Construction of Mixed-Level Orthogonal Arrays for Testing in Digital Marketing

Vladimir Brayman

Webtrends
October 19, 2012

Advantages of Conducting Designed Experiments in Digital

 Marketing- Availability of Data
- Ease of Creating Tests
- Automation of the Analysis

Challenges of Conducting Designed Experiments in Digital Marketing

- Wide Range of Factor-Level Combinations, Including Mixed-Level Designs
- Binary and continuous response variable
- Designs Must Be Small
- Designs Must Be Robust
- Must Isolate Effects
- Must Produce Results Fast
- Unsophisticated Users Robustness

Outline

- Motivation
- Fractional Factorial Design
- Clear Effects
- Minimum Aberration Criterion
- Orthogonal Array Construction
- Conclusion

Fractional Factorial Design

Motivation: for economic reasons, full factorial designs are seldom used in practice for large $k(k \geq 7)$.
Fractional Factorial Design: a subset or fraction of full factorial designs.

- "Optimal" fractions: are chosen according to the resolution or minimum aberration criteria.
- Aliasing of effects: a price one must pay for choosing a smaller design.
Design r^{k-p}, where
- r : level of the factors.
- k : number of the factors.
- p : number of design generators.
- $n=r^{k-p}$: run size.

An Example

No.	A	B	C	D	E
1	-	+	+	-	-
2	+	+	+	+	-
3	-	-	+	+	-
4	+	-	+	-	-
5	-	+	-	+	-
6	+	+	-	-	-
7	-	-	-	-	-
8	+	-	-	+	-
9	-	+	+	-	+
10	+	+	+	+	+
11	-	-	+	+	+
12	+	-	+	-	+
13	-	+	-	+	+
14	+	+	-	-	+
15	-	-	-	-	+
16	+	-	-	+	+

Balance and Orthogonality

Two key properties of the designs: balance and orthogonality.

- Balance: Each factor level appears in the same number of runs.
- Orthogonality: Two factors are called orthogonal if all their level combinations appear in the same number of runs. A design is called orthogonal if all pairs of its factors are orthogonal.

Design Generators

- 2^{5-1} design: 16 runs, which is a $\frac{1}{2}$ fraction of a 2^{5} full factorial design.
- Aliasing: D and $A B C$, i.e., main effect of D is aliased with the $A \times B \times C$ interaction.
- The aliasing is denoted by the design generator $D=A B C$, $x_{4}=x_{1}+x_{2}+x_{3}(\bmod 2)$.
- Since $2 x_{4}=x_{1}+x_{2}+x_{3}+x_{4}=0(\bmod 2)$, we can get the defining relation $I=A B C D(I=1234)$.

	Number	Factors
Main effects	5	A,B,C,D,E
Two-factor	10	AB,AC,AD,AE,BC,...,DE
Three-factor	10	ABC,ABD,ABE,BCD,...,CDE
Four-factor	5	ABCD,ABCE,ABDE,ACDE,BCDE
Five-factor	1	ABCDE

Outline

- Motivation
- Fractional Factorial Design
- Clear Effects
- Minimum Aberration Criterion
- Orthogonal Array Construction
- Conclusion

Clear Main Effects and Two-factor Interaction Effects

Clear effect: a main effect or two-factor interaction is clear if none of its aliases are main effects or two-factor interactions.

	Number	Factors
Main effects	5	A,B,C,D,E
Two-factor	4	AE,BE,CE,DE

From $x_{1}+x_{2}+x_{3}+x_{4}=0(\bmod 2)$, we can get:

- $A=B C D, B=A C D, C=A B D$, so all the main effects are clear.
- $A B=C D, A C=B D, A D=B C, \ldots, A E=B C D E, B E=$ $A C D E, C E=A B D E, D E=A B C E$, so only the two-factor interactions including E are clear, all the others aliased with other two-factor interactions.

More Than One Design Generators

Consider the 2^{6-2} design with design generators:
$E=A B, F=A C D$.

- We get the defining contrast subgroups: $I=A B E=A C D F=B C D E F$.
- A_{i} : the number of words of length i in its defining contrast subgroup, wordlength pattern $W=\left(A_{3}, A_{4}, \ldots, A_{k}\right)$.
- Resolution: the smallest r such that $A_{r} \geq 1$, i.e., the length of the shortest word in the defining contrast subgroup.
- The above design, resolution $R=3$ and $W=(1,1,1,0,0, \ldots)$.
- Maximum Resolution Criterion: Box and Hunter (1961).
- Resolution III design, some main effects are not clear.
- Resolution IV design, main effects are clear, those with the largest number of clear two-factor interactions are the best.
- Resolution V design, two-factor interactions are clear.

