32. Construction of Integral Basis. III

By Kōsaku Okutsu
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Ifanaga, m. J. A., March 12, 1982)

Let o be a complete discrete valuation ring with the maximal ideal $\mathfrak{p}=\pi \mathrm{o}, k$ its quotient field, $f(x)$ a monic irreducible separable polynomial in $\mathfrak{o}[x]$ with degree n and θ a root of $f(x)$ in an algebraic closure \bar{k} of k. In Part II, we have defined primitive divisor polynomials (p.d.p.) $f_{1}(x), f_{2}(x), \cdots, f_{r}(x)$ of θ, by means of which we have given an integral basis of $K=k(\theta)$ explicitly. We have denoted the degree of $f_{i}(x)$ by $m_{i}(\theta, k)(i=1, \cdots, r)$. As we consider $\mathfrak{v}, k, f(x)$, and θ as fixed in this part, we shall write simply m_{i} for $m_{i}(\theta, k)$. We know $m_{r}=1, m_{0}=n$, and $m_{i} \mid m_{i-1}(i=1, \cdots, r)$.

Now we shall give a construction of these p.d.p. $f_{i}(x), i=1, \cdots, r$.
We begin with "last p.d.p." $f_{r}(x)$ of degree 1 , and proceed retrogressively: We shall obtain $f_{i-1}(x)$ from $f_{r}(x), f_{r-1}(x), \cdots, f_{i}(x) . f_{r}(x)$ can be obtained as follows.

We fix a complete set of representatives V of $\mathfrak{o} \bmod \mathfrak{p}$. By Hensel's lemma there exists a unique polynomial $g(x)$ in $\mathfrak{o}[x]$ with coefficients in V which is irreducible $\bmod \mathfrak{p}$ and $f(x) \equiv g(x)^{s} \bmod \mathfrak{p}$ where $s=\operatorname{deg} f / \operatorname{deg} h . \quad g(x)$ will be called the irreducible component of $f(x)$ $\bmod \mathfrak{p}$. If its degree is greater than 1 , then any monic polynomial with degree 1 , for example x, is a last p.d.p. If $g(x)$ is linear, put $g(x)=x-c_{\mathrm{r}}\left(c_{0} \in V\right)$. It is clear that $\operatorname{ord}_{\mathfrak{p}}\left(\theta-c_{0}\right)=\left(\operatorname{ord}_{\mathfrak{p}}\left(f\left(c_{0}\right)\right)\right) / n$. When $n \nmid \operatorname{ord}_{\mathfrak{p}}\left(f\left(c_{0}\right)\right), x-c_{0}$ is a last p.d.p. When $n \mid \operatorname{ord}_{\mathfrak{p}}\left(f\left(c_{0}\right)\right)$, put $F_{0}(x)=f(x), t_{1}=\left(\operatorname{ord}_{p}\left(F_{0}\left(c_{0}\right)\right)\right) / n$, and $F_{1}(x)=\sum_{i=0}^{n}\left(\left(F_{0}^{(i)}\left(c_{0}\right)\right) / i!\pi^{t_{1}(n-i)}\right) x^{i}$. Then $F_{1}(x)$ is shown to be a monic polynomial in $\mathfrak{o}[x]$.

Let $g_{1}(x)$ be the irreducible component of $F_{1}(x) \bmod \mathfrak{p}$. If deg $g_{1}(x)$ >1, then $x-c_{0}$ is a last p.d.p. If $g_{1}(x)$ is linear and equal to $x-c_{1}$ then consider $\left(\operatorname{ord}_{\mathfrak{p}}\left(F_{1}\left(c_{1}\right)\right)\right) / n=t_{2}$. If $t_{2} \notin N$, then $x-\left(c_{0}+c_{1} \pi^{t_{1}}\right)$ is a last p.d.p. If $t_{2} \in N$, then we define $F_{2}(x)$ from $F_{1}(x)$ just as we have defined $F_{1}(x)$ from $F_{0}(x)$. We may obtain a last p.d.p. of the form $x-\left(c_{0}+c_{1} \pi^{t_{1}}+c_{2} \pi^{t_{1}+t_{2}}\right)$, or we should continue further in the same way. This procedure ends after a finite number of steps.

