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Abstract— Despite the important properties of unit norm tight
frames (UNTFs) and equiangular tight frames (ETFs), their
construction has been proven extremely difficult. The few known
techniques produce only a small number of such frames while
imposing certain restrictions on frame dimensions. Motivated
by the application of incoherent tight frames in compressed
sensing (CS), we propose a methodology to construct incoherent
UNTFs. When frame redundancy is not very high, the achieved
maximal column correlation becomes close to the lowest possible
bound. The proposed methodology may construct frames of any
dimensions. The obtained frames are employed in CS to produce
optimized projection matrices. Experimental results show that the
proposed optimization technique improves CS signal recovery,
increasing the reconstruction accuracy. Considering that the
UNTFs and ETFs are important in sparse representations,
channel coding, and communications, we expect that the proposed
construction will be useful in other applications, besides the CS.

Index Terms— Unit norm tight frames, Grassmannian frames,
compressed sensing.

I. INTRODUCTION

W
HEN abandoning orthonormal bases for overcomplete

spanning systems, we are led to frames [1]. In signal

processing, frames are a decomposition tool that adds more

flexibility to signal expansions, facilitating various signal

processing tasks [2], [3]. Although their existence has been

known for over half a century [4], frames have been introduced

in the signal processing community only in the recent decades,

offering the advantage of redundancy in signal representations

and providing numerical stability of reconstruction, resilience

to additive noise and resilience to quantization. Frames have

mainly become popular due to wavelets [5]; however, many

other frame families have been employed in numerous applica-

tions including source coding, robust transmission, code divi-

sion multiple access (CDMA) systems, operator theory, coding

theory, quantum theory and quantum computing [2], [6].

Certain frame categories such as Grassmannian frames have

connections to Grassmannian packings, spherical codes and
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graph theory [7]. Therefore, frame theory and its applications

have experienced a growing interest among mathematicians,

engineers, computer scientists, and others.

To introduce some notation, a finite frame F N
m in a real or

complex m-dimensional Hilbert space H
m is a sequence of

N ≥ m vectors { fk}N
k=1, fk ∈ Hm , satisfying the following

condition

α ‖ f ‖2
2 ≤

N∑

k=1

|〈 f, fk〉|2 ≤ β ‖ f ‖2
2 , ∀ f ∈ H

m, (1)

where α, β are positive constants, called the lower and upper

frame bounds respectively [1]. Viewing Hm as Rm or Cm ,

the m × N matrix F = [ f1 f2 . . . fN ] with columns the

frame vectors fk , is known as the frame synthesis operator. We

usually identify the synthesis operator with the frame itself.

The redundancy of the frame is defined by ρ = N/m and is

a “measure of overcompleteness” of the frame [7].

When designing a frame for a specific application, certain

requirements are imposed. The orthogonality of frame rows

is a common one; frames exhibiting equal-norm orthogonal

rows are known as tight frames or Welch-bound sequences

[8], [9] and have been employed in sparse approximation

[10], [11]. Equality of column norms is also important. Unit

norm tight frames (UNTFs), that is, tight frames with unit

norm column vectors, have been used in the construction

of signature sequences in CDMA systems [8], [12], [13].

Moreover, they are robust against additive noise and era-

sures, and allow for stable reconstruction in communications

[14]–[18]. Equiangularity is a property related to the depen-

dency between frame columns; column vectors forming equal

angles exhibit minimal dependency. Equiangular tight frames

(ETFs) have been popular due to their use in sparse approx-

imation [19], robust transmission [17], [18] and quantum

computing [20].

Frames are employed in signal processing when there is

a need for redundancy. Redundancy provides representations

resilient to coding noise, enabling signal recovery even when

some coefficients are lost. Moreover, a redundant dictionary

can be chosen to fit its content to the data, yielding highly

sparse representations that would not be easily achieved using

an orthonormal basis. However, a significant drawback when

working with frames is that the frame elements may be linearly

dependent. Therefore, the advantages provided by the frame

redundancy come at the cost that the signal representation may

not be unique.

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2320 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 4, APRIL 2014

Mutual coherence is a simple numerical way to characterize

the degree of similarity between the columns of a frame and

is defined as the largest absolute normalized inner product

between different frame columns [10], [21],

µ{F} = max
1≤i, j≤N

i 	= j

∣∣〈 fi , f j

〉∣∣
‖ fi‖2

∥∥ f j

∥∥
2

. (2)

Frames with small mutual coherence are known as incoherent.

Equiangular tight frames are the unit norm ensembles that

achieve equality in the Welch bound [see eq. (12)]. However,

the construction of equiangular tight frames has been proven

extremely difficult.

In this paper, we rely on frame theory to construct incoher-

ent unit norm tight frames. Based on recent theoretical results,

we employ these frames in compressed sensing to improve

reconstruction of sparse signals. Sparse signal recovery was

introduced in signal processing in the context of sparse and

redundant representations as the problem of finding a signal

representation under an overcomplete basis or redundant dic-

tionary. An overcomplete representation is described by an

underdetermined linear system of the form

x = Dα, (3)

where x ∈ R
K is the treated signal, D ∈ RK×N , K ≤ N , is a

redundant dictionary, and α ∈ RN is the vector of the unknown

coefficients. Assuming that D is full rank, we need additional

criteria to find a unique signal satisfying (3). Thus, we employ

a penalty function J (α), defining the general optimization

problem

min
α

J (α) subject to x = Dα. (4)

In sparse representations, we are interested in a solution

of (4) with a few nonzero coefficients, that is, ‖α‖0 = T ,

T ≪ K , where ‖·‖0 is the so-called ℓ0 norm (which is actually

not a norm) counting the nonzero coefficients of the respective

signal. According to well-known results [10], uniqueness of a

sparse solution is guaranteed if the sparsity level ‖α‖0 satisfies

‖α‖0 <
1

2

(
1 + 1

µ{D}

)
. (5)

It is obvious that in order to obtain a unique sparse representa-

tion, we need a sufficiently incoherent dictionary. In addition,

mutual coherence plays an important role in the performance

of the algorithms deployed to find sparse solutions in problems

of the form (4) [11]. More recent results [22] concerning the

algorithms’ performance highlight the role of tightness, requir-

ing D to be an incoherent tight frame (see also Section IV).

