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The landscape of human phosphorylation networks has not been systematically explored,

representing vast, unchartered territories within cellular signaling networks. Although a large

number of in vivo phosphorylated residues have been identified by mass spectrometry (MS)-based

approaches, assigning the upstream kinases to these residues requires biochemical analysis of

kinase-substrate relationships (KSRs). Here, we developed a new strategy, called CEASAR, based on

functional protein microarrays and bioinformatics to experimentally identify substrates for

289 unique kinases, resulting in 3656 high-quality KSRs. We then generated consensus

phosphorylation motifs for each of the kinases and integrated this information, along with

information about in vivo phosphorylation sites determined by MS, to construct a high-resolution

map of phosphorylation networks that connects 230 kinases to 2591 in vivo phosphorylation sites in

652 substrates. The value of this data set is demonstrated through the discovery of a new role for PKA

downstream of Btk (Bruton’s tyrosine kinase) during B-cell receptor signaling. Overall, these

studies provide global insights into kinase-mediated signaling pathways and promise to advance

our understanding of cellular signaling processes in humans.

Molecular Systems Biology 9: 655; published online 2 April 2013; doi:10.1038/msb.2013.12

Subject Categories: proteomics; signal transduction

Keywords: phosphorylation; signaling networks; systems biology

Introduction

Protein phosphorylation, mediated by protein kinases, is one

of themost wide-spread regulatorymechanisms in eukaryotes.

Recently, several high-throughput studies designed to

analyze the global properties of phosphorylation networks

in various model organisms have been reported (Linding

et al, 2007; Fiedler et al, 2009; Breitkreutz et al, 2010;

Van Wageningen et al, 2010). Though these studies, which

employed approaches based on protein–protein interactions

(PPIs), genetic interactions, gene expression profiling, and

motif-based predictions, have uncovered important clues

about the organization and regulation of kinase-mediated

signaling pathways, they are each limited in their ability to

identify direct enzymatic interactions between kinases

and their substrates. This requires biochemical analysis of
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kinase-substrate relationships (KSRs) using purified protein

components. However, global analysis of activity-based

phosphorylation networks—built upon direct KSRs—is lack-

ing in higher eukaryotes. Indeed, only B2000 human KSRs

have been experimentally identified to date. In contrast,

470 400 in vivo phosphorylated serine, threonine, and

tyrosine residues have been characterized by mass spectro-

metry (MS/MS) (Olsen et al, 2006; Yang et al, 2006; Molina

et al, 2007;Wang et al, 2007;Mathivanan et al, 2008). Together,

this implies that, for the vast majority of identified in vivo

phosphorylation sites, the specific kinase(s) responsible for

the phosphorylation event remains unknown.

Results

To help narrow this knowledge gap, we developed a new

strategy based on functional protein microarrays and bioinfor-

matics analysis to assign upstream kinases to specific

phosphorylation events found in vivo. This strategy, which

we have dubbed ‘CEASAR’ because it provides a general

framework for Connecting Enzymes And Substrates at Amino

acid Resolution, was used to construct a high-resolution map

of human phosphorylation networks that connects kinases to

specific phosphorylation sites on their downstream substrates.

In addition to in vivo phosphosites, such a map requires two

key elements: (1) an activity-based phosphorylation network

based on direct KSRs and (2) information about the consensus

phosphorylation motif of each kinase in the network. To this

end, we first employed human protein microarrays to

experimentally determine substrates for 289 unique human

kinases (Supplementary Table 1). We then developed a new

algorithm, based on both the experimentally derived KSRs and

in vivo phosphorylation sites identified by MS/MS, to

determine phosphorylation motifs for each kinase in the

collection. Finally, we combined these KSRs, in vivo phospho-

sites, and the newly determined motifs to connect kinases

to specific phosphosites, resulting in a high-resolution map

of human phosphorylation networks (Figure 1). Application of

this map led to the discovery of a new role for cAMP-

dependent protein kinase (PKA) downstream of Bruton’s

tyrosine kinase (Btk) during B-cell receptor (BCR) signaling.

We envision that the CEASAR strategy can be applied to

additional data sets to generate high-resolution maps of other

protein post-translational modifications important to cellular

physiology.

