mater.scichina.com link.springer.com

Published online 25 October 2019 | https://doi.org/10.1007/s40843-019-1180-8 Sci China Mater 2020, 63(2): 276-287

Construction of layered h-BN/TiO₂ hetero-structure and probing of the synergetic photocatalytic effect

Qun Li¹, Xinmei Hou^{1*}, Zhi Fang¹, Tao Yang¹, Junhong Chen², Xiangzhi Cui^{3*}, Tongxiang Liang⁴ and Jianlin Shi³

ABSTRACT A novel layered hexagonal boron nitride/titanium dioxide (h-BN/TiO₂) composite photocatalyst has been constructed by anchoring TiO₂ nanoflakes on the surface of h-BN flakes via a solvothermal method. The morphology and dispersion of TiO₂ can be tuned by controlling the amount of flake h-BN. Benefiting from the unique hetero-structure, the photocatalytic performance of the obtained composite toward rhodamine B (RhB) degradation is greatly enhanced, among which 12 wt% h-BN/TiO₂ composites show 3.5 and 6.9 times higher degradation rate than the synthesized TiO₂ and commercial TiO₂ (P25), respectively, and an excellent cycling stability has also been obtained. Moreover, the first-principles calculation reveals the synergetic catalytic effect between TiO₂ and h-BN flake, which is found to be responsible for the significantly enhanced photocatalytic performance of h-BN/TiO₂ composites.

Keywords: layered nanostructure, h-BN flake, TiO_2 nanoflake, photocatalytic activity, dye degradation

INTRODUCTION

Photocatalytic degradation has increasingly become one of the effective approaches for solving environmental pollution by decomposing toxic complex organic pollutants into less toxic or even completely harmless molecules under sunlight or UV illumination [1]. Among the various semiconductor photocatalysts, titanium dioxide (TiO₂) has fostered considerable interest in organic dye degradation due to its high efficiency, low cost, nontoxicity and chemical stability [2,3]. However, owing to low utilization efficiency of sunlight (about 4%) and the fast recombination of photogenerated electrons and holes, bare TiO_2 exhibits low photocatalytic efficiency, which greatly limits its practical use [4]. Nowadays, two strategies are usually developed to enhance the photocatalytic activity. One is to decrease the size and design unique structure to promote the mobility and separation of photogenerated electrons and holes [5]. The other is to combine semiconductors with other favorable materials to construct semiconductor-based heterostructures and composite systems for visible-light-driven light harvesting systems [6,7]. To sum up, developing a composite system with a controllable structure by combining the above two advantages has profound meaning.

Hexagonal boron nitride (h-BN), with a two dimensional (2D) graphite-like structure, has opened up a new frontier in materials for the development of clean and renewable energy conversion and energy storage systems on account of high chemical stability, high thermal stability, low density, biocompatibility and environmental friendliness [8,9]. To our knowledge, h-BN is commonly excluded in photocatalysis and photovoltaic conversion applications due to its wide gap [10]. However, recent studies have proved the feasibility of h-BN as catalyst support materials to effectively enhance the photocatalytic properties of semiconductor materials because of the interactions between them, for instance, SnO₂/h-BN submicro-boxes (BNMB) [11], BN/Ag₂CO₃ [12], h-BN/ Bi₄O₅Br₂-layered microspheres [13], CdS/BN nanosheets (BNNSs) [14], BN/AgBr [15] and BN/Bi₄O₅I₂ [16]. The enhancement of photocatalytic propeties is generally ascribed to the suppressed recombination of photogenerated electrons and holes, extended excitation wavelength and increased amount of surface-adsorbed

¹ Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China

² School of Material Science and Technology, University of Science and Technology Beijing, Beijing 100083, China

³ The State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

⁴ School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

^{*} Corresponding authors (emails: houxinmeiustb@ustb.edu.cn (Hou X); cuixz@mail.sic.ac.cn (Cui X))

reactant [17]. However, the role of h-BN in the photocatalytic enhancement of the composites is still under debate. Furthermore, from the aforementioned BNsemiconductor composites, it can be found that the photocatalytic properties are largely determined by the morphology of the semiconductors and support materials [18,19]. In this work, layered h-BN/TiO₂ composites with flake-on-flake hetero-structure are constructed and expected to improve photocatalytic activities. Multiple techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the obtained composites. The effect of the flake h-BN on the photocatalytic performance of the composites was investigated by degrading rhodamine B (RhB) under visible light irradiation. Moreover, the possible mechanism for the improved photocatalytic activity was discussed in detail by the firstprinciples calculation.

EXPERIMENTAL SECTION

Preparation of flake h-BN

All the chemicals used in this research were of analytical purity and without further purification prior to use. The synthesis of the h-BN was reported in our previous paper [20]. Typically, the foamy precursor was prepared by low temperature combustion synthesis (LCS) method in air in a muffle furnace using H_3BO_3 , $C_6H_{12}O_6H_2O$, CO- $(NH_2)_2$ and HNO₃ as raw materials. Then, h-BN was obtained by calcining the foamy precursor at 900°C for 3 h in flowing NH₃. The residual carbon and B_2O_3 were removed by annealing in air and washing with hot water, respectively.

Preparation of h-BN/TiO₂ composites

The h-BN/TiO₂ composites with different contents of h-BN were prepared by a simple solvothermal process. Typically, 1 mL TiCl₃ and 1 mL deionized water were added into 30 mL of ethylene glycol under stirring to produce a light purple solution. Then, a certain amount of h-BN was suspended in the mixed solution, which was put into a 50-mL Teflon-lined stainless steel autoclave. The sealed autoclave was heated at 150°C for 12 h and then cooled naturally to room temperature. The asobtained products were centrifuged, washed with ethanol several times and dried at room temperature. Finally, the products were annealed at 350°C for 2 h to remove all organic species adsorbed on the composites and improve the crystallinity at the same time. The obtained samples were named as X wt% h-BN/TiO₂, where X was the mass fraction of h-BN during the synthetic process. For comparison, TiO₂ was synthesized by the similar method without addition of h-BN.