Compressed sensing (CS) is a novel theory [23], [24] that

merges compression and acquisition, exploiting sparsity to

recover signals that have been sampled at a drastically smaller

rate than the conventional Shannon/Nyquist theorem imposes.

Undersampling implies that the number of measurements, m,

is much smaller than the dimension K of the signal. The sens-

ing mechanism employed by CS leads to an underdetermined

linear system, described by the following equation

y = Px, (6)

with y ∈ R
m and P ∈ Rm×K , m ≪ K , a proper sensing or

projection matrix. Considering a sparse representation of x ,

we obtain

y = P Dα. (7)

Setting F = P D, F ∈ R
m×N , which is referred to as the

effective dictionary, we rewrite (7) in the form

y = Fα. (8)

Following the above discussion about finding sparse rep-

resentations satisfying underdetermined linear systems, we

require F to be an incoherent tight frame. Considering the

optimization of the sampling process, we note that, given the

dictionary D, in order to obtain a nearly optimal effective

dictionary F with respect to mutual coherence and tightness,

we need to find a projection matrix P such that F is as close

as possible to an incoherent UNTF.

The idea of optimizing the projection matrix such that it

leads to an effective dictionary with small mutual coherence

was introduced by Elad in [25]. Based on frame theory, we

proposed in [26] the construction of an effective dictionary

that forms an incoherent unit norm tight frame. In this paper,

we extend our technique to obtain unit norm tight frames that

exhibit a significantly improved incoherence level compared

to [25], [26], resulting in accurate signal reconstruction when

employed in CS. Moreover, for certain frame dimensions, i.e.,

when the frame redundancy is not very high, the achieved

mutual coherence becomes very close to the lowest possi-

ble bound. Considering that the construction of unit norm

tight frames and equiangular tight frames has been proven

notoriously difficult, whereas the few known design tech-

niques impose certain restrictions on the frame dimensions, we

expect that the proposed methodology will be useful to other

applications besides CS.

The rest of the paper is organized as follows: In Section II

we review basic definitions and concepts from frame theory,

while highlighting challenges and difficulties in frame design.

In Section III we present two algorithms for the construction of

incoherent UNTFs and discuss their convergence. Section IV

includes the application of the proposed construction to CS.

We also present previous work on projection matrix optimiza-

tion and recent theoretical results justifying our optimization

strategy. Experimental results can be found in Section V.

Finally, conclusions are drawn in Section VI.

II. BACKGROUND

Based on the discussion in the previous section about the

requirements in frame design, we conclude that even though

there are considerable reasons to abandon orthonormal bases

for frames, in most applications, we still want to use frames

that preserve as many properties of orthonormal bases as

possible [7].

When designing frames close to orthonormal bases, row

orthogonality is a potential such desirable property. Therefore,

we are led to tight frames. Let F N
m = { fk}N

k=1 be a finite

redundant frame in Hm . Then, if we set α = β in (1),
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we have

f = 1

α

N∑

k=1

〈 f, fk〉 fk , ∀ f ∈ H
m, (9)

thus obtaining an α-tight frame. The rows of α−1/2 F N
m form

an orthonormal family [1]. Constructing a tight frame is

straightforward; we take an orthonormal basis and select the

desired number of rows. For example, m × N harmonic tight

frames are obtained by deleting (N − m) rows of an N × N

DFT matrix.

However, in many problems tightness is not sufficient.

Most applications require some additional structure, such as,

specific column norms or small column correlation. Given an

α-tight frame, we obtain a unit norm tight frame (UNTF), if,

‖ fk‖2 = 1, for all k. For α-tight frames, the following relation

holds

N∑

k=1

‖ fk‖2
2 = αm. (10)

It is clear that we cannot design a UNTF with an arbitrary

tightness parameter; a UNTF F N
m exists only for α = N/m,

or α = ρ, the redundancy of the frame.

Orthonormal bases provide unique representations as their

elements are perfectly uncorrelated. Requiring unique sparse

representations in overcomplete dictionaries, it would be con-

venient to employ frames whose columns give identical inner

products, that is,

|〈 fk, fℓ〉| = cµ, for k 	= ℓ, (11)

where cµ is a constant. For a unit norm frame, the absolute

value of the inner product between two frame vectors equals

the cosine of the acute angle between the lines spanned by the

two vectors. For this reason, frames satisfying (11) are called

equiangular.

The maximal correlation between frame elements depends

on the frame dimensions m, N . The lowest bound on the

minimal achievable correlation for equiangular frames, also

known as Welch bound is given by [7]

µ{F} ≥
√

N − m

m(N − 1)
. (12)

Among all unit norm frames with the same redundancy,

the equiangular ones that are characterized by the property

of minimal correlation between their elements are called

Grassmannian frames [7]. If minimal correlation is the low-

est achievable, as (12) implies, then we obtain an optimal

Grassmannian frame. According to [7], an equiangular unit

norm tight frame is an optimal Grassmannian frame. As unit

norm tight frames with dimensions m, N exist for a specific

tightness parameter (α = N/m), an optimal Grassmannian

frame is an equiangular N/m-tight frame (ETF).