Identification of human KSRs using protein

microarrays

The protein microarrays used during this study are composed

of 4191 unique, full-length human proteins representing 12

major protein families (Hu et al, 2009). Among the protein

families that are represented on themicroarrays, some, such as

transcription factors (TFs), kinases and RNA-binding proteins,

are known to bewidely regulated by phosphorylation, while in

others, such as mitochondrial proteins, the role of protein

phosphorylation is less well understood (Supplementary

Figure 1). To identify those proteins on the array that could

be phosphorylated by a given kinase, individual protein

microarrays were incubated with active, full-length human

kinases in the presence of [g-32P]ATP, as described previously

(Zhu et al, 2000; Ptacek et al, 2005; Supplementary Figures 2

and 3; see Materials and methods). For each batch of

phosphorylation reactions, one microarray was also incubated

in the absence of any kinase to identify those proteins that

underwent autophosphorylation and/or bound ATP tightly

(Supplementary Figure 4). These control experiments

led to the removal of 52 proteins from further analyses due

to autophosphorylation or direct binding to ATP. The

reproducibility of the phosphorylation assay was confirmed

by performing a subset of the phosphorylation reactions in

duplicate (Supplementary Figure 5). To identify the specific

substrates of a given kinase, the proteins on the array were

scored using an algorithm designed to measure the relative

signal intensity of each spot (Hu et al, 2009). Using a cutoff

value of three standard deviations above the mean intensity

(Supplementary Figure 6), we identified 24 046 phosphoryla-

tion events involving 289 unique kinases and 1967 unique

substrates. This collection of in vitro ‘hits’ was termed as the

‘rawKSR’ data set (Figure 1; Supplementary Table 2).

To enrich the KSRs for physiologically relevant processes,

we applied a Bayesian statistics model to the rawKSR data set

(see Materials and methods). For this analysis, we hypothe-

sized that a kinase and its physiologically relevant substrate(s)

are more likely to share similar tissue expression patterns,

localize to the same subcellular compartment, and/or physi-

cally interact with one another, either directly or indirectly

(Supplementary Figure 7). We then assembled two training

sets: (1) a positive set composed of 1103 known KSRs curated

from the literature and (2) a negative set devoid of known

protein kinases. Comparing the positive and negative training

sets, we determined relative weights for the above three

features and calculated the likelihood (L score) for each of the

24 046 KSRs. Using a P-value of 0.05 as a threshold,

we predicted 3656 refined KSRs (refKSRs)—involving 255

unique kinases and 742 substrate proteins—that were most

likely to be physiologically relevant (Supplementary Table 3).

Evaluation of refKSRs

Three lines of computational evidence suggest that the

Bayesian analysis improves the fidelity of our refKSR data set

(Supplementary Figure 8). First, the percentage of phospho-

proteins that have been confirmed in vivo—based mainly on

global MS/MS analysis—was significantly improved in the

refKSR list, increasing from 66% (1291/1967) in the rawKSR

data set to 77% (567/741) in the refKSR data set (P¼ 7.87

� 10�16). Second, cross-validation analysis revealed that the

Bayesian approach increases the recovery rate of known KSRs

over five-fold (P¼ 1.37�10�15). Third, the enriched functions

of the identified substrates for individual kinases showed

better agreement with the known functions of their upstream

kinases. Specifically, known functions were recovered for 53

kinases based on the enriched functions of their respective

substrates, a 2.4-fold improvement over the rawKSR data

set (P¼ 2.1�10�11). Taken together, these findings suggest

that the refKSR set, as compared with the rawKSR set,

is significantly improved with regard to its physiological

relevance.
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To experimentally evaluate the refKSRs, we randomly

selected 243 KSRs, involving 75 kinases and 136 substrates,

and tested their relationships in transfected cells

(Supplementary Table 4; Supplementary information). To this

end, a vector encoding a FLAG-tagged version of each

substrate was transfected into HeLa cells in the presence of

either a V5-tagged version of the cognate kinase or an empty

vector. The substrates were then assayed for kinase-dependent

changes in their electrophoretic mobility and/or protein levels

inside cells (Figure 2A). Of the 243 KSRs tested, 71% showed

detectable substrate expression, among which kinase-

dependent changes were observed in 76% of the cases

(Supplementary Figure 9). In contrast, for a negative control

set where no obvious phosphorylation signals were detected

in the microarray assays involving the kinase-of-interest, we

observed changes in o10% of the pairs (4/42).

Among the substrates that exhibited kinase-dependent

changes in the co-transfection assay, themost common change

observed was altered protein levels (39 and 46% of the

substrates exhibited either an increase or a decrease in protein

Bayesian

RefKSR network 

3656 KSRs (255 kinases and 741 substrates)

RawKSR network

24 046 KSRs (289 kinases and 1967 substrates)

Phosphorylation motifs

(300 motifs for 284 kinases)

High-resolution map 

(4417 kinase-to-phosphosite relationships)

In vivo phosphorylation sites

(70 422 sites on 10 288 proteins)