Characterization

The phase of the obtained samples was firstly examined by XRD (M21XVHF22, MAC Science, Yokohama, Japan) with a TTRIII diffractometer equipped with Cu Ka radiation over a 2θ range from 10° to 90°. The morphology and surface roughness of the obtained samples were observed by cold field emission SEM (FE-SEM, ZEISS SUPRATM 55, Germany). TEM (HITACHI H8100, Hitachi, Japan) was used to further investigate the microstructure. High resolution TEM (HRTEM, JEM 2010, Joel Ltd. Japan) was used to characterize the phase and crystal morphology of the products. The specific surface area was determined from the nitrogen adsorptiondesorption isotherm measured at 77 K on Quadrasorb SI-MP analyzer using Brunauer-Emmett-Teller (BET) model. The chemical states of the composites were determined by XPS. The optical properties of the samples were analyzed by UV-Vis spectrophotometer (UV2250, Shimadzu), in which BaSO₄ was used as the reflectance standard material. Photoluminescence (PL) emission spectra were measured on a Hitachi F-7000 fluorescence spectrophotometer at an excitation wavelength of 361 nm.

Photoelectrochemical measurement

The indium tin oxide (ITO) glass with an area of 1 \times 2 cm² was washed ultrasonically in acetone and ethanol for a few minutes, respectively. The cleaned ITO glass was dried for the next modification. The h-BN/TiO2 composites and polyvinylidene fluoride (PVDF) with the mass ratio of 95:5 were dispersed in N-methyl-2-pyrrolidone (NMP) to form a stable suspension, and then the suspension was deposited on the ITO glass with an area of 1 \times 1 cm². Finally, the modified ITO glass was heated at 60°C overnight to evaporate the solvent for the photoelectrochemical measurement, which was tested in 0.2 mol L⁻¹ Na₂SO₄ solution on a CHI660D electrochemical working station consisting of an Ag/AgCl reference electrode, a platinum wire counter electrode, and a modified ITO glass working electrode. The photocurrent vs. irradiation time curve was recorded at 0 V under dark (20 s) and light (20 s), respectively. A light source used in the work was a 300 W Xe lamp with a 400 nm cut-off filter and the light intensity density was 100 mW cm^{-2} .

Photocatalytic performance of the as-prepared sample

Photocatalytic performance of the h-BN/TiO₂ composites was evaluated by irradiating 20 mL RhB (10 mg L⁻¹) and phenol (40 mg L⁻¹) in the presence of 0.75 g L⁻¹ h-BN/ TiO₂ under stirring. Before irradiation, the suspension was magnetically stirred for 30 min to achieve adsorption-desorption equilibrium. During the irradiation process, 5 mL of the suspension was collected and centrifuged to obtain supernatant. The concentration of RhB and phenol was examined at different time intervals by UV-vis spectrophotometer at 554 and 269 nm, respectively. The degradation efficiency was calculated by the following expression [21]:

$$\text{Efficiency} = \frac{C_t}{C_0},\tag{1}$$

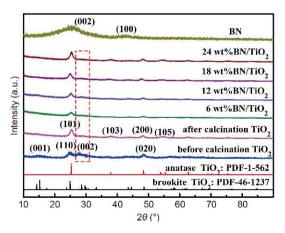
where C_0 is the initial concentration of RhB and phenol solution; C_t is the concentration at given test time.

First-principles calculations

All calculations were performed by density functional theory (DFT) using the Perdew-Burke-Ernzerhof (PBE) functional [22], as implemented in Vienna ab-initio Simulation Package (VASP) [23]. Electron-ion interactions were described by the projector-augmented wave (PAW) potentials with a kinetic energy cutoff of 450 eV [24]. The valence electron configurations for Ti, O, B, N, C, and H were 3p⁶3p²4s², 2s²2p⁴, 2s²2p¹, 2s²2p³, 2s²2p² and 1s¹, respectively. To correct the self-interaction error, the DFT +U method was adopted, where a Hubbard-type correction was applied on the 3d orbitals of Ti and 2p orbitals of O [25]. Effective U = 4.2 eV for Ti 3d and U = 6.3 eV for O 2p orbitals were selected on the basis of previous work [26], which provided a correct description of the polaronic states of TiO2. The structure relaxation was stopped when the force on each atom was below 0.05 eV/Å.

The anatase TiO₂ (101) surface was modeled by 4×1 periodically repeated slabs and a four-layered model was used (Fig. S1a). A 20 Å vacuum was added between slabs along the [101] direction to simulate the open surface. One layered h-BN was combined with TiO₂ slab to model h-BN/TiO₂ composites (Fig. S1b). The lattice mismatch was smaller than 5% and the distance between these two slabs has been optimized. A Monkhorst-Pack grid of $6\times2\times1$ k points mesh centered at the Γ point was used for all DFT calculations. Electronic band structure and density of state (DOS) were calculated to analyze the contribution of h-BN to photocatalysis. Adsorption energies of organic molecules were applied to evaluate the ad-

sorption capacity of photocatalysts and the charge-density difference was used to study the charge transfer between h-BN and TiO₂. Electron effective masses (m_e^*) and hole effective masses (m_h^*) were calculated by the method of parabolic band fitting around the conduction band minimum (CBM) or the valence band maximum (VBM) according to the following equations:


$$(m^*)_{ij} = \hbar \left[\frac{\partial \varepsilon_n \overline{k}}{\partial k k_j} \right]^{-1}, i, j = x, y, z,$$
(2)

where m^* is the effective mass of the charge carrier, *i* and *j* denote reciprocal components, $\varepsilon_n \overline{k}$ is the energy dispersion function of the *n*th band, \overline{k} is the wave vector, and \hbar represents the reduced Planck constant. For better fitting parabolic within the VBM and CBM regions, the nonself-consistent calculation for band structure was performed using 61 *k*-points around *V*BM or CBM with a separation of 0.002 Å⁻¹.

In addition, the adsorption energies of RhB on photocatalysts were calculated to evaluate their adsorption ability. Because RhB molecule is so huge that the surface of slabs would be very large and the calculation would be quite time-consuming. Besides, de-ethylation of RhB is one of the most important steps during the degradation process. Two different parts of the RhB with ethyl groups were chosen as the adsorbed molecules.

RESULTS AND DISCUSSION

Fig. 1 shows the XRD patterns of h-BN, TiO₂ and the annealed h-BN/TiO₂ with different h-BN contents. As for h-BN, two broad diffraction peaks at 2θ =20°-30° and 40°-45° can be indexed to the (002) and (100) facets of h-BN (PDF 34-421), respectively. For TiO₂, before calci-

Figure 1 The XRD patterns of h-BN, TiO₂ and h-BN/TiO₂ samples with different contents of flake h-BN.

nation, it can be clearly found that the peaks for (001), (110), (002) and (020) correspond to the TiO₂ brookite (B) crystalline phase (PDF 46-1237) [27]. However, after calcination, the phase of the TiO₂ gradually transforms from brookite to anatase crystalline phase (PDF 1-562). Interestingly, the phase transformation is not complete, which leads to the enhancement of the photocatalytic activity of TiO₂ due to the existence of two crystal structures acting as semiconductor heterojunction [28]. After h-BN was introduced, all diffraction peaks of the obtained h-BN/TiO₂ composites can be clearly indexed to anatase TiO₂ crystals except for the (002) small peak of the brookite phase (marked by the red line). And no distinct diffraction peaks of h-BN can be observed due to dense TiO₂ covering on its surface.

