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Abstract
In this paper, a construction of (n, k, δ) LDPC convolutional codes over arbitrary finite fields,
which generalizes thework of Robinson andBernstein and the later work of Tong is provided.
The sets of integers forming a (k, w)-(weak) difference triangle set are used as supports of
some columns of the sliding parity-check matrix of an (n, k, δ) convolutional code, where
n ∈ N, n > k. The parameters of the convolutional code are related to the parameters of
the underlying difference triangle set. In particular, a relation between the free distance of
the code and w is established as well as a relation between the degree of the code and the
scope of the difference triangle set. Moreover, we show that some conditions on the weak
difference triangle set ensure that the Tanner graph associated to the sliding parity-check
matrix of the convolutional code is free from 2�-cycles not satisfying the full rank condition
over any finite field. Finally, we relax these conditions and provide a lower bound on the field
size, depending on the parity of �, that is sufficient to still avoid 2�-cycles. This is important
for improving the performance of a code and avoiding the presence of low-weight codewords
and absorbing sets.
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1 Introduction

In the last three decades, the area of channel coding gained a lot of attention, due to the
fact that many researchers were attracted by the practical realization of coding schemes
whose performances approach the Shannon limit. This revolution started in 1993 with the
invention of turbo codes and their decoding algorithms [6]. Only few years later, researchers
investigated also low-density parity-check (LDPC) block codes and their message passing
decoding algorithm. These codes were discovered to be also capable of capacity-approaching
performances. The class of LDPC block codes was introduced by Gallager [14], in 1962.
Their name is due to the fact that they have a parity-check matrix that is sparse. The analysis
of LDPC codes attracted many researchers and a lot of work arose in this direction, starting
from the papers of Wiberg [38] and Mackay and Neal [21]. Moreover, in [9,26] analytical
tools were introduced to investigate the limits of the performance of the message passing
iterative decoding algorithm, suggested by Tanner already in 1981, [30].

Similarly to LDPC block codes, one can consider LDPC convolutional codes. These codes
are defined as the (right) kernel of a sparse sliding parity-check matrix, which allows to still
use iterative message passing decoding algorithms. Moreover, it was proven that LDPC
convolutional codes are practical in different communication applications, see for instance
[3,4,23].

In the last few years, some attempts to construct binary LDPC convolutional codes were
done. Two types of constructions were mainly investigated. The first one exploits the sim-
ilarity of quasi-cyclic block codes and time-invariant LDPC convolutional codes, [31–33].
The second one regards mostly time varying convolutional codes, see for instance [5,25,39].

The aim of this paper is to give a combinatorial construction of LDPC convolutional
codes suitable for iterative decoding. In fact, contrary to LDPC block codes for which a lot
of combinatorial constructions have been derived (see for example [16,19,20,29,36,37]), it
is rare to use combinatorial tools for constructing LDPC convolutional codes.

In 1967, Robinson and Bernstein [27] used difference triangle sets for the first time to
construct binary recurrent codes, which are defined as the (right) kernel of a binary sliding
matrix. At that time, the theory of convolutional codes was not developed yet and the poly-
nomial notation was not used, but now, we may regard recurrent codes as a first prototype
of convolutional codes. This was the first time that a combinatorial object has been used to
construct convolutional codes. Three years later, Tong in [34], used diffuse difference triangle
sets to construct self-orthogonal diffuse convolutional codes, defined by Massey [22]. The
aim of these authors was to construct codes suitable for iterative decoding and their result
was an adapted version of binary LDPC convolutional codes. In [1], the authors constructed
(n, n − 1)q LDPC convolutional codes, whose sliding parity-check matrix is free from 4
and 6-cycles not satisfying the so called full rank condition, starting from difference triangle
sets. This was a generalization of the work of Robinson and Bernstein, in which difference
triangle sets were used to construct convolutional codes over the binary field, that can only
avoid 4-cycles. In 1971, Tong [35] was the first to generalize their construction overFq , using
what we call in this paper weak difference triangle sets. However, his construction is suitable
only for limited rate and in a way that the Tanner graph associated to the parity-check matrix
of these codes is free only from 4-cycles.

In this paper, we give a construction of LDPC convolutional codes for arbitrary rates over
arbitrary fields, using difference triangle sets and weak difference triangle sets. In particular,
the use of the weak version of these combinatorial objects allows to relax the assumptions
required by Robinson, Bernstein and Tong. Indeed, instead of considering sets of nonnegative
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Construction of LDPC convolutional codes via difference triangle sets 2237

integers where all the pairwise differences are distinct among all the sets, we may require
only that the pairwise differences are distinct in each set. Moreover, we show that using
difference triangle sets for this construction produces codes with good distance properties
and we provide a bound on the field size that is sufficient to have codes with good distance
and to avoid the presence of cycles not satisfying the full rank condition.

The paper is structured as follows. In Sect. 2, we start with some background about convo-
lutional codes. Then we define difference triangle sets (DTSs) and weak difference triangle
sets (wDTSs) and their scope. Finally, we introduce LDPC block and LDPC convolutional
codes over finite fields of arbitrary size. In Sect. 3, we generalize the construction in [1] for
LDPC convolutional codes to arbitrary rates, starting from a weak difference triangle set.
We show how the parameters of the constructed convolutional code depend on the properties
of the weak difference triangle set. We derive some distance properties of the codes and the
exact formula for computing their density. Moreover, we show that the free distance and the
column distances of convolutional codes constructed from a DTS are in some sense optimal.
Finally, we present a construction of LDPC convolutional codes from a wDTS and a lower
bound on the corresponding field size such that the free distance is at least 3 and such that
the corresponding Tanner graph is free from 4 and 6-cycles not satisfying the FRC. In Sect.
4, we start with some conditions on the underlying wDTS that ensure that the Tanner graph
associated to the sliding parity-check matrix is free from any cycle over any finite field.
Afterwards, we give a lower bound for the field size sufficient to ensure that our construction
provides a Tanner graph free from 2�-cycles not satisfying the FRC, for � odd. If � is even,
we add some assumptions on the wDTS to be able to derive also in this case a lower bound
on the field size. Finally, we modify our construction to be able to relax these conditions on
the wDTS, which in turn enlarges the underlying field size.

2 Preliminaries

In this section, we provide the background and the known results useful for the rest of the
paper.

2.1 Convolutional codes

Let q be a prime power andFq be the finite field with q elements. Let k, n be positive integers,
with k < n and consider the polynomial ring Fq [z]. An (n, k)q convolutional code is defined
as a submodule C of Fq [z]n of rank k, such that there exists a polynomial generator matrix
G(z) ∈ Fq [z]k×n , whose rows generate C, i.e.