ComKSR network 

4375 KSRs (255 kinases and 1139 substrates)

Known KSRs

pS

pT

pY

Kinase

Non-kinase

Figure 1 Schematic diagram of the CEASAR strategy. The rawKSR data set (upper, left panel) is composed of 24 046 KSRs identified in vitro using purified human
kinases and functional protein microarrays. This data set was used as a starting point to create a high-resolution map of human phosphorylation networks using the
CEASAR strategy. First, to identify those KSRs that are likely to occur under physiological conditions, Bayesian network analysis of known KSRs was used to derive an
algorithm that assigned a likelihood score to each of the experimentally derived KSRs in the rawKSR data set. This information was then used to construct a refined KSR
(refKSR) data set composed of 3656 novel KSRs likely to occur under physiological conditions. Finally, the refKSRs were combined with 719 known KSRs to generate
the combined KSR (comKSR) data set. The comKSR data set (middle, left panel), which consists of 4375 KSRs, was used to construct the human phosphorylation
network upon which the high-resolution map is built. Next, the rawKSR data set was combined with information about in vivo sites of phosphorylation (upper, right panel)
to determine consensus phosphorylation motifs using the M3 algorithm. Using this approach, we identified consensus motifs for 284 of the 289 kinases in our collection
(middle, right panel). Finally, information about consensus sites and in vivo sites of phosphorylation were integrated with the comKSR data set to yield a high-resolution
map of human phosphorylation networks (bottom panel). This network, which connects 4417 phosphosites on substrates to their cognate kinase, includes only those
sites that could be unambiguously assigned to a given kinase. Phosphoserine (pS), phosphothreonine (pT), and phosphotyrosine (pY) sites are denoted as red dots,
green dots, and blue dots, respectively.
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levels in the presence of kinase, respectively). These

data suggest that many kinases may control protein stability,

either directly or indirectly. To determine whether the

observed changes in protein stability were due to direct

phosphorylation of the substrate by its cognate kinase, a

second round of validation experiments were conducted.

During these experiments, we chose to focus on the action of

endogenous kinases. Therefore, we selected 19 KSRs in which

the kinases were restricted to protein kinase C (PKC),

PKA, protein kinase B (PKB/Akt), and extracellular signal-

regulated kinase 1 (Erk1/MAPK3). These kinases were chosen

because (1) their endogenous activity can be both induced and

inhibited pharmacologically and (2) the phosphorylation of

their substrates can be readily detected using commercially

available antibodies. For instance, in the first round of

validation experiments, we observed that DDEFL1/ASAP3, a

GTPase activating protein involved in cell differentiation and

migration (Ha et al, 2008), underwent a PKC-dependent

increase in its protein levels (Figure 2B, top panel).

To determine whether these changes are correlated with

phosphorylation by PKC, we monitored the extent of

PKC-mediated phosphorylation on FLAG-tagged DDEFL1/

ASAP3 in HeLa cells in the presence of the PKC activator,

phorbol-12-myristate-13-acetate (PMA). Within 20min of

PMA treatment, PKC-mediated phosphorylation on immuno-

precipitated DDEFL1/ASAP3 increased 43-fold, as detected

by an antibody that specifically recognizes phosphorylated

PKC substrates. Importantly, this phenomenon could be

completely inhibited by pre-incubation with the PKC inhibitor,

Gö6983, suggesting that endogenous PKC directly phosphor-

ylates DDEFL1/ASAP3 in cells. Interestingly, recent evidence

suggests that DDEFL1/ASAP3, which is known to regulate the

GTPase, ADP-ribosylation factor (Arf), may be involved in

cross-talk between the Arf and Ca2þ signaling pathways

(Ismail et al, 2010).

