-

phic DNA (RAPD) markers [1] and isoenzymes [2]. Later, maps were constructed mainly

using single sequence repeat markers (SSRs) [3–5]. Recently, single nucleotide polymorphisms

(SNPs) have been used for linkage maps construction [6, 7]. Cabrera et al. [6] used 81 SNPs de-

rived from the Rosaceae Conserved Orthologous Set (RosCOS) [8] for mapping in four sweet

cherry F1 populations, representing the first example of high-throughput SNP genotyping

assay in sweet cherry. More recently, Klagges et al. [7] published high density linkage maps

using the RosBREED cherry 6K SNP array v1.0 [9]. This array contains 5,696 SNPs obtained

from re-sequencing of 16 sweet and eight sour cherry accessions, with physical position of each

SNP based on the peach reference genome (Peach v1.0) as reference. Although the cherry SNP

chip represents the variability of a set of cultivars, its fixed number of markers could present a

disadvantage in certain crosses. It has been reported that the Peach IPSC 9K Infinium II array

[10] did not provide a sufficient number of informative markers for construction of more than

several linkage groups in some peach backgrounds [11, 12], showing limitations of the SNP set

present on the array, making it suitable for some but not appropriate for other germplasm.

However, the lack of linkage groups in the genetics maps obtained from peach crosses is more

likely due to identity by descent [13] than array assortment bias. Although SNP markers in-

cluded in the SNP chips are carefully chosen and present potentially a high number of markers,

informativeness of those markers is not ensured for all genetic backgrounds and can hamper

the construction of saturated linkage maps.

While previous methods of marker development have been helpful, the recently published

“genotyping-by-sequencing” (GBS) method [14], has illustrated a way to identify 1000’s of

polymorphic markers for a fraction of the cost of previous methods. GBS allows one to rapidly

and completely saturate a linkage map with markers to maximize potential associations with a

phenotype. GBS is a simple, highly multiplexed system for constructing libraries for next gen-

eration sequencing (NGS). It provides reduced representation sequencing of restriction site as-

sociated DNA for rapidly developing markers. The use of methylation-sensitive endonucleases

allows targeting lower copy regions with two or three fold higher efficiency [15]. This strategy

is especially important because it permits depth coverage of the same regions for all the individ-

uals of a mapping population, and its posterior segregation analysis and linkage maps con-

struction. Saturated linkage maps, constructed using SNPs from GBS, have been published for

several plant species such asMiscanthus sinensis [16], barley and wheat [17], grapevine [18],

blackcurrant [19], rice [20] and alfalfa [21], among others. For the Rosaceae family members,

genetic maps based on SNPs from GBS have been published for red raspberry (Rubus idaeus

L.) [22] and apple (Malus x domestica Borkh) [23].

In this study, a sweet cherry population derived from the cross ‘Rainier’ x ‘Rivedel’ (n = 166

siblings) was genotyped using SSRs and SNPs via GBS. High density linkage maps for both
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parents as well as a consensus map were constructed. Filtered sequence reads from GBS were

aligned to Peach v1.0 and analysis of distribution along peach scaffolds was performed. These

new saturated sweet cherry linkage maps present a valuable set of newly identified SNPs, pro-

viding a very powerful tool for quantitative trait loci (QTL) identification and further

breeding applications.

Material and Methods

Plant material and DNA extraction

The mapping population was developed from 675 one-year-old seedlings obtained from an

open-pollinated tree of ‘Rainier’ (female parent) surrounded by several cultivars in a private

germplasm collection located at Paine (33°48'13.4"S, 70°40'02.0"W), close to Santiago, Chile

[24]. The permission to perform the study on this site was provided by Pablo Canobra. Young

leaves of ‘Rainier’, putative pollen donors and all seedlings were collected, immediately frozen

in liquid nitrogen and stored at -80°C for later use. Genomic DNA was extracted from the fro-

zen tissue using the DNeasy plant kit (Qiagen, Germantown, MD, USA) according to the man-

ufacturer’s instructions, and quantified using spectrophotometry (Infinite 200 PRO

NanoQuant microplate reader; Tecan Tradind AG, Männedorf, Switzerland) and fluorimetry

(Quant-iT Picogreen, Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA). The bloom-

ing date and location of each tree in the orchard were used as the first filter to propose five

probable male parents for the segregating open-pollinated ‘Rainier’ population. These cultivars

were ‘Rivedel’ (S-alleles haplotype S1S9), ‘Vanda’ (S1S6), ‘Van’ (S1S3), ‘Bing’ (S3S4) and ‘Lap-

ins’ (S1S4’). The S-allele amplification of 675 individual using consensus primers PaConsII

[25] was performed and individuals with S1S9 and S4S9 haplotypes, representing the most

abundant S-alleles combination in the population, were selected for further studies. Microsatel-

lite (SSR) markers amplification was performed using seven primer pairs, BPPCT-026 and

BPPCT-038 [26]; PMS-30 [27]; PMS-67 [28]; UCD-CH11, UCD-CH12 and UCD-CH21 [29].