Despite their important properties, neither UNTFs nor

Grassmannian frames are easy to construct. Tightness implies

certain restrictions on singular values and singular vectors;

the m nonzero singular values of an m × N α-tight frame

equal
√

α. This property combats either column normaliza-

tion or the requirement for constant inner products between

columns [27]. Two techniques are known to provide general

UNTF constructions; the work of [28], where the authors start

from a tight frame and by solving a differential equation they

approach a UNTF, and the work of [29], where the authors

start from a unit norm frame and increase the degree of tight-

ness using a gradient-descent-based algorithm. Relative prime-

ness of m and N is a condition assumed by both techniques,

though in [29] in a weaker sense. Regarding the construction of

equiangular tight frames, it is known that these frames exist for

certain frame dimensions. When H
m = Rm the frame dimen-

sions should satisfy m ≤ N(N + 1)/2, while for Hm = Cm ,

there must hold m ≤ N2 . Moreover, even if we know the exis-

tence of such frames, there is no explicit way of constructing

them. The only general construction techniques are reported in

[30]–[32] and they impose additional restrictions on the frame

dimensions.

III. CONSTRUCTING INCOHERENT UNIT

NORM TIGHT FRAMES

The role of incoherence in sparse signal recovery, both

in redundant representations and compressed sensing, makes

optimal Grassmannian frames ideal candidates for these

problems. Considering the design difficulties discussed is

Section II, we aim at the construction of frames that are as

close as possible to optimal Grassmannian frames. Based on

the observation that optimal Grassmannian frames not only

exhibit minimal mutual coherence, but N/m-tightness as well,

we propose the following design methodology: Suppose we

compute a matrix with small mutual coherence. Then, the

problem of approximating a Grassmannian frame reduces to

finding a UNTF that is nearest to the computed incoherent

matrix in Frobenius norm. This is a matrix nearness problem,

which can be solved algebraically by employing the following

theorem [27], [33].

Theorem 1. Given a matrix F ∈ R
m×N , N ≥ m, suppose F

has singular value decomposition (SVD) UΣV ∗. With respect

to the Frobenius norm, a nearest α-tight frame F ′ to F is

given by
√

α · U V ∗. Assume in addition that F has full row-

rank. Then
√

α · U V ∗ is the unique α-tight frame closest

to F. Moreover, one may compute U V ∗ using the formula

(F F∗)−1/2 F.

Therefore, the main idea of the proposed design methodol-

ogy is alternating between tightness and incoherence. Next,

we present two algorithms implementing this construction

strategy.

A. Algorithm 1

The first algorithm starts from an arbitrary m×N matrix that

has full rank and sequentially applies a “shrinkage” process

and Theorem 1. The “shrinkage” process reduces the matrix

mutual coherence, while Theorem 1 finds an N/m-tight frame

that is nearest to the incoherent matrix. In order to minimize

the correlation between the columns of a given matrix, it is a

common strategy to work with the Gram matrix [25], [27].

Given a matrix F ∈ Rm×N , formed by the frame vectors

{ fk}N
k=1 as its columns, the Gram matrix is the Hermitian

matrix of the column inner products, that is G = F∗F .
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For unit norm frame vectors, the maximal correlation is

obtained as the largest absolute value of the off-diagonal

entries of G.

In [25], Elad proposes a “shrinkage” operation on the off-

diagonal Gram matrix entries (see eq. (19), Section IV). In this

work, we bound the off-diagonal entries according to

ĝi j =
{

sgn(gi j ) · (1/
√

m), if 1/
√

m <
∣∣gi j

∣∣ < 1,

gi j , otherwise,
(13)

where gi j is the (i, j) entry of the Gram matrix. The selected

bound 1/
√

m is approximately equal to the lowest bound [see

eq. (12)] for large values of N . Other choices of the bound

might work better depending on the frame dimensions. Com-

bined with Theorem 1, the proposed Gram matrix processing

yields highly incoherent UNTFs.

The algorithm we propose is iterative. Our initial matrix F0

is a tight frame nearest to a random Gaussian matrix. As the

process that reduces the mutual coherence involves “shrink-

age” operations on the Gram matrix Gq , a column normal-

ization step precedes the main steps of our method. After

applying (13), the modified Gram matrix G̃q may have rank

larger than m; thus, we use SVD to reduce the rank back

to m. Decomposing the new Gram matrix Ǧq , we obtain the

incoherent matrix Sq such that S∗
q Sq = Ǧq . Next, Theorem 1

is applied to Sq to obtain an incoherent tight frame. Therefore,

the q-th iteration of Algorihtm 1 involves the following.

1) Obtain the matrix F̂q , after column normalization of Fq .

2) Calculate the Gram matrix Ĝq = F̂∗
q F̂q and apply (13)

to bound the absolute values of the off-diagonal entries,

producing G̃q .

3) Apply SVD to G̃q to force the matrix rank to be

equal to m, obtaining Ǧq .

4) A matrix Sq ∈ R
m×N is obtained such that S∗

q Sq = Ǧq .

5) Find S′
q , the nearest N/m-tight frame to Sq , according

to S′
q = √

N/m · (Sq S∗
q )−1/2Sq . Set Fq+1 = Sq .