The effect of the flake h-BN content on the TiO_2 microstructure was also investigated and shown in Fig. S2. Fig. S2a and b indicate that pure TiO_2 assembled from 2D nanoflakes has a hierarchical microsphere structure with an average diameter of 200 nm. After the flake h-BN is introduced, the structure of TiO_2 gradually transforms from microsphere into randomly oriented nanoflakes and nano grasses structure has been formed with the increase of the addition of flake h-BN (Fig. S2c–j). The result reveals that the morphology and dispersion of TiO_2 can be tuned by controlling the flake h-BN content. However, when the addition amount is excessive, the flake h-BN will stack and hinder the growth of TiO_2 nanoflake, which leads to a light shielding effect and suppresses the generation of photogenerated electron-hole pairs. The optimized addition amount of flake h-BN is 12 wt%, and the 2D TiO_2 nanoflake is uniformly attached on the surface of flake h-BN to form a novel 2D/2D h-BN/TiO₂ nanostructure composite.

In order to further investigate the growth mechanism of TiO₂ on the surface of h-BN, the morphology of the obtained h-BN and 12 wt% h-BN/TiO2 was discussed in detail. From Fig. 2a and b, it can be observed that the morphology of the h-BN possesses graphene-like flake structure, which is advantageous for the growth of TiO₂ nanoflake and formation of h-BN/TiO₂ heterojunctions. The HRTEM image in Fig. 2c shows four parallel fringes at the edge region of the h-BN flake and the interlayer distance is 0.357 nm, which is larger than the standard value of h-BN (0.33-0.34 nm) resulting from the existence of structure defects in the obtained flake h-BN [29]. When the flake h-BN is used to construct 2D/2D h-BN/TiO₂ composites, its surface becomes rough and the flake h-BN can hardly be observed due to the dense TiO₂ nanoflakes covering on its surface as shown in Fig. 2d and

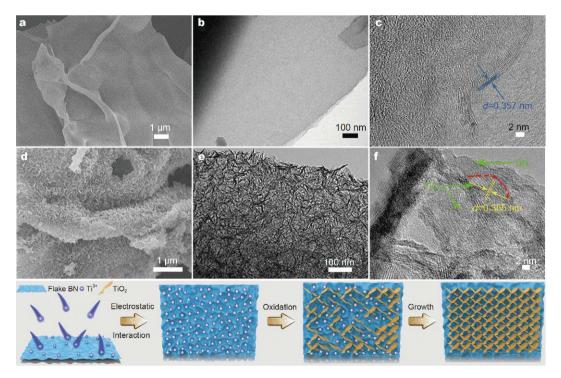
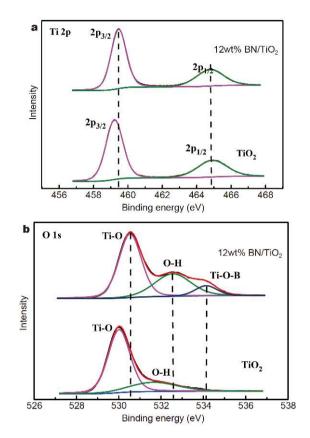


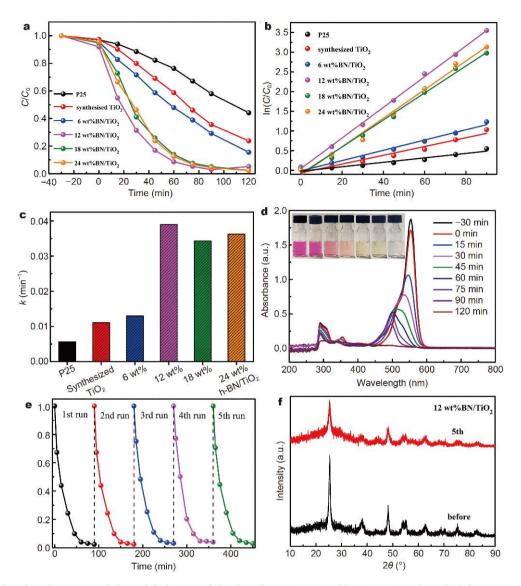
Figure 2 SEM (a) and TEM (b, c) images of the h-BN sample. SEM (d) and TEM (e, f) images of 12 wt% h-BN/TiO₂. (g) Schematic illustration of the synthetic process and growth mechanism for 2D/2D h-BN/TiO₂ composites.

e. HRTEM image in Fig. 2f demonstrates the existence of interface structure of heterojunctions (marked by red lines) between TiO₂ nanoflakes and flake h-BN. Due to the rich detects character of flake h-BN, only the (101) plane of the anatase phase TiO₂ can be observed and the fringe spacing is 0.355 nm. Based on the above results, the growth mechanism is proposed. It has been reported that the flake h-BN has an overall negative surface charge at pH above 3.2 [20], which is important for the uniform growth of TiO₂ nanoflakes on the surface of flake h-BN. As shown in Fig. 2g, when the flake of h-BN is added into the ethylene glycol solution containing TiCl₃, Ti³⁺ will be adsorbed on the negatively charged surface of flake h-BN by electrostatic interaction. Then the Ti³⁺ is gradually oxidized to form TiO₂ in the acidic solution during the prolonged solvothermal treatment. Meanwhile, due to the mechanical support of flake h-BN, the self-aggregated TiO₂ microspheres will scatter into nanoflakes and grow on the h-BN surface.

The surface chemical composition of the 12 wt% BN/ TiO₂ composite was also investigated by XPS analysis. Fig. 3a shows that Ti 2p spectra consist of two major peaks and the binding energy of the Ti $2p_{3/2}$ peak shifts from 459.22 to 459.45 eV after introduction of the flake h-BN, indicating the close interaction between flake h-BN and TiO₂. In Fig. 3b, the O 1s spectra of TiO₂ nanoflakes are identified to two peaks with the binding energy values at 530.02 and 531.64 eV, corresponding to Ti–O and O–H bonds, respectively. However, a new peak with the binding energy at 534.1 eV corresponding to Ti–O–B bond appears in the O 1s spectra of 12 wt% BN/TiO₂ besides the same two peaks as TiO₂ [30]. Appearance of the new Ti–O–B bond further confirms the formation of heterojunctions between flake h-BN and TiO₂ nanoflakes.