C := {u(z)G(z) | u(z) ∈ Fq [z]k} ⊆ Fq [z]n .
IfG(z) is basic, i.e., it has a right polynomial inverse, there exists a full row-rank parity-check
matrix H(z) ∈ Fq [z](n−k)×n such that

C := {v(z) ∈ Fq [z]n | H(z)v(z)� = 0}.
Finally, we define the degree δ of the convolutional code C as the highest degree among

the k × k minors in G(z). When the degree δ of the convolutional code is known, we denote
C by (n, k, δ)q . We omit to specify the field when it is not needed. If G(z) is reduced, i.e. the
sum of the row degrees of G(z) attains the minimal possible value, then this value is equal
to δ.
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2238 G. N. Alfarano et al.

Lemma 1 ([13,17]) Let H(z) = [hi, j (z)] ∈ F[z](n−k)×n with row degrees ν1, ν2, . . . , νn−k

and [H ]hr be the highest row degree coefficient matrix defined as the matrix with the i th row
consisting of the coefficients of zνi in the i th row of H(z). Then H(z) is reduced if and only
if [H ]hr is full row-rank.

It is well-known that if H(z) ∈ F[z](n−k)×n is a basic and reduced parity-check matrix
of an (n, k, δ) convolutional code C, then the sum of the row degrees of H(z) is equal to δ

(see [28]) which is also equal to the maximal (polynomial) degree of the full-size minors of
H(z). If H(z) is basic but not reduced, then the sum of its row degrees is larger than δ.

There is a natural isomorphism between Fq [z]n and F
n
q [z], which extends to the space

of matrices and allows to consider a generator and a parity-check matrix of a convolutional
code as polynomials whose coefficients are matrices. In particular, we will consider H(z) ∈
F

(n−k)×n
q [z], such that H(z) = H0 + H1z + · · · Hμzμ, with μ > 0. With this notation, we

can expand the kernel representation H(z)v(z)� in the following way:

Hv� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0
...

. . .

Hμ · · · H0
. . .

. . .

Hμ · · · H0
. . .

...

Hμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v0
v1
...

vr

⎤
⎥⎥⎥⎦ = 0, (1)

where r = deg(v). We will refer to the representation of the parity-check matrix of C in Eq.
(1) as sliding parity-check matrix.

Let v(z) = ∑r
i=0 vi zi ∈ F

n
q [z] be a polynomial vector. We define the weight of v(z) as

the sum of the Hamming weights of its coefficients, i.e. wt(v(z)) := ∑r
i=0 wtH (vi ) ∈ N0,

where wtH (vi ) denotes the Hamming weight of vi ∈ F
n
q . This definition allows to endow a

convolutional code C ⊆ Fq [z]n with a distance. We define the free distance of C, denoted by
dfree(C), as the minimum of the nonzero weights of the codewords in C. The parameters δ and
dfree are needed to determine respectively the decoding complexity and the error correction
capability of a convolutional code with respect to some decoding algorithm. For this reason,
for any given k and n and field size q , the aim is to construct convolutional codes with “small”
degree δ and “large” free distance dfree.

For any j ∈ N0 we define the j th column distance of C as

dcj (C) := min

{
wt

(
v0 + v1z + · · · + v j z

j
)

| v(z) ∈ C, v0 �= 0

}

= min

{
wt

(
v0 + · · · + v j z

j
)

| Hc
j [v0 · · · v j ]� = 0, v0 �= 0

}
,

where Hc
j is called j-th truncated parity-check matrix and it is defined for any j ∈ N0 as

Hc
j :=

⎡
⎢⎢⎢⎣

H0

H1 H0
...

...
. . .

Hj Hj−1 · · · H0

⎤
⎥⎥⎥⎦ ∈ F

( j+1)(n−k)×( j+1)n
q .

We also recall the following well-known result.
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Theorem 1 ([15, Proposition 2.1]) Let C ⊆ Fq [z]n be an (n, k)q convolutional code. Let
d ∈ N. Then the following properties are equivalent.

1. dcj = d.
2. None of the first n columns of Hc

j is contained in the span of any other d − 2 columns
and one of the first n columns of Hc

j is in the span of some other d − 1 columns of that
matrix.

2.2 Difference triangle sets

A difference triangle set is a collection of sets of integers such that any integer can be written
in at most one way as difference of two elements in the same set. Difference triangle sets
find application in combinatorics, radio systems, optical orthogonal codes and other areas
of mathematics [7,8,18]. We refer to [10] for a more detailed treatment. More formally, we
define them in the following way, by distinguishing between weak difference triangle sets
and difference triangle sets.

Definition 1 Let N , M be positive integers. An (N , M)-weak difference triangle set (wDTS)
is a collection of sets T := {T1, T2, . . . , TN }, where for any 1 ≤ i ≤ N , Ti := {ai, j | 1 ≤
j ≤ M} is a set of nonnegative integers such that ai,1 < ai,2 < · · · < ai,M and for 1 ≤ i ≤ N
the differences ai, j − ai,k , with 1 ≤ k < j ≤ M are distinct. If all the differences in all the
sets are distinct, we call T a (N , M)-difference triangle set (DTS).

An important parameter characterizing an (N , M)-(w)DTS T is the scope m(T ), which
is defined as

m(T ) := max{ai,M | 1 ≤ i ≤ N }.
A very well-studied problem in combinatorics is finding families of (N , M)-DTSs with

minimum scope. In this work, we will use the sets in a (w)DTS as supports of some columns
of a sliding parity-check matrix of a convolutional code. We will then relate the scope of the
(w)DTS with the degree of the code. Since we want to minimize the degree of the code, it is
evident that the mentioned combinatorial problem plays a crucial role also here.

The name “difference triangle" is derived from a way of writing the differences inside the
sets composing T in a triangular form .

Example 1 (wDTS) Let T = {{1, 2, 4, 8}, {1, 3, 7, 15}, {1, 5, 10, 16}}. Then T is a (3, 4)-
wDTS.

The “triangles" associated to T are the following:

1 2 4
3 6
7

2 4 8
6 12
14

4 5 6
9 11
15

Example 2 (DTS) Let T = {{1, 4, 16, 20}, {1, 7, 12, 14}, {1, 9, 18, 19}}. Then T is a (3, 4)-
DTS.