B. Convergence of Algorithm 1

The proposed algorithm is actually an alternating projec-

tions algorithm. In alternating projections we find a point in

the intersection of two or more sets by iteratively projecting a

point sequentially onto every set [34]. More particularly, the

proposed algorithm projects onto the following sets.

i. The set Y of N × N Gram matrices of m × N unit norm

frames,

Y =
{

G ∈ R
N×N : G = G∗, gii = 1, i = 1, . . . , N

}
.

ii. The set Z of N × N symmetric matrices with bounded

off diagonal entries,

Z = {G ∈ R
N×N : G = G∗,

∣∣gi j

∣∣ ≤ 1/
√

m, i 	= j,

i, j = 1, . . . , N}.

iii. The set W of rank-m, N × N symmetric matrices,

W =
{

G ∈ R
N×N : G = G∗, rank(G) = m

}
.

Fig. 1. Convergence of Algorithm 1 for a 60×120 matrix. The mean squared
distance between the current iteration and the sets we project on reduces in
a linear rate.

iv. The set S of N × N Gram matrices of m × N α-tight

frames,

S = {G ∈ R
N×N : G = G∗, with only

m nonzero eigenvalues, all equal to α}.

Alternating projections is a popular method and has been

well-studied for closed convex sets. However, from the above

sets only Y and Z are convex, whereas W and S are smooth

manifolds [35]. Therefore, well known convergence results for

alternating projections on convex sets [34] cannot be applied

to the proposed method.

Only a few recent extensions of alternating projections

consider the case of nonconvex sets [35], [36]. In [35] the

authors study alternating projections on manifolds and prove

convergence when two smooth manifolds intersect transver-

sally. A more recent publication [36] considers alternating

projections on two nonconvex sets, one of which is assumed

to be suitably “regular”; the term refers to convex sets, smooth

manifolds or feasible regions satisfying the Mangasarian-

Fromovitz constraint qualification. The authors show that the

method converges locally to a point in the intersection at a

linear rate. The convergence of alternating projections on more

than two sets some of which are nonconvex is still an open

problem.

Therefore, our discussion regarding convergence of

Algorithm 1 is mainly based on numerical results. To illustrate

convergence, we need to define the mean squared distance of

the current iteration from the sets involved in the projections,

that is

D(q)= 1

8
(d2(Gq , Y )+d2(Gq , Z)+d2(Gq , W )+d2(Gq , S)),

where the distance d(Gq , F) between the current iteration Gq

and the set F we project on is defined as d(Gq , F) = dF =
inf{

∥∥Gq − X
∥∥
F

: X ∈ F}, denoting by ‖·‖F the Frobenius

norm.

Figs. 1 and 2 show log10 D(q) when Algorithm 1 is applied

to a 60 × 120 and a 25 × 120 matrix, respectively. Fig. 1

shows that the proposed algorithm converges at a linear rate,

constructing a frame that belongs to the intersection of the

involved sets. The zeroing of the mean squared distance

implies that the produced frame is indeed an incoherent UNTF.

When the frame redundancy increases, the numerical results

become a little different. Fig. 2(a) shows that the convergence
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Fig. 2. Convergence of Algorithm 1 (alternating projections) for a
25×120 matrix. The convergence rate depends on the bound used in eq. (13).
In (a) we observe a sub-linear convergence rate when the bound equals 1/

√
m.

In (b) the convergence rate becomes linear as the bound is relaxed to 3/2
√

m.

rate for a 25 × 120 frame is sub-linear and the produced

frame does not belong to the intersection of the involved

sets. Considering the increased difficulties of constructing

incoherent frames of high redundancy, this result is not sur-

prising; it is possible that either the intersection is empty or

it has properties that bring on difficulties to the proposed

algorithm. Experiments performed with a relaxed incoherence

level, which is determined by the bound 1/
√

m in eq. (13)

confirm our conjecture. A relaxed bound yields a broader set Z

and increases the probability that the intersection has good

properties. Fig. 2(b) illustrates convergence of Algorithm 1

when the bound 1/
√

m in eq. (13) is replaced by 3/2
√

m.

We can see that the convergence rate becomes linear and the

produced matrix belongs to the intersection of the involved

sets.

C. Algorithm 2

Similar to alternating projections is the method of averaged

projections. At every step of averaged projections, we project

the current iteration onto every set and average the results

to obtain the value for the next iteration. Considering our

problem, if Gq is the Gram matrix calculated in the q-th

iteration and PY (Gq) represents the projection of Gq on Y ,

then a modified version of Algorithm 1 would consider as

input in the (q + 1)-st iteration the average

Gq+1 = 1

4
(PY (Gq) + PZ (Gq) + PW (Gq) + PS(Gq)). (14)

The projections can be calculated in the same way as in the

algorithm presented at the beginning of this section, assuming

an additional calculation of the Gram matrix in the first and

last steps.

Again we start from a random Gaussian matrix and apply

Theorem 1 to obtain a nearest tight frame F0; then we calculate

the Gram matrix G0 = F∗
0 F0. In the q-th iteration we execute

the following steps.

1. Obtain the matrix F̂q , after column normalization of

Fq and calculate the Gram matrix F̂∗
q F̂q , which is the

projection PY (Gq).

2. Apply (13) on Gq to bound the absolute values of the

off-diagonal entries, producing PZ (Gq).

3. Apply SVD to Gq to force the matrix rank to be equal

to m, obtaining PW (Gq ).

4. Find F ′
q , the nearest N/m-tight frame to Fq , according

to F ′
q = √

N/m · (Fq F∗
q )−1/2 Fq . Obtain the Gram

matrix S∗
q Sq , which is the projection PS(Gq).