The N₂ adsorption-desorption isotherms were conducted to determine the specific surface area (SSA) of the flake h-BN, pure TiO₂ and 12 wt% h-BN/TiO₂. The isotherm of the h-BN can be classified as type IV isotherm with type H4 hysteresis loop according to the IUPAC nomenclature [31], which reveals a predominant mesoporous structure (Fig. S3a). The BET model gives an SSA of 936 m² g⁻¹, and Barrett-Joyner-Halenda (BJH) calculation gives the total pore volume of 0.705 cm³ g⁻¹ for h-BN, which is favor of the species adsorption. As shown in Fig. S3b, the SSA and pore volume are $151 \text{ m}^2 \text{ g}^{-1}$ and $0.339 \text{ cm}^3 \text{ g}^{-1}$ for pure TiO₂, and 170 m² g⁻¹ and 0.457 cm³ g⁻¹ for 12 wt% h-BN/TiO₂, respectively. Compared with the pure TiO₂, the SSA and pore volume of 12 wt% h-BN/TiO₂ are improved by adding the flake h-BN with high SSA, which is advantageous for improving




Figure 3 XPS spectra of as-prepared TiO_2 and 12 wt% BN/TiO₂ composite, (a) Ti 2p and (b) O1s.

the diffusion and adsorption capacity of organic dyes.

Photocatalytic performance

The photocatalytic performance of the h-BN/TiO₂ composites was evaluated by degrading RhB under visible light irradiation. Fig. 4a shows a comparison of degradation efficiency between TiO₂ and h-BN/TiO₂. Under visible light irradiation, the synthesized TiO₂ displays a higher photocatalytic activity than commercial TiO₂ (P25), which may be attributed to the morphology difference. Compared with the P25 nanoparticles, the flake TiO₂ will offer more active sites for RhB degradation. It is well known that P25 can not absorb visible light, and thus the degradation is caused by self-photosensitized mechanism [32]. Meanwhile, it is noted that all the flake h-BN/TiO₂ composites exhibit higher photocatalytic activity than the synthesized TiO₂ and P25. The phenomenon is caused by the introduction of the flake h-BN with higher SSA which can greatly improve adsorption capacity and concentrate RhB molecules around TiO₂. Among the composites, 12 wt% h-BN/TiO2 composite exhibits the highest photocatalytic activity and the degradation effi-

ARTICLES

Figure 4 (a) Photodegradation rates of RhB and (b) kinetics of RhB degradation on TiO₂ and h-BN/TiO₂ samples and (c) the corresponding reaction rate constant *k*. (d) UV-vis absorption spectra and images (inset) of the aqueous RhB solution in the presence of 12 wt% h-BN/TiO₂ at different time intervals. (e) Reusability property of 12 wt% h-BN/TiO₂ composites on the photocatalytic degradation of RhB under visible light. (f) XRD patterns of the 12 wt% h-BN/TiO₂ before and after the reusability experiment.

ciency is up to 95%. For comparison, the physical mixture of BN and TiO₂ (12 wt% h-BN-TiO₂ mixture) for RhB degradation was carried out. As shown in Fig. S4, about 40% RhB is removed before light irradiation. However, only 13% RhB is removed by using the same amount of 12 wt% h-BN/TiO₂ composite. After irradiation, the composite exhibits higher photocatalytic activity than the mixture. The result indicates that immobilization of TiO₂ on the surface of flake h-BN is very effective for RhB degradation. Furthermore, phenol degradation was also performed to evaluate the photocatalytic activity and rule

out the dye sensitization effect [33]. As shown in Fig. S5, 89% phenol is removed by $12 \text{ wt\% h-BN/TiO}_2$ after 150 min, which is much higher than TiO₂ (17%). The superior photocatalytic activity of $12 \text{ wt\% h-BN/TiO}_2$ confirms that the photocatalytic activity under visible light is responsible for the degradation of phenol rather than the dye-sensitization effect.

The kinetic behavior of the composites for degradation of RhB was further investigated under visible light irradiation. Fig. 4b shows the photocatalytic degradation of RhB following a pseudo first-order reaction: $\ln(C_0/C)=kt$,

wherein t, k, C_0 and C represent the reaction time, the apparent rate constant, the initial concentration and the concentration of RhB at given test time, respectively [34]. The kinetic constant k was calculated and presented in Fig. 4c. The increasing order of the rate constants is: 12 wt% h-BN/TiO₂ > 24 wt% h-BN/TiO₂ > 18 wt% h-BN/ $TiO_2 > 6$ wt% h-BN/TiO₂ > synthesized TiO₂ > P25. It is worth noting that the rate constant of 12 wt% h-BN/TiO₂ is 3.5 and 6.9 times higher than that of the synthesized TiO₂ and P25, respectively, which indicates photocatalytic activity of TiO₂ is greatly improved by introducing appropriate amount of flake h-BN. Fig. 4d shows the UV-vis absorption spectra and images (inset) of the aqueous RhB solution in the presence of 12 wt% h-BN/TiO₂ at different time intervals. It can be found that the maximum absorption wavelength displays a gradual blue shift from 554 to 498 nm with increasing irradiation time, which demonstrates both de-ethylation and oxidative degradation of RhB take place and the de-ethylation process is a stepwise manner [32]. The inset of Fig. 4d shows the gradual fading of RhB color, indicating the RhB is decomposed completely. The present results are compared with those reported in the literature for dyes degradation (Table S1). It can be seen that the photocatalytic efficiency of the layered h-BN/TiO₂ composite is comparable and even higher than other BN-semiconductor systems, such as BN/Ag₃VO₄ [10], BN/WO₃ [35], BN/BiOI [36] and BN/g-C₃N₄ [37]. Notably, benefiting from the unique flake-on-flake structure, the photocatalytic performance of flake h-BN/TiO₂ composites is also superior to other BN-TiO₂ photocatalyst systems [28,38-43].

Reusability and stability

The stability and recyclability of 12 wt% h-BN/TiO₂ were investigated by the same process as mentioned above. After each run of reaction, the photocatalyst was collected for continue using. From Fig. 4e, it can be seen that the removal percentage exhibits neglected change after five cycles, indicating the excellent reusability of 12 wt% h-BN/TiO₂ composite. Fig. 4f shows the XRD patterns of the 12 wt% h-BN/TiO₂ composite before and after the recyclability experiment. No obvious change of the phase can be found except for the lower characteristic diffraction peak intensity after test, indicating the good stability of the composite under irradiation.