The “triangles" associated to T are the following:

3 12 4
15 16

19

6 5 2
11 7

13

8 9 1
17 10

18
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2.3 LDPC codes over arbitrary finite fields

LDPC codes are known for their performance near the Shannon-limit over the additive white
Gaussian noise channel [21]. Shortly after they were rediscovered, binary LDPC codes were
generalized over arbitrary finite fields. This new construction was first investigated by Davey
and Mackay in 1998 in [11]. In [12], it was observed that LDPC codes defined over a finite
field with q elements can have better performances than the binary ones. An LDPC code is
defined as the kernel of an N ×M sparse matrix H with entries in Fq . We can associate to H
a bipartite graph G = (V , E), called Tanner graph, where V = Vs ∪ Vc is the set of vertices.
In particular, Vs = {v1, . . . , vN } is the set of variable nodes and Vc = {c1, . . . , cM } is the
set of check nodes. E ⊆ Vs × Vc is the set of edges, with en,m = (vn, cm) ∈ E if and only if
hn,m �= 0. The edge en,m connecting a check node and a variable node is labelled by hn,m ,
that is the corresponding permutation node. For an even integer m = 2�, we call a simple
closed path consisting of � check nodes and � variable nodes in G an m-cycle. The length of
the shortest cycle is called the girth of G or girth of H . It is proved that higher the girth is,
the lower the decoding failure of the bit flipping algorithm is. Moreover, in [24] the authors
showed that short cycles in an LDPC code may be harmful if they do not satisfy the so called
full rank condition (FRC). This is because if the FRC is not satisfied, the short cycles produce
low-weight codewords or they form absorbing sets, [2].

Moreover, in [24] and in [2] it is shown that an m-cycle, with m = 2� in an LDPC code
with parity-check matrix H can be represented, up to permutations, by an � × � submatrix
of H of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 0 · · · · · · 0

0 a3 a4 · · · · · · ...
...

. . .
...

...
. . .

...

0 a2�−3 a2�−2

a2� 0 · · · · · · 0 a2�−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where ai ∈ F
∗
q . The cycle does not satisfy the FRC if the determinant of A is equal to 0. In

this case, the cycle gives an absorbing set. Hence, it is a common problem to construct LDPC
codes in which the shortest cycles satisfy the FRC.

In this work, we are interested in the convolutional counterpart of LDPC block codes,
which is given by convolutional codes defined over a finite field Fq as kernel of a sparse
sliding parity-check matrix (here with sparse we mean that in particular each Hi is sparse).

3 Construction of LDPC convolutional codes

In this section, we use difference triangle sets to construct LDPC convolutional codes over
Fq . The construction was provided for (n, n − 1)q convolutional codes in [1]. Here, we
generalize it for arbitrary n and k.

We will construct a sliding parity-check matrix H as in (1), whose kernel defines a con-
volutional code. Due to the block structure of H , it is enough to consider
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Construction of LDPC convolutional codes via difference triangle sets 2241

H := Hc
μ =

⎡
⎢⎢⎢⎣

H0

H1 H0
...

...
. . .

Hμ Hμ−1 · · · H0

⎤
⎥⎥⎥⎦ , (3)

since H is then constructed by sliding it. It is easy to see that H does contain a cycle of
length 2� not satisfying the FRC if and only if H does. Assuming that H0 is full rank, we
can perform Gaussian elimination on the matrix

⎡
⎢⎢⎢⎣

H0

H1
...

Hμ

⎤
⎥⎥⎥⎦ ,

which results in the block matrix

H̄ =

⎡
⎢⎢⎢⎣

A0 | In−k

A1 | 0
...

...

Aμ | 0

⎤
⎥⎥⎥⎦ , (4)

with Ai ∈ F
(n−k)×k
q for i = 1, . . . , μ. With abuse of notation, we write H0 for [A0|In−k],

and Hi for the matrices [Ai |0].
Remark 1 If we define the matrix H̃(z) = ∑μ

i=0 Ai zi ∈ Fq [z](n−k)×k , then we obtain that
H(z) = [H̃(z) In−k] and hence H(z) has a polynomial right inverse, i.e. H(z) is basic.

Given n ∈ N, with the following definition we describe how we construct the above
mentioned matrix H̄ from a (k, w)-wDTS, which then will define an (n, k)q convolutional
code.

Definition 2 Let k, n be positive integers with n > k and T := {T1, . . . , Tk} be a (k, w)-

wDTS with scope m(T ). Set μ =
⌈
m(T )
n−k

⌉
− 1 and define the matrix H̄ ∈ F

(μ+1)(n−k)×n
q ,

in which the lth column has weight w and support Tl , i.e. for any 1 ≤ i ≤ (μ + 1)(n − k)
and 1 ≤ l ≤ k, H̄i,l �= 0 if and only if i ∈ Tl . We say that H̄ has support T . The last n − k
columns of H̄ are given by [In−k, 0n−k, . . . , 0n−k]�. Derive the matrix H by “shifting" the
columns of H̄ by multiples of n − k and then a sliding matrix H of the form of Eq. (1).
Finally, define C := ker(H) over Fq .

Observe that if k = n − 1, we simply get the construction provided in [1, Definition 4].

Proposition 1 Let n, k, w be positive integers with n > k, T be a (k, w)-wDTS with scope

m(T ) and set μ =
⌈
m(T )
n−k

⌉
− 1. If H̄ has support T , then the corresponding code is an

(n, k, δ) convolutional code with μ ≤ δ ≤ μ(n − k). Moreover Hμ is full rank if and only if
δ = μ(n − k).

Proof As the matrix H(z) defined in Remark 1 is basic, δ is the maximal degree of the full-
size minors of H , which is clearly upper bounded by μ(n− k). Moreover, any minor formed
by a column with degree μ and suitable columns of the systematic part of H has degree μ,
which proves the lower bound.
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2242 G. N. Alfarano et al.

If Hμ is full rank, it is equal to [H ]hr , and H is reduced. Hence, δ is equal to the sum of
the n−k row degrees that are all equal toμ, i.e. δ = μ(n−k). If Hμ is not full rank, there are
two possible cases. First, if Hμ contains no all-zero row, then [H ]hr = Hμ is not full rank,
and hence δ is strictly smaller than the sum of the row degrees which is μ(n − k). Second,
if Hμ contains a row of zeros, then the sum of the row degrees of H is strictly smaller than
μ(n − k) and thus, also δ is strictly smaller than μ(n − k). 	