Let α_{i} be a root of $f_{i}(x)$ in \bar{k} and let e_{i}, f_{i} be the ramification index, the residue class degree of the extension $k\left(\alpha_{i}\right)$ over $k(i=0,1, \cdots, r)$. We fix $i(1<i \leq r)$, and assume that $f_{i}(x), f_{i+1}(x), \cdots, f_{r}(x)$ are already obtained. Then the following propositions give e_{i-1}, f_{i-1}, and finally the theorem will determine $f_{i-1}(x)$.

Proposition 1. We put $l_{i} / t_{i}=\operatorname{ord}_{\mathfrak{p}}\left(f_{i}(\theta)\right)$ where l_{i}, t_{i} are natural numbers such that $\left(l_{i}, t_{i}\right)=1$ for $i=1, \cdots, r-1$, and for $i=r$ when $\operatorname{ord}_{\mathfrak{p}}\left(f_{r}(\theta)\right)>0$. If $\operatorname{ord}_{\mathfrak{p}}\left(f_{r}(\theta)\right)=0$, we put $l_{r}=0, t_{r}=1$. Then e_{i-1} coincides with the least common multiple of $t_{i}, t_{i+1}, \cdots, t_{r}(1 \leq i \leq r)$.

Now let m be any integer such that $1 \leq m<n$. We put $H_{i, m}(x)$ $=f_{i}(x)^{l} \sum_{j=i+1}^{r} f_{j}(x)^{q_{j}(m)}$ where $l=\left[m / m_{i}\right]$, and $g_{j}(m)(j=1, \cdots, r)$ are integers defined in Theorem 1 of Part II, satisfying $0 \leq q_{i}(m)<m_{j-1}$ $/ m_{j}(j=1, \cdots, r)$ and $m=\sum_{j=1}^{r} q_{j}(m) m_{j}$. Then the degree of $H_{i, m}(x)$ is equal to m.

Proposition 2. The notations being as above, we put $\mu_{i, m}$ $=\operatorname{ord}_{\mathfrak{p}}\left(H_{i, m}(\theta)\right)$, and $S_{0}^{i}=\left\{m(0 \leq m<n) \mid \mu_{i, m}=\left[\mu_{i, m}\right]\right\}(1 \leq i \leq r)$. Then the residue class degree f_{i-1} of the extension $k\left(\alpha_{i-1}\right)$ over k is equal to the dimension of the vector space over $\mathfrak{o} / \mathfrak{p}$ generated by the set $\left\{\left(H_{i, m}(\theta) / \pi^{[\mu, m]}\right) \bmod \mathfrak{ß} \mid m \in S_{0}^{i}\right\}$ where $\mathfrak{ß}$ is the maximal ideal of o_{K}. (An algorithm can be given to compute this dimension from $f(x)$.)