The photocatalytic mechanism

The optical absorption spectra of the TiO_2 and h-BN/ TiO₂ composite are shown in Fig. S6. It can be seen that the absorption edge of TiO_2 is determined to be 400 nm. Compared with the pure TiO₂, h-BN/TiO₂ composites exhibit increased absorption ability in the visible light region, especially the 12 wt% BN/TiO₂, which exhibits obvious red-shift of the absorption edge and has a long and weak absorption tail covering the whole visible light region. According to the plots of Kubelka-Munk remission function (i.e., relationship of $[\alpha hv]^{1/2}$ vs. photon energy ($E_g = hv$), the calculated band gap values of the synthesized TiO₂ is 3.1 eV, and the value can be decreased to 2.88 eV for 12 wt% h-BN/TiO₂, indicating a narrower band gap can be obtained, which is attributed to the energy arrangement caused by the heterojunctions between TiO₂ nanoflakes and flake h-BN.

The PL emission spectra were measured with excitation light of 361 nm at room temperature. Generally, the lower PL intensity indicates lower recombination of charge carriers, resulting in higher photocatalytic activity [44]. Fig. 5a exhibits two main emission peaks centered at around 396 and 417 nm, respectively. By comparison, 12 wt% h-BN/TiO₂ exhibits the lowest intensity, demonstrating the lowest recombination rate of photogenerated electrons and holes, which is in accordance with the photocatalysis measurement (Fig. 4b). In addition, the photocurrent responses of TiO2 and BN/TiO2 composites were studied as shown in Fig. 5b. The h-BN/TiO₂ composites exhibit a significantly enhanced photocurrent intensity compared with the TiO₂, indicating much enhanced separation ability of electron-hole pairs after the introduction of h-BN, which results in much higher photocatalytic activity. EIS measurements were carried out as shown in Fig. 5c. The 12 wt% h-BN/TiO₂ exhibits the smallest arc radius, further indicating the lowest impedance, which can facilitate the interfacial chargetransfer process.

In order to further explore the photocatalytic mechanism of the composites, the trapping experiments were carried out to detect the main active species during the photocatalytic process. 1 mmol L^{-1} ethylenediaminetetraacetic acid disodium (EDTA-2Na), 2 mmol L^{-1} isopropanol (IPA) and 1 mmol L⁻¹ benzoquinone (BQ) were chosen as scavengers for h^+ , $\cdot OH$ and $\cdot O_2^-$, respectively. From Fig. 5d, it can be seen that the effect of •OH on the photocatalytic performance can be neglected, implying the ·OH does not contribute to the degradation of RhB. However, the degradation rate significantly decreases when EDTA-2Na and BQ are added, indicating h^+ and $\cdot O_2^{-}$ play an important role in the photocatalytic process. In addition, electron spin resonance (ESR) spin-trap technique was also carried out to further detect the active species in the photocatalytic process as shown in Fig. 5e.

SCIENCE CHINA Materials

ARTICLES

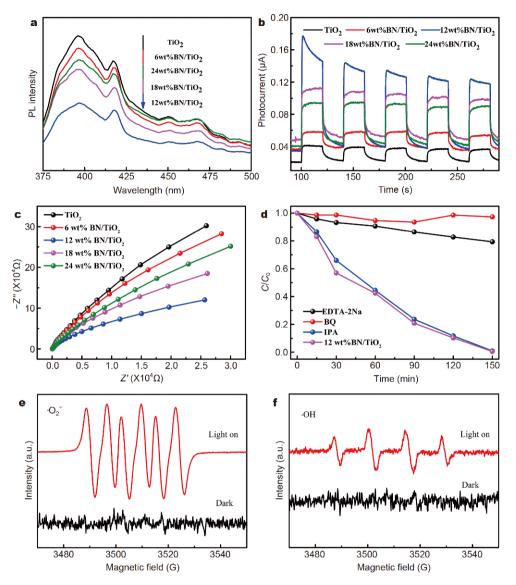
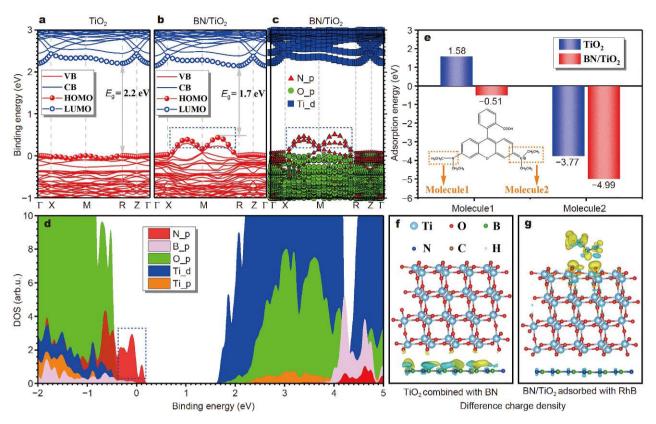



Figure 5 (a) PL emission spectra, (b) transient photocurrent responses, and (c) EIS of TiO_2 and h-BN/ TiO_2 composites with different contents of flake h-BN. (d) Photocatalytic degradation of RhB on 12 wt% h-BN/ TiO_2 composites in the presence of different scavengers under visible light irradiation. DMPO spin-trapping ESR spectra in (e) methanol dispersion and (f) aqueous dispersion using 12 wt% h-BN/ TiO_2 under visible light irradiation.

Six strong characteristic peaks of 5,5-dimethyl-1-pyrroline-*N*-oxide (DMPO)- \cdot O₂⁻ are observed in the methanol dispersion under visible light irradiation, while no signals can be found in the dark, indicating \cdot O₂⁻ radicals are indeed generated on the surface of irradiated 12 wt% h-BN/TiO₂. Interestingly, the typical weaker characteristic peaks of DMPO- \cdot OH (Fig. 5f) were also observed, indicating \cdot OH can be also produced. However, from the trapping experiment, we have found that the effect of \cdot OH on the photocatalytic performance can be neglected. Besides, the VB value of TiO₂ after introduction of BN is not positive enough to oxidize H_2O or OH^- to OH (2.72 V vs. normal hydrogen electrode (NHE)) [45]. Thus, the generation of OH may be attributed to the further reduction of O_2^- [46]. The results further prove that RhB can be degraded by TiO₂ nanoflakes after the introduction of h-BN under visible light. The mechanism of photocatalytic enhancement was investigated by employing DFT as shown in Fig. 6. The presence of the h-BN flake in the h-BN/TiO₂ composite could effectively reduce the bandgap compared with the synthesized TiO₂ (Fig. 6a and b), which is accordance with the result of the optical ab-