Remark 2 If k < n − k, i.e. the rate of the code is smaller than 1/2, then (4) implies that Hμ

cannot be full rank. Moreover, in this case, [H ]hr can only be full rank if at least n − 2k row
degrees of H are zero.

Proposition 2 Let n, k, w be positive integers with n > k and T be a (k, w)-wDTS. Assume
H̄ has support T and consider the convolutional code C constructed as kernel of the sliding
parity-check matrix corresponding to H̄ . If N is the maximal codeword length, i.e. for any
codeword v(z) ∈ C, deg(v) + 1 ≤ N/n, then the sliding parity-check matrix corresponding
to H̄ has density

wk + n − k

(n − k)(μn + N )
.

Proof To compute the density of a matrix, one has to divide the number of nonzero entries
by the total number of entries. The result follows immediately. 	

Theorem 2 Let C be an (n, k) convolutional codewith parity-checkmatrix H. Assume that all

the columns of
[
A�
0 · · · A�

μ

]�
defined as in (4) have weight w and denote by w j the minimal

columnweight of
[
A�
0 · · · A�

j

]�
. For I ⊂ {1, . . . , (n−k)(μ+1)} and J ⊂ {1, . . . , n(μ+1)}

we define [H]I ;J as the submatrix ofHwith row indices I and column indices J . Assume that
for some w̃ ≤ w all I , J with |J | ≤ |I | ≤ w̃ and j1 := min(J ) ≤ k and I containing the
indices where column j1 is nonzero, we have that the first column of [H]I ;J is not contained
in the span of the other columns of [H]I ;J . Then
(i) w̃ + 1 ≤ dfree(C) ≤ w + 1,
(ii) min(w j , w̃) + 1 ≤ dcj (C) ≤ w j + 1.

Proof (i) Without loss of generality, we can assume that the first entry in the first row of H0

is nonzero. Denote the first column ofH by [h1,1, . . . , h1,(n−k)μ]�. Then, v(z) = ∑r
i=0 vi zi

with

v0 = [1 0 · · · 0 − h1,1 · · · − h1,(n−k)] and

vi = [0 0 · · · 0 − h1,(n−k)i+1 · · · − h1,(n−k)(i−1)],
for i ≥ 1 is a codeword with wt(v(z)) = w + 1 as the weight of the first column of H is
equal to w. Hence dfree ≤ w + 1.

Assume by contradiction that there exists a codeword v(z) �= 0 with weight d ≤ w̃. We
can assume that v0 �= 0, i.e. there exists i ∈ {1, . . . , n}with v0,i �= 0.We know thatHv� = 0
and from (4) we obtain that there exists j ∈ {1, . . . , n} with j �= i and v0, j �= 0 and we can
assume that i ≤ k.

Now, we consider the homogeneous system of linear equations given by Hv� = 0 and
we only take the rows, i.e. equations, where column i of H has nonzero entries. Moreover,
we define ṽ ∈ F

d as the vector consisting of the nonzero components of v0, v1, . . . , vdeg(v).
We end up with a system of equations of the form [H]I ;J ṽ� = 0 where [H]I ;J fulfills
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the assumptions stated in the theorem. But this is a contradiction as ṽ� has all components
nonzero and therefore [H]I ;J ṽ� = 0 implies that the first column of [H]I ;J is contained in
the span of the other columns of this matrix.
(ii) The result follows from Theorem 1 with an analogue reasoning as in part (i). 	

Remark 3 With the assumptions of Theorem 2, if w̃ = w, one has dcj = dfree for j ≥ μ.

Moreover, if H̄ has support T , one achieves higher column distances (especially for small
j) if the elements of T are small.

Corollary 1 If T is a (k, w)-DTS and C is an (n, k) convolutional code constructed from T
as in Definition 2, then one has that:

(i) dfree(C) = w + 1,
(ii) dcj (C) = w j + 1.

Proof As already mentioned in [27], matrices H constructed from a DTS have the property
that for every pair of columns, their supports intersect at most once. Since [H]I ;J as defined in
Theorem 2 has the property that all entries in the first column are non-zero, all other columns
have at most one non-zero entry. But this implies that the first column cannot be in the span
of the other columns and thus, the requirements of Theorem 2 are fulfilled for w̃ = w, which
proves the corollary. 	

Remark 4 If n − k > 1, it is not necessary to have a DTS to obtain that all columns of H
intersect at most once since one only has to consider shifts of columns by multiples of n− k.
Therefore, we still need to consider a set T = {T1, . . . , Tk} such that all the differences
ai1, j1 − ai1,s1 and ai2, j2 − ai2,s2 for i1 �= i2 are different, i.e. two differences coming from
different triangles of T have always to be different, but ai, j1 − ai,s1 and ai, j2 − ai,s2 , i.e.
differences coming from the same triangle, only have to be different if (n−k) | (ai, j1 −ai, j2).

Example 3 Consider n = 3, k = 1 and T1 = {1, 2, 3}. It holds 2− 1 = 3− 2 but since 3− 2
is not divisible by n − k = 2, this does not matter and we still get that all columns of H
intersect at most once. For example for μ = 1, we get

H =

⎡
⎢⎢⎣
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 1 0
0 0 0 1 0 1

⎤
⎥⎥⎦ .

From Corollary 1 we know that if we use a DTS to construct the parity-check matrix of
the code, then the values of the nonzero entries are not important to achieve good distance
properties. In the following, we present a construction that achieves also quite large distances
if one takes the sets in a wDTS as support sets for the columns of the non-systematic part
of H̄ . Moreover, in Sect. 4, we show that this construction ensures that the Tanner graph
associated to H is free from cycles of arbitrary length not satisfying the FRC if the size of
the underlying field is sufficiently large and the wDTS fulfills some additional properties.

Definition 3 Let k, n be positive integers with n > k and T := {T1, . . . , Tk} be a (k, w)-

wDTS with scopem(T ). Setμ =
⌈
m(T )
n−k

⌉
−1 and let α be a primitive element for Fq , so that

every non-zero element of Fq can be written as power of α. For any 1 ≤ i ≤ (μ+ 1)(n− k),
1 ≤ l ≤ k, define

H̄T
i,l :=

{
αil if i ∈ Tl
0 otherwise

.
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Obtain the matrix HT by “shifting" the columns of H̄T by multiples of n − k and then a
sliding matrix HT of the form of Eq. (1). Finally, define CT := ker(HT ) over Fq .