Results from both PaConsII and SSR markers identified ‘Rivedel’ as the pollen donor in 232 in-

dividuals forming ‘Rainier’ x ‘Rivedel’ (Ra x Ri) population. Initial population was further re-

duced after subsequent analysis with eight SSRs used for mapping (BPPCT-007 and BPCT-037

[26]; CPPCT-029 and CPPCT-033 [30]; EMPA-004, EMPA-005 and EMPA-013 [31];

UCD-CH14 [29]) and 166 individuals have been selected for GBS analysis and linkage map de-

velopment. The population is established at Instituto de Investigaciones Agropecuarias, INIA

Rayentué, in Rengo (34°19`16.93"S, 70°50`04.15"W), located 110 km South from Santiago,

Chile. The mapping population belongs to INIA and do not need any specific authorization to

be used for the analysis described in this paper. The field studies did not involve endangered or

protected species.

‘Rainier’ is a self-incompatible cultivar (S1S4), with early flowering and good productivity.

It produces very large fruits, with yellow skin with patches of red blush. Fruit flesh is pale yel-

low, with excellent firmness, low acidity and sweet flavor. It is susceptible to rain-induced

cracking. ‘Rivedel’ is also a self-incompatible cultivar (S1S9), with mid to late blooming, early

maturity, but with poor fruit set. It also produces large fruit, with dark red skin and flesh, inter-

mediate to firm flesh, with low acidity and medium sweetness. Susceptibility to rain-induced

cracking is high to very high.

SSRs amplification

SSR markers suitable for mapping were selected from a total of 203 SSR markers derived from

cDNA and genomic libraries of different Prunus species (S1 Table). Parents and two progeny

individuals were used to screen markers for polymorphisms and scoring quality. For the

Construction of High Density Sweet Cherry Linkage Maps Using GBS

PLOSONE | DOI:10.1371/journal.pone.0127750 May 26, 2015 3 / 17



majority of the SSR markers, except for EMPA and EMPaS, the polymerase chain reaction

(PCR) conditions were as follows: 94°C for 5 min, 35 cycles of 94°C (30 s), 56°C (30 s), 72°C

(30 s) and a final extension step of 72°C for 7 min. For EMPA and EMPaS, a touchdown PCR

was used as described by Clarke and Tobbutt [31]. PCR reactions were carried out in a total

volume of 12 μl, with 20 ng genomic DNA, 0.5 μM of each forward and reverse primers, 0.2

mM dNTPs, 2.5 mMMgCl2, 2.4 μl Colorless GoTaq Reaction Buffer (5×), and 0.25 U GoTaq

DNA polymerase (Promega, Madison, WI, USA). PCR reactions were carried out on an XP Cy-

cler thermocycler [Bioer Technology, Hi-tech (Binjiang) District Hangzhou, P. R. China]. PCR

products were separated using polyacrylamide gel electrophoresis and visualized by silver-

staining [32].

Genotyping-by-sequencing (GBS)

GBS was carried out at Cornell University Biotechnology Resource Center (BRC; Ithaca, NY,

USA), following the protocol described for maize by Elshire et al. [14]. As a first quality test,

100 ng of DNA from parents and progeny individuals were digested with FastDigest EcoRI

(Thermo Fisher Scientific, FL, USA) using manufacturer’s instructions. Each sample was dilut-

ed to 100 ng/ul and submitted to BRC for analysis. Briefly, DNAs from the parents and proge-

ny genotypes were digested individually with ApeKI restriction enzyme, which recognizes a

degenerate five base-pair sequence (GCWGC, where W is either A or T). This enzyme with

partial sensitivity to DNA methylation promotes the exclusion of repetitive regions of the ge-

nome in this GBS method [14]. GBS sequencing libraries were prepared by ligating the digested

DNA to unique nucleotide adapters (barcodes) followed by standard PCR. Sequencing was per-

formed using Illumina HiSeq2000. Parental DNAs were sequenced redundantly three times to

increase the number and accuracy of the called SNPs. The filtered sequence reads were aligned

to Peach v1.0 (www.rosaceae.org) using the Burrows-Wheelers alignment tool (BWA) [33] ver-

sion 0.7.7-r441. SNPs were extracted using the GBS pipeline implemented in TASSEL software

[34] and genotypes were called using minor allele frequency (MAF)> 0.05.

The raw sequencing data for individual samples has been deposited in NCBI-SRA and is ac-

cessible through the BioProject number PRJNA277041.

