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CONSTRUCTION OF MANIFOLDS OF POSITIVE
SCALAR CURVATURE
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ABSTRACT. We prove that a regular neighborhood of a codimension > 3

subcomplex of a manifold can be chosen so that the induced metric on its

boundary has positive scalar curvature. A number of useful facts concerning

manifolds of positive scalar curvature follow from this construction. For ex-

ample, we see that any finitely presented group can appear as the fundamental

group of a compact 4-manifold with such a metric.

0. Outline of results. We give a new method for constructing complete Rie-

mannian manifolds of positive scalar curvature and use it to continue the investi-

gation of properties of positive scalar curvature.

Our construction uses the idea that manifolds having spheres of dimension > 2 as

"factors" will admit metrics of positive scalar curvature if the spheres can be made

to carry sufficient positive curvature to dominate any negative curvature. Most of

the known methods for constructing manifolds of positive scalar curvature employ

this same idea. For example, any manifold of the form M x S2 can be given a

warped-product metric of positive scalar curvature by suitably adjusting the radius

of the S^-factor. Similarly, by deforming the standard metric on S3 — {point} in a

small neighborhood of the point and using the S2-factor to carry positive curvature

around the corner we can construct a complete metric of positive scalar curvature

on R3. This same idea was used by Gromov and Lawson [GL] and Schoen and

Yau [SY] in proving that codimension > 3 surgeries on a manifold of positive

scalar curvature yields a manifold which also carries positive scalar curvature. In

this paper we generalize the above techniques to cover any manifold formed as the

boundary of a regular neighborhood of a subcomplex K of a manifold M. If the

codimension of K > 3 this boundary looks locally like K x S2, and so should carry

positive scalar curvature.

THEOREM 1. Let M be an n-dimensional Riemannian manifold with a fixed

smooth cell decomposition and K a codimension q > 3 subcomplex of M. Then

there is a regular neighborhood U of K in M so that the induced metric on the

boundary dU has positive scalar curvature.

An easy consequence of this theorem is the following.

COROLLARY 2. Let tt be a finitely presented group. Then there exists a compact

4-manifold M of positive scalar curvature with tt\(M) = tt.

This fact is interesting since it is generally believed that manifolds that are

"large" in some sense should not admit metrics of positive curvature. Corollary 2
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64 RODNEY CARR

shows that in dimensions > 4 any notion of "large" which is sufficiently strong to

prohibit positive scalar curvature cannot be given solely in terms of the fundamental

group.

We also use Theorem 1 to investigate the structure of R.+ (M), the space of

positive scalar curvature metrics on a manifold M. To do this we need the following.

THEOREM 3. Let K be a codimension q > 3 subcomplex of a Riemannian

manifold M. Let U C M be a regular neighborhood of K. Then U carries a metric

of positive scalar curvature which is a product near the boundary.

Suppose X\ and X2 are manifolds of positive scalar curvature with boundaries

diffeomorphic to M, dXi = dX2 = M, so that the metrics are products near

the boundaries. If the corresponding metrics on M are in the same connected

component of R+(M) we prove that Ai U^, X2 also admits a metric of positive

scalar curvature. However, we find in some cases that A(X\ U^ X2) ^ 0, and hence

conclude that the metrics on M must fall in different connected components of

R + (M). For M = S4m_1 we do this using the method of plumbing disc bundles

over spheres and prove the following.

THEOREM 4. The space of positive scalar curvature metrics on S4m_1, m > 2,

has an infinite number of connected components.

This work is based on part of the author's doctoral dissertation. I would like

to express the gratitude I owe to Professor H. Blaine Lawson for suggesting this

problem and for his continual guidance.

1. Proof of Theorem 1. The neighborhood U is constructed by successively

forming tubular neighborhoods Up about the p-skeletons Kp of K, p = 1,..., n —

q, so that at each step the induced metric on the boundary has positive scalar

curvature. We construct Up from Up-\ by "pulling out" around the p-cells of K,

and finally obtain U = Un-q.

To begin, we form C/0, a regular neighborhood of K° = {vi,..., vr}, as follows.

For e > 0 let Bp(e) = {x G M\distM(p,x) < e} be a small ball centered at p

and Sp(e) its boundary. Note that for e small the principal curvatures of Sp(e)

are close to those of the usual sphere, that is, of the form —1/e + 0(e). So set

[/0 = BVi (ei) U • • • U BVn(en) where the e% are chosen so that

(i)SVi(£l)nSV](ej) = 0fori^j,

(ii) SVi(ei) has positive scalar curvature for i = 1,... ,r,

(iii) each 1-cell of K coming into v% intersects SVi(ei) transversely in one point.