In another case, co-expression of PKA caused a reduction in

the levels of holocarboxylase synthetase (HLCS), an essential

biotin ligase involved in chromatin remodeling and several

metabolic processes (Figure 2C, top). Closer examination of

this interaction revealed that PKA-mediated phosphorylation

of HLCS occurred o30min after the addition of forskolin,

a pharmacological activator of the cAMP/PKA pathway

(Figure 2C, bottom). This phenomenonwas largely attenuated

by pre-treatment of the cells with the PKA inhibitor H89

(Figure 2C, bottom), supporting the notion that HLCS is

specifically phosphorylated by PKA.
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Figure 2 Cell-based validation of refKSRs. (A) Examples from the first round of cell-based validation experiments. FLAG-tagged substrates were co-transfected with
either a V5-tagged version of the cognate kinase or an empty vector and assayed for kinase-dependent changes in electrophoretic mobility and/or protein levels. Three
major kinase-dependent changes were observed in the substrates: mobility shift, substrate depletion (destabilization), or substrate accumulation (stabilization).
LC, loading control. (B, C) Two examples from the second round of cell-based validation studies. (B) Top panel: PKC-dependent stabilization of DDEFL1/ASAP3.
FLAG-DDEFL1 was expressed in the presence or absence of V5-PRKCB1, as described in (A). Bottom panel: HeLa cells transfected with FLAG-DDEFL1 were treated
with phorbol-12-myristate-13-acetate (PMA) for the indicated times in the presence or absence of the PKC inhibitor, Gö6983. FLAG-DDEFL1 was then
immunoprecipitated and probed with an antibody specific for phosphorylated PKC substrates before being stripped and re-probed with an anti-FLAG antibody. The
normalized intensity ratio for each band is shown below the lane. (C) Top panel: PKA-dependent stabilization of HLCS. FLAG-HLCS was expressed in the presence or
absence of V5-PRKACA, as described in (A). Bottom panel: HeLa cells transfected with FLAG-HLCS were treated with forskolin (Fsk) in the presence or absence of the
PKA inhibitor, H89, for the indicated times. FLAG-HLCS was then immunoprecipitated and probed with an antibody specific for phosphorylated PKA substrates before
being stripped and probed with an anti-FLAG antibody. The normalized intensity ratio of each band is shown below the corresponding lane. Overall, 15 of the 19 refKSRs
tested were validated.
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Overall, 15 of the 19 KSRs tested (79%) were confirmed in

the second round validation, suggesting that in most cases the

observed differences in substrate protein levels reflected direct

phosphorylation by their corresponding kinase (Supple-

mentary Table 5; Supplementary Information). Taken together,

our computational and experimental evaluations indicate that

the refKSR data set is of high quality. To take advantage of the

existing knowledge base, 741 known KSRs curated from the

literature were integrated with the 3656 refKSRs described

above to generate the combined (comKSR) data set

(Supplementary Table 6). This data set provides a foundation

for gaining new insights into the organization and function of

human phosphorylation networks.

Identification of phosphorylation motifs

As the next step of the CEASAR strategy, we developed an

integrated algorithm, termed M3 (Motif discovery based on

Microarray and MS/MS), to systematically identify phosphor-

ylation motifs (Figure 3A; see Materials and methods).

This approach combines our KSR data with in vivo phosphor-

ylation sites determined primarily by MS/MS analysis and

extracts motifs based on an iterative procedure. Because

kinase-substrate recognition is a biochemical property, we

predicted the phosphorylation motifs based on the 24 046

rawKSRs as well as the 719 knownKSRs from the comKSR data

set. To this end, 13 244 of the 70 422 phosphorylation sites

identified by MS/MSwere mapped to 1644 substrates found in

the rawKSR and comKSR data sets. Short amino-acid

sequences (i.e., 15-mers) centered about these phosphosites

were then binned into groups according to the identified KSRs.

Though it is possible that some of the sequences within a given

group contained phosphorylation sites that are recognized by

several kinases, we assumed that, among all of the 15-mers for

a particular kinase, those sequences recognized by the

kinase-of-interest carry a statistically enriched consensus

motif. Therefore, M3 is designed to utilize an iterative

approach to identify statistically enriched consensus motifs

within each group (Figure 3A; Supplementary Methods).

For a given kinase, the iterativemethod begins with a matrix

representing the relative occurrence of each amino acid at a

particular position in the matrix from among a group of

identified substrates (containing n phosphopeptide

sequences) (Step 1; Figure 3A). Each phosphopeptide

sequence is given a score based on how well it matches to

the initial matrix. The top 10 sequences are then grouped

as seed sequences and a position weight matrix (PWM) is

generated (Step 2). The remaining sequences (n� 10) are then

compared with this PWM to identify the top-matched

sequence. This sequence is then added to the seed sequences

and the PWM is updated (Step 3). The entire process is

repeated until the best score of the remaining sequences is

below a cutoff, which is determined based on the distribution

of matching scores for random sequences, or until the

number of seed sequences is equal to the number of substrates

of the kinase determined during the phosphorylation assay

(Step 4). In the case of dual-specificity kinases, we separately

considered motifs that contained pS/T or pY sites. Using

this approach, we identified 300 consensus motifs for 284

human kinases, representing 55% of the human kinome

(see Supplementary Information for the PWM of the

300 motifs).

To independently validate the identified phosphorylation

motifs, we compared our predicted phosphorylation motifs for

24 kinases with those obtained using a positional scanning

peptide library (Hutti et al, 2004; Mok et al, 2010). Comparison

of PWMs of the motifs identified by the two approaches

revealed that 75% (18/24) of the motifs were significantly

similar to one another (Figure 3B; Supplementary Figure 10).

This high correlation stands in contrast to a randomized

motif set, which yielded only 5% matching motifs above

the same cutoff (Supplementary Figure 11). Furthermore, a

comparison with the literature recovered 48 additional motifs

that resemble those predicted using a different approach

(Supplementary Figure 12; Miller et al, 2008). These results

suggest that the motifs identified by the M3 approach

are reliable.