SNPs analysis

SNPs were labeled according to the scaffold in the peach genome (s1 to s8), followed by the

physical position in base pairs (bp). Location of each SNP within genic (exonic, intronic and

UTR) and intergenic regions was determined using Perl script (www.perl.org) with Peach v1.0

as reference. Order of SNPs along scaffolds was plotted using MapChart 2.2 [35].

As the nomenclature of Prunus SNPs has not been standardized yet, the physical position of

each SNP was used to identify common markers among this study, SNPs from the RosBREED

cherry 6K SNP array v1 [7, 9] and SNPs obtained from 3’UTR sequencing from ‘Bing’ and

‘Rainier’ [36].

Linkage maps construction

Marker scoring, SNPs, SSRs and S-alleles, followed the coding scheme for cross-pollinated pop-

ulation type proposed in JoinMap 4.1 (Kyazma B.V, Netherlands) [37]. In case of SNPs, poly-

morphic heterozygous markers in only one of the parents were scored either<lmxll> or

<nnxnp> and heterozygous markers in both parents were scored as<hkxhk>. SNP markers

with more than 10% of missing data were removed. Marker segregation distortion was deter-

mined by calculating chi-square (χ²) using JoinMap. Maternal, paternal and consensus map

construction was performed using the regression mapping algorithm. For parental maps
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construction, markers were grouped using a minimum independence LOD score of 8.0 and

linkage groups were established at an LOD score of 3.0 to 5.0 and maximum recombination

frequency of 0.35 or 0.40, depending on the linkage group. Map distance was estimated using

Kosambi mapping function.

Maternal and paternal maps were constructed using three criteria: (i) with markers follow-

ing Mendelian segregation; (ii) using markers following Mendelian segregation and markers

showing segregation distortion (p�0.05); and (iii) all available markers [those following Men-

delian segregation and markers showing segregation distortion (p�0.0001)]. After comparing

the paternal maps, only results from first and second round from regression mapping were

considered. Finally, results for maternal and paternal linkage groups constructed with markers

from (ii) are presented with the exception of ‘Rivedel’ linkage group (LG) 6. Due to the high de-

gree of skewed markers in this group, results from (iii) are presented. A visual inspection of or-

dered genotype data was performed using Data tabsheet function in JoinMap. False double

recombination events within small genetic distances were corrected according to the genotype

of the neighboring markers using information from Genotype Probabilities [37]. For the con-

struction of the consensus (Ra x Ri) map, markers mapped in both parental maps plus a selec-

tion of markers segregating in both parents, class<hkxhk> [markers showing segregation

distortion (p�0.05)], were used. As for parental maps construction, consensus LG6 was con-

structed using all available markers. The ‘One-step method’ [38] was used for consensus map

construction considering the same parameters used for parental maps construction, except a

minimum independence LOD score of 12.0 was used for grouping markers. SSR markers

mapped in the consensus map were compared to published maps [4, 5] using the position of

common SSR markers. Maps were plotted using MapChart 2.2 [35].

Results

Genotyping-by-sequencing and number of segregating SNPs identified

Within our P. aviummapping population, GBS produced between 1,384,008 and 4,277,386

reads per individual, with an average of 2,333,869 reads. From a total of 11,854 SNPs obtained

in the progeny (MAF> 0.05), markers that represented more than 10% of missing data in the

population and markers with incorrect genotypes (for example, parental configuration AAxAB

with BB progeny) were eliminated. Finally, a group of 8,476 high quality informative SNPs

were selected for mapping (S2 Table). This group contains 1,950 SNPs (23%) with maternal

segregation type<lmxll>, 1,880 (22.2%) with paternal segregation type<nnxnp> and 4,646

(54.8%) with segregation type<hkxhk>, heterozygous in both parents.

Segregation distortion was observed in 56.7% (1,106 out of 1,950) of the markers segregating

in the female parent<lmxll> and 68% (1,278 out of 1,880) of the markers segregating in the

male parent<nnxnp> (goodness-of-fit ratio 1:1, α = 0.05), as well as in 92.5% (4,299 out of

4,646) of the markers heterozygous in both parents<hkxhk> (goodness-of-fit ratio 1:2:1,

α = 0,05).

Comparative genomics

Analysis of 8,476 high quality SNPs showed their even distribution along the main eight peach

scaffolds (S1 Fig). A group of 244 SNPs were located in other scaffolds, but they were not in-

cluded for analysis. The number of identified SNPs ranged from 757 for scaffold 5 to 1,709 for

scaffold 1 (S3 Table). A total of 215 Mb of the peach genome were covered with marker density

of approximately one SNP per 25 Kb (Table 1). Gaps were observed in all scaffolds (S1 Fig),

with the maximum gap size ranging from 419 Kb (scaffold 2) to 851 Kb (scaffold 5) (Table 1).