ARTICLES

Figure 6 DFT calculation. (a, b) Band structures of TiO_2 and h-BN/ TiO_2 , respectively. (c, d) Contribution of N, O and Ti orbitals on band structure and density of state, respectively. (e) The adsorption energy of two kinds of molecules with ethyl groups in RhB absorbed on TiO_2 and h-BN/ TiO_2 . (f, g) Difference charge densities of TiO_2 combined with/without h-BN and h-BN/ TiO_2 adsorbed with/without RhB.

sorption spectra. The reduction of bandgap is caused by the upshift of VBM contributed by the N-p orbital of h-BN (as shown in the two peaks in Fig. 6b and c labeled by dashed boxes). Besides, CB and VB derive mainly from Ti-d and N-p orbitals, which could also be obtained from DOS in Fig. 6d. The state in VBM labeled by dashed box consists of N-p orbital, which lifts the VBM and reduces the bandgap. Furthermore, the band of the highest occupied molecular orbital (HOMO) of h-BN/TiO₂ is much more bent than that of TiO₂ (Fig. 6a and b), clarifying that the hole of h-BN/TiO₂ has much lighter effective mass than that of $\rm TiO_2$. The hole effective mass of $\rm TiO_2$ and h-BN/TiO₂ is 0.57 and 0.12 m_0 (m_0 is the rest mass of electron). Therefore, the addition of h-BN could increase the hole carrier mobility, which is beneficial for the oxidation of RhB. In addition, two different parts of the RhB with ethyl group were chosen as the adsorbed molecules. Fig. 6e shows molecule 2 has more negative adsorption energy, i.e., easier to be adsorbed, and h-BN/TiO₂ has better adsorption ability than TiO₂. Therefore, the flake h-BN could increase the adsorption of RhB around the TiO_2 surface. The difference charge densities were also calculated to observe the charge transfer (Fig. 6f). There is large charge accumulation and charge depletion around N and B atoms, respectively, which will form the strong p-p coupling between the N-p and B-p orbitals, leading to the more bent HOMO (Fig. 6b). Meanwhile, there is also more or less charge accumulation around the O atoms close to h-BN, indicating the addition of h-BN can contribute electrons to TiO_2 . When molecule 2 is adsorbed on the surface of h-BN/TiO₂, there is a large charge accumulation on the surface of TiO_2 , which leads to the electronic loss of molecule 2 and causes the de-ethylation process. DFT calculation further proves that the addition of h-BN into TiO_2 can indeed enhance the photocatalytic performance.

Based on the above results, the possible mechanism of the h-BN/TiO₂ is proposed as shown in Fig. 7. The CB and VB edge potentials of the synthesized TiO₂ were theoretically speculated by means of atom's Mulliken electronegativity: $E_{\rm CB} = X - E_{\rm C} - 0.5E_{\rm g}$; $E_{\rm VB} = E_{\rm g} + E_{\rm CB}$, where X represents the absolute electronegativity of the semiconductor; $E_{\rm C}$ and $E_{\rm g}$ are the energy of free electrons on hydrogen scale (~4.5 eV) and band gap, respectively [47]. The band edge potentials of CB and VB are -0.19 and 2.91 eV, respectively, as shown in Fig. 7. The redox potentials of RhB and excited RhB^{*} are 0.95 and -1.42 eV vs. NHE, respectively [48]. It is much easier for RhB to be oxidized at its excited state. Under illumination, due to the upshift of VB after the introduction of h-BN, electrons in VB can be excited to CB, so holes are left on the VB. At the same time, RhB can be excited to form excited states (RhB^{*}), leading to electrons with injection from the adsorbed RhB^{*} species to the TiO₂ CB [49]. Due to the introduction of h-BN with high SSA, more adsorbed RhB^{*} species concentrate on the surface of TiO₂. So, more electrons transfer to CB of TiO₂. In addition, the reduction potential of O_2/O_2^- is -0.046 eV vs. NHE [13]. Thus, the CB value of TiO₂ is negative enough to reduce the adsorbed O_2 to O_2^{-} , which directly participate in the oxidation reaction. Importantly, both the flake-on-flake structure and the negatively charged h-BN will effectively promote h⁺ transfer from the inner of TiO₂ to its surface, and further improve the separation of photogenerated electron and hole pairs. Besides, Fig. 7 shows that the VB value of TiO₂ is positive enough to oxidize RhB. That is to say that the h-BN flake works as a successive catalyst support material and plays a role of preventing the recombination of electrons and holes produced in TiO₂ nanoflakes, following the synergetic catalytic effect of type II proposed in our previous work [50]. The possible reaction process for the decomposition of RhB is given in equations (3-9):

$$\mathrm{TiO}_{2} + hv \to \mathrm{TiO}_{2}(\mathrm{e}^{-} + \mathrm{h}^{+}), \qquad (3)$$

$$\operatorname{RhB} + hv \to \operatorname{RhB}^*,$$
 (4)

 $RhB^* + TiO_2 \rightarrow RhB^+ + TiO_2(e^-), \qquad (5)$

 $\operatorname{TiO}_2(e^- + h^+) + BN \rightarrow \operatorname{TiO}_2(e^-) + BN(h^+),$

$$\operatorname{TiO}_{2}(e^{-}) + \operatorname{O}_{2} \to \operatorname{TiO}_{2} + \operatorname{O}_{2}^{-}, \tag{7}$$

 $\cdot O_2^{-+}RhB^{+}/RhB \rightarrow degradation... products,$ (8)

$$BN(h^+)+RhB^+/RhB \rightarrow degradation... products.$$
 (9)

CONCLUSIONS

A novel 2D/2D h-BN/TiO₂ composite photocatalyst with flake-on-flake nanostructure was successfully synthesized by a solvothermal method with *in situ* growth technology. As expected, the introduction of the flake h-BN can greatly improve the photocatalytic performance of the obtained composites. Especially for the 12 wt% h-BN/TiO₂ composite, a high photocatalytic efficiency up to

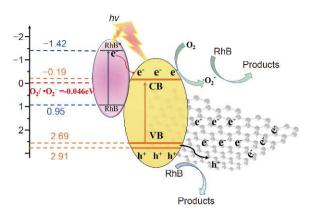


Figure 7 Photocatalytic degradation mechanism of h-BN/TiO₂ composite.