For the inductive step assume that Up-\ is a regular neighborhood of Kp-X so

that

(a) the metric induced on the hypersurface H = dUp-i has positive scalar cur-

vature, and

(b) each p-cell a of K which intersects H does so transversely in a (p— l)-sphere.

Consider any p-cell and fix a diffeomorphism r/>: o n H —+ Sp_1. Let r\ be the

outward unit normal to H. By altering K a little, if necessary, we can assume that

exP</v'(3/)(*r') €f7'        tt(-8,6),

for (5 > 0 sufficiently small and y € Sp_1.
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FIGURE  1

Define distance functions t: M —► R and f:M^ R+ by

i(x) = distM (z, H),

where we measure distance positively if x € M is in the n direction and negatively

if x is in the —n direction, and

f(x) = distM(x,a).

Let {ei}™~f be orthonormal sections of the-normal bundle of a, with e„_p =

grad(f). For r > 0 set Dn~p(r) = {x € Rn~p \ \\x\\ < r}. For sufficiently small

fi>0and0<T<(5 identify the set

Vfl.r = {xe M\ f(x) <R,0< i(x) < r}

with Dn~p(R) x [0,T] x S"-1 by using the map which sends x e V^,T to

(0!,...,0n-p-i,r,t,y)

where (0,,... ,0n-P-i, r) € Dn~p(R), t € [0,T] and y e S?"1 are such that Ht H

°~(e,r),y = {x}- Here //"t is the hypersurface a constant distance t from H and

CT(9,r),y = Sexpexp^_1(^(Tr?) I   ^   0iei+ren-p\  r&(-8,6)\

is a curve a constant distance r from <t. (See Figure 1.)

We now follow a procedure similar to that given in [GL]. In Vr,t we wish to

choose a hypersurface H' of the form

H' = {(01,...,0n-p-i,r,t)\r = 1(t)}

where 7 is a curve having a graph as shown in Figure 2 so that the induced metric

on H' has positive scalar curvature.

The important points about 7 are that it starts at t = 0 and ends up as a

constant £1 > 0. H' then has the property that it is "pulled out" from H = H0

and ends up as a tube a constant distance ei from the cell a.

For the purposes of calculating the scalar curvature of H' it is convenient to

introduce the frame field {ei}"=1 on

VRtT a Dn-p(R) x [0, T] x SP"1
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Figure 2

where ei,...,en_p are, as before, given by polar coordinates about a, e„_p+i =

grad(i) and {e„_p+2,..., en} forms an orthonormal frame field for the Sp_1-factor

orthogonal to {ei,...,en_p+i}. Note that

en-P+i = d/dt + 0(r)e„_p.

In terms of the above basis the metric on Vr,t has the form

/ Sjj   j Q(r) 1 0 \ 1 < n - p,

(9n) =     Q(r)       1        0      , i = n-p+l,

\    0      "~0     \8~~J n-p+2<i<n,
and hence the connection has the form

1 "
Ve,ej =-en_p + Y2 0(l)ek,        1 <i <n- p- 1,

fc=i
1 n

(5) Ve,e„_p = - -en-p + ]PO(l)efc, 1 <i<n-p- 1,

k = l

n

Veiej■ = Yl 0(l)ek, otherwise.
fc=i

Also in terms of {ei}"=1, a basis {.A}™!",1 for the tangent space of H' is given as

<   e% + Q(l)^(t)i(t)en-p ._ _    _

(i + 0(ib(OV(O2)1/2'     ' p

(6) /i = <    en-p-l +7/(^)en-P . _

(l + 7'(i)2)V2       ' *-»      P.

. eI+1,        t = n-p + l,...,n- 1,

and the unit normal

m , = ^-P - j(t)en-p+i + E^f+1 Q(7(0V(0)en-P
1 ' * (i + 7'(02 + O(7(02Y(02)1/2

These expressions are complicated by terms which compensate for the fact that

since the hypersurfaces Ht are not totally geodesic the angular vectors e(, i' =

1,... ,n — p — 1, fail to be tangent to H'. However, we can simplify the formulas
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MANIFOLDS OF POSITIVE SCALAR CURVATURE 67

considerably by noting that it is possible to choose an initial segment of the curve 7

as shown in Figure 3 while retaining positive scalar curvature (since the condition

of having positive scalar curvature is open) so that we can assume 7' is bounded

and estimate the scalar curvature solely in terms of 7(f). We need to control ~f'(t),

however.

j

t

Figure 3

The Gauss equation

(8)       KH,(fi Afj) = KM(fx A fj) + g(Vfit, fi)g(Vf}$, fj) - g(Vfiti-fj)2

combined with (5), (6) and (7) yields the following estimate for the scalar curvature

of if'.