5. Calculate the average Gram matrix according to (14).

6. Find a matrix Fq+1 s.t. F∗
q+1 Fq+1 = Gq+1.

D. Convergence of Algorithm 2

According to recent results [36] concerning averaged pro-

jections, when several prox-regular sets have strongly regular

intersection at some point, the method converges locally at a

linear rate to a point in the intersection. Let us provide some

definitions before proceeding. Prox-regular sets is a large class

of sets that admits unique projections locally. It is known in

[35] that convex sets and smooth manifolds belong to this

category. Strongly regular intersection is important to prevent

the algorithm from projecting near a locally extremal point.

The notion of a locally extremal point in the intersection of

some sets is the following: if we restrict to a neighborhood

of such a point and then translate the sets by small distances,

their intersection may render empty. Therefore, not choosing a

locally extremal point as initial point in a projections algorithm

is a critical hypothesis for convergence. In order to make clear

that strong regularity implies local extremality, we cite here

the related definitions for the case of two sets. For more details

the reader is referred to [36].

Definition 1 (Locally extremal point). Denoting by E the

Euclidean space, consider the sets F, G ⊂ E. A point

x̄ ∈ F ∩ G is locally extremal for this pair of sets if there

exists ρ > 0 and a sequence of vectors zr → 0 in E such that

(F + zr ) ∩ G ∩ Bρ(x̄) = ∅, for all r = 1, 2, . . .

where Bρ(x̄) is the closed ball of radius ρ centered at x̄ .

Clearly x̄ is not locally extremal if and only if

0 ∈ int
(
((F − x̄) ∩ ρB) − (G − x̄) ∩ ρB)

)
, for all ρ > 0,

where B is the closed unit ball in E.

Definition 2 (Strongly regular intersection). Two sets

F, G ⊂ E have strongly regular intersection at a point x̄ ∈
F ∩ G if there exists a constant α > 0 such that

αρB ⊂ ((F − x) ∩ ρB) − ((G − z) ∩ ρB)

for all x ∈ F near x̄ and z ∈ G near x̄ .

By considering the case x = z = x̄ , we see that strongly

regular intersection at a point x̄ implies that x̄ is not
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Fig. 3. Convergence of Algorithm 2 (averaged projections) for a
60 × 120 matrix. The mean squared distance between the current iteration
and the sets we project on reduces in a linear rate.

locally extremal. Conversely, finding a point in the intersection

of the involved sets that is not locally extremal, implies that

the sets have strongly regular intersection at this point.

Now, we can summarize the results of [36] regarding

averaged projections.

Theorem 2. Consider prox-regular sets F1, F2, . . . , FL ⊂ E

having strongly regular intersection at a point x̄ ∈ ∩Fi , and

any constant k > cond(F1, F2, . . . , FL |x̄). Then, starting from

any point near x̄, one iteration of the method of averaged

projections reduces the mean squared distance

D = 1

2L

L∑

i=1

d2
Fi

by a factor of at least 1 − 1
k2 L

.

The condition modulus cond(F1, F2, . . . , FL |x̄) is a positive

constant that quantifies strong regularity [36].

The sets Y, Z , W and S involved in Algorithm 2 are prox-

regular (Y, Z are convex and W, S are smooth manifolds) and

their intersection is very likely to be strongly regular; the fact

that our initial matrix is a random Gaussian matrix minimizes

the probability of choosing an initial point that is near to a

locally extremal point. Though we cannot guarantee strong

regularity for the above sets, randomness seems to prevent

us from irregular solutions. Therefore, we expect that the

averaged projections algorithm converges linearly to a point

in the intersection of the above sets.

Let us see what experimental results show. Figs. 3 and 4

show mean squared distance for the averaged projections

algorithm. Indeed, in Fig. 3 the results for a matrix of

redundancy equal to 2 confirm a linear convergence rate and

are in agreement with our theoretical expectations. Moreover,

the zero mean squared distance implies that the obtained frame

belongs to the intersection of the involved sets, that is, it is an

incoherent UNTF. The results are a little different for a matrix

with higher redundancy. As we can see in Fig. 4(a), the rate of

convergence becomes sub-linear, indicating that the intersec-

tion of the involved sets is either empty or does not have the

desired properties. Relaxing the imposed incoherence level,

i.e., using a larger bound than 1/
√

m in eq. (13), we obtain a

broader set Z , increasing the probability that the intersection of

the involved sets satisfies the necessary conditions formulated

in Theorem 2. The experiments performed with the new set

Fig. 4. Convergence of Algorithm 2 (averaged projections) for a
25×120 matrix. The convergence rate depends on the bound used in eq. (13).
In (a) we observe a sub-linear convergence rate when the bound equals 1/

√
m.

In (b) the convergence rate becomes linear as the bound is relaxed to 3/2
√

m.

Z yield a linear convergence rate [Fig. 4(b)], confirming our

conjecture.

Comparing the convergence of the two proposed algorithms,

an important note is that the presented experiments show that

the results of the proposed averaged projections algorithm are

similar to the alternating projections. Of course, there is a

significant difference regarding the slope of the convergence

curve; alternating projections is faster than averaged projec-

tions. However, the shapes of the curves are identical in all

the examples employed in our experiments. Therefore, even

though the theoretical justification of the proposed alternat-

ing projections needs further investigation, the experimental

results encourage its use for the proposed constructions. In the

next subsection, we present some experiments demonstrating

the desired properties of the obtained frames, showing that

both algorithms give similar results.