We put $S_{t}^{i}=\left\{m \in\{0,1, \cdots, n-1\} \mid \mu_{i, m}-\left[\mu_{i, m}\right]=t / e_{i-1}\right\} \quad(t=0,1, \cdots$, $\left.e_{i-1}-1\right)$. Then we have $S_{t}^{i} \neq \phi$ for any $i(1 \leq i \leq r)$, and $t\left(0 \leq t<e_{i-1}\right)$, and we have $\{0,1, \cdots, n-1\}=S_{0}^{i} \cup S_{1}^{i} \cup \cdots \cup S_{e_{i-1}-1}^{i}$ (direct sum). Now we will define a sequence $\left\{F_{i-1, j}(x)\right\}_{j=0,1, \ldots}$ of monic polynomials with degree m_{i-1} as follows. We put $F_{i-1,0}(x)=f_{i}(x)^{d_{i}}$ where $d_{i}=m_{i-1} / m_{i}$, and put $\Lambda_{i-1,0}=\operatorname{ord}_{\mathfrak{p}}\left(F_{i-1,0}(\theta)\right)$. Assume $F_{i-1, j-1}(x)$ has been defined. Then we put $\Lambda_{i-1, j-1}=\operatorname{ord}_{\mathfrak{p}}\left(F_{i-1, j-1}(\theta)\right)$. For any $m\left(1 \leq m<m_{i-1}\right)$, let $H_{i, m}(x)$ $=\prod_{k=i}^{r} f_{k}(x)^{q_{k}(m)}$ and $\mu_{i, m}=\operatorname{ord}_{\mathfrak{p}}\left(H_{i, m}(\theta)\right)$ as above. First we assume that next two conditions (i), (ii) are satisfied.
(i) $\Lambda_{i-1, j-1}-\left[\Lambda_{i-1, j-1}\right]=\frac{t}{e_{i-1}}$ for some $t \in N\left(0 \leq t<e_{i-1}\right)$.
(ii) $\left(\frac{H_{i, m_{0}}(\theta)}{\pi^{\left[\mu_{i}, m_{0}\right]}}\right)^{-1}\left(\frac{F_{i-1, j-1}(\theta)}{\pi^{\left[A_{i-1, j-1]}\right]}}\right) \bmod \mathfrak{P}$ is contained in the vector space over $\mathfrak{o} / \mathfrak{p}$ generated by the set

$$
\left\{\left.\left(\frac{H_{i, m_{0}}(\theta)}{\pi^{\left[\mu_{i}, m_{0}\right]}}\right)^{-1}\left(\frac{H_{i, m}(\theta)}{\pi^{[\mu i, m]}}\right) \bmod \mathfrak{\Re} \right\rvert\, m \in S_{t}^{i} \text { and } 0 \leq m<m_{i-1}\right\}
$$

where m_{0} is some element of S_{t}^{i} such that $0 \leq m_{0}<m_{i-1}$.
In this case we define

$$
F_{i-1, j}(x)=F_{i-1, j-1}(x)-\sum_{\substack{m \in S_{i}^{t} \\ 0 \leq m<m_{i-1}}} a_{m} \pi^{\left[\Lambda_{i-1, j-1}\right]-[\mu i, m]} H_{i, m}(x)
$$

where $a_{m}\left(m \in S_{t}^{i}, 0 \leq m<m_{i-1}\right)$ are elements of $V(\subset \mathfrak{0})$ which are uniquely determined by the condition :

$$
\left(\frac{H_{i, m_{0}}(\theta)}{\pi^{\left[\mu_{i}, m_{0}\right]}}\right)^{-1}\left(\frac{F_{i-1, j-1}(\theta)}{\pi^{\left[A_{i-1, j-1}\right]}}\right) \equiv \sum_{\substack{m \in S_{t}^{i} \\ 0 \leq m<m_{i-1}}} a_{m}\left(\frac{H_{i, m_{0}}(\theta)}{\pi^{\left[\mu_{i}, m_{0}\right]}}\right)^{-1}\left(\frac{H_{i, m}(\theta)}{\pi^{\left[m_{i}, m\right]}}\right) \quad(\bmod \mathfrak{P}) .
$$

When one of the above conditions (i), (ii) is not satisfied, we put $\boldsymbol{F}_{i-1, j}(x)=\boldsymbol{F}_{i-1, j-1}(x)$.

Theorem 1. The notations being as above, there exists some natural number s such that $F_{i-1, s}(x)=F_{i-1, s+1}(x)$. For this $s, F_{i-1, s}(x)$ is an ($i-1$)-th primitive divisor polynomial of θ over k.

In Part IV we will give an explicit formula for an integral basis when \mathfrak{o} is a principal ideal domain.

Reference

[1] K. Okutsu: Construction of integral basis I; II. Proc. Japan Acad., 58A, 47-49; 87-89 (1982).