(9)
n-1

KH>=   Y   KH'(fiAfj)
t ,J — 1

n—p—l n—p—1 n—p—1       n—l

=   Y   Kw(fiAfj) + 2   Y   KH,(flAfn-p)+2   Y       Y    (/*A/i)
iyj=l *)J = 1 i)J = l   j=n—p+1

= (n_p_1)(n_p_2)[-^rL_+0(7-1)

+ 2(n - p - 1) \-    .f        + 0(7"7) + 0(7"1)1 + O(l)I   7(1 + 7u)

= (n-p- l)(n -p- 2)
Y(i + 7 )

-2(n-p-l)-[rT^7¥+0(7'') + 0(7-1)-

Now we can choose the curve 7 so that k#< is positive. After the initial bending,

extend 7 as a straight line

lit) = lo~ Pt, t <t0<rQ < 70/p,

as shown in Figure 4.
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Figure 4

On the straight section

(n-p-l)(n-p-2) [     1

"'-   (l0-pt)2(i + p2)  +  [io-pty

which can be made positive by choosing the parameter 70 small enough. Now bend

7 by choosing 7" as in Figure 5.

Note that ^(t) > tq/2 through this bending. From (9)

n-p-1 fn-p-2 27" nl  ...      _,.  _j.
""' = fi 1  ^    --2-ai   ^    +0(l")+0(1

(1 + 1U)  [      T 7(1+7  ).

n-p-1 \n-p-2 _ 2(p2/4rQ) 1 / J_\

-   (1+7'2)   [       r2 (r0/2)2(l + (p-p/8)2)J ^      \r0)

t t    + r /2P
0 00

Figure 5
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where c > 0 since n - p - 2 > 1. So choosing the parameter rn sufficiently small

will assure that kh> > 0 around this bend. At the end the slope of 7 has decreased

by an amount

rta+ro/2p

so we can achieve 7' = 0 by repeating the above process 9 times.

This completes the demonstration that Up-1 can be "pulled out" around a p-cell

of K while retaining positive scalar curvature on the boundary. Doing this for each

p-cell constructs a regular neighborhood Up of the p-skeleton, as required.    □

2. Proof of Corollary 2. We construct M as the boundary of a 2-complex

in R5 follows. Let K be a 2-complex with tti(K) = tt and choose an embedding

qb: K —> R5. Let U be a regular neighborhood of 4>(k) and set M = dU. The

long exact sequence for the pair (U, M) shows that tti(M) = tt and since the image

<f>(K) C R5 is of codimension > 3 we know by Theorem 1 that M has a metric of

positive scalar curvature.    □

3. Proof of Theorem 3. Theorem 3 is proved as a corollary of Theorem 1

using the following construction. In the Riemannian product M x R (standard

metric on the R-factor) consider the set K = K x [—1,1] made into a complex by

letting the ^-skeleton consist of the fc-cells of .AT x { — 1} and K x {1} (considered

as copies of K) together with all cells of the form a x [—1,1] where a ranges over

all (k — l)-cells of A", k — 1,... ,n — q.

The complex K has codimension q > 3 in M x R so by Theorem 1 it has a

regular neighborhood V with a metric of positive scalar curvature induced on dV.

We can actually do a little better since the cell structure of K and the method used

to construct V shows that we may actually choose V so that Vf)(—8,8) is a product

U x (—8,8) for some U C M and positive 8 < 1. (See Figure 6.) Now we simply note

that U is a regular neighborhood of K diffeomorphic to dV fl M x (0,00) and the

metric on the latter has positive scalar curvature, product near the boundary.    □

K*1"1' MX   (01 KX(1)

(      ' ̂ -"        1     y ^X '      /

Figure 6
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4. Proof of Theorem 4—The plumbing construction. Before outlining

the plumbing construction we need the following lemmas.

LEMMA 10. Let X be an n-dimensional manifold carrying a metric of positive

scalar curvature, product near the boundary. For n — r>4 let H = Dr x Dn~r be a

solid r-handle attached to X via a map 4>: dDr x Dn~r —► dX. Then Xli^H also

carries a metric of positive scalar curvature which is a product near the boundary.