A high-resolution map of human phosphorylation

networks

Finally, to create a high-resolution map of human phosphor-

ylation networks that joins each kinase in the network to its

downstream substrates at specific phosphorylated residues,

we integrated the information about both phosphorylation

motifs and in vivo phosphorylation sites into our comKSR data

set. The resulting phosphorylation map connects 230 kinases

to 2591 in vivo phosphorylation sites in 652 substrates,

representing 4417 kinase-to-phosphorylation site relationships

(see Supplementary Information for a Cytoscape session file

illustrating the phosphorylation networks). While 758 phos-

phorylation sites with known upstream kinases were correctly

connected to their respective kinases, the other 3659 relation-

ships represent newly identified connections (Figure 4A).

To experimentally evaluate the fidelity of these newly

identified connections, we examined what effect mutation

of the predicted phospho-acceptor site had on the substrates

in the presence of kinase for three selected KSRs

(see Supplementary Information). For example, using the

cell-based assay described above, we observed that the

PKA-dependent increase in DAXX protein levels was largely

abolished when Ser688 was mutated to Ala (DAXXS688A)

(Figure 4B). Similar phenotypes were also observed for the

other two sets (Figure 4B). To evaluate the sensitivity of our

predictions, we also selected a negative control set consisting

of the KSR, PAK1-DAXX. Though it recognizes a consensus

motif (RxS) that is similar to that of PKA (RxxS) and also

promotes the accumulation of DAXX, PAK1 is not predicted to

phosphorylate DAXX on Ser688 in the high-resolution map.

Consistent with this notion, the S688A mutation had no effect

on DAXX protein levels in the presence of PAK1 (Figure 4B),

suggesting that PAK1 promotes the accumulation of DAXX by

phosphorylation of a residue(s) other than S688. To determine

whether mutation of the predicted residues has a direct impact

on the extent of kinase-mediated phosphorylation, we

conducted in vitro phosphorylation reactions using purified

wild-type (WT) and mutated substrate proteins. As illustrated

in Figure 4C, the two predicted site-specific KSRs, aswell as the
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PAK1-DAXX-negative control, behaved as predicted.

Taken together, these results suggest that our high-resolution

map of human phosphorylation networks is of high quality.

To our knowledge, this is the first map of human phos-

phorylation networks at amino-acid resolution based solely

on experimental data.
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Figure 3 Identification of phosphorylation motifs by M3. (A) To predict consensus phosphorylation motifs for the kinases in our collection, we first obtained all known
phosphorylation sites on the substrates of a given kinase (e.g., CAMK2D) as foreground. Likewise, the phosphorylation sites in all human proteins were collected as
background (Step 1). Each site in the foreground was then compared with the observed and expected frequency matrix and the sites exhibiting the best scores were
included as seed sites (Step 2). The foreground frequency matrix was then updated with the seed sequences and the remaining sequences compared with this matrix to
identify the top-matched sequence. The resulting sequence was then added to the seed sequences and the matrix was updated (Step 3). The entire process was
repeated until the best score of the remaining sequences was below a cutoff or until the number of seed sequences was equal to the number of substrates of the kinase
determined during the phosphorylation assay (Step 4 and Step 5). The final set of sites was used to derive the consensus sequence of the kinase (Step 6).
(B) Comparison between motifs generated using M3 and scanning peptide array approaches. Representative motifs identified by M3 (right) and peptide library (left)
approaches are shown. For each example, the similarity score between the motifs generated using the two methods, along with the corresponding P-values,
are tabulated to the right.
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Identification of intermediate kinases in signaling

pathways

Despite recent advances in the global analysis of cellular

signaling pathways, our understanding of most signaling

networks is still largely incomplete due to the existence of

many as yet unidentified components and indirect connections

within these networks. We hypothesized that, based on the

large number of new KSRs identified in this study, we could

identify such ‘missing links’ by superimposing our data onto

annotated signaling pathways derived from the literature or

databases (e.g., KEGG). Moreover, when combined with

information derived from our high-resolution phosphorylation

map, this type of analysis can offer insights into the

physiological consequences of the specific phosphorylation

events underlying these connections. For instance, Btk is

known to play an important role during BCR signalingwhile its

binding partner, ARID3A, has been implicated in the tran-

scriptional regulation of the IgH locus (Lin et al, 2007). Recent

studies suggest that functional Btk is required for ARID3A

activity (Rajaiya et al, 2005). However, no tyrosine phosphor-

ylation sites have yet been identified in ARID3A, suggesting

that Btk likely does not phosphorylate ARID3A directly

(Rajaiya et al, 2006). Based on our refKSR data set, we

identified PKA as both a substrate of Btk and an upstream

kinase of ARID3A, raising the possibility that PKA serves as an

intermediary between Btk and ARID3A.

To test this hypothesis, we first validated the Btk-PKA and

PKA-ARID3A KSRs in HeLa cells using the cell-based assays

described above. In the case of PKA-ARID3A, either ectopic

expression of PKA or activation of endogenous PKA led to

increases in both ARID3A protein levels and the extent

of PKA-mediated phosphorylation on ARID3A (Figure 5A–C;

Supplementary Figure 13A; Supplementary Information).