Outline

- Motivation
- Fractional Factorial Design
- Clear Effects
- Minimum Aberration Criterion
- Orthogonal Array
- Conclusion

Minimum Aberration Criterion

- Question: for the same r^{k-p} designs d_{1} and d_{2} with different design generators, which one is better?
- Consider the following two 2^{7-2} designs:

$$
\begin{aligned}
& d_{1}: I=4567=12346=12357 \\
& d_{2}: I=1236=1457=234567
\end{aligned}
$$

- Fries and Hunter (1980): For any two 2^{k-p} designs d_{1} and d_{2}, let r be the smallest integer such that $A_{r}\left(d_{1}\right) \neq A_{r}\left(d_{2}\right)$. Then d_{1} is said to have less aberration than d_{2} if $A_{r}\left(d_{1}\right)<A_{r}\left(d_{2}\right)$. If there is no design with less aberration than d_{1}, then d_{1} has minimum aberration.
- For the above d_{1} and d_{2}, we have wordlength patterns:
$W\left(d_{1}\right)=(0,1,2,0,0)$,
$W\left(d_{2}\right)=(0,2,0,1,0)$,
so d_{1} is better than d_{2}.

Maximum Number of Clear Effects Criterion

- Consider the following two 2^{9-4} designs:
$d_{1}: 6=123,7=124,8=125,9=1345$,
$d_{2}: 6=123,7=124,8=134,9=2345$.
$d_{1}: I=1236=1247=1258=3467=3568=4578$,
$d_{2}: I=1236=1247=1348=3467=2468=2378=1678$.
- For the above d_{1} and d_{2}, we have:
$A_{3}\left(d_{1}\right)=A_{3}\left(d_{2}\right)=0$, $A_{4}\left(d_{1}\right)=6<A_{4}\left(d_{2}\right)=7$,
so d_{1} is better than d_{2} from minimum aberration criterion.
- While all the 9 main effects in d_{1} and d_{2} are clear, d_{2} has 15 clear two-factor interactions but d_{1} has only 8 , so one would judge that d_{2} is better than d_{1}.

Experiments at Mixed Levels

- When $r=3, A \times B: A B, A B^{2}, A \times B \times C$: $A B C, A B C^{2}, A B^{2} C, A B^{2} C^{2}$.
- Consider a $2^{3-1} \times 3^{3-1}$ (asymmetric) product design: $d_{1}: C=A B$ for the two-level factors $\mathrm{A}, \mathrm{B}, \mathrm{C} ; I=A B C$.
$d_{2}: D=E F$ for the three-level factors $\mathrm{D}, \mathrm{E}, \mathrm{F} ; I=D E F^{2}$.
- Type 1: find 3 aliasing relations A_{1}, A_{2}, A_{3} of the two-level factors $\mathrm{A}, \mathrm{B}, \mathrm{C}$, from $\mathrm{C}=A B$:
$A_{1}: A=B C$
$A_{2}: B=A C$
$A_{3}: C=A B$
- Type 2: find 4 aliasing relations $B_{1}, B_{2}, B_{3}, B_{4}$ of the three-level factors D, E, F, from $D=E F$:
$B_{1}: D=D E^{2} F=E F^{2}$
$B_{2}: E=D F^{2}=D E^{2} F^{2}$
$B_{3}: F=D E=D E F$
$B_{4}: D E^{2}=D F=E F$.

Experiments at Mixed Levels (Continued)

- Type 3: find 12 aliasing relations C_{1} to C_{12} from Type 1 and Type 2 aliasing relations:
C_{1} (from A_{1} and B_{1}):
$A D=A D E^{2} F=A E F^{2}=B C D=B C D E^{2}=B C D E F^{2}$.
C_{2} (from A_{1} and B_{2}):
$A E=A D F^{2}=A D E^{2} F^{2}=B C E=B C D F^{2}=B C D E^{2} F^{2}$.
$C_{3}: A F=A D E=A D E F=B C F=B C D E=B C D E F$.
$C_{4}: A D E^{2}=A D F=A E F=B C D E^{2}=B C D F=B C E F$.
$C_{5}: B D=B D E^{2} F=B E F^{2}=A C D=A C D E^{2} F=A C E F^{2}$.
$C_{6}: B E=B D F^{2}=B D E^{2} F^{2}=A C E=A C D F^{2}=A C D E^{2} F^{2}$.
$C_{7}: B F=B D E=B D E F=A C F=A C D E=A C D E F$.
$C_{8}: B D E^{2}=B D F=B E F=A C D E^{2}=A C D F=A C E F$.
$C_{9}: C D=C D E^{2} F=C E F^{2}=A B D=A B D E^{2} F=A B E F^{2}$.
C_{10} :
$C E=C D F^{2}=C D E^{2} F^{2}=A B E=A B D F^{2} F=A B D E^{2} F^{2}$.
$C_{11}: C F=C D E=C D E F=A B F=A B D E=A B D E F$.
$C_{12}: C D E^{2}=C D F=C E F=A B D E^{2}=A B D F=A B E F$.