Construction of High Density Sweet Cherry Linkage Maps Using GBS
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Location of each SNP within genic [exonic, intronic and untranslated regions (UTR)] and

intergenic regions, determined by using the physical position of each SNP in respect to the an-

notated peach genome, is shown in Fig 1 and S4 Table. When all the scaffolds are considered,

on average 65.6% of the SNPs were located in genic regions (49.8% in exons, 14.3% in introns

and 1.5% in UTR), and 34.4% SNPs were located in intergenic regions. In detail, distribution of

SNPs located in exons varied between 45.8–57.9% in scaffolds 4 and 5, respectively; in introns

between 12.1% for scaffold 2 and 16.3% for scaffold 5; and in UTR regions between 0.7% for

scaffold 2 and 2.6% for scaffold 1 (Fig 1, S4 Table). The highest number of SNPs in genic re-

gions (76.0%) was observed on scaffold 5. Proportion of SNPs located in intergenic region ran-

ged from 24–40.1% in scaffold 5 and 2, respectively.

Table 1. Physical position of sweet cherry SNPs identified by genotyping-by-sequencing.

Scaffold No.
SNPs

Physical
position of
the first SNP
(bp)

Physical
position of
the last SNP
(bp)

Scaffold
coverage
(bp)a

Scaffold
coverage
(%)a

Scaffold
coverage
(bp) / No.
SNPs

Maximum
gap (bp)

Last SNP
before the
maximum gap

First SNP after
the maximum
gap

1 1,709 54,451 46,826,337 46,771,886 99.8 27,368 743,699 s1_24087177 s1_24830876

2 1,102 166,103 26,687,741 26,521,638 98.9 24,067 419,113 s2_10459166 s2_10878279

3 891 60,528 21,781,726 21,721,198 98.6 24,378 610,099 s3_7797530 s3_8407629

4 1,071 123,401 30,112,346 29,988,945 98.2 28,001 623,255 s4_24336804 s4_24960059

5 757 317,038 18,460,309 18,143,271 98.1 23,967 851,246 s5_6908686 s5_7759932

6 1,173 55,118 28,840,333 28,785,215 99.6 24,540 498,403 s6_14057760 s6_14556163

7 873 447,405 22,649,317 22,201,912 97.4 25,432 494,944 s7_741027 s7_1235971

8 900 138,739 21,704,360 21,565,621 98.8 23,962 567,809 s8_9725707 s8_10293516

Total 8,476 215,699,686

Average 98.7 25,214

a Scaffold coverage based on length of peach scaffolds [39].

doi:10.1371/journal.pone.0127750.t001

Fig 1. Distribution of SNPs in genic [exonic, intronic, untranslated (UTR)] and intergenic regions using the physical position of each SNP on Peach
v1.0 [39]. Figure represents coverage of each SNP category per scaffold and an average of all categories across all scaffolds.

doi:10.1371/journal.pone.0127750.g001

Construction of High Density Sweet Cherry Linkage Maps Using GBS

PLOSONE | DOI:10.1371/journal.pone.0127750 May 26, 2015 6 / 17



Physical position of each SNP along peach scaffolds allowed the identification of common

markers with previous studies, which also used Peach v1.0 as a reference genome. Out of the 39

SNPs, in common between our study and the cherry 6K SNP array v1 [7, 9], only 16 were

mapped in our study. Therefore, due to the low number of common SNPs, comparisons of pre-

viously reported linkage maps with those produced in our study were not possible. In addition,

no common SNPs were found with the SNPs obtained from 3’UTR sequencing from ‘Bing’ and

‘Rainier’ [36].

SSRs segregation and mapping positions

In total, 203 Prunus SSR markers were evaluated within our Ra x Ri population (S1 Table).

Only 169 (83.3%) primer pairs successfully amplified PCR products, and 69 of them were poly-

morphic. After discarding markers with complex or inconsistent amplicon patterns, a group of

34 SSRs was used for mapping (S5 Table). Out of 34 SSRs, 19 were mapped in ‘Rainier’, 15 in

‘Rivedel’ and 21 in the consensus map (Table 2). No SSRs were mapped in LG3 and LG4 of the

‘Rainier’map; LG3, LG4 and LG8 of the ‘Rivedel’map and LG4 of the consensus map. Similar

physical position of SSRs common between this study and those utilized by Peace et al. [9],

confirmed conservation of marker order (data not shown). Furthermore, comparison between

the position of SSRs, on linkage groups containing three or more SSRs in the consensus map,

in common with previously published PAxPN [P. avium ‘Napoleon’ (PA) x Prunus nipponica

accession F1292 (PN)] linkage map [5], revealed similar genetic distances between markers

and high degree of colinearity between linkage groups. The only exception was an inversion at

the bottom of the LG2 observed in Ra x Ri consensus map (S2 Fig).