Based on the high-resolution phosphorylation map, we

identified two putative sites of PKA-mediated phosphorylation

on ARID3A: a strong consensus site at S353 and a weaker one

at S333 (Supplementary Figure 13B). Interestingly, though

both sites appear to be phosphorylated by PKA inside cells,

only S353 contributes to the stabilization phenotype

(Figure 5D; Supplementary Figure 13B).

On the other hand, co-expression of Btk with PKA resulted

in a change in PKA’s migration pattern suggestive of PKA

activation (Figure 5E). Consistently, overexpression of Btk

alone caused a global increase in phosphorylated PKA

substrates (Supplementary Figure 13C) and phenocopied

PKA with respect to its effect on ARID3A protein levels

(Figure 5B), suggesting that Btk-mediated phosphorylation

might enhance PKA’s kinase activity. To determine how Btk-

mediated Tyr phosphorylation might affect the activity of PKA,

we first demonstrated that Btk preferentially phosphorylates

PKA on Y331 in vitro, as predicted by the high-resolution map

(Figure 5F). We then showed that mutation of this site to Phe

(PKAY331F) completely abolishes the ability of Btk to enhance

PKA-mediated phosphorylation of ARID3A (Figure 5G).

Together, these data suggest that Btk directly phosphorylates

PKA on Y331, leading to enhanced PKA kinase activity.

To further characterize this connection in a more physiolo-

gically relevant context, we examined the relationships

between endogenous Btk, PKA, and ARID3A during BCR

signaling in Ramos B cells. First, we observed that

Tyr phosphorylation of PKA, which increased B2-fold

10min after BCR activation, was prevented by pre-treatment

of the B cells with the Btk-selective inhibitor, terric acid (TA)

(Kawakami et al, 1999; Figure 5H). The observed increase in

Tyr phosphorylation on PKA correlated with an increase in the

extent of PKA-mediated phosphorylation on a portion of

cellular PKA substrates, including ARID3A (Figure 5I and J).

Importantly, ARID3A phosphorylation was inhibited by

pre-treatment with either H89 or TA, suggesting that this

phenomenon is both PKA and Btk dependent (Figure 5J).

Moreover, PKA-mediated phosphorylation appears to promote

the accumulation of ARID3A in B cells, as evidenced by a

substantial increase in ARID3A levels o1h after BCR

activation (Supplementary Figure 13D).

Interestingly, aside from its effect on ARID3A protein levels,

we found that PKA activation by Btk may also have other

important roles during BCR signaling. For instance, pre-

treatment of B cells with H89 both slowed the onset and

reduced the magnitude of Ca2þ release from intracellular

stores in a dose-dependent manner following BCR activation,

leading to a pronounced reduction in the extent of Ca2þ influx

(Figure 5K). This is consistent both with Btk’s known role in

the regulation of Ca2þ signaling downstream of the BCR and

with PKA’s ability to regulate Ca2þ dynamics in other cell

types (Ni et al, 2011).

Taken together, our in-depth characterization of PKA as the

missing link between Btk and ARID3A demonstrated a new

mode of enhancing PKA activity via Tyr phosphorylation by

Btk, as well as a potentially new role for PKA during BCR

signaling.

Discussion

Although other high-throughput approaches, such as yeast

two-hybrid, TAP tag-coupled MS/MS, and synthetic genetic

screening, have been used to construct phosphorylation

networks, the edges in the networks generated by these

methods do not necessarily represent direct KSRs (Zheng et al,

2000; Olsen et al, 2006; Yang et al, 2006; Molina et al, 2007;

Wang et al, 2007; Mathivanan et al, 2008; Fiedler et al, 2009).

Furthermore, though various shotgun MS/MS approaches

have identified an extremely large number of phosphorylated

residues in mammals, the immediate upstream kinases

targeting these sites have not been experimentally determined

in most cases. To address these challenges, we developed an

effective strategy, termed CEASAR, which combines experi-

mentally derived KSRs obtained from phosphorylation reac-

tions performed on protein microarrays with sophisticated

data integration and thorough validation to generate a high-

resolution map of human phosphorylation networks. Impor-

tantly, our activity-based networks complement and even

extend the information content provided by many of the

approaches alluded to above. This synergy is demonstrated

both by the development of theM3 algorithm, which combines

microarray data with MS data to predict consensus phosphor-

ylation motifs, and by the construction and application of the

high-resolution phosphorylation map, which combines the

information about KSRs with phosphorylation motifs and

Construction of human activity-based phosphorylation networks
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in vivo sites of phosphorylation to predict specific sites of

phosphorylation on a given kinase substrate.