95% for the degradation RhB under visible light has been obtained, and its rate constant is 3.5 and 6.9 times higher than that of the synthesized TiO₂ and P25, respectively. Moreover, the 2D/2D h-BN/TiO₂ composite exhibits excellent cycling stability and reusability. DFT calculation further proves that the addition of h-BN into TiO₂ can indeed enhance the photocatalytic performance of composites. A synergetic catalytic mechanism has been formed on the heterojunctions between h-BN and TiO₂ during the degradation of RhB, in which the ability of visible light absorption is improved on one hand, and on the other hand the photosensitized RhB can increase the degradation rate of RhB by injecting electrons from the adsorbed RhB* species to the TiO₂ CB to generate more active oxygen species $\cdot O_2^{-}$. Meanwhile, not only the negatively charged h-BN improve the separation of photogenerated electron and hole pairs, but its larger specific surface area can also concentrate the RhB molecules around TiO₂ to improve the kinetics. This work not only develops a new multifunctional h-BN/TiO₂ composite as photocatalysts under visible light irradiation, but also provides a new way to design advanced composite photocatalysts.

Received 21 June 2019; accepted 5 September 2019; published online 25 October 2019

- Shahabuddin S, Khanam R, Khalid M, et al. Synthesis of 2D boron nitride doped polyaniline hybrid nanocomposites for photocatalytic degradation of carcinogenic dyes from aqueous solution. Arabian J Chem, 2018, 11: 1000–1016
- 2 Liu W, Liu Z, Wang G, et al. Carbon coated Au/TiO₂ mesoporous microspheres: a novel selective photocatalyst. Sci China Mater, 2017, 60: 438-448
- 3 Tan Y, Liu M, Wei D. A simple green approach to synthesis of sub-100 nm carbon spheres as template for TiO₂ hollow nanospheres with enhanced photocatalytic activities. Sci China Mater, 2018, 61:

(6)

869-877

- 4 Fan Y, Hu G, Yu S, *et al.* Recent advances in TiO₂ nanoarrays/ graphene for water treatment and energy conversion/storage. Sci China Mater, 2019, 62: 325–340
- 5 Yin W, Bai S, Zhong Y, *et al.* Direct generation of fine Bi₂WO₆ nanocrystals on g-C₃N₄ nanosheets for enhanced photocatalytic activity. ChemNanoMat, 2016, 2: 732–738
- 6 Bera R, Kundu S, Patra A. 2D hybrid nanostructure of reduced graphene oxide–CdS nanosheet for enhanced photocatalysis. ACS Appl Mater Interfaces, 2015, 7: 13251–13259
- 7 Wang S, Luo H, Xu X, *et al.* Enhanced organic dye removal of porous BN fibers supported Ta_3N_5 nanoparticles under visible light irradiation. Surfs Interfaces, 2016, 5: 39–46
- 8 Xu H, Wu Z, Ding M, et al. Microwave-assisted synthesis of flower-like BN/BiOCl composites for photocatalytic Cr(VI) reduction upon visible-light irradiation. Mater Des, 2017, 114: 129– 138
- 9 Ide Y, Liu F, Zhang J, et al. Hybridization of Au nanoparticleloaded TiO₂ with BN nanosheets for efficient solar-driven photocatalysis. J Mater Chem A, 2014, 2: 4150–4156
- 10 Lv X, Wang J, Yan Z, *et al.* Design of 3D h-BN architecture as Ag₃VO₄ enhanced photocatalysis stabilizer and promoter. J Mol Catal A-Chem, 2016, 418-419: 146–153
- 11 Wang M, Li M, Xu L, *et al.* High yield synthesis of novel boron nitride submicro-boxes and their photocatalytic application under visible light irradiation. Catal Sci Technol, 2011, 1: 1159–1165
- 12 Wang J, Shen J, Fan D, *et al.* BN nanosheet: an efficient carriers transfer promoter and stabilizer to enhance the photocatalytic performance of Ag₂CO₃. Mater Lett, 2015, 147: 8–11
- 13 Ding S, Mao D, Yang S, et al. Graphene-analogue h-BN coupled Bi-rich Bi₄O₅Br₂ layered microspheres for enhanced visible-light photocatalytic activity and mechanism insight. Appl Catal B-Environ, 2017, 210: 386–399
- 14 Ma F, Zhao G, Li C, et al. Fabrication of CdS/BNNSs nanocomposites with broadband solar absorption for efficient photocatalytic hydrogen evolution. CrystEngComm, 2016, 18: 631–637
- 15 Chen J, Zhu J, Da Z, *et al.* Improving the photocatalytic activity and stability of graphene-like BN/AgBr composites. Appl Surf Sci, 2014, 313: 1–9
- 16 Ji M, Xia J, Di J, *et al.* Graphene-like boron nitride induced accelerated charge transfer for boosting the photocatalytic behavior of $Bi_4O_5I_2$ towards bisphenol A removal. Chem Eng J, 2018, 331: 355–363
- Zhou C, Lai C, Zhang C, *et al.* Semiconductor/boron nitride composites: synthesis, properties, and photocatalysis applications. Appl Catal B-Environ, 2018, 238: 6–18
- 18 Zhang K, Fujitsuka M, Du Y, *et al.* 2D/2D heterostructured CdS/ WS₂ with efficient charge separation improving H₂ evolution under visible light irradiation. ACS Appl Mater Interfaces, 2018, 10: 20458–20466
- 19 Ye M, Gong J, Lai Y, et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO₂ nanotube arrays. J Am Chem Soc, 2012, 134: 15720– 15723
- 20 Li Q, Huo C, Yi K, *et al.* Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuat B-Chem, 2018, 260: 346–356
- 21 Fu X, Hu Y, Zhang T, *et al.* The role of ball milled h-BN in the enhanced photocatalytic activity: A study based on the model of ZnO. Appl Surf Sci, 2013, 280: 828–835