Outline

- Motivation
- Fractional Factorial Design
- Clear Effects
- Minimum Aberration Criterion
- Orthogonal Array Construction
- Conclusion

Orthogonal Array Construction Problem

Problem: given factors vector, R, how to construct the orthogonal array $(O A)$ (design matrix) that has the minimum possible run size n ?

- $R=3$ or $R=4$ for symmetric design.
- For asymmetric design, we define $R=\min \left(R_{1}, R_{2}, \ldots, R_{m}\right)$. Sometimes have to be $R=1$.
- level $=\left(r_{1}, . ., r_{1}, r_{2}, \ldots, r_{2}, \ldots, r_{k}, \ldots, r_{m}\right)$. For example, level $=(2,2,2,3,3,3,3)$ or level $=(2,2,2,2,3,3,3)$.
- minimum possible run size $n \Longrightarrow$ minimum possible run size vector $n=\left(n_{1}, n_{2}, \ldots, n_{m}\right) \Longleftrightarrow$ maximum possible $p=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$.
- Get $\left(O A_{1}, O A_{2}, \ldots, O A_{m}\right)$, then cross them together to get the (asymmetric) product design $O A$.

Maximum Possible p Table

Problem: in each symmetric group, given r, k, R, how to get the maximum possible p ?
For $r=2$:

k	3	4	4	5	5	5	6	6	6	6
R	3	$3(1)$	4	3	$4(1)$	5	3	4	5	6
$\max p$	1	1^{*}	1	2	1^{*}	1	3	2	2	1

For $r=3$:

k	3	4	4	5	5	5	6	6	6	6
R	3	3	4	3	4	5	3	4	5	6
$\max p$	1	2	1	2	2	1	3	3	2	1

Notice: For $r=2$, it might be not compatible for some given R. FYI, for $(2,2,2,2)$ and $R=3$, we can only assign 1 design generator $3=12$, then factor 4 will be the extra factor.

An Example

No.	A	B	C	D
1	-	+	-	+
2	+	+	+	+
3	-	-	+	+
4	+	-	-	+
5	-	+	-	-
6	+	+	-	-
7	-	-	-	-
8	+	-	-	-

- For factors A, B, C, it is a 2^{3-1} design with design generator $C=A B$, and D is the extra factor. A, B, C, D makes a
- $2^{3-1} \times 2$ product design.
- It is a design with $R=\min \left(R_{1}, R_{2}\right)=\min (3,1)=1$.

Orthogonal Array Construction Algorithm

Inputs and outputs of the function codes:

- Input: level vector, R.
- Output: OA ($O A_{1}, O A_{2}, \ldots, O A_{m}$ are intermediate outputs). Algorithm:
(1) From R, generator all the possible resolution combination vector $\left(R_{1}, R_{2}, \ldots, R_{m}\right)$.
(2) In each symmetric group (given r, k, R_{i}), check the compatibility of the given level and resolution R_{i}.
- If not, stop.
- If yes, continue to step (2).
(3) In each symmetric group (given r, k, R_{i}), find the maximum possible p.
(4) In each symmetric design (given r, k, p_{i}), get all the possible design generators (d.g).

Orthogonal Array Construction Algorithm (Continued)

(5) In each symmetric design (given $r, k, d . g$), from all the possible design generators, get the one which can achieves the minimum aberration.

- For each possible design generators, get the wordlength.
- Rank all the wordlengths through minimum aberration criterion.
- Pick up the best wordlength, find its corresponding design generators (d.go).
(6) In each symmetric design (given $r, k, d . g_{o}$), generate the $O A_{i}$.
(7) Cross all the $O A_{i}$ s to get the product design $O A$.

Outline

- Motivation
- Fractional Factorial Design
- Clear Effects
- Minimum Aberration Criterion
- Orthogonal Array Construction
- Conclusion

Conclusions

- We introduce the basic ideas of fractional factorial design, design generators and minimum aberration criterion.
- We generalize all the ideas from symmetric design to asymmetric (mixed-level) design.
- We provide an algorithm to generate the orthogonal array based on the minimum aberration criterion.

References

- Box, G. E. P., Hunter, W.G, and Hunter,J.S. (1978), "Statistics for experimenters," New York: John Wiley \& Sons.
- Fries, A., and Hunter, W. G. (1980), "Minimum aberration 2^{k-p} designs," Technometrics, 22, 601-608.
- Wu, C. F. Jeff. and Hamada, Micheal. S. (2009), "Experiments: planning,analysis, and optimization", (2nd edition), Wiley.