Example 4 Let Fq := {0, 1, α, . . . , αq−2} and T be a (2, 3)-wDTS, such that T1 := {1, 2, 6}
and T2 := {1, 2, 4}. Then, with the notation above,

H̄T =

⎡
⎢⎢⎢⎢⎢⎢⎣

α α2 1
α2 α4 0
0 0 0
0 α8 0
0 0 0
α6 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

which leads to the following sliding matrix.

HT =

⎡
⎢⎢⎢⎢⎢⎢⎣

α α2 1
α2 α4 0 α α2 1
0 0 0 α2 α4 0 α α2 1
0 α8 0 0 0 0 α2 α4 0 α α2 1
0 0 0 0 α8 0 0 0 0 α2 α4 0 α α2 1
α6 0 0 0 0 0 0 α8 0 0 0 0 α2 α4 0 α α2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The code constructed here is a (3, 2)q convolutional code. In this example, one has dc0 = 2,
dc1 = dc2 = dc3 = dc4 = 3 and d5 = dfree = 4.

The next theorem is a generalization of [1, Theorem 12] to any rate.

Theorem 3 Let w, n, k be positive integers with n > k and T be a (k, w)-wDTS with scope
m(T ) and q > (μ + 1)(n − k)(k − 1) + 1 = m(T )

n−k �(n − k)(k − 1) + 1. Let CT be the

(n, k)q convolutional code defined from T , as defined in Definition 3 and considerHT as in
(3). Then, all the 2 × 2 minors in HT that are non-trivially zero are non-zero.

Proof The only 2×2minors to check are the ones of the form

∣∣∣∣
a1 a2
a3 a4

∣∣∣∣. By definition of wDTS,
the support of any column ofHT intersects the support of its shift at most once. This ensures
that the columns of all these minors are the shift of two different columns of H̄T . Moreover,
all the elements in the minor are powers of α. In particular, let 1 ≤ i, r ≤ (μ + 1)(n − k),
1 ≤ j, � ≤ k (note that j < � or � < j according to which columns from H̄T are involved
in the shifts). Hence we have that:

∣∣∣∣
a1 a2
a3 a4

∣∣∣∣ =
∣∣∣∣

αi j αm�

α(i+r) j α(m+r)�

∣∣∣∣ =

αi jα(m+r)� − αm�α(i+r) j = αi j+m�(αr� − αr j )

which is 0 if and only if r� = r j mod (q − 1). Since it holds that 0 ≤ j < � ≤ k or
0 ≤ � < j ≤ k and 1 ≤ r ≤ (μ + 1)(n − k), this cannot happen. 	


The following theorem is a generalization of [1, Theorem 13] for any rate. However, in
the proof in [1] there is a computation mistake, hence we put the correct version below.

Theorem 4 Let w, n, k be positive integers with n > k and T be a (k, w)-wDTS with scope
m(T ), w ≥ 3. Let CT be the (n, k)q convolutional code defined from T , as in Definition 3
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with HT as defined in (3) and assume that (μ + 1)(n − k) > 2. Assume also that q = pN ,
where p > 2 and

N > (μ + 1)(n − k)(k − 1) =
⌈m(T )

n − k

⌉
(n − k)(k − 1).

Then, all the 3 × 3 minors in HT that are non-trivially zero are non-zero.

Proof We need to distinguish different cases.
Case I The 3 × 3 minors are of the form∣∣∣∣∣∣

a1 a2 a3
a4 a5 a6
a7 a8 a9

∣∣∣∣∣∣
,

with ai �= 0 for any i . As we observed in Theorem 3, in this case all the columns are shifts of
three different columns from H̄T , since each column can intersect any of its shifts at most
once. Observe that we can write a minor of this form as∣∣∣∣∣∣

a1 a2 a3
a4 a5 a6
a7 a8 a9

∣∣∣∣∣∣
=

∣∣∣∣∣∣
αi j αlu αtm

α(i+r) j α(l+r)u α(t+r)m

α(i+r+s) j α(l+r+s)u α(t+r+s)m

∣∣∣∣∣∣
,

where 1 ≤ i, l, t ≤ (μ + 1)(n − k), r , s ∈ Z are possibly negative, with r �= s, and
1 ≤ j, u,m ≤ k representing the index of the column from which the selected element
comes from (or if the selected elements belongs to the shift of some column, j, u,m are still
the indexes of the original column). Due to symmetry in this case we can assume r , s ∈ N

and 1 ≤ i, l, t ≤ (μ+ 1)(n− k)− 3. Moreover, −(μ+ 1)(n− k)+ 1 ≤ i + r , l + r , t + r ≤
(μ + 1)(n − k) − 1 and −(μ + 1)(n − k) ≤ i + r + s, l + r + s, t + r + s ≤ (μ + 1)(n − k).
This determinant is 0 if and only if

αru+rm+sm + αrm+r j+s j + αr j+ru+sk = αru+r j+s j + αr j+rm+sm + αru+rm+sk . (5)

Without loss of generality we can assume that j < u < m and it turns out that the maximum
exponent in Eq. (5) is ru + rm + sm while the minimum is ru + r j + s j . Let M :=
ru + rm + sm − (ru + r j + s j). It is not difficult to see that the maximum value for M is
((μ + 1)(n − k) − 1)(k − 1) hence this determinant can not be zero because α is a primitive
element for Fq and, by assumption, q = pN , where N > M .
Case II The 3 × 3 minors are of the form∣∣∣∣∣∣

a1 a2 0
a3 a4 a5
a6 0 a7

∣∣∣∣∣∣
.

As in the first case, we can assume that the minor is given by
∣∣∣∣∣∣

αi j αlu 0
α(i+r) j α(l+r)u α(t+r)m

α(i+r+s) j 0 α(t+r+s)m

∣∣∣∣∣∣
,

with the same bounds on the variables as before. But, in this case j �= u,m but u can be
equal to m. Indeed, the first column intersects the other two in two places, which means that
they are not all shifts of the same column. However, the second and third ones can belong to
the same column. This determinant is 0 when αru+sm + αr j+s j − αrm+sm = 0. In this case,
according to the different possibilities for j, u,m and r , s we check the maximum and the
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minimum exponent. We present here only the worst case for the field size, which is obtained
when j < u < m, r < 0. We see that the minimum exponent is r j + s j and the maximum is
r j + sm. We consider M := r j + sm − r j − s j and we check what is the maximum value
that M can reach. It is not difficult to see that this is (μ + 1)(n − k)(k − 1). When p = pN ,
with N > M , the considered determinant is never 0.
Case III The 3 × 3 minors are of the form∣∣∣∣∣∣

a1 a2 a3
a4 a5 a6
a7 a8 0

∣∣∣∣∣∣
,

with ai �= 0 for any i . We can assume that, the minor is given by
∣∣∣∣∣∣

αi j αlu αtm

α(i+r) j α(l+r)u α(t+r)m

α(i+r+s) j α(l+r+s)u 0

∣∣∣∣∣∣
,

with the same bounds on the variables as in previous cases. However, this time 1 ≤ j < u <

m ≤ k. After some straightforward computations, we get that this determinant is 0 if and
only if