Linkage mapping

A set of 3,830 SNPs, with 1,950 having maternal segregation type<lmxll> and 1,880 paternal

segregation type<nnxnp>, plus 34 SSRs were used for maps construction. Both parental maps

were composed of eight linkage groups (Table 2, Fig 2). ‘Rainier’ linkage map comprised 462

markers (443 SNPs and 19 SSRs) covering a total of 549.5 cM. The LG length was variable,

with LG1 being the largest, 139.6 cM, and LG4 covering the shortest distance, 28.8 cM. The av-

erage marker density was 1.2 cM per marker. Maximum gap size ranged from 6.3 cM in LG5 to

Table 2. Description of 'Rainier', ‘Rivedel' and consensus linkagemaps.

‘Rainier’ ‘Rivedel’ Consensus

LG SNPs SSRs Length
(cM)

Avg.
marker
distance
(cM)

Max.
gap
(cM)

SNPs SSRs Length
(cM)

Avg.
marker
distance
(cM)

Max.
gap
(cM)

SNPs SSRs Length
(cM)

Avg.
marker
distance
(cM)

Max.
gap
(cM)

1 99 5 139.6 1.3 20.7 104 4 131 1.2 11.1 211 2 138.4 0.6 5.2

2 62 4 68.9 1.0 9.3 49 3 62.9 1.2 12.9 120 5 86.5 0.7 5.8

3 55 0 73.7 1.3 10.5 36 0 78.4 2.2 29.1 113 1 94.8 0.8 5.8

4 13 0 28.8 2.2 10.5 56 0 56.2 1.0 8.5 71 0 70.7 1.0 5.9

5 64 5 60.1 0.9 6.3 35 1 60 1.7 19.9 130 5 75.8 0.6 3.8

6 78 1 73 0.9 9.6 78 6 80.3 1.0 5.3 137 4 109.6 0.8 8.3

7 19 3 38.6 1.8 7.4 79 1 59.4 0.7 6.2 87 3 81.8 0.9 8

8 53 1 66.8 1.2 8.0 37 0 54.4 1.5 10.1 95 1 73.7 0.8 4.4

Total 443 19 549.5 1.2 10.3 474 15 582.6 1.2 12.9 964 21 731.3 0.7 5.9

LG—linkage group.

doi:10.1371/journal.pone.0127750.t002
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Fig 2. Linkagemaps for ‘Rainier’ (Ra) and ‘Rivedel’ (Ri), generated through JoinMap 4.1. Asterisks indicate distortion level of skewed markers where: *
= p<0.1; ** = p<0.05; *** = p<0.01; **** = p<0.005; ***** = p<0.001; ****** = p<0.0005; ******* = p<0.0001). Redundant markers have been removed
and only unique positions are represented. The scale in centiMorgan (cM) is given at the left side of the figure.

doi:10.1371/journal.pone.0127750.g002
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20.7 cM in LG1. ‘Rivedel’ linkage map comprised 489 markers (474 SNPs and 15 SSRs) and

covers a total of 582.6 cM, with a minimum and maximum linkage group length of 54.4 cM

(LG8) and 131 cM (LG1) and an average marker density of 1.2 cM per marker. Maximum gap

size ranged from 5.3 cM for LG6 to 29.2 cM for LG3. The highest number of skewed markers,

58 out of 84 (69%), was mapped in ‘Rivedel’ LG6 (Fig 2).

Important gaps, observed in certain linkage groups, also represent considerable physical dis-

tances between flanking SNPs. For ‘Rainier’, overlapping gaps between genetic and physical

maps have been observed in LG2 (9.3 cM with 3.8 Mb), LG4 (9.9 cM with 4.2 Mbp) and LG5

(6.3 cM with 3.9 Mbp), and for ‘Rivedel’, in LG2 (12.9 cM with 12.7 Mbp), LG3 (29.1 cM with

10.7 Mbp), LG4 (8.5 cM with 2.9 Mbp), LG5 (19.9 cM with 8.6 Mbp) and LG8 (10.1 cM with 5

Mbp) (S6 Table). Gaps in linkage groups 1, 3, 5 and 8 (Fig 3) coincide with putative centromer-

ic regions in the peach genome sequence [39].

The consensus linkage map, constructed with markers mapped in both parental maps plus a

selection of markers segregating in both parents, class<hkxhk>, comprises 985 markers and

covers a total of 731.3 cM, with a linkage group length ranging from 70.7 cM (LG4) to 138.4

cM (LG1) and an average marker distance of 0.7 cM per marker (Table 2). Comparison be-

tween parental and consensus maps (Fig 4) revealed, in general, good coverage of the consensus

map with markers from both maternal and paternal maps. Exceptions are LG1 (34 markers

mapped in ‘Rainier’, but not mapped in the consensus map) and LG6 (42 and 33 markers

mapped in ‘Rainier’ and ‘Rivedel’, respectively, but not mapped in the consensus map). Only

minor changes in markers order were observed for LG1, LG2, LG3 and LG6 (S7 Table).

