32. Construction of Integral Basis. III

By Kōsaku OKUTSU

Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1982)

Let o be a complete discrete valuation ring with the maximal ideal $\mathfrak{p}=\pi\mathfrak{o}$, k its quotient field, f(x) a monic irreducible separable polynomial in $\mathfrak{o}[x]$ with degree n and θ a root of f(x) in an algebraic closure k of k. In Part II, we have defined primitive divisor polynomials (p.d.p.) $f_1(x), f_2(x), \dots, f_r(x)$ of θ , by means of which we have given an integral basis of $K=k(\theta)$ explicitly. We have denoted the degree of $f_i(x)$ by $m_i(\theta, k)$ $(i=1, \dots, r)$. As we consider o, k, f(x), and θ as fixed in this part, we shall write simply m_i for $m_i(\theta, k)$. We know $m_r=1, m_0=n$, and $m_i \mid m_{i-1}$ $(i=1, \dots, r)$.

Now we shall give a construction of these p.d.p. $f_i(x)$, $i=1, \dots, r$.

We begin with "last p.d.p." $f_r(x)$ of degree 1, and proceed retrogressively: We shall obtain $f_{i-1}(x)$ from $f_r(x)$, $f_{r-1}(x)$, \cdots , $f_i(x)$. $f_r(x)$ can be obtained as follows.

We fix a complete set of representatives V of $0 \mod \mathfrak{p}$. By Hensel's lemma there exists a unique polynomial g(x) in $\mathfrak{o}[x]$ with coefficients in V which is irreducible mod \mathfrak{p} and $f(x) \equiv g(x)^s \mod \mathfrak{p}$ where $s = \deg f/\deg h$. g(x) will be called the *irreducible component* of f(x)mod \mathfrak{p} . If its degree is greater than 1, then any monic polynomial with degree 1, for example x, is a last p.d.p. If g(x) is linear, put $g(x) = x - c_c$ ($c_0 \in V$). It is clear that $\operatorname{ord}_{\mathfrak{p}}(\theta - c_0) = (\operatorname{ord}_{\mathfrak{p}}(f(c_0))/n$. When $n \setminus \operatorname{ord}_{\mathfrak{p}}(f(c_0))$, $x - c_0$ is a last p.d.p. When $n \mid \operatorname{ord}_{\mathfrak{p}}(f(c_0))$, put $F_0(x) = f(x)$, $t_1 = (\operatorname{ord}_{\mathfrak{p}}(F_0(c_0)))/n$, and $F_1(x) = \sum_{i=0}^n ((F_0^{(i)}(c_0))/i! \pi^{t_1(n-i)})x^i$. Then $F_1(x)$ is shown to be a monic polynomial in $\mathfrak{o}[x]$.

Let $g_1(x)$ be the irreducible component of $F_1(x) \mod \mathfrak{p}$. If deg $g_1(x) > 1$, then $x - c_0$ is a last p.d.p. If $g_1(x)$ is linear and equal to $x - c_1$ then consider $(\operatorname{ord}_{\mathfrak{p}}(F_1(c_1)))/n = t_2$. If $t_2 \notin N$, then $x - (c_0 + c_1 \pi^{t_1})$ is a last p.d.p. If $t_2 \in N$, then we define $F_2(x)$ from $F_1(x)$ just as we have defined $F_1(x)$ from $F_0(x)$. We may obtain a last p.d.p. of the form $x - (c_0 + c_1 \pi^{t_1} + c_2 \pi^{t_1 + t_2})$, or we should continue further in the same way. This procedure ends after a finite number of steps.

Let α_i be a root of $f_i(x)$ in \bar{k} and let e_i , f_i be the ramification index, the residue class degree of the extension $k(\alpha_i)$ over k $(i=0, 1, \dots, r)$. We fix i $(1 < i \le r)$, and assume that $f_i(x)$, $f_{i+1}(x)$, \dots , $f_r(x)$ are already obtained. Then the following propositions give e_{i-1} , f_{i-1} , and finally the theorem will determine $f_{i-1}(x)$.

K. OKUTSU

Proposition 1. We put $l_i/t_i = \operatorname{ord}_{\mathfrak{p}}(f_i(\theta))$ where l_i , t_i are natural numbers such that $(l_i, t_i) = 1$ for $i = 1, \dots, r-1$, and for i = r when $\operatorname{ord}_{\mathfrak{p}}(f_r(\theta)) > 0$. If $\operatorname{ord}_{\mathfrak{p}}(f_r(\theta)) = 0$, we put $l_r = 0$, $t_r = 1$. Then e_{i-1} coincides with the least common multiple of t_i , t_{i+1} , \dots , t_r $(1 \le i \le r)$.

Now let *m* be any integer such that $1 \le m < n$. We put $H_{i,m}(x) = f_i(x)^l \sum_{j=i+1}^r f_j(x)^{q_j(m)}$ where $l = [m/m_i]$, and $g_j(m)$ $(j=1, \dots, r)$ are integers defined in Theorem 1 of Part II, satisfying $0 \le q_i(m) < m_{j-1} / m_j$ $(j=1, \dots, r)$ and $m = \sum_{j=1}^r q_j(m)m_j$. Then the degree of $H_{i,m}(x)$ is equal to *m*.