Several lines of evidence suggest that our high-resolution

map of phosphorylation networks is of high quality. For

instance, because 758 of 1156 known site-specific kinase-

substrate interactions were recovered by our method, the

false negative rate is 1� (758/1156)¼ 34.4% and the recovery

rate is 758/1156¼ 65.6%. That being said, the possibility

exists that the sites predicted to be phosphorylated on a given

substrate are not necessarily the sites targeted by the kinase-

of-interest during the protein microarray experiments. For

instance, the true target site(s) may not yet be identified by

MS/MS. Nevertheless, based on our validation experiments,

each of the 5 kinase-phosphosite interactions examined were

confirmed by protein mutagenesis experiments (including

those phosphosites identified in Figures 4 and 5), suggesting

that the false positive rate is rather low. The quality of our

networks is further demonstrated when we compared them

with other existing phosphorylation networks. For example,

NetworKIN, a phosphorylation network based on motifs
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PKA-ARID3A KSR using coupled IP-immunoblot analysis in HeLa cells. a-pPKA sub, an antibody against phosphorylated PKA substrates. (D) Identification of S353 as
the phosphorylation site that contributes to PKA-mediated stabilization of ARID3A. (E) Validation of the BTK-PKA KSR in HeLa cells. (F) Identification of PKA Y331 as a
Btk phosphorylation site. Left: Btk phosphorylation motif (Logo) generated by the M3 algorithm and the predicted site of Btk-mediated phosphorylation on PKA.
Formatting is as described in Figure 4B. Right: In vitro kinase assays using recombinant Btk and WT PKA and PKAY331F (MT) as substrates. The extent of Tyr
phosphorylation and total PKA in each lane was determined using antibodies against pTyr residues (a-pTyr) and PKA (a-PKA), respectively. (G) Effect of Btk-mediated
phosphorylation on PKA activity in vitro. Recombinant WT PKA was first incubated in the presence (red) or absence (blue) of Btk in reaction buffer containing cold ATP.
After Btk removal, PKA was then incubated with recombinant ARID3A in the presence of [g-32P]-ATP and phosphorylated ARID3A was measured. The same assay was
repeated using mutant PKA (PKAY331F) in the presence of Btk (green). n¼ 2–4 trials per condition±s.e.m.; two-tailed t-test versus PKAþ Btk, PKA: **P¼ 5.7� 10� 5,
MTþ Btk: **P¼ 2.2� 10� 5. (H) Btk-mediated phosphorylation of endogenous PKA following BCR activation. Each value represents the average pTyr signal intensity,
normalized against total PKA. TA, terric acid. n¼ 3 per condition±s.e.m.; one-tailed t-test versus F(ab0)2 alone (� /þ ), untreated (� /� ): **P¼ 0.009, F(ab0)2þ TA
(þ /þ ): **P¼ 0.004. (I) Effect of BCR activation on PKA activity. (J) PKA-mediated phosphorylation of ARID3A following BCR activation. The average pPKA substrate
signal intensity, normalized against total ARID3A, is shown below each lane. n¼ 4 per condition±s.e.m.; one-tailed t-test versus F(ab0)2 alone (� /� /þ ), untreated
(� /� /� ): **P¼ 0.003, F(ab0)2þH89 (� /þ /þ ): **P¼ 0.007, F(ab0)2þ TA (þ /� /þ ): *P¼ 0.019. (K) Effect of PKA inhibition on Ca2þ dynamics following
BCR activation. Representative calcium traces of F(ab0)2-stimulated Ramos B cells in the presence of various concentrations of H89 were obtained using Indo-1 imaging.
The addition of F(ab0)2 is indicated by an arrow.

Construction of human activity-based phosphorylation networks

RH Newman et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 9



predicted by scanning peptide arrays, included 7143 site-

specific kinase-substrate interactions (Linding et al, 2007).

After removing those kinase-substrate pairs for which either

the kinase or the substrate was associated with an outdated

ENSEMBL ID, 6338 site-specific kinase-substrate interactions

remained. Among these, 48 are known interactions, suggest-

ing that the true positive rate for NetworKIN is 0.76%

(48/6338). In contrast, our data recovered 758 known

interactions, with a true positive rate of 17.2% (758/4417).

We believe that the420-fold improvement in the true positive

rate of our networks can be, at least partially, explained by the

fact that we used full-length proteins, rather than peptides,

both to build the network and to extract motifs. We consider

this to be a major advantage of the CEASAR strategy. For

instance, kinase activities are constrained by substrate

accessibility within the fully folded protein structure. More-

over, additional protein interactions, which are absent in short

peptide sequences, often have important roles in substrate

recognition. On the other hand, there are also potential

deficiencies of using purified proteins, including improper

folding, artificial steric hindrance or the absence of auxiliary

factors, such as scaffolding proteins. Together, these factors

might contribute to the high false negative rate observed in the

refKSR data set (B95%).