Mapped SNPs in all three maps, paternal and consensus, were located mainly in genic re-

gions (S8 Table). On average, 81.9%, 78.6% and 80.0% of mapped SNPs were located in genic

regions in ‘Rainier’, ‘Rivedel’ and consensus map, respectively. The largest number of SNPs lo-

cated in genic regions were observed in LG7 (89.5%) of ‘Rainier’, and LG8 (83.8%) of ‘Rivedel’

and consensus map (86.3%).

Comparison of the physical and genetic maps

In general, linkage positions of all SNPs in the two parental and consensus maps were in agree-

ment with their physical position on the pseudomolecules/scaffolds of Peach v1.0. However,

exceptions were observed in both parental maps when compared with the physical map created

using all SNPs detected by GBS (Fig 5). For ‘Rainier’, out of 443 mapped SNPs, only 5 (1.1%)

were mapped on different linkage groups from their physical position, and for ‘Rivedel’, the

same was observed for 14 out of 474 mapped SNPs (3%). Partial coverage of scaffolds was ob-

served for ‘Rainier’ LG4 and LG7, with mapped SNPs only from the bottom region of the cor-

responding scaffold. The highest homology between the genetic and the physical position was

observed for ‘Rivedel’ LG5 and LG7. Inversions of groups of markers in respect to their ex-

pected physical position were observed in both parental genetic maps. Five regions of the ‘Rain-

ier’map, involving 24 markers on LG1, 16 on LG2, eight on LG5, 21 on LG6 and four on LG8,

appeared inverted relative to the physical map. Similar results were observed in three regions

of the ‘Rivedel’map, involving 11 markers on LG1, five markers on LG3 and ten markers on

LG6 (S9 Table). In addition, the top region of LG2 in both parental maps housed a group of

SNPs that according to their physical position should be mapped lower around 9–10 Mbp into

the corresponding scaffold.

Discussion

Genetic studies and molecular breeding approaches require basic genomic resources, such as

molecular markers and linkage maps. To develop resources for sweet cherry genetic studies, we
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Fig 3. Relationship between genetic and physical distances for each linkage group and scaffold. Physical distance along each scaffold is showed on
the horizontal axis (Mbp) and genetic distance is showed on the vertical axis (cM). Location of markers from ‘Rainier’ (blue diamonds), ‘Rivedel’ (green
triangles) and consensus (red squares) linkage maps are showed. The vertical bars indicate the putative position of the centromeric regions using
information from the Peach v1.0 [39].

doi:10.1371/journal.pone.0127750.g003
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used SNPs obtained from genotyping-by-sequencing (GBS) and previously published SSR

markers to construct high density linkage maps of sweet cherry. To our knowledge, this is the

first report of linkage mapping with SNPs obtained from GBS in cherry and second in Prunus

species [40]. Parental and consensus maps provide a valuable resource for genetic analysis of

sweet cherry, with excellent genome coverage for most of the linkage groups.

Fig 4. Comparison between parental and consensus linkagemaps.Commonmarkers are indicated by blue lines between parental and consensus
maps. A scale in centiMorgan (cM) is given at the left side of the figure.

doi:10.1371/journal.pone.0127750.g004

Fig 5. Comparison of the genetic parental maps and physical map constructed using all SNPs identified by GBS for sweet cherry cultivars used in
this study (n = 8,476), and ordered according to their physical position in Peach v1.0 [39]. Distances have been proportionally modified to show
the results.

doi:10.1371/journal.pone.0127750.g005
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Among other GBS advantages, this technology is capable of accessing single-copy gene rich

regions as well as regulatory regions, which are important because the latter contain functional-

ly important elements such as promoters [14]. In this study, the availability of Peach v1.0 [39]

and genetic collinearity and high synteny among Prunus species [3, 4, 6] have been exploited

for SNP detection via GBS in sweet cherry. Our results revealed one SNP per 25 Kb nucleotides

and, on average, 65.6% of SNPs in genic regions (S4 Table), with most SNPs located in exons.

The observed coverage of genic regions is higher than that published for soybean [41], where

39.4% of SNPs were located in genic regions, with 20.7% of them in exons. The high percentage

of SNPs located in exons (49.8%) reinforces the usefulness of DNA digestion with an enzyme

partially sensitive to methylation, allowing digestion of DNA in less methylated, single-copy

gene rich regions of the genome [14]. Considering that approximately 80% of mapped markers

are located in genic regions (S8 Table), linkage maps constructed in this study present an im-

portant tool for finding candidate genes underlying traits of interest and potential functional

markers for use in marker assisted selection.