Proposition 2. The notations being as above, we put $\mu_{i,m} = \operatorname{ord}_{\mathfrak{p}}(H_{i,m}(\theta))$, and $S_0^i = \{m(0 \le m \le n) | \mu_{i,m} = [\mu_{i,m}]\}$ $(1 \le i \le r)$. Then the residue class degree f_{i-1} of the extension $k(\alpha_{i-1})$ over k is equal to the dimension of the vector space over $\mathfrak{o}/\mathfrak{p}$ generated by the set $\{(H_{i,m}(\theta)/\pi^{[\mu_{i,m}]}) \mod \mathfrak{P} | m \in S_0^i\}$ where \mathfrak{P} is the maximal ideal of $\mathfrak{o}_{\mathbb{K}}$. (An algorithm can be given to compute this dimension from f(x).)

We put $S_i^i = \{m \in \{0, 1, \dots, n-1\} | \mu_{i,m} - [\mu_{i,m}] = t/e_{i-1}\}$ $(t=0, 1, \dots, e_{i-1}-1)$. Then we have $S_i^i \neq \phi$ for any i $(1 \le i \le r)$, and t $(0 \le t < e_{i-1})$, and we have $\{0, 1, \dots, n-1\} = S_0^i \cup S_1^i \cup \dots \cup S_{e_{i-1}-1}^i$ (direct sum). Now we will define a sequence $\{F_{i-1,j}(x)\}_{j=0,1,\dots}$ of monic polynomials with degree m_{i-1} as follows. We put $F_{i-1,0}(x) = f_i(x)^{d_i}$ where $d_i = m_{i-1}/m_i$, and put $\Lambda_{i-1,0} = \operatorname{ord}_{\mathfrak{p}}(F_{i-1,0}(\theta))$. Assume $F_{i-1,j-1}(x)$ has been defined. Then we put $\Lambda_{i-1,j-1} = \operatorname{ord}_{\mathfrak{p}}(F_{i-1,j-1}(\theta))$. For any m $(1 \le m < m_{i-1})$, let $H_{i,m}(x) = \prod_{k=i}^r f_k(x)^{a_k(m)}$ and $\mu_{i,m} = \operatorname{ord}_{\mathfrak{p}}(H_{i,m}(\theta))$ as above. First we assume that next two conditions (i), (ii) are satisfied.

(i)
$$\begin{split} \Lambda_{i-1,j-1} - [\Lambda_{i-1,j-1}] &= \frac{t}{e_{i-1}} \text{ for some } t \in N \ (0 \le t < e_{i-1}). \\ \text{(ii)} \quad \left(\frac{H_{i,m_0}(\theta)}{\pi^{[\mu_{i,m_0}]}}\right)^{-1} \left(\frac{F_{i-1,j-1}(\theta)}{\pi^{[\Lambda_{i-1,j-1}]}}\right) \ \text{mod } \ \mathfrak{P} \ \text{is contained in the vector} \end{split}$$

space over $\mathfrak{o}/\mathfrak{p}$ generated by the set

$$\left\{ \left(\frac{\boldsymbol{H}_{i,m_0}(\boldsymbol{\theta})}{\pi^{\llbracket \mu_i,m_0 \rrbracket}} \right)^{-1} \left(\frac{\boldsymbol{H}_{i,m}(\boldsymbol{\theta})}{\pi^{\llbracket \mu_i,m_1 \rrbracket}} \right) \mod \mathfrak{P} \, | \, m \in S_t^i \text{ and } \boldsymbol{\theta} \leq m < m_{i-1} \right\}$$

where m_0 is some element of S_t^i such that $0 \le m_0 < m_{i-1}$. In this case we define

$$F_{i-1,j}(x) = F_{i-1,j-1}(x) - \sum_{\substack{m \in S_i^t \\ 0 \le m < m_i - 1}} a_m \pi^{[A_{i-1,j-1}] - [\mu_i],m]} H_{i,m}(x)$$

where a_m $(m \in S_i^i, 0 \le m < m_{i-1})$ are elements of $V(\subset 0)$ which are uniquely determined by the condition:

$$\left(\frac{H_{i,m_0}(\theta)}{\pi^{\left\lceil \mu_i,m_0\right\rceil}}\right)^{-1}\left(\frac{F_{i-1,j-1}(\theta)}{\pi^{\left\lceil \lambda_{i-1,j-1}\right\rceil}}\right) \equiv \sum_{\substack{m \in S_t^i \\ 0 \le m < m_{i-1}}} a_m\left(\frac{H_{i,m_0}(\theta)}{\pi^{\left\lceil \mu_i,m_0\right\rceil}}\right)^{-1}\left(\frac{H_{i,m}(\theta)}{\pi^{\left\lceil \mu_i,m\right\rceil}}\right) \pmod{\mathfrak{P}}.$$

When one of the above conditions (i), (ii) is not satisfied, we put $F_{i-1,j}(x) = F_{i-1,j-1}(x)$.

Theorem 1. The notations being as above, there exists some natural number s such that $F_{i-1,s}(x) = F_{i-1,s+1}(x)$. For this s, $F_{i-1,s}(x)$ is an (i-1)-th primitive divisor polynomial of θ over k.

In Part IV we will give an explicit formula for an integral basis when o is a principal ideal domain.

Reference

 [1] K. Okutsu: Construction of integral basis I; II. Proc. Japan Acad., 58A, 47-49; 87-89 (1982).