Before proceeding to more experiments and applications, we

would like to clarify a point concerning the incoherence level

constraint. One might wonder what is the effect of the imposed

incoherence level on the proposed construction. Do we obtain

frames with similar properties, regardless of the bound used in

eq. (13)? The answer is that the frame properties are similar

but not identical. Depending on the frame redundancy, there

is a lower incoherence bound that should not be exceeded;

otherwise, the smaller the incoherence bound we impose,

the worse the incoherence level we finally obtain is. Thus,

the selected bound needs fine tuning. However, the proposed

bound 1/
√

m works well for the constructions considered in

this paper.
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Fig. 5. Mutual coherence as a function of the number of iterations. The
experiments involve (a) a 15 × 120 frame and (b) a 25 × 120 frame.

E. Preliminary Experimental Results

Before we see the application of the proposed methodology

in CS, we discuss some experimental results regarding the

main properties of our constructions. As our goal is to use the

proposed frame in CS, we compare the proposed algorithms

to [25], [26], [37], [38], which also produce incoherent frames

for CS. We briefly present these methods in Section IV.

Fig. 5 illustrates two snapshots of execution including

1000 iterations, depicting the achieved mutual coherence at

every iteration. The examples involve a 15 × 120 and a

25 ×120 matrix showing that the proposed algorithms behave

well as the mutual coherence improves significantly after a

few iterations. Even though the averaged projections algorithm

is slower, both algorithms finally converge to similar values

regarding the mutual coherence. Moreover, the improvement is

smooth even when applied to matrices with high redundancy.

Regarding the other methods under testing, Fig. 5 shows

that, in general, all of them have a stable behaviour and

converge to low mutual coherence values. Only [37] seems

to be inaccurate for very redundant matrices. Comparing the

proposed algorithms to the other methods presented here,

it is obvious that the incoherence level achieved by our

methodology outperforms all the existing methods. Average

results for mutual coherence confirm these observations (see

Section V).

Fig. 6. Frame potential as a function of the number of iterations. The
experiments involve (a) a 15 × 120 frame and (b) a 25 × 120 frame. The
curves corresponding to the proposed algorithms and [26] coincide, meeting
the minimal bound after a few iterations.

A metric used to evaluate how close the obtained frame is

to a UNTF is the frame potential; it was defined in [39] as

F P(F) =
∑

1≤i, j≤N
i 	= j

∣∣〈 fi , f j

〉∣∣2
. (15)

Benedetto and Fickus [39] discovered that the frame potential

is bounded below by N2/m, with equality if and only if F

is a UNTF for R
m . The frames obtained with the proposed

methodology, employed in the present algorithms and in [26],

exhibit frame potentials that coincide with this bound after

very few iterations. Therefore, the proposed methodology

produces UNTFs. This is an important advantage over existing

techniques, as is demonstrated experimentally by the results

shown in Fig. 6.

IV. OPTIMIZED COMPRESSED SENSING

In sparse representations and compressed sensing we seek

a solution of a sparse representation problem of the form

min
α

J (α) subject to y = Fα, (16)

where J (α) is a function that imposes sparsity constraints

on α. One way to promote a sparse solution is the ℓ0-norm.



2326 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 4, APRIL 2014

Choosing J (α) ≡ ‖α‖0, we are led to the following

ℓ0-minimization problem,

min
α∈RN

‖α‖0 subject to y = Fα. (17)

As this problem is intractable [40], requiring combinatorial

search, approximate numerical methods have been adopted for

its solution. The main techniques include greedy methods and

convex relaxation. The former generate a sequence of locally

optimal choices in hope of determining a globally optimal

solution. Orthogonal Matching Pursuit (OMP) [41] and its

variations belong to this category. Instead of (17), convex

relaxation methods solve a related convex program in hope

that solutions coincide. Smoothing the penalty function with

the ℓ1-norm, we obtain the problem

min
α∈RN

‖α‖1 subject to y = Fα. (18)

Many algorithms have been proposed to solve (18); Basis

Pursuit (BP) [42] is a typical one.

Performance guarantees for the aforementioned algorithms

underline that F should have certain properties. According to

well known results, OMP and BP can find the solution of

the ℓ0 and ℓ1 minimization problems with high probability

provided that the system matrix F has small enough mutual

coherence [11]. Besides F having small enough mutual coher-

ence, the true solution must also be sufficiently sparse.

In compressed sensing, F comes from the product of a

given representation dictionary D and the projection matrix P .

CS theory asserts that the projection matrix and the rep-

resentation dictionary should be incoherent, that is, highly

uncorrelated. D is designated by the characteristics of the

treated signals, as its role is to provide a high level of

sparsity. As far as the choice of P is concerned, a matrix

satisfying the restricted isometry property (RIP) is known

to be incoherent with any orthonormal basis [43]. We can

loosely say that when a matrix obeys RIP of order s, then

all subsets of s columns are nearly orthogonal. Unfortunately,

constructing RIP matrices has been proven extremely difficult.

Most theoretical results in CS are based on the assumption that

the projection matrix is drawn at random; random Gaussian

or Bernoulli matrices are known to satisfy RIP with high

probability, provided that the number of measurements m is in

the order of T log(N/T ) [44]. Recall that N is the dimension

of the T -sparse representation of the treated signal.

The improvement of performance guarantees on one hand,

and the need to design sensing operators corresponding to the

application of interest on the other, have produced several new

theoretical and practical results regarding projection matrices,

while research still goes on [45]. Deterministic constructions

is one working direction [46], [47], providing the convenience

to verify RIP without checking up all s-column submatrices.