αrm+r j+s j + αr j+ru+su = αru+r j+s j + αru+rm+su . (6)

In theworst case, considerM := ru+r j+su−(rm+r j+s j) = r(u−m)+s(u− j)with r <

0.We immediately see that the maximum value that M can reach is (μ+1)(n−k)(k−2)+1,
hence this determinant can not be zero because α is a primitive element for Fq and, by
assumption, q = pN , where N > M .
Case IV The 3 × 3 minors are of the form∣∣∣∣∣∣

a1 a2 0
0 a3 a4
a6 0 a5

∣∣∣∣∣∣
.

In this case, we can have that the three considered columns come from different shifts of the
same one, hence we allow that some (or all) among j, u,m are equal. Arguing as before, we
notice that these minors are given by

∣∣∣∣∣∣
αi j αlu 0
0 α(l+r)u α(t+r)m

α(i+r+s) j 0 α(t+r+s)m

∣∣∣∣∣∣
=

αi j+lu+tm+rm(αru+sm + αr j+s j ).

This determinant is 0 whenever r(u − j) + s(m − j) − (q − 1)/2 = 0 mod (q − 1).
Analyzing all the possibilities we can have according to r , s being negative or positive
and j, u,m being equal or different, after some computations, we obtain that, whenever
q > 2(k − 1)((μ + 1)(n − k) − 1) + 1, the considered determinant is never 0. And this is
the case for our field size assumption. 	


Observe that Case IV of Theorem 4 corresponds to the lower bound for the field size
sufficient to avoid the presence of 6-cycles not satisfying the FRC. Hence, we have the
following result.

Corollary 2 Let CT be an (n, k) convolutional code constructed from a (k, w) wDTS T and
satisfying the conditions of Theorems 3 and 4. Then, d f ree(CT ) ≥ 3 and the code is free from
4 and 6-cycles not satisfying the FRC.
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Remark 5 If CT is an (n, k) convolutional code constructed from a (k, w) wDTS T and
satisfying the conditions of Theorems 3 and 4, such that Hμ has no zero row and n − k ≤
min{3, k}, then, it follows from Proposition 1 that δ = μ(n − k).

Example 5 Consider the (3, 2)q code constructed in Example 4. Note that μ = 5, hence, for
q > 11 we can avoid all the 6-cycles not satisfying the FRC (Case IV of Theorem 4).

4 Excluding 2�-cycles not satisfying the FRC

In this section, we give some conditions that ensure that the Tanner graph associated to the
sliding parity-check matrix of a convolutional code constructed via a difference triangle set
is free of 2�-cycles not satisfying the FRC.

First of all we recall from Sect. 2.3 that a 2�-cycle can be represented by an �×� submatrix
of H that up to column and row permutations is of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 0 · · · · · · 0

0 a3 a4 · · · · · · ...
...

. . .
...

...
. . .

...

0 a2�−3 a2�−2

a2� 0 · · · · · · 0 a2�−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where ai ∈ F
∗
q .

Remark 6 Observe that
⎡
⎢⎣
A0
...

. . .

Aμ · · · A0

⎤
⎥⎦ ∈ F

(μ+1)(n−k)×(μ+1)k,

hence it is clear that the Tanner graph associated to H can only contain 2�-cycles for

� ≤ min{(μ + 1)(n − k), (μ + 1)k}.
At first, we will investigate conditions on the wDTS used to construct the convolutional

code that ensure that the associated Tanner graph contains no cycles at all independently of
the nonzero values of the sliding parity-check matrix and hence also independently of the
underlying finite field.

Proposition 3 If C is an (n, k) convolutional code whose parity-check matrix has support
T where T is a (k, w)-wDTS with the property that none of the differences ai, j − ai,m for
1 ≤ i ≤ k and 1 ≤ m < j ≤ w is divisible by n − k, then each pair of columns that is next
to each other in A as in (7) consists of shifts of different columns of H̄ . In particular, at most
� �
2� columns of A can be shifts of the same column of H̄ .

Proof The fact that none of the differences in the set is divisible by n − k implies that the
support of any column of H̄ does not intersect the support of any of its shifts (by multiples
of n − k). Since the supports of neighbouring columns of A intersect, they have to be shifts
of different columns of H̄ . 	
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Corollary 3 If C is an (n, k) convolutional code whose parity-check matrix has support T
where T is a (k, w)-wDTS with the property that T1 = · · · = Tk and none of the differences
a1, j − a1,m for 1 ≤ m < j ≤ w is divisible by n − k, then the Tanner graph associated to
the parity-check matrix H of C is free from 2� cycles (over every base field), with � > 1 not
satisfying the FRC.

Theorem 5 Assume that C is an (n, k) convolutional code constructed from an (k, w)-DTS T
with ai,1 = 1 for all 1 ≤ i ≤ k, where (n − k) does not divide any of the nonzero differences
ai1, j − ai2,m for 1 ≤ i1, i2 ≤ k and 1 ≤ m, j ≤ w. Then, the Tanner graph associated to the
parity-check matrix H of C is free from cycles of any size (over every base field) not satisfying
the FRC.

Proof Assume by contradiction thatH contains up to permutations a submatrix A of the form
(7). As the supports of the first two columns of A intersect, they have to be shifts of different
columns of H̄ . The supports of such shifts can only intersect once and the entries of this
intersection come from the first row of H̄ . Applying the same reasoning to the intersection
of the supports of the second and third column of A, implies that a2 and a3 in A both come
from the first row of H̄ which is not possible. This shows the result. 	

Example 6 Consider the (2, 3)-DTS T = {T1, T2}with T1 = {1, 2, 5} and T2 = {1, 3, 9}. The
set of all occurring nonzero differences ai1, j − ai2,m is {1, 2, 3, 4, 6, 7, 8}, i.e. none of them
is divisible by 5. Hence the matrix H(z) = H0 + H1z with H0 = [H̄0 I5] and H1 = [H̄1 05],
where

H̄0 =

⎡
⎢⎢⎢⎢⎣

1 1
1 0
0 1
0 0
1 0

⎤
⎥⎥⎥⎥⎦

, H̄1 =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 1
0 0

⎤
⎥⎥⎥⎥⎦

and

[H ]hr =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

full rank, i.e. δ = 1, is the parity-check matrix of an (7, 2, 1)q convolutional code that is free
of cycles of any size for any prime power q .