It is interesting to note that, among those substrates that

exhibited a kinase-dependent change during the first round

of validation experiments, the majority of them (112/

132¼B85%) were associated with changes in protein

stability. We believe that one explanation for this observation

may lie, in part, in the fact that a large proportion of the

substrates in our refKSR data set are composed of TFs and their

co-regulators. Indeed, phosphorylation-dependent degrada-

tion/stabilization of TFs is well documented and may be a

commonmode of regulation for this class of proteins (Pahl and

Baeuerle, 1996; Whitmarsh and Davis, 2000; Gao and Karin,

2005). In support of this notion, over half (B55%) of the

substrates that underwent kinase-dependent changes in

stability were TFs, despite the fact that only B35% of the

test set were from this family. As the knowledge base grows, it

may be possible to unambiguously identify sites of phosphor-

ylation on many of the substrates in our refKSR data set

(thereby expanding the number of kinase-phosphosite rela-

tionships present in the high-resolution map). In those cases

where the substrate undergoes kinase-dependent changes in

stability, it will be interesting to see if sequence motifs

involved in the regulation of protein stability, such as

phospho-degrons (in the case of degradation) (Dinkel et al,

2012) or a SUMOylation consensus site (in the case of

stabilization) (Sampson et al, 2001), are in the vicinity of the

phosphorylation site, which suggest potential cross-talk

between different PTMs.

We envision that our large data set, which we have made

freely available through an interactive website at http://

phosphonetworks.org, will serve as a valuable resource for the

research community in several ways. For instance, aside from

generating more human KSRs and more phosphorylation

motifs than all previous studies combined, this study

also provides a blue print for mapping kinase-dependent

connections and serves as a foundation for the development of

new tools, such as genetically targetable kinase activity

reporters and phosphorylation site-specific antibodies, that

promise to offer important insights into the regulation

of kinases and their downstream substrates. Likewise, the

large number of human KSRs identified in these studies can be

used in conjunction with KSR data sets from other species

(e.g., S. cerevisiae) to explore the extent to which kinase-

dependent signaling networks are conserved across species

(Hu et al, 2013). Moreover, in the future, it should be possible

to integrate information from the human phosphorylation data

set with that from other large-scale studies conducted on the

proteome scale to gain a greater understanding of the

organization and regulation of the signaling networks that

govern cell physiology in human health and disease. Finally, in

accord with recent initiatives put forth by the Human

Proteome Organization (HUPO) (Paik et al, 2012), the CEASAR

strategy developed in this study can be extended to construct

signaling networks mediated by other post-translational

modifications, such as ubiquitylation, SUMOylation, acetyla-

tion, and methylation, to gain global insights into a wide

variety of signaling processes.

Materials and methods

Kinase purification

Two hundred and eighty-nine non-redundant human kinase genes
obtained from the Invitrogen Ultimate Human ORF collection and
other sources were cloned into the yeast expression vector, pEGH-A,
using the Gateway cloning system (Invitrogen). Each clone was
verified by restriction digestion. Each kinase was expressed as a GST
fusion in the budding yeast, Saccharomyces cerevisiae, and purified
using glutathione-sepharose affinity chromatography, as described
previously (Zhu et al, 2001).

Phosphorylation assays using protein microarrays

Human protein microarrays were generated as described previously
(Hu et al, 2009). Each microarray contained 4191 unique proteins
consisting of a collection of human proteins including TFs,
RNA-binding proteins, DNA repair proteins, protein kinases and
mitochondrial proteins as well as a panel of proteins involved in
various other cellular processes. To identify in vitro substrates for each
kinase, a protocol similar to that described by Zhu et al (2009), which
involves radioactivity-based detection, was used.

Bayesian approach

To predict KSRs that are likely to occur in vivo, we used a naı̈ve
Bayesian approach (Jansen et al, 2003; Hu et al, 2010) to integrate
information about tissue-specific gene expression, subcellular
localization, and PPIs. For the positive data set, we collected 1103
experimentally validated kinase-substrate pairs from the literature and
the PhosphoELM database (phospho.elm.eu.org).We also constructed
an artificial data set as a negative data set that contains 10 000 protein
pairs where no kinases were included in the set. The relative weights
for these three features were learned from the known data sets and
applied to each of the rawKSRs.

M3 algorithm

To predict consensus phosphorylation motifs for the kinases in our
collection, we integrated the following data sources: the rawKSRs
determined by protein microarray, the phosphorylation sites deter-
mined byMS/MS, and the phosphorylation siteswith known upstream
kinases obtained from the literature. Each site was mapped to the
protein sequences of substrates identified in the rawKSR data set and
subject to an iterative process by the M3 algorithm.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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