0

Figure 7

PROOF. Let Y be the double of X with a: Y —► Y the natural involution. There

is a neighborhood of the join isometric to dX x (—e,e) with the product metric

da2+dt2.

Fix an embedding Sr C dX x {e/2} and symmetrically "pull out" from small

e/4-balls around it and its mirror image cr(Sr) C dX x {—e/2} while retaining

positive scalar curvature. As in [GL] we can now construct Y' = Y with two r-

dimensional surgeries equipped with a metric of positive scalar curvature. Also, by

construction, the metric on Y' is still a product in a neighborhood of the join and

Y' still admits an involution a': Y' —► Y' which is an isometry. See Figure 7. Now

consider Sr+1 C Y' formed er-invariantly as

5r+1 = Sr x (-e/4, e/A) U Dr+l u Dr+1

where ST is contained in the join and the Dr+1,s are taken in the surgeries Dr+1 x

gn-r+i to ^g 0f the form DT+1 x {point }. Remove the Sr and er-invariantly deform

the metric in an e/8-neighborhod being careful to keep the metric a product in an

e/8-neighborhood of the join. We obtain Y" = Y' with an (r + 1)-dimensional

surgery which still carries positive scalar curvature and admits an involution a"

which is an isometry. The metric is a product in an e/8-neighborhood of the join

so the quotient Y"/a" = X U H has a metric of positive scalar curvature which is

a product near the boundary.    □
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We only need the special case r = 0 of Lemma 10. This allows us to form the

connnected sum at the boundary of manifolds having metrics of positive scalar

curvature which are products near the boundary while retaining such a metric on

the result.

LEMMA 11. // metrics g0 and gi on a compact manifold M are in the same

connected component of R+(M), that is, are homotopic through metrics of positive

scalar curvature, then they are H-cobordant, that is, on the manifold W = M x [0,1]

there is a metric g of positive scalar curvature, product near the boundary, with

9~\mx{0} = 9o and g\ mx{i} = ffi-

PROOF. Let g: [0,1] -+ k+(M), g(0) = g0, g(l) = gi be a curve connecting

go and g\ and pick a function fR: [0,1] —► R+ to have a graph as shown in Figure

8. Then the metric

h = fR(t)-dt2+g(t),        iG[0,l],

on W will have positive scalar curvature for R sufficiently large and by a slight

deformation we may alter h so that outside of (8,1- 8) x M it is a product.    □

R-^

1 r

Figure 8

PLUMBING CONSTRUCTION. 1. Let G be a connected 7r„_i(50(n))-weighted

graph with vertices vt, i = 1,...,L, and corresponding weights w; € irn-i(SO(n)).

(a) We form a connected 2n-dimensional manifold-with-boundary Xq by plumb-

ing the D2"-bundles over S2n which correspond to the Wi. See [HNK] for details.

(b) The resulting manifold Xg is diffeomorphic to a regular neighborhood of the

skeleton formed by the base spheres Si of the plumbed bundles. By Theorem 3, for

n > 3, Xq admits a metric of positive scalar curvature which is a product near its

boundary.
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(c) If n is even, n = 2m, the intersection form of Xg is

' e(wi),    i = j,

, .     . 1, z/iand
<PG — (aij),    Oij = <

Vi connected to Vj by an edge of G,

0, otherwise.

Here e(wi) is the Euler number of the bundle Wi —> 52m.

(d) For m > 2 and G a tree with 3>G unimodular the resulting manifold Xg has

boundary <9XG homeomorphic to a (4m — l)-sphere. Let 0q be the order of 8Xq

in the group ®im-\ of homeomorphic (4m — l)-spheres.

2. Now suppose G has connected components Gr, r = 1,..., R. As in 1 above:

(a) We can still form a connected manifold

Xg = Xd #a • • • #8Xgr

where here #a means connected sum at the boundary.

(b) For n > 3 Lemma 11 and 1(b) above show that Xg still carries a metric of

positive scalar curvature which is a product near its boundary.

(c) For n = 2m the intersection form $G of Xg has the form

v       I ®gJ
Hence the signature of Xg is

n

sig(XG) = £sig(XGr)

r=l

and, in particular, if R ■ G denotes the graph consisting of R disjoint copies of G

then

sig(XR.G) = 7?-sig(XG).

(d) For m > 2 and each integer q > 1, if G is a tree with <PG unimodular then

the manifold dXq.(gG.G) is diffeomorphic to the usual (4m — l)-sphere.