Next, we want to relax the conditions on the wDTS used for construction of the convolu-
tional code but still exclude cycles in the Tanner graph of the sliding parity-check matrix that
do not fulfill the FRC by using the construction fromDefinition 3 and considering sufficiently
large field sizes.

To ensure that the considered cycle does not satisfy the FRC, we have to guarantee that
det A �= 0 as an element of Fq . It is easy to check that

det A =
2�∏
i=1
i odd

ai ±
2�∏
i=1
i even

ai .

Let T be a (k, w)-wDTS and let CT be the convolutional code defined from T , with HT

as defined in (3). Each matrix representation A of a 2�-cycle comes from selecting � rows
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and � columns of HT . Moreover, in each column of A, exactly two positions are non-zero.
Let α be a primitive element for Fq , let s1, . . . , s� ∈ N be the indexes of the columns ofHT ,
selected to form the cycle, (we consider si also if we select the shift of the i th column) hence
we have that 1 ≤ sh ≤ k.

We can write A in the following form:
⎡
⎢⎢⎢⎢⎣

αr1s1 αr2s2 0 0 · · · 0
0 α(r2+i1)s2 α(r3+i1)s3 0 · · · 0
0 0 α(r3+i1+i2)s3 α(r4+i1+i2)s4 · · · 0
.
.
.

. . .
. . .

α(r1+i1+···+i�−1)s1 0 0 0 · · · α(r�+i1+···+i�−1)s�

⎤
⎥⎥⎥⎥⎦

,

where ih ∈ Z and |ih | is equal to a difference from Tsh+1 for h = 1, . . . �−1 and |i1+· · ·+i�−1|
is equal to a difference from Ts1 . Moreover, 1 ≤ rh + i1 + . . . + ig ≤ (μ + 1)(n − k) for
h = 1, . . . , � and g = 0, . . . , � − 1.

We want to estimate the sufficient field size to have that this determinant is nonzero and
therefore, we distinguish two cases.

Case I: Assume that � is odd. In this case, the determinant of a matrix of the form (7) is
given by

det A =
2�∏
i=1
i odd

ai +
2�∏
i=1
i even

ai .

Hence, if the characteristic of the field is p > 2, it is equal to 0 in Fq if and only if

α(i1+i2+···+i�−1)s1 + αi1s2+i2s3+···+i�−1s� = 0,

which is equivalent to

(i1 + i2 + · · · + i�−1)s1 = i1s2 + i2s3 + · · · + i�−1s� + (q − 1)

2
mod (q − 1),

and hence

i1(s2 − s1) + i2(s3 − s1) + · · · + i�−1(s� − s1) − (q − 1)

2
= 0 mod (q − 1).

It is then enough to consider q bigger than the maximum value that can be reached by the
function

1 + 2
�−1∑
h=1

ih(sh+1 − s1).

Now, note that ih can be also negative but in general, we can say that |ih | ≤ (μ + 1)(n −
k) − 1. Moreover, |si − s1| ≤ k − 1. Hence, if we can ensure that

q > 2((μ + 1)(n − k) − 1)(� − 1)(k − 1) + 1

= 2(μ + 1)(n − k)(� − 1)(k − 1) − 2(� − 1)(k − 1) + 1,

with this construction we have a convolutional code whose sliding parity-check matrix is
associated to a Tanner graph free from 2�-cycles, with � odd, not satisfying the FRC.

Remark 7 Observe that in Theorem 4, we computed a more accurate estimation of the field
size for getting rid of the 2� cycles, for � = 3, namely,q > 2(μ+1)(n−k)(k−1)−2(k−1)+1.
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The computation above shows that with q > 4(μ + 1)(n − k)(k − 1) − 4(k − 1) + 1 we do
not have 6-cycles not satisfying the FRC. This difference is due to the possibility of a better
estimation of the terms in the above inequality.

With the discussion above we have proved the following result.

Theorem 6 Let n, k, w be positive integers with n > k, T be a (k, w)-wDTS and CT be the
(n, k)q convolutional code constructed fromT with q = pN and p > 2. A sufficient condition
for obtaining a codewhose sliding parity-checkmatrix is free from 2�-cycles not satisfying the
FRCwith � odd is to choose a field size q > 2(μ+1)(n−k)(�−1)(k−1)−2(k−1)(�−1)+1,

where μ =
⌈
m(T )
n−k

⌉
− 1 is the degree of the parity-check matrix of CT .

Example 7 Consider again the code constructed in Example 4. FromRemark 6, we know that
the highest length that we can have for a cycle is 10 = 2 · 5, but for q odd with q > 41 all
the 10-cycles satisfy the FRC.

Case II: Assume that � is even. In this case, the determinant of a matrix of the form (7)
is given by

det A =
2�∏
i=1
i odd

ai −
2�∏
i=1
i even

ai .

After some straightforward computation, it is easy to see that this determinant is equal to
0 in Fq if and only if

α(i1+i2+···+i�−1)s1 = αi1s2+i2s3+···+i�−1s� ,

which is equivalent to

(i1 + i2 + · · · + i�−1)s1 = i1s2 + i2s3 + · · · + i�−1s� mod (q − 1),

and hence

f (i, s) := i1(s2 − s1) + i2(s3 − s1) + · · · + i�−1(s� − s1) = 0 mod (q − 1).

for i := (i1, . . . , i�−1) and s := (s1, . . . , s�).
Moreover, we have the following constraints:

1. −(μ + 1)(n − k) + 1 ≤ ih ≤ (μ + 1)(n − k) − 1 for h = 1, . . . , � − 1
2. −k + 1 ≤ sh+1 − s1 ≤ k − 1, for h = 1, . . . , � − 1;

We have to find conditions on the corresponding wDTS to ensure that f (i, s) is nonzero
when viewed as an element of Z and then, we can determine a lower bound for q in order
that it is also nonzero modulo q − 1.

Using Proposition 3, we know that if none of the differences in the difference triangle set
is divisible by n − k, then not all the values s1, . . . , s� can be identical. In particular, there is
at least one h ∈ {2, . . . , �} such that sh − s1 �= 0.