From a group of 8,476 high quality SNPs obtained by GBS, 1,950 SNPs (23%) were hetero-

zygous in the maternal cultivar ‘Rainier’, and 443 of them (22.7% of 1,950) were mapped in pa-

rental map. In the pollen donor ‘Rivedel’, 1,880 SNPs (22.2%) were heterozygous and 474 of

them (25.2% of 1,880) were mapped. Although the number of heterozygous SNPs obtained

with this technology is higher than reported in Klagges et al. [7] for each parent using the Ros-

BREED cherry 6K SNP array v1.0 [9], the percentage of mapped SNPs was lower. From 5,696

SNPs available on the cherry 6K SNP array, the number and percentage of heterozygous SNPs,

together with mapped SNPs ranged from 634 (11.1%) in ‘Black Tartarian’, with 384 (60.6%)

mapped, to 515 (9.0%) in ‘Lapins’, with 247 (48%) mapped. Differences in percentage of

mapped heterozygous SNPs between both studies are possibly due to redundancy of SNPs in

our study. We used Regression Mapping [42] algorithm that permits the construction of link-

age groups in three rounds by adding loci one by one, starting from the most informative pair

of loci [37]. When the three rounds for maps construction were used, the resulting map had

higher number of markers compared to the first and second round but marker order was lost

because markers were positioned without restrictions. It has been noted previously that the

third round map does not produce a good quality final result [37]. Therefore, we used results

from first and second round only, giving priority to the quality over the quantity.

Results from GBS confirmed that pollen donor identification was successful because all indi-

viduals presented alleles coming from the expected parents. Linkage maps presented in this

study were constructed using a mapping population generated from open-pollination of a

sweet cherry cultivar ‘Rainier’. Although controlled pollination is the best strategy for obtaining

mapping populations with specific trait(s) combination, it takes a long time to develop it. The

use of a progeny from an open-pollination of a maternal parent of interest, would bypass the

need for development of a progeny from a particular parental combination. It would also

speed-up the development of maps, particularly in species with fewer resources available. It

would also enable faster QTL discovery, since the open-pollination progeny would be already

phenotyped for some of the traits of interest in a given breeding program.

Linkage maps were constructed using markers without distortion and markers showing seg-

regation distortion (p�0.05) for all linkage groups because higher saturation for linkage groups

was not achieved when all markers were used, except for ‘Rivedel’ LG6. A total of 67 (14.5%)

and 128 (26.2%) skewed markers were placed on ‘Rainier’ and ‘Rivedel’ linkage maps, respec-

tively. A clustering of loci with skewed segregation ratios was observed on ‘Rainier’ LG2 and

‘Rivedel’ LG4 and LG6, which is in agreement with previously reported clustering of loci with

high distortion near the bottom of LG6, in vicinity of the Prunus self-incompatibility S locus

[3, 7].
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SSRs developed in different Prunus species were mapped together with SNPs. From 203

Prunus SSR markers screened, only 34 (16.8%) were used for mapping, which is lower than the

26% reported by Olmstead et al. [4]. This is probably due to the low heterozygosity of the pa-

rents in this study. A comparison between SSRs mapped in our consensus linkage map and

markers from the consensus map published by Clarke et al. [5] demonstrated a high degree of

collinearity between both maps, with an inversion on the distal part of LG2. This difference ob-

served may be due to markers mapped in the Ra x Ri consensus map that are heterozygous in

both parents (<hkxhk>). It was not possible to perform comparisons with other previously

published maps because of the low number of shared markers, considering both SSRs and

SNPs. Only 16 SNPs in common between GBS SNPs and the RosBREED cherry 6K SNP array

v1 were mapped in this study. This could be explained by a low matching between genome re-

gions represented in both studies. Peace et al. [9] indicated that only 14.1% of raw cherry reads

from most conserved regions between cherry and peach genomes were used for chip construc-

tion. Cherry SNP array was constructed from SNPs discovered using whole genome sequenc-

ing data from several sweet and sour cherry cultivars while in our study genetic material from

only two different cultivars is the base for SNP detection. In addition, the Tassel SNP discovery

pipeline [43] obtains only SNPs that are different between the sweet cherry samples included

in this study using Peach v1.0 as a reference genome. Given that the peach genome sequence is

obtained by sequencing di-haploid ‘Lovell’ [39], and inherent differences between peach and

sweet cherry genomes, coupled with the limitations of Infinium II assay, may have contributed

to the detection of low common SNPs between our GBS study and 6K cherry SNP [9]. On the

other hand, a possible reason for low number of common SNPs between this study and those

obtained from 3’UTR sequencing of ‘Bing’ and ‘Rainier’ [36] could be due to the low coverage

of these regions using GBS in our population (1.5%, considering 3’ and 5’UTR regions).