However, when employing deterministic matrices for CS, the

sparsity level must be in the order of
√

m, a limitation known

as the “square root bottleneck.” A construction that managed

to go beyond this bottleneck [48] provided only a slight

improvement. A more optimistic result concerning a specific

deterministic construction can be found in [49]; the authors

conjecture that ETFs corresponding to Paley graphs of prime

order are RIP in a manner similar to random matrices.

The approach adopted in this paper toward the design

of the projection matrix involves its optimization. Recent

publications [25], [26], [37], [38], [50], [51] have shown that

reconstruction accuracy may be improved if the projection

matrix is in a sense optimized for a certain signal class as this

is determined by the representation dictionary. Following con-

ditions set in sparse representations, the optimization process

introduced in [25] involves the construction of an effective

dictionary that exhibits small mutual coherence. Given the

representation dictionary D, the optimization of the projection

matrix reduces to finding a matrix P that yields an incoherent

effective dictionary F = P D.

Aiming at the minimization of the average correlation

between the columns of F , Elad in [25] proposes an iterative

“shrinkage” operation on the off-diagonal Gram matrix entries

according to

ĝi j =

⎧
⎪⎨
⎪⎩

γ gi j ,
∣∣gi j

∣∣ ≥ t,

γ t · sgn(gi j ), t >
∣∣gi j

∣∣ ≥ γ t,

gi j , γ t >
∣∣gi j

∣∣ ,
(19)

where γ , t are appropriate parameters (0 < γ, t < 1)

determining the convergence speed. In the same spirit, similar

“shrinkage” operations are proposed in [37] and [38].

In [50], the authors’ goal is to produce a Gram matrix that

is close to the identity matrix, by introducing the minimization

problem

min
F

∥∥F∗F − I
∥∥
F

. (20)

Their solution, based on SVD, can work for either the single

optimization of the projection matrix given the dictionary or

the joint design and optimization of the dictionary and the

projection matrix, from a set of training images. In the latter

case the authors combine their method with K-SVD [52]. The

problem of (20) is also treated in [51], proposing a solution

based on gradient descent.

While working with the mutual coherence is simpler than

working with the complex restricted isometry property, the

analysis from the point of view of the mutual coherence leads

to pessimistic results regarding CS measurements. Recovering

T components from a sparse signal requires an order T 2

measurements [25]. However, it has been demonstrated that

the mutual coherence expresses worst case results for signal

recovery. In addition, recent theoretical results provide a more

optimistic perspective for incoherent matrices provided that

they also form tight frames. A theorem that relates an incoher-

ent tight frame with performance guarantees for the algorithms

deployed to solve (17) and (18) has been formulated by

Tropp [22].

Theorem 3. Let F be an m × N incoherent tight frame,

and α a sparse vector observed by y = Fα. If α has

T ≤ cm/ log N nonzero entries drawn at random (c is some

positive constant), then it is the unique solution for ℓ0 and ℓ1

minimization problems with probability greater than 99.44%.

The author characterizes as incoherent the frames with mutual

coherence equal to or smaller than 1/
√

m. According to
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Theorem 3, using an incoherent tight frame, the number

of necessary measurements to recover a T -sparse signal of

length N , is in the order of T log N .

The goal of the optimization technique proposed in this

paper is the construction of an effective dictionary that satisfies

the constraints introduced by Theorem 3, that is, small mutual

coherence and tightness. Starting with a random Gaussian pro-

jection matrix P and a matrix D that yields sparse signal rep-

resentations, we obtain an initial effective dictionary F = P D.

Based on the algorithm presented in Section III, we produce an

effective dictionary FCS that forms an incoherent UNTF. Then

solving a least squares problem, we compute a matrix Popt

satisfying FCS = Popt D to obtain an optimized projection

matrix for CS.

Following this optimization strategy, we present experimen-

tal results for CS signal recovery in the next section.

V. EXPERIMENTAL RESULTS

The algorithms proposed in this paper build incoherent

UNTFs, which can be used for compressed sensing and other

applications as well. As we have already seen in Section III,

both algorithms yield similar constructions, therefore, we have

decided to employ only one of the proposed algorithms in the

experiments presented in this section. We choose the proposed

alternating projections, as it exhibits higher convergence speed.

We first present significant properties of the obtained frames,

that is, their mutual coherence and frame potential. Then, we

present reconstruction results when the proposed construction

is applied to CS.

In CS, we may consider either naturally sparse signals

or signals that are sparse with respect to a representation

matrix D. For sparse signals, we use an incoherent UNTF, F ,

as a projection matrix; the proposed methodology is applied to

an initial random Gaussian matrix and the resulting frame is

used to take measurements according to y = Fα. Otherwise,

we consider the product F = P D, where D is a fixed

dictionary, take an initial random Gaussian P , and optimize

F over P . Here, we follow the latter consideration.

The proposed method is compared to [25], our previous

work [26] and the methods of [37] and [38]. Although our

experiments included the methods of [50] and [51] as well,

we only report results with the methods of [37] and [38] since

they seem to perform better.

A. Incoherent UNTFs

Our first experiments investigate the properties of the

obtained incoherent UNTFs. In the following experiments, we

take the initial F to be an m × N random Gaussian matrix

with m ∈ [15 : 5 : 60] and N = 120. For every value of m,

we carry out 10000 experiments and compute average results.

As our work aims at improving CS reconstruction accuracy,

we compare the proposed construction to incoherent matrices

produced by other methods used for optimized CS.

The mutual coherence is presented in Fig. 7. We can see

that the proposed method leads to a significant reduction of

the mutual coherence of the initial random matrix starting

by a factor of approximately 45% for very redundant frames

Fig. 7. Mutual coherence as a function of the number of measurements.
The bottom brown dash-dotted line represents the lowest possible bound [see
eq. (12)].