Theorem 7 Let � be an even integer, k, n, w be integers such that n > k, T be a (k, w)-
wDTS and CT be the (n, k)q convolutional code constructed from T . Assume that T fulfills
the conditions of Proposition 3 and has the property that f (i, s) is nonzero in Z for all
s1, . . . , s� ∈ {1, . . . , k} not all equal if |ih | is equal to a difference from Tsh+1 for h =
1, . . . �− 1 and |i1 + · · ·+ i�−1| is equal to a difference from Ts1 and q > ((μ+ 1)(n− k)−
1)

(
(k − 1) �

2 + (k − 2) �−2
2

) + 1. Then, the Tanner graph associated to the sliding parity-
check matrix of CT is free from 2�-cycles that do not satisfy the FRC.
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Proof The conditions of the theorem ensure that f (i, s) is nonzero inZ. Moreover, it follows
from Proposition 3 that

((μ + 1)(n − k) − 1)

(
(k − 1)

�

2
+ (k − 2)

� − 2

2

)

is an upper bound for | f (i, s)|. Hence, the result follows. 	

Next, we want to give an example for a convolutional code that fulfills the conditions of

the preceding theorem.

Example 8 Let n = 7 and k = 2 and T1 = {1, 2, 5, 9} and T2 = {1, 2, 4, 10}, i.e. μ = 1.
Note that T1 is no difference triangle in the strict sense as 9 − 5 = 5 − 1 but as n − k = 5
does not divide 9− 5, we can still use it for the construction of our code (see Remark 4). We
get

HT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α α2 1 0 0 0 0 0 0 0 0 0 0 0
α2 α4 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 α8 0 0 0 1 0 0 0 0 0 0 0 0
α5 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 α α2 1 0 0 0 0
0 0 0 0 0 0 0 α2 α4 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
α9 0 0 0 0 0 0 0 α8 0 0 0 1 0
0 α20 0 0 0 0 0 α5 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Form Remark 6 one knows that with these parameters it is not possible to have cycles of
length 2� for � > 4. Moreover, from Theorem 3, we obtain that we can exclude 4-cycles not
fulfilling the FRC if q > 11 and from Theorem 4, that we can exclude 6-cycles not fulfilling
the FRC if q > 19 and q is odd. We will show that with the help of the preceding theorem,
we can also exclude 8-cycles inHT that do not fulfill the FRC or in other words, all 2�-cycles
for any � in HT fulfill the FRC for q > 19. First, from Proposition 3, we know that in the
matrix A representing any 8-cycle we necessarily have s1 = s3 and s2 = s4 and each column
of H̄T is involved once unshifted and once shifted by 5. We get f (i, s) = ±(i1 + i3) and
have to exclude that i1 �= −i3. Considering HT , we realize that 8-cycles are only possible
for s1 = s3 = 1 and s2 = s4 = 2 and i1 ∈ {±8,±9} and i3 ∈ {±2,±3}. Hence, for
q > 9 · 2+ 1 = 19, the corresponding convolutional code is free from 8-cycles not fulfilling
the FRC and hence, free from 2�-cycles not fulfilling the FRC for any �.

To conclude this section, we will modify our construction from Definition 3 in order to
further relax the conditions on the underlying wDTS and still ensuring that we have no cycles
not fulfilling the FRC. However, this will come with the cost of a larger field size.

Definition 4 Let k, n be positive integers with n > k and T := {T1, . . . , Tk} an (k, w)-wDTS

with scopem(T ). Setμ =
⌈
m(T )
n−k

⌉
−1 and let α be a primitive element for Fq . Moreover, let

P be a prime (with properties that will be determined later). For any 1 ≤ i ≤ (μ+1)(n− k),
1 ≤ l ≤ k, define

H̄ (T )
i,l :=

{
αPi l if i ∈ Tl
0 otherwise

.
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Theorem 8 Let k, n, w be positive integers with n > k and T be a DTS with ai,1 = 1 for all
1 ≤ i ≤ k and C be an (n, k)q convolutional code constructed from H̄ (T ). If P > �k and

q > kP(μ+1)(n−k) P2�−1
P2�−P2�−1 +1, then the Tanner graph associated to the sliding parity-check

matrix contains no cycles of size 2� not fulfilling the FRC.

Proof As with the construction from Definition 3, we obtain that det(A) = 0 if and only if
a certain linear combination f̃ (i, s) of exponents of P with 2� coefficients from {1, . . . , k}
is zero. As the exponents correspond to row indices before a possible shift and the unshifted
columns only intersect in the first row, all exponents that are equal to any other exponent
are equal to 1. Moreover, as exponents from the same column of A cannot be the same,
at most � exponents can be equal to 1. In summary, we obtain that f̃ (i, s) is of the form
f̃ (i, s) = Px+Pe1x1+· · ·+Pet xt with natural numbers 1 < e1 < · · · < et ≤ (μ+1)(n−k),
t ∈ {�, . . . , 2�}, x j ∈ {−k, . . . , k} \ {0} for j = 1, . . . , t and x ∈ {−�k, . . . ,+�k}. Since m
was chosen to be a prime larger than �k, f̃ (i, s) is nonzero in Z. Furthermore, | f̃ (i, s)| ≤
k

∑2�−1
i=0 P(μ+1)(n−k)−i = kP(μ+1)(n−k) P2�−1

P2�−P2�−1 and hence it cannot be zeromodulo q−1.
	


Finally, we illustrate our modified construction with an example.

Example 9 If we take the DTS T = {{1, 2, 5}, {1, 3, 8}} to construct an (6, 2)q convolutional
code, we have m(T ) = 8 and μ = 1. If we want that the girth of the corresponding parity-
check matrix is at least 12, we have to choose P > 10, i.e. P = 11. To get the desired
property it would be sufficient if the field size is larger than 4.716× 108. If it is sufficient to
have a girth of at least 8, it would be enough to choose P = 7 and the sufficient field size
decreases to 1.35 × 107.

5 Conclusion

In the past years, several authors tried to algebraically construct LDPC convolutional codes
with good distance properties. In the present paper, we provided a combinatorial construction
of LDPC convolutional codes of arbitrary rate and over arbitrary fields, with the aid of (weak)
difference triangle sets. This construction produces codes with good distance properties.
Finally, we provided a lower bound on the field size that is sufficient to have codes with good
distance and to avoid the presence of cycles in the associated Tanner graph not satisfying the
full rank condition, which is desirable for minimizing the decoding failure of this type of
codes.
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