Parental maps constructed in this study (549.5 cM for ‘Rainier’ and 582.6 cM for ‘Rivedel’)

are smaller than parental maps reported earlier for this species (711 cM for ‘Emperor Francis’

[4]; 719.4 cM for ‘Black Tartarian’, 788 cM for ‘Kordia’, 619.4 cM for ‘Regina’ and 610.1 cM for

‘Lapins’ [7]) and comparable to the map reported for ‘New York 54’ (565.8 cM) by Olmstead

et al. [4]. The length of the consensus map (731.3 cM) is similar to previously published sweet

cherry consensus maps (680 cM for the interspecific PAxPN consensus map [5]; 799.4 cM for

the consensus map constructed with RosCOS [6]; 752.9 cM for BTxK and 639.9 cM for RxL

populations [7]). Certain linkage groups exhibited significant differences between parental

maps, such as LG4 and LG7 being smaller in ‘Rainier’ than in ‘Rivedel’. In particular, ‘Rainier’

LG4 was almost half of the length of ‘Rivedel’ LG4. Detailed analysis revealed that the physical

position of SNPs mapped on LG4 and LG7 only represent the bottom segment of the respective

peach scaffolds. Olmstead et al. [4] obtained short linkage groups for LG3, LG4 and LG5 of the

‘New York 54’ parental map and suggested it is due to the overall low level of heterozygosity in

this cultivar. Consequently, results obtained in this study could be explained by the low level of

heterozygosity in the top of both ‘Rainier’ linkage groups.

Several inversions of SNP order from their predicted physical orientation were observed in

both parental maps (Fig 5 and S9 Table). Observed inversion in LG1, LG5 and LG6 coincide

with previously reported observations in ‘Black Tartarian’, ‘Kordia’, ‘Regina’ and ‘Lapins’ LG1;

‘Black Tartarian’ and ‘Lapins’ LG5 and ‘Kordia’ and ‘Lapins’ LG6 [7]. Klagges et al. [7] indicat-

ed that these discrepancies correspond with minor assembly errors of the peach genome. Inver-

sions not previously reported were observed in the central region of ‘Rainier’ LG2 and LG8,

and ‘Rivedel’ LG3, and correspond with misassembled regions of Peach v1.0 (I. Verde personal

communication). The observed discrepancies could also be due to low coverage of these re-

gions in previous maps or errors in the assignment of marker order. In addition, markers

Construction of High Density Sweet Cherry Linkage Maps Using GBS

PLOSONE | DOI:10.1371/journal.pone.0127750 May 26, 2015 13 / 17



mapped in the top region of LG2 in both parents could correspond to genome duplication be-

cause their physical position indicates that they are located in the region between 9–10 Mb.

Results of this study, where only 1.1% of ‘Rainier’mapped markers and 3% of ‘Rivedel’

mapped SNPs were located on different linkage groups from their projected physical map, sup-

port previously reported high level of synteny between sweet cherry and peach genomes. Avail-

ability of the sweet cherry genome reference sequence [44] in the future will enable alignment

of reads obtained in this study to cherry genome. It is expected that genomic variants among

both genomes will enable identification of new SNPs by alignment of reads to the regions of

the sweet cherry genome. Genomic variants such as SNPs, InDels, duplications, inversions and

translocations have been reported in peach by Fresnedo-Ramírez et al. [45] by comparing

three new peach genome sequences with Peach v1.0, and by Di Genova et al. [46] in grapevine

by sequencing the ‘Sultanina’ (a table grape cultivar) genome and comparing it with the Vitis

reference genome PN40024. New alignments analyses using information obtained from GBS

in this study and the sweet cherry reference genome sequence will help answer some of the re-

sults obtained in this study and give us valuable information about this Prunus genome.

In conclusion, we have constructed, to the best of our knowledge, the first cherry high densi-

ty linkage maps using SNPs obtained from GBS and microsatellite. These high quality SNPs

are located mainly in genic regions of the eight scaffolds of the peach reference genome, and

most mapped markers belong to this group. Due to the small number of shared SNPs with

other studies, only mapped SSRs were compared with previously published maps revealing a

comparable order. Nevertheless, the high number of SNPs identified in this study presents a

valuable set of new SNPs identified in sweet cherry that would be useful for genetic studies in

the future. Order of SNPs along linkage groups confirmed a high synteny level between sweet

cherry and peach genomes, with only small discrepancies. New studies on synteny between

both species will be possible when the sweet cherry genome becomes available. New linkage

maps constructed in this study provide valuable information on the sweet cherry genome, as

the basis to identifying QTLs and genes relevant for the breeding of the species.
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