3.

THEOREM 12. Fixm>2. Let G0 and G\ be TT2m-i(SO(2m))-weighted graphs.

Assume

(i) the intersection forms $Go and$G, are unimodular,

(ii) all weights w have pm/2(w) — 0, where pm/2(w) £ H2m(S2m) is the m/2th

Pontrjagin class ofw-+ S2m. Suppose 3Xg„ anddXGt are diffeomorphic to some

manifold M.  Then the A-genus of

W=XGoU(Mx{0,l\)UXGl

is given by

A(W) = c(s\g(Go)-s\g(G1))

where c is some nonzero constant.
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PROOF.   To calculate ^(VV) we use its expression in terms of the Pontrjagin

classes pk 6 H4k(W), that is,

A(W)=A(p1,...,pm)[W]

where A(pi,... ,pm) is some universal homogeneous polynomial and [W] is the

fundamental class of W. Note that there is an explicit formula for the coefficients of

A(pi,... ,pm) but we only need the fact that

A(Pu- ■ -:Pm) = cmPm + terms involving only pm_i,... ,p\

where cm is some nonzero constant.

Compare this with the similar expression for the signature sig(iy) of W

Sig(W) = L(pu...,pm){W}

where L(p\,... ,pm) is the Hirzebruch L-genus. Again all we need to know con-

cerning the exact formula for L is that

L(Pi,- --,Pm)= dmpm + terms involving only pm-i, ■ ■ ■ ,Pi

where dm is some nonzero constant. We also have an expression for sig(W) directly

in terms of the signatures sig(Gn) and sig(Gi) of Xg0 and XGl:

sig(WO = s-ig(Gi)-sig(G0).

We now show that in our case all the lower Pontrjagin classes pk, k — 1,..., m-l,

of W are zero.   Using the Mayer-Vietoris sequence with Xq0 U XGl   ~   W and
h.e.

XGo n Xq,   ~   M we obtain HAk(W) = 0 except possibly in the case that m is
h.e.

even, m — 21, and k = 1. For the exceptional case it suffices to evaluate pi[St]

where the Si are the base spheres of the plumbed bundles which together form a

basis for Hn(W). The integer pi\Si] just depends on the bundle TW \ g. —* Si

which splits as

TW\S, =TSi®NSi.

Here NSi —> Si is the normal bundle of Si in W which, by construction, is just

Wi —* Si, where w% is the weight assigned to the vertex corresponding to Si. By (i)

Pi(wi) = 0. Hence

Pl[Si] = pi(TW | Si)[Si] = Pl(TSt © NSi)[Si]

= Pl(TSi © Wi)[Si] = Pi{TSi)[Si] + p1(wl){Si] = 0.

The theorem now follows:

A(W) = (cmPm)[W},        cm^0,

= (cm/dm)s\g(W),        dm ^ 0,

= c(sig(G0)-sig(G1)),        c^O.    D

4. Let Eg be the tree

fl      V2_v3_VA      Vb      VQ      Vl
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with each vertex weighted by wT$, the classifying element of the tangent bundle

TS —» S2m. From 1(c) we find that the associated intersection form is the well-

known signature 8 unimodular form

/2 1 0 0 0 0 0 0\
12 10 0 0 0 0

0 12 10 0 0 0
00121000

8 ~ 0 0 0 12 10 1 '

0 0 0 0 12 10

0 0 0 0 0 12 0
VO 0 0 0 1 0 0 2)

Hence, from 2(b), (c), and (d), for m > 2 and each q > 1

(i) the corresponding manifolds Xq.(gE .Eg) have metrics of positive scalar cur-

vature which are products near their boundaries.

(ii) sig(X,.(9Eg.Eg)) = q(0Es ■&),

(iii) the boundaries dXq.(gE .Eg) are diffeomorphic to the usual (4m— l)-sphere.

So for m > 2 and qo / <?i we have from Lemma 10 that if the metrics

on dXqo.(gE .£8) and dXqi.(gE .Eb) are in the same connected component of

£+(S4m_1) then

W = Xqo.{gEs.Es) US  m~    HXqi.igEa.Ea)

admits a metric of positive scalar curvature. However, from Theorem 12,

A(W)=c(qo(0Es-8)-qi(9Es-S))

= {qo-qiW, c'#0,

and thus W cannot carry positive scalar curvature. This contradiction shows that

the metrics fall into different connected components of R.+ (S4m~x), which com-

pletes the theorem.    □
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