Fig. 8. Frame potential as a function of the number of measurements. The
black and red dotted lines corresponding to our methodology coincide with

the lowest possible bound N2/m.

and becoming closer to the lowest possible bound when

redundancy (ρ = N/m) decreases (the brown dash-dotted

line, in Fig. 7, stands for the lowest possible bound [see

eq. (12)]. This is a very significant improvement compared

to the results of our work in [26] and the other methods

presented here. The fact that the proposed method performs

well even for very redundant frames is an important advantage

over the other competing methods. In Fig. 8 we demonstrate

the frame potential [see eq. (15)] of the frames under testing,

answering the question “how close are the obtained construc-

tions to UNTFs?” The measurements corresponding to the

proposed method and [26] coincide with the lowest bound

N2/m, confirming that the proposed methodology leads to

UNTFs.

Another way to evaluate the obtained frames is to consider

the distribution of the inner products between distinct columns.

Fig. 9 illustrates a representative example of a 25×120 frame.

The histogram depicts the distribution of the absolute values

of the corresponding Gram matrix entries. The results concern



2328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 4, APRIL 2014

Fig. 9. Changes in the distribution of the column correlation of a 25 × 120
frame.

the initial random matrix and all the matrices produced by the

employed iterative algorithms, after 50 iterations. The yellow

bar rises at the critical interval that includes the minimal

achievable correlation, corresponding to the distribution of an

optimal Grassmannian frame (the bar’s actual height is con-

strained for clear demonstration of the methods under testing).

The proposed method exhibits a significant concentration near

the critical interval, combined with a short tail after it, showing

that the number of the Gram entries that are closer to the ideal

Welch bound is larger than in any other method presented here.

Such a result is in agreement with the small mutual coherence

values depicted in Fig. 7.

B. CS Performance

The second group of experiments concerns the application

of the obtained incoherent UNTFs to compressed sensing.

The effective dictionary built with the proposed methodology

is used to acquire sparse synthetic signals. A recovery algo-

rithm is employed to reconstruct the original signal from the

obtained measurements.

For each experiment, we generate a T -sparse vector of

length N , α ∈ R
N , which constitutes a sparse representation

of the K -length synthetic signal x = Dα, x ∈ RK , K ≤ N .

We choose the dictionary D ∈ RK×N to be a random

Gaussian matrix. Experiments with DCT dictionaries lead to

similar results. The locations of the nonzero coefficients in the

sparse vector are chosen at random. Besides the effectiveness

Fig. 10. CS performance for random and optimized projection matrices.
Keeping the sparsity level fixed, reconstruction experiments are performed for
varying number of measurements. The proposed method clearly outperforms
the existing methods even when the number of measurements is small.

of the projection matrix P , the reconstruction results also

depend on the number of measurements m and the sparsity

level of the representation T . Thus, our experiments include

varying values of these two parameters. For a specified number

of measurements m ≪ K , we create a random projection

matrix P ∈ Rm×K . After the optimization process, we obtain

m projections of the original signal according to (7). We recon-

struct the original sparse signal with OMP.

In all experiments presented here, the synthetic signals are

of length K = 80 and the respective sparse representations,

under the dictionary D, of length N = 120. The execution

of the optimization algorithm included up to 50 iterations.

Two sets of experiments have been considered; the first one

includes varying values of the number of measurements m and

the second one includes varying values of the sparsity level T

of the treated signals. For every value of the aforementioned

parameters we perform 10000 experiments and calculate the

relative error rate; if the mean squared error of a reconstruction

exceeds a threshold of order O(10−4), the reconstruction is

considered to be a failure.

Fig. 10 presents the relative errors as a function of the

number of measurements m, for a fixed sparsity level (T = 4)

of the treated signal. Fig. 11 presents the relative errors for a

fixed number of measurements (m = 25) and varying values

of the sparsity level of the signal. It is clear that the effective

dictionary obtained by the proposed algorithm leads to better

reconstruction results compared to random matrices and to

matrices produced by the other methods. This is due to the

improvement in the effective dictionary properties.

An important observation regarding CS performance, is that

although we achieved a high quality signal recovery, the fact

that for some values of measurements (e.g. 15) this improve-

ment is not of the same order as the improvement in the mutual

coherence, indicates that additional properties should be taken

into consideration to decide about the appropriateness of the

effective dictionary. This has been pointed out by other authors

[25], [50] as well and should be explored both theoretically

and experimentally.
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Fig. 11. CS performance for random and optimized projection matrices.
Keeping the number of measurements fixed, reconstruction experiments are
performed for varying sparsity levels. The proposed method clearly outper-
forms the existing methods even for high sparsity levels. A vanishing graph
implies a zero error rate.

VI. CONCLUSION AND FUTURE WORK

Based on new concepts of frame theory and recent results

in sparse representations, we developed a methodology for

optimizing the projection matrix that yields an incoherent

UNTF as effective dictionary. Employing the obtained pro-

jection matrix in CS, we recovered sparse signals with high

accuracy from a small number of measurements.

Considering that previous work on projections’ optimization

involves only the minimization of the mutual coherence, the

proposed method introduces a new parameter in the opti-

mization process, namely tightness. Requiring the effective

dictionary to be a tight frame results in additional reduction of

the mutual coherence and improves other properties such as

frame potential. The proposed methodology, combined with

more efficient techniques of coherence minimization, could

further improve the characteristics of the obtained dictionary.

Concluding, we expect that the construction of incoherent

UNTFs with the proposed methodology will be useful for other

applications as well, besides CS.
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