- 22 Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868
- 23 Kresse G, Furthmüller J. Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186
- 24 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775
- 25 Dudarev SL, Botton GA, Savrasov SY, *et al.* Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys Rev B, 1998, 57: 1505–1509
- 26 Zhang J, Peng C, Wang H, *et al.* Identifying the role of photogenerated holes in photocatalytic methanol dissociation on rutile TiO₂ (110). ACS Catal, 2017, 7: 2374–2380
- 27 Hu H, Yu L, Gao X, *et al.* Hierarchical tubular structures constructed from ultrathin TiO₂ (B) nanosheets for highly reversible lithium storage. Energy Environ Sci, 2015, 8: 1480–1483
- 28 Liu D, Zhang M, Xie W, *et al.* Porous BN/TiO₂ hybrid nanosheets as highly efficient visible-light-driven photocatalysts. Appl Catal B-Environ, 2017, 207: 72–78
- 29 Zhang X, Lian G, Zhang S, *et al.* Boron nitride nanocarpets: controllable synthesis and their adsorption performance to organic pollutants. CrystEngComm, 2012, 14: 4670–4676
- 30 Chen D, Yang D, Wang Q, *et al.* Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind Eng Chem Res, 2006, 45: 4110–4116
- 31 Li J, Huang Y, Liu Z, et al. Chemical activation of boron nitride fibers for improved cationic dye removal performance. J Mater Chem A, 2015, 3: 8185–8193
- 32 Wu T, Liu G, Zhao J, et al. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO₂ dispersions. J Phys Chem B, 1998, 102: 5845–5851
- 33 Long M, Cai W, Cai J, et al. Efficient photocatalytic degradation of phenol over Co₃O₄/BiVO₄ composite under visible light irradiation. J Phys Chem B, 2006, 110: 20211–20216
- 34 Xu J, Meng W, Zhang Y, et al. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr: efficacy, products and pathway. Appl Catal B-Environ, 2011, 107: 355–362
- 35 Xu H, Liu L, Song Y, *et al.* BN nanosheets modified WO₃ photocatalysts for enhancing photocatalytic properties under visible light irradiation. J Alloys Compd, 2016, 660: 48–54
- 36 Liu D, Jiang Z, Zhu C, et al. Graphene-analogue BN-modified microspherical BiOI photocatalysts driven by visible light. Dalton Trans, 2016, 45: 2505–2516
- 37 Gu J, Yan J, Chen Z, *et al.* Construction and preparation of novel 2D metal-free few-layer BN modified graphene-like g-C₃N₄ with enhanced photocatalytic performance. Dalton Trans, 2017, 46: 11250–11258
- 38 Nasr M, Viter R, Eid C, et al. Enhanced photocatalytic performance of novel electrospun BN/TiO₂ composite nanofibers. New J Chem, 2017, 41: 81–89
- 39 Singh B, kaur G, Singh P, et al. Nanostructured BN-TiO₂ composite with ultra-high photocatalytic activity. New J Chem, 2017, 41: 11640-11646
- 40 Si H, Lian G, Wang J, *et al.* Synthesis of few-atomic-layer BN hollow nanospheres and their applications as nanocontainers and catalyst support materials. ACS Appl Mater Interfaces, 2016, 8: 1578–1582
- 41 Xie W, Zhang M, Liu D, *et al.* Reactive yellow 161 decolorization by TiO₂/porous boron nitride nanosheet composites in cotton

ARTICLES

dyeing effluent. ACS Sustain Chem Eng, 2016, 5: 1392-1399

- 42 Fu X, Hu Y, Yang Y, *et al.* Ball milled h-BN: an efficient holes transfer promoter to enhance the photocatalytic performance of TiO₂. J Hazard Mater, 2013, 244-245: 102–110
- 43 Liu D, Cui W, Lin J, *et al.* A novel $\text{TiO}_{2-x}N_x/\text{BN}$ composite photocatalyst: Synthesis, characterization and enhanced photocatalytic activity for rhodamine B degradation under visible light. Catal Commun, 2014, 57: 9–13
- 44 Zhou M, Yu J, Liu S, *et al.* Effects of calcination temperatures on photocatalytic activity of SnO₂/TiO₂ composite films prepared by an EPD method. J Hazard Mater, 2008, 154: 1141–1148
- 45 Li G, Wong KH, Zhang X, et al. Degradation of acid orange 7 using magnetic AgBr under visible light: the roles of oxidizing species. Chemosphere, 2009, 76: 1185–1191
- 46 Jiang L, Yuan X, Zeng G, *et al.* Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Appl Catal B-Environ, 2018, 221: 715–725
- 47 Meng S, Ning X, Zhang T, et al. What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag₃PO₄/g-C₃N₄, band-band transfer or a direct Z-scheme? Phys Chem Chem Phys, 2015, 17: 11577–11585
- 48 Fang Z, Li Q, Su L, *et al.* Efficient synergy of photocatalysis and adsorption of hexavalent chromium and rhodamine B over Al₄SiC₄/rGO hybrid photocatalyst under visible-light irradiation. Appl Catal B-Environ, 2019, 241: 548–560
- 49 Wang Y, Wang H, Xu A, *et al.* Facile synthesis of Ag₃PO₄ modified with GQDs composites with enhanced visible-light photocatalytic activity. J Mater Sci-Mater Electron, 2018, 29: 16691–16701
- 50 Shi J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev, 2013, 113: 2139–2181

Acknowledgements This work was supported by the National Natural Science Foundation for Excellent Young Scholars of China (51522402), the National Postdoctoral Program for Innovative Talents (BX20180034), the Fundamental Research Funds for the Central Universities (FRF-TP-18-045A1), and China Postdoctoral Science Foundation (2018M641192).

Author contributions Hou X, Chen J, Liang T and Shi J supervised the experiment. Li Q and Yang T proposed the idea. Li Q designed and performed the experiment and wrote the paper. Fang Z contributed to the DFT calculations. Cui X and Hou X revised the paper. All authors contributed to the general discussion.

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary information Supporting data are available in the online version of the paper.

Qun Li is currently studying for her PhD degree in the University of Science and Technology Beijing, China. Her research focuses on the preparation of materials, electrochemical and adsorption application

Xinmei Hou received her Bachelor's and Master's degree from Zhengzhou University, and got her PhD degree from the University of Science and Technology Beijing in 2009. Now she is a full professor of University of Science and Technology Beijing. Her research interests include the preparation of high performance ceramics, high temperature properties and functional applications in such fields of electrochemistry and environment.

Xiangzhi Cui received her PhD degree in 2009 from Shanghai Institute of Ceramics, Chinese Academy of Sciences, and has been working at the institute since then. Her main research interest includes the structural design and synthesis of mesostructured nanocomposites, and the catalytic performances of the materials for applications in fuel cells and environmental protection.

层状h-BN/TiO2异质结构的构建及其协同光催化 效应探讨

李群¹,侯新梅^{1*},方志¹,杨涛¹,陈俊红²,崔香枝^{3*},梁彤祥⁴, 施剑林³

摘要 本文采用溶剂热法将纳米二氧化钛(TiO₂)片固定在六方氮 化硼(h-BN)片表面,制备了一种新型层状h-BN/TiO₂复合光催化剂. 由于其独特的异质结构,合成的复合材料对罗丹明B(RhB)降解的 光催化性能得到了提高,其中12 wt% h-BN/TiO₂的降解率分别比 合成的TiO₂和P25高3.5倍和6.9倍,同时具有良好的循环稳定性.此 外,第一原理计算揭示了TiO₂与h-BN片之间的协同催化作用,发现 h-BN的引入对h-BN/TiO₂复合材料的光催化性能有显著提高.