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Advantages of Conducting Designed Experiments in Digital
Marketing

I Availability of Data

I Ease of Creating Tests

I Automation of the Analysis



Challenges of Conducting Designed Experiments in Digital
Marketing

I Wide Range of Factor-Level Combinations, Including
Mixed-Level Designs

I Binary and continuous response variable

I Designs Must Be Small

I Designs Must Be Robust

I Must Isolate Effects

I Must Produce Results Fast

I Unsophisticated Users Robustness
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Fractional Factorial Design

Motivation: for economic reasons, full factorial designs are seldom
used in practice for large k (k ≥ 7).
Fractional Factorial Design: a subset or fraction of full factorial
designs.

I “Optimal” fractions: are chosen according to the resolution
or minimum aberration criteria.

I Aliasing of effects: a price one must pay for choosing a
smaller design.

Design rk−p, where

I r: level of the factors.

I k: number of the factors.

I p: number of design generators.

I n = rk−p: run size.



An Example

No. A B C D E

1 − + + − −
2 + + + + −
3 − − + + −
4 + − + − −
5 − + − + −
6 + + − − −
7 − − − − −
8 + − − + −
9 − + + − +
10 + + + + +
11 − − + + +
12 + − + − +
13 − + − + +
14 + + − − +
15 − − − − +
16 + − − + +



Balance and Orthogonality

Two key properties of the designs: balance and orthogonality.

I Balance: Each factor level appears in the same number of
runs.

I Orthogonality: Two factors are called orthogonal if all their
level combinations appear in the same number of runs. A
design is called orthogonal if all pairs of its factors are
orthogonal.



Design Generators

I 25−1 design: 16 runs, which is a 1
2 fraction of a 25 full

factorial design.

I Aliasing: D and ABC , i.e., main effect of D is aliased with
the A× B × C interaction.

I The aliasing is denoted by the design generator D = ABC ,
x4 = x1 + x2 + x3 (mod 2).

I Since 2x4 = x1 + x2 + x3 + x4 = 0 (mod 2), we can get the
defining relation I = ABCD (I = 1234).

Number Factors

Main effects 5 A,B,C,D,E

Two-factor 10 AB,AC,AD,AE,BC,...,DE
Three-factor 10 ABC,ABD,ABE,BCD,...,CDE
Four-factor 5 ABCD,ABCE,ABDE,ACDE,BCDE
Five-factor 1 ABCDE
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Clear Main Effects and Two-factor Interaction Effects

Clear effect: a main effect or two-factor interaction is clear if
none of its aliases are main effects or two-factor interactions.

Number Factors

Main effects 5 A,B,C,D,E

Two-factor 4 AE,BE,CE,DE

From x1 + x2 + x3 + x4 = 0 (mod 2), we can get:

I A = BCD,B = ACD,C = ABD, so all the main effects are
clear.

I AB = CD,AC = BD,AD = BC , ...,AE = BCDE ,BE =
ACDE ,CE = ABDE ,DE = ABCE , so only the two-factor
interactions including E are clear, all the others aliased with
other two-factor interactions.



More Than One Design Generators

Consider the 26−2 design with design generators:
E = AB, F = ACD.

I We get the defining contrast subgroups:
I = ABE = ACDF = BCDEF .

I Ai : the number of words of length i in its defining contrast
subgroup, wordlength pattern W = (A3,A4, ...,Ak).

I Resolution: the smallest r such that Ar ≥ 1, i.e., the length
of the shortest word in the defining contrast subgroup.

I The above design, resolution R = 3 and W = (1, 1, 1, 0, 0, ...).

I Maximum Resolution Criterion: Box and Hunter (1961).

I Resolution III design, some main effects are not clear.

I Resolution IV design, main effects are clear, those with the
largest number of clear two-factor interactions are the best.

I Resolution V design, two-factor interactions are clear.
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Minimum Aberration Criterion

I Question: for the same rk−p designs d1 and d2 with different
design generators, which one is better?

I Consider the following two 27−2 designs:
d1: I = 4567 = 12346 = 12357,
d2: I = 1236 = 1457 = 234567.

I Fries and Hunter (1980): For any two 2k−p designs d1 and d2,
let r be the smallest integer such that Ar (d1) 6= Ar (d2). Then
d1 is said to have less aberration than d2 if Ar (d1) < Ar (d2).
If there is no design with less aberration than d1, then d1 has
minimum aberration.

I For the above d1 and d2, we have wordlength patterns:
W (d1) = (0, 1, 2, 0, 0),
W (d2) = (0, 2, 0, 1, 0),
so d1 is better than d2.



Maximum Number of Clear Effects Criterion

I Consider the following two 29−4 designs:
d1: 6 = 123, 7 = 124, 8 = 125, 9 = 1345,
d2: 6 = 123, 7 = 124, 8 = 134, 9 = 2345.
d1: I = 1236 = 1247 = 1258 = 3467 = 3568 = 4578,
d2: I = 1236 = 1247 = 1348 = 3467 = 2468 = 2378 = 1678.

I For the above d1 and d2, we have:
A3(d1) = A3(d2) = 0,
A4(d1) = 6 < A4(d2) = 7,
so d1 is better than d2 from minimum aberration criterion.

I While all the 9 main effects in d1 and d2 are clear, d2 has 15
clear two-factor interactions but d1 has only 8, so one would
judge that d2 is better than d1.



Experiments at Mixed Levels

I When r = 3, A× B: AB,AB2, A× B × C :
ABC ,ABC 2,AB2C ,AB2C 2.

I Consider a 23−1 × 33−1 (asymmetric) product design:
d1: C = AB for the two-level factors A, B, C; I = ABC .
d2: D = EF for the three-level factors D, E, F; I = DEF 2.

I Type 1: find 3 aliasing relations A1,A2,A3 of the two-level
factors A, B, C, from C = AB:
A1: A = BC
A2: B = AC
A3: C = AB

I Type 2: find 4 aliasing relations B1,B2,B3,B4 of the
three-level factors D, E, F, from D = EF :
B1: D = DE 2F = EF 2

B2: E = DF 2 = DE 2F 2

B3: F = DE = DEF
B4: DE 2 = DF = EF .



Experiments at Mixed Levels (Continued)

I Type 3: find 12 aliasing relations C1 to C12 from Type 1 and
Type 2 aliasing relations:
C1 (from A1 and B1):
AD = ADE 2F = AEF 2 = BCD = BCDE 2 = BCDEF 2.
C2 (from A1 and B2):
AE = ADF 2 = ADE 2F 2 = BCE = BCDF 2 = BCDE 2F 2.
C3: AF = ADE = ADEF = BCF = BCDE = BCDEF .
C4: ADE 2 = ADF = AEF = BCDE 2 = BCDF = BCEF .
C5: BD = BDE 2F = BEF 2 = ACD = ACDE 2F = ACEF 2.
C6: BE = BDF 2 = BDE 2F 2 = ACE = ACDF 2 = ACDE 2F 2.
C7: BF = BDE = BDEF = ACF = ACDE = ACDEF .
C8: BDE 2 = BDF = BEF = ACDE 2 = ACDF = ACEF .
C9: CD = CDE 2F = CEF 2 = ABD = ABDE 2F = ABEF 2.
C10:
CE = CDF 2 = CDE 2F 2 = ABE = ABDF 2F = ABDE 2F 2.
C11: CF = CDE = CDEF = ABF = ABDE = ABDEF .
C12: CDE 2 = CDF = CEF = ABDE 2 = ABDF = ABEF .
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Orthogonal Array Construction Problem

Problem: given factors vector, R, how to construct the orthogonal
array (OA) (design matrix) that has the minimum possible run size
n?

I R=3 or R=4 for symmetric design.

I For asymmetric design, we define R = min(R1,R2, ...,Rm).
Sometimes have to be R = 1.

I level=(r1, .., r1, r2, ..., r2, ..., rk , ..., rm). For example,
level=(2,2,2,3,3,3,3) or level=(2,2,2,2,3,3,3).

I minimum possible run size n =⇒
minimum possible run size vector n = (n1, n2, ..., nm) ⇐⇒
maximum possible p = (p1, p2, ..., pm).

I Get (OA1,OA2, ...,OAm), then cross them together to get the
(asymmetric) product design OA.



Maximum Possible p Table

Problem: in each symmetric group, given r , k , R, how to get the
maximum possible p?
For r=2:

k 3 4 4 5 5 5 6 6 6 6
R 3 3(1) 4 3 4(1) 5 3 4 5 6

max p 1 1∗ 1 2 1∗ 1 3 2 2 1

For r=3:

k 3 4 4 5 5 5 6 6 6 6
R 3 3 4 3 4 5 3 4 5 6

max p 1 2 1 2 2 1 3 3 2 1

Notice: For r = 2, it might be not compatible for some given R.
FYI, for (2,2,2,2) and R = 3, we can only assign 1 design
generator 3 = 12, then factor 4 will be the extra factor.



An Example

No. A B C D

1 − + − +
2 + + + +
3 − − + +
4 + − − +

5 − + − −
6 + + − −
7 − − − −
8 + − − −

I For factors A,B,C , it is a 23−1 design with design generator
C = AB, and D is the extra factor. A,B,C ,D makes a

I 23−1 × 2 product design.

I It is a design with R = min(R1,R2) = min(3, 1) = 1.



Orthogonal Array Construction Algorithm

Inputs and outputs of the function codes:

I Input: level vector, R.

I Output: OA (OA1,OA2, ...,OAm are intermediate outputs).

Algorithm:
(1) From R, generator all the possible resolution combination
vector (R1,R2, ...,Rm).
(2) In each symmetric group (given r , k , Ri ), check the
compatibility of the given level and resolution Ri .

I If not, stop.

I If yes, continue to step (2).

(3) In each symmetric group (given r , k , Ri ), find the maximum
possible p.
(4) In each symmetric design (given r , k, pi ), get all the possible
design generators (d .g).



Orthogonal Array Construction Algorithm (Continued)

(5) In each symmetric design (given r , k, d .g), from all the
possible design generators, get the one which can achieves the
minimum aberration.

I For each possible design generators, get the wordlength.

I Rank all the wordlengths through minimum aberration
criterion.

I Pick up the best wordlength, find its corresponding design
generators (d .go).

(6) In each symmetric design (given r , k, d .go), generate the OAi .
(7) Cross all the OAi s to get the product design OA.
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Conclusions

I We introduce the basic ideas of fractional factorial design,
design generators and minimum aberration criterion.

I We generalize all the ideas from symmetric design to
asymmetric (mixed-level) design.

I We provide an algorithm to generate the orthogonal array
based on the minimum aberration